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Abstract 

In the context of conditional maximum likelihood (CML) estimation, confidence inter

vals can be interpreted in three different ways, depending on the sampling distribution 

under which these confidence intervals contain the true parameter value with a certain 

probability. These sampling distributions are ( a) the distribution of the data given the 

incidental parameters, (b) the marginal distribution of the data (i.e., with the incidental 

parameters integrated out), and (c) the conditional distribution of the data given the 

sufficient statistics for the incidental parameters. Results on the asymptotic distribution 

of CML estimates under sampling scheme (c) can be used to construct asymptotic con

fidence intervals using only the CML estimates. This is not possible for the· results on 

the asymptotic distribution under sampling schemes (a) and (b). However, it is shown 

that the conditional asymptotic confidence intervals are also valid under the other two 

sampling schemes. 
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There are three ways ( a, b and c) to interpret inferential statements in the context 
of conditional maximum likelihood (CML) estimation. For instance, an asymptotic 95 
percent confidence interval for a CML paramter estimate can be interpreted as the interval 
that, asymptotically, contains the true parameter value in 95 percent of the samples from 
(a) the distribution of the data given the incidental parameters (i.e., treating them as 
known), or (b) the marginal distribution of the data (i.e., with the incidental parameters 
integrated out), or (c) the conditional distribution of the data given the sufficient statistics 
for the incidental parameters. Obviously, the truth of these statements depends on how 
the confidence intervals are constructed. In section 2, it is shown that the only confidence 
intervals that can be constructed using only the CML estimates, are those that are based 
on the asymptotic distribution of CML estimates under sampling scheme (c). However, 
from the point of view of the applied statistician, this sampling scheme is very unrealistic, 
because, under repeated sampling, one cannot keep the sufficient statistics fixed at a 
particular value. Fortunately, as is shown in sections 3 and 4, confidence int�rvals that 
are constructed from the asymptotic distribution under sampling scheme ( c) are also valid 
under the other two sampling schemes. We start by giving a short description of CML 
estimation ( section 1) and the asymptotic properties of the resulting estimators ( section 
2). 

1 CML Estimation 

The interest in CML estimation in psychometrics is due to the fact that many psycho
metric models contain so-called incidental or nuisance parameters. The typical data that 
are of interest here are the responses of a set of persons to a set of items. The models for 
these data usually contain person-specific parameters. These person parameters are an 
obstacle in proving the consistency of the item parameter esimates. The reason for this 
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is that the number of person parameters increases with the sample size. This is why they 
are called incidental. Parameters whose number does not increase with the sample size 
are called structural. Obviously, item parameters are structural. 

CML estimation is a solution for problems caused by incidental parameters because, 
instead of the usual likelihood, the conditional likelihood given sufficient statistics for the 
incidental parameters is maximized. We use the I<-dimensional vector r, to denote the 
structural parameters and the R-dimensional vector e to denote the incidental parameters. 
The data will be denoted by X. In the following, we assume that the probability density 
function (PDF) of X belongs to the regular exponential family. This is not a restrictive 
assumption because CML estimation is only useful if there is a non trivial sufficient statistic 
upon which to condition, and under mild regularity conditions, this is only the case if the 
model belongs to the exponential family (see Lehmann, 1983 , pp. 44-45). 

Now, this exponential family PDF can be written as follows: 

(1) 

The a and the b in (1) are functions of, respectively, the parameters only and the data 
only. And the quantities Sk (X) and 7;(X) are the minimal sufficient statistics for the 
parameters T/k and tr , respectively. As is shown in the notation, these quantities are 
functions of X. The I<-dimensional vector of Sk(X)'s and the R-dimensional vector of 
7;(X)'s will be denoted by, respectively, Sand T. To prevent a possible misunderstand
ing, it has to be noted that I< is not necessarily equal to the number of items ( denoted by 
I) or some multiple of the number of items. Often, one of the item parameters is fixed to 
identify the model. For this reason, in the Rasch model I< is usually equal to (I - 1), and 
in the Partial Credit model for M-category items I< is usually equal to (M - l)(I - 1). 

The next step is to define the conditional PDF of X given T, the sufficient statistics 
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for the incidental parameters. This conditional PDF is the following: 
f(x IT· c) = J(x; r,,e) 'T/,' J(T; T/, e) (2) 

In the following, we need f(T; T/, e), the PDF of T. For simplicity, we assume the elements 
of X to be discrete. (If they are continuous, in the formula's below, one only has to replace 
the summation signs by integrals.) Now, f(T; T/, e) is defined as follows: 

J(T;r,,e)= I: J(X;r,,e) X:T(X)=T (3) 

The important point in (3) is the summation that runs over all data sets X that result 
in the vector T of sufficient statistics. Inserting (1) in (3), we get the following: 

f(T; T/, e) = a( T/, e) exp (t Trer) L b(X) exp (t Sk(X)TJk) ( 4) 
r=l X:T(X)=T k=l 

This formula can be simplified by replacing the summation in the right-hand side by the 
function c(T,r,). 

Inserting ( 1) and ( 4) in ( 2) and cancelling some terms, we get the following expression 
for the conditional PDF of X given T: 

(5) 
The usefulness of this conditional PDF is due to the fact that it is independent of e, the 
incidental parameters. Therefore, the e in the left-hand side of (5) can be omitted. 

CML estimation is simply the maximization of the likelihood l( r,; X IT) that corre
sponds to the conditional PDF in (5). The maximization of this conditional likelihood is 
a fairly easy problem because the conditional PDF in (5) also belongs to the exponential 
family. The only complication that may be involved is that the conditional likelihood 
may have its maximum on the boundary of the parameter space. The conditions under 
which this may occur for the special case of the Rasch model are given by Fischer ( 1981). 
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2 Asymptotic Properties of CML Estimators 

Deriving asymptotic properties of CML estimators in general is a difficult problem because 
of the dependence between the elements of X that is induced by the conditioning on T. 

Andersen (1 970, 1 973) and Pfanzagl (1 993, 1 994) give results on the asymptotic properties 
of CML estimators in a particular class of models. However, this class is still so general 
that it includes all psychometric models that are of interest. This class of models is 
for data matrices X and incidental parameters e that can be divided into N parts Xn 

(n = 1, . . .  , N) and en , respectively, in such a way that the PDF of Xn only depends on 
en (and 17, of course). In psychometric applications, Xn usually is the response vector of 
the n-th subject and en is that subject's vector of person parameters. 

The asymptotic properties of CML estimators have been studied under the three sam
pling schemes discussed in the previous. Sampling scheme (a) is sampling from f(X; 17, e), 
in which e is treated as fixed. Notice that e is of dimension N and that this dimension 
increases to infinity in the asymptotic argument. Andersen (1 970, 1 973) considered this 
sampling scheme for the case in which the en 's belong to a compact space (for en 's in real 
space, this means that they belong to a bounded subspace). For this case, he proved con
sistency and asymptotic normality under some regularity conditions on f(XIT; 17) and 
f(X; 11) (Theorems 3 and 4 on p. 292 in Andersen (1 970)). These regularity conditions 
are very similar to those of the usual proofs of consistency and asymptotic normality of 
ML estimators (see, e. g. , Cramer, 1 946). Only his Assumption 2.1 ( on p. 291 in the 1 970 
paper) is specific for the conditional nature of the estimation. This assumption involves 
that there is a positive probability of observing sufficient statistics Tn = tn ( the sufficient 
statistic for en) for which the conditional PDF of Xn given Tn = tn depends on 17. For 
the Rasch model, this means that, for every person, there must be a positive probability 
for a sum score different from zero or the perfect score. If the en 's are bounded, it is easy 

4 



to see that this condition holds for the Rasch model. 
Andersen's (1970) Theorem 4 also gives the asymptotic covariance matrix. In our 

notation, this covariance matrix is the inverse of a matrix B( T/, e), with elements bk1( T/, e) 
that are defined as follows: 

(6) 

in which the subscrips to E denote that the expectation is taken at some fixed values for 
T/ and e. This matrix cannot be estimated consistently because it depends on e. 

Under sampling scheme (a), Pfanzagl (1994) gives a consistency proof for the special 
case of the Rasch model using a condition on the en 's, different from compactness, that 
is not only sufficient but also necessary. 

We now consider sampling scheme (b ). This sampling scheme involves that the en 's 

are considered as random variables having a common distribution. This distribution will 
be denoted by g(e; >..), in which >.. denotes the parameters of this PDF. This sampling 
scheme is layered: first, e is drawn from g(e; >..), and then X is drawn from"f(Xlt T/) 
(in which the conditioning bar denotes that e is now a random variable). The marginal 
PDF of X is then defined as follows: 

(7) 

In his 1970 paper, Andersen notes that his proof of Theorems 3 and 4 ( consistency 
and the asymptotic normality under sampling from f ( X; T/, e)) can be easily adapted for 
sampling from f(X; T/, >..) (see p. 292). In Andersen (1973), he actually gives this proof 
(see Theorem 3.2 on p. 88). Both the regularity conditions and the proof itself are parallel 
to those of Andersen's (1973) Theorem 3.1, which corresponds to Theorems 3 and 4 in 
his 1970 paper. The asymptotic covariance matrix under sampling from f(X; T/, >..) is the 
inverse of a matrix B(T/,>..), with elements bkl(T/,>..) that are defined as follows: 

bk1(T1,>..) = i
,,,,>.. [-c?lnf(XIT;T1)/(877k)(8r,1l)] 
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in which the subscrips to £ denote that the expectation is taken given some fixed values 
for 'T/ and ,\, This matrix can be estimated consistently if we can also consistently estimate 
,\, However, for this a separate estimation procedure is required. How this can be done 
for the special case of the Rasch model, is described by Andersen and Madsen (1977). 

A different type of consistency proof for sampling scheme (b) is given by Pfanzagl 
(1993). 

A line of research that is closely related to Pfanzagl's (1993) work, focusses on the 
question under which conditions CML and so-called semiparametric ML estimators are 
identical. Semiparametric ML estimators provide an estimate of both the structural 
parameters and the distribution of the nuisance parameters. Essential for semiparametric 
estimation is that this distribution is estimated non-parametrically. The consistency of 
semi-parametric estimators was shown by Kiefer and Wolfowitz (1956) under very weak 
regularity conditions. The relevance for the present paper lies in the fact that several 
authors (a) have presented the conditions under which CML and semipara�etric ML 
estimates are identical, and (b) shown that these conditions are fulfilled with probability 
one as the sample size increase, in this way giving an indirect consistency proof for the 
CML estimators (De Leeuw & Verhelst, 1986; Follman, 1988; Lindsay, Clagg, & Grego, 
1991 ). 

Finally, we consic:ier sampling scheme (c), which is sampling from the conditional PDF 
f(XIT; 'T/), An important point here, is that consistency and asymptotic normality of 
CML estimators cannot be proved for all sequences of sufficient statistics t1, t2, . . .  (tn 

being a realization of Tn), The reason for this is that, for some realizations of T
n

, the 
conditional PDF of Xn given Tn does not depend on 'T/· For the Rasch model, these are 
the response patterns with a zero or a perfect sum score. These observations provide no 
statistical information about 'T/· Therefore, consistency cannot be proved for all sequences, 
namely not for those with only a finite number of informative observations. 
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It is of interest to know what is the probability of the sequences t1 , t2 , . . .  for which 
consistency and asymptotic normality cannot be proved. Now, it was shown by Andersen 
(1973) that, both under sampling scheme (a) (with the ln's belonging to a compact 
space) and (b), the probability of such a sequence is zero (Theorems 4.1 and 4.2, p. 116, 
resp. , p.117). Stated positively, Andersen proved that CML estimators are consistent and 
asymptotically normal under sampling from f(XIT; 11) for all realizations of T, except 
for a subset with probability zero. 

The asymptotic covariance matrix under sampling from f(XIT; 11) is the inverse of a 
matrix B(11,t), with elements bk1(11,t) that are defined as follows: 

(9) 

in which the subscrips to E denote that the expectation is taken given some fixed values 
for 11 and t. This matrix can be estimated consistently by replacing 11 in (9) by its 
CML estimator. This is an important difference with (6), which cannot be_ estimated 
consistently, and (8), which can only be estimated consistently if a consistent estimator 
for � is available. 

We are in the unfortunate position that the only asymptotic confidence intervals we 
can construct from the CML estimates have a reference distribution that is not realistic 
for the applied statistician, namely f(XIT; 11). Because he cannot keep T fixed at t, 

its realization, repeated sampling from f(XIT; 11) is not feasible in practice. However, 
in section 4, it is shown that this confidence interval is also valid under the other two 
reference distributions. But first, in section 3, we introduce this asymptotic confidence 
interval and give its interpretation under sampling from J(XIT; 11). 
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3 The Asymptotic Confidence Interval under Sam

pling from f (X I T; r,) 

The (1 - a/2) x 100 percent asymptotic confidence interval is the following: 

(10) 

In this expression, U1_0;2 is the (1 - a/2) X 100-th percentile of the standardnormal dis
tribution and &k is the estimated asymptotic sampling error of 'T/k, obtained by taking 
the square root of the k-th diagonal element of the inverse of the expected information 
matrix, defined in (9), evaluated at the CML estimates. The interval in (1 0) will be de
noted by Cla('T/k), Now, the interpretation of Cla('T/k) is given by the following probability 
statement: 

lim P (TJk E Cla('T/k) I T(X) = t; TJ) = 1 - a 
N--+oo 

(11) 
In this equation, the limit is taken for the number of persons (N) going to infinity. This 
is specified by a vector of sufficient statistics t = (t1, . . .  , tN) of increasing dimensionality. 
Successive t's correspond to data sets of increasing size. The probability statement in 
(11) is a direct consequence of Andersen's (1973) Theorems 4. 1 and 4.2. 

An alternative way of expressing (11) is possible by making use of the indicator func
tion J0 (X, k) that has the value 1 if T/k belongs to CJ0(fJk) for the data set X and O if it 
does not: 

lim � J0(X, k)f(X IT= t; TJ) = 1 - a 
N--+oo � 

X:T(XJ=i 
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4 The Asymptotic Confidence Interval under Sam

pling from f (X ;  rJ, �) and f (X ;  rJ ,  >..) 

For the following, it is convenient to have expressions for J(X; r,, e)  and f(X; r,, .X)  that 
show their relation with J(XIT; r,) . By making use of the fact that f(XIT, T/, e) does 
not depend on e, we can write the following: 

and, 

J(x; r,, e) = J(x I T; r,)J(T; r,, e) 

f(X; r,, .X) J(x I T; r,) J J(T; ,,,.,, e)g(e ; .x) de 
J(X I T; r,)J(T; T/, .X), 

in which J(T; r,, .X) denotes the marginal PDF of T. 

(13) 

( 14) 

We now consider CI0(f/k), as defined in (11), under sampling from J(X; r,, .X). The 
exposition for sampling from J(X; r,, e) is completely analogous: in the formula's, one 
only has to replace .X by e. Now, using the indicator function I0 (X, k), the asymptotic 
probability of T/k belonging to CI0(f/k) under sampling from J(X, r,, .X) can be written as 
follows: 

lim """" J0(X, k)f(X; r,,  .X) 
N--+oo L...J 

(15) 

Inserting (14) in ( 15), it follows that the asymptotic probability of T/k belonging to 
CI0(f/k) under sampling from J(X; r,, .X) can be written as follows: 

( 16) 

The important point is that the expression between large parentheses in ( 16) converges to 
(1- a) ( see (12), except for those terms that correspond to sequences t1, t2 , . . .  that do not 
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allow for consistent asymptotically normal CML estimates. However, this set of sequences 
has probability zero under sampling from f(X; 11, ..\) (Andersen's (1973) Theorem 4.2). 
Because the expression between large parentheses in (16) is always between zero and 
one, we can safely ignore this set of probability zero. It then follows that the complete 
expression in (16) converges to a weighted sum of terms all of which are equal to (1 - a) . 

It follows that the asymptotic probability of T/k belonging to C f� ( 'T/k) under sampling from 
J(X; 11, ..\) equals (1 - a) .  Formally, 

lim � Ia(X, k)f(X; 11, ..\) = 1 - a N--+= L-
X 

5 Extension to Hypothesis Tests 

(17) 

It is straightforward to generalize the result in (17) to the sampling interpretation of 
hypothesis tests in the context of CML estimation. In particular, one can show that the 
asymptotic type-I error a not only holds under sampling from f(X I T; 17) but-also under 
sampling from f(X; 11, e) and /(X; 71, ..\). One only has to replace the indicator function 
Ia (X, k) by Ia (X) and define it as an indicator for the event that the null hypothesis is 
not rejected using significance level a. 

6 Conclusion and Extension 

The results in this paper are of interest because of their usefulness for the applied statis
tician. The results show that one does not have to consider an unrealistic conditional 
sampling scheme in the interpretation of asymptotic confidence intervals and hypothesis 
tests. The interpretation that holds un�er sampling from f(X J T; 11) also holds under 
sampling from f(X ; 11, e) and f(X ; 11, ..\). 

The argument that leads to these results is not specific for inference conditional on 
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sufficient statistics. For instance, the same argument can be applied to inference in the 
linear model, where the conditioning is on the independent variables. In observational 
studies, these independent variables are random, and therefore one cannot expect their 
values to be constant over replications. However, all inferential statements, such as those 
based on confidence intervals for regression parameters and F-statistics, assume repeated 
sampling from the conditional distribution of the dependent variable given some fixed 
values for the independent variables. Essentially the same argument as the one in this pa
per, allows us to conclude that these inferential statements are also valid under sampling 
from the marginal distribution of the dependent variable (i.e., with the independent vari
ables integrated out). Moreover, in case of the linear model, we don't have to deal with 
tricky asymptotics, because we know the exact sampling distribution of the regression 
coefficients and the F-statistics for finite samples. Therefore, we only need a matrix of 
independent variables that is of full column rank ( or something equivalent, like estimable 
functions). 
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