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Abstract 

Starting from a set of basic designs, more complex designs are created by re
cursive application of the basic designs. Properties of these designs, and their 
effects on the accuracy of Rasch CML-parameter estimates are investigated. 
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1 Introduction 

To construct a test from an item bank in a psychometrically sound way, 
we need data on these items. These data are obtained by administering 
them to a sample of students, and to register their responses. A response 
to an item is also called an observation. Because the number of items in an 
item bank usually is large, each student is administered only a small part 
of all items in the bank. For these observations to be useful they have to 
be carefully planned. Therefore, many tests are administered as part of a 
so-called structurally incomplete design. In such a design the complete set of 
items is divided into partially overlapping subsets of items called a booklet. 
The number of items a booklet contains, is such that the intended student 
can finish it in time. With observations obtained from such a design the item 
parameters are usually estimated with the method of Conditional Maximum 
Likelihood ( CML). In this report it is investigated for a structured set of 
design patterns how certain properties of the design affect the quality of the 
item parameter estimates, as measured for instance by their estimation error. 
Maximum Likelihood estimation in general accommodates missing data in a 
natural way. However, the pattern of the observations does affect the quality 
of the parameter estimates. 

First some simple properties of designs that seem relevant for parameter 
estimate quality are discussed. Then so-called basic designs and their recur
sive application are introduced, and some properties related to the simple 
properties are proven. Next, a tractable expression to calculate the estima
tion error is introduced to quantify the effect of design properties to estima
tion error. Finally, some numerical examples are discussed that relate some 
design properties to the quality of the design. For simplicity focus will be on 
the Rasch model. 

2 Design properties 

Four design properties will be distinguished: 

1. 1. Smallest number of observations per item 

Like the strength of a chain is determined by its weakest link, the qual
ity of a scale can be justly characterized as the largest error of estimation 
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of its item parameters. The estimation error of an item parameter is de
termined not only by its difficulty for the target population, but to a large 
extent by the number of observations it shares with other items. Therefore, 
to optimally distribute observations over items, it is a matter of efficiency to 
equalize the number of observations for each item, or equivalently, to maxi
mize the minimum amount of observations per item under constraints as cost 
or total amount of observations. It is evident that under the last constraint 
this maximum is obtained with an equal amount of observations per item. 
Usually, we will assume the number of observations per booklet equal over 
booklets. Then the number of observations of an item equals the number of 
its booklets times the number of observations per booklet. The number of 
booklets that contains a certain item is also called item frequency. Under 
the assumption of an equal number of observations per booklet striving for 
an equal amount of observations per item is equivalent to striving for equal 
item frequencies in the design. If all items have equal frequency in a design, 
the design has the equal item frequency property {EIF). 

2. Smallest number of observations per item pair 
A pair is called observed if at least one subject responds to both items. 

With a complete design, the number of observations of a pair of items equals 
the number of observations of the individual items. With incomplete de
signs this is not the case. The number of observations for many pairs of 
items is less than the number of observations of the individual items. How
ever, in !RT-models, only functions of differences of item location parameters 
are estimable. The minimum number of observations per item pair could, 
therefore, be an important characteristic of an incomplete design. Because in 
many incomplete designs, however, the minimum number of observations per 
pair equals zero, this quality index is not as informative as one might wish. 
Therefore, in evaluating the quality of a design, other indices using pair fre
quencies are preferable. One could think of a distribution of pair frequencies, 
or represent this distribution by a mean and a standard deviation. 

3. Largest item pair distance (LPD) 
In many incomplete designs, the smallest number of observations for pairs 

of items equals zero. Given such a design an important characteristic of an 
item pair is the minimum number of observed item-pairs that connects the 
item pair. For instance, the distance of an item to itself equals zero, if a 
pair of different items shares a booklet the pair itself is observed, and the 
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distance equals 1. If the item pairs (a, b), and (b, c) are observed, and (a, c) 
is not, then the distance of item pair ( a,c) equals two, etc.. The item pair 
in a design with the largest distance determines to a large extent the largest 
uncertainty about the differences of its item parameters. This property of 
a design is called largest pair distance {LPD ). Of special importance are 
designs with LPD equal to one or LPDO, that is, for each pair of items 
there is a booklet in the design that contains it. For Conditional Maximum 
Likelihood ( CML) estimation it is crucial that all item pairs are connected 
whatever the distance. If two items are not connected the difference of their 
item-parameters cannot be estimated. When all item pairs are connected the 
design is called connected. The basic designs being explored in this article 
are connected. 

4. Size of common subsets 
When the distance of a pair of items equals one, and they are each con

tained in exactly one booklet, the number of items in the common subset of 
those two booklets is a major determinant of the accuracy of the estimation 
of the difference between the two item parameters. 

3 Basic patterns 

A basic pattern is a subset structure on a finite set S of units with certain 
simplifying limitations. A unit may be an item, or a set of items, that 
always goes together in a booklet. The first two simplifying limitations are 
the following 

1. The subsets all have an equal size of b units 

2. The union of all subsets covers S. 

To obtain interesting basic patterns, set-theoretical concepts are not suf
ficient. Graph-theoretical notions do enrich the picture. The subsets in a 
basic pattern are then identified with points in the graph, and if two subsets 
share a units ( a > 0) they are joined by an edge, also called directly con
nected. The edge connecting· two subsets is weighted by a. Two subsets S1 

and S2 are called connected if there is a path connecting them. Then there is 
a set of directly connected pairs of subsets, with the first pair containing S1, 

and the last pair containing S2, and all other pairs not containing S1 nor S2. 
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The number s of edges in a smallest path connecting two subsets S1 and S2 
defines their distance as s. Consequently, the distance between two directly 
connected subsets equals 1. Two types of chains are discerned. In a closed 
path there exists a path of length > 0 from each point to itself. If in a closed 
path no edge is traversed twice it is called a circuit. If in a closed path no 
point is traversed twice it is called a cycle. The order of a point is its number 
of edges. In a tree every pair of points is connected by a unique path. A 
linear graph is a tree where the order of every point is at most two. Now the 
following types of basic patterns can be distinguished, that all cover S: 

1. circular pattern 

2. tree pattern 

3. linear pattern, is a special tree pattern 

4. disconnected pattern, contains a point pair unconnected by a path 

It follows immediately from elementary theorems in graph theory that 
if two points in a tree are connected by an additional edge, it contains a 
unique cycle, and stops being a tree (Balakrishnan, 1995, theorem A.3, pg 
182). The number of units in S, also called the size of S, is denoted by n. On 
the other hand one should be aware that the proposed Graph-representation 
in many instances does not capture all properties of a design, because often 
more essentially different designs are represented by the same graph, as a 
simple example in Figure 1 shows. 

3.1 Circular basic designs 

One of the most interesting basic designs is what is here called the circular 
design. The basic idea can be found in Definition 1, which is presented in 
Figure 2. 

Definition 1: Choose an ordering of S. Start at the left side of S with an 
uninterrupted subset B0 C S, and choose a number s such that s < b and 
n = ks, with k an integer. Next shift Bo over the length of s consecutive 
units. This gives the next booklet B1 in the design. Again shift B1 over 
s units. This gives the third booklet B2 . Where the booklet crosses the 
right border of S it reappears at the left border of S. Repeat this shifting 
k - 1 times. Then the process stops. Shifting one more time would result 
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Items � 

Booklets 

2 

Figure 1: Two different designs represented by one graph. In the left design 
the first booklet shares part of its intersection with the second and with the 
third booklet, whereas in the design at the right it does not. 

in booklet Bk that coincides with the first booklet B0, therefore, in Figure 
2 Bk has been crossed out, because it already is a part of the design under 
the name B0. The design is given by the sequence of booklets B0, ... , Bk-l· 

Note that the shift size s must fit exactly k times into S : n = ks, because 
otherwise Bk would not coincide with B0. A small real example of a circular 
design is: S contains items or item units {1, ... , 6} and booklets (1, 2, 3), 
(3, 4, 5), (1, 5, 6), where the shift equals 2 and, therefore, fits 3 times in S. 

3.1.1 On the search for the necessary and sufficient conditions of 
circularity 

In this section the essential properties for a basic design to be circular are 
investigated. Given a subset structure, the question is which properties have 
at least to be checked in order to be sure that the design is basic and circular 
according to Definition 1. 

The booklets in a circular design as defined by Definition 1 have the prop
erty that there is a largest intersection size c = b - s such that for each subset 
there are exactly two other subsets, its c-partners, with which it has an in
tersection of size c. This property is called 'equal pairwise c-intersection' 
further abbreviated to 'EP I '. A necessary condition for this property to 
hold for all booklets is that the last booklet turns around at the right edge of 
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B s 

Figure 2: Example of design constructed following definition 1 for circular 
designs 

S to reappear at the left edge with c units to intersect with B0 . This prop
erty follows immediately from the requirement that the shift fits an integer 
amount of times into S. This requirement also implies that the same design 
is obtained when one shifts from right to left or otherwise. One may also 
imagine the left and right border of S glued together to form a circle. It is an 
interesting question whether the property EPI is sufficient to have a circular 
design. Two simple examples of non-circular designs that prove otherwise 
are given in Figures (3) and ( 4). Each horizontal line represents a subset of 
size b. 

Figure 3: A non-circular design with EPI 

These counter examples suggest which conditions have to be added to 
obtain necessary conditions: 
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Figure 4: EPI with more than one circuit 

1. Minimum Intersection (MI) . For all subsets its two c-partners have 
minimum intersection size max(b - 2 (b - c) , 0) , to exclude designs as in 
Figure (3) . 

2. One Cycle (OC). In traversing the booklets by visiting its not yet 
visited c-partner all booklets are visited, to exclude multiple circuits as in 
Figure (4). 

Figure 5: A noncircular design with EPI, MI, and OC 

But also these three conditions (EPI, MI, and OC) are not sufficient for a 
design to be circular according to definition 1 as a counterexample in Figure 
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5 shows. Note that units 4 and 5 cannot be interchanged without causing 
a hole in subset 2. Whereas a circular design of the given sizes would have 
an empty intersection of subsets 2 and 5 in this example these subsets share 
unit 4. It seems that one has to conclude that the property MI cannot be 
restricted to only the c-pairs, but must be generalized to all subsets. If in 
the last counterexample subset 4 would have contained unit 4 instead of 3, 
the intersection of subsets 1 and 4 would have been empty, without changing 
the sizes of the intersections with other subsets. Therefore, EMI is defined 
as: every subset has two c-pairs with minimum intersection with each other 
and all other subsets. By now, one could conjecture that a basic design is 
circular if and only if it has EPI, EMI, and OC. However, a counter example 
is still very simple to construct as shown in Figure 6 where EMI and MI are 
indistinguishable by just having three subsets. The pattern in Figure 6 is not 

Figure 6: A basic design that has EPI, MI, and OC, but is not circular. 
n = 7, b = 5, c = 3 

circular, because the subset that results from shifting the last subset over the 
constant shift size does not result in the first subset, but 'overshoots'. 

Two properties of circular designs that are violated in Figure 6 can be 
discerned. The first is that there exists no integer k such that ks = n. Call 
this property SI (shift integer). Apparently, SI is a necessary property to 
have circularity. The second property concerns the uninterruptedness of the 
c-intersections. In Figure 6 it is not possible to find an ordering of S where 
all c-intersections are uninterrupted. In the sequel it will turn out that this 
property must be replaced by a more encompassing one, and will, therefore, 
further not be dealt with. 

As in Figure 3, Figure 5 also draws attention to another property of cir
cular designs, that is homogeneous unit frequency. If subset 5 in Figure 5 
would have contained unit 5 instead of 4, all units would have had frequency 
3, whereas now unit frequencies range from 2 to 4. In circular designs £re-
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quencies differ 1 at most. Having homogeneous unit frequencies is a favorable 
property of a design to lower the largest estimation error. The following th� 
orem states exactly the unit frequency in a basic circular design as a function 
of its determining parameters. From which it immediately follows that in a 
circular basic design the unit frequencies differ 1 at most. 

Theorem 1 In a circular basic design, the unit frequency is b\s or (b -
1)\s + 1, where \ denotes integer division 

Proof. Choose an arbitrary unit u and an arbitrary subset B from the 
design not containing u. Consider the design as a series of shifted B' s over 
s units. The first subset that hits u has passed u by at least 0, and at most 
s - 1 units. Therefore, the left most unit v of that first hitting B has distance 
at most b - 1, at least b - s to u. Consequently, it takes (b - 1)\s + 1 to 
(b - s)\s + 1 shifts for v to move beyond u, resulting in (b - 1)\s + 1 to 
(b- s) \s + 1 = b\s hits, including the first hit. Clearly, both values are either 
equal or di.ff er at most 1. ■ 

A basic design with unit frequencies that differ at most 1 is called homo
geneous. Because homogeneity is easier to check than MI or EMI, it would be 
interesting if MI or EMI and homogeneity implied each other. However, one 
can construct a homogenous basic EPI and OC design that is not EMI, as 
shown in Figure 7, where, for example, the third booklet has an unnecessary 
nonempty intersection with the first booklet. 

Figure 7: A basic design that has EPI, MI, and OC, but is not circular. 
n = 7, b = 5, c = 3 

However, by violating EMI in these examples another property is also vi
olated. In circular designs, according to Definition 1, there exists an ordering 
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of S where all subsets of the design consist of an uninterrupted series of units 
USU. The edges of S are supposed glued together. In Figures 5 and 7 the 
USU property is violated. Apparently, also USU is necessary for a circular 
design. Perhaps USU, EPI, MI, SI, and OC are necessary and sufficient for 
circular designs. However, in the lemma's below it is shown that USU and 
EPI are sufficient. 

Lemma 2 MI is implied by EPI and USU 

Proof. Consider a subset B and its two c-partners B' and B", and 
assume S to be ordered such that these three subsets are an uninterrupted 
series of units. For B' to be uninterrupted means that its intersection with 
B is located and uninterrupted on either side. Suppose B' and B" share the 
left part of B, then the units of B' not shared with B must be located at the 
left of B. The same holds for B", which must also be on either side of B. 
However, if it would also be located at the left side of B it would coincide 
with B' and Size(B' n B11

) = b > c, which violates EPI that demands that c 
is the largest intersection. Consequently, B' and B

11 
are located on different 

sides of B. For instance, the units B n B' are all located at the left side of 
B and B n B

11 
at the right side of B, and consequently their intersection is 

minimal. ■ 

Corollary 3 Every subset in an EP I and US U basic design has a left and a 
right c-partner 

Lemma 4 OC is implied by EPI and USU 

Proof. Start with an arbitrary subset B. Without loss of generality one 
can assume an ordering of S such that B is on the left side of S and all subsets 
are uninterrupted. According to the above Corollary one can select the right 
c-partner of B, of this subset again its right c-partner and so on, until one 
finds the left c-partner of B and next reencounters B because the number of 
subsets is finite. Suppose one does not reencounter B, but a subset at the 
right of B, then there must be a break in the chain, that can only be result of 
an interrupted subset, or a nonzero intersection, which both are against the 
assumptions. If after the first encounter of units common to B, one does not 
reencounter B itself, but only incomplete intersections, then the reasoning 
at the end of this proof on a second chain applies, which also results in a 
violation of assumptions. Moreover, the chain from B to B must cover S, for 
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if it does not, at least one subset must have passed the left side of S without 
crossing the right side. Consequently, that subset is interrupted by the not 
covered part of S, against the assumption of USU and the chosen ordering of 
S. Therefore, the situation depicted in Figure 4, where the third and sixth 
booklet are interrupted, cannot occur. Now suppose that, with the same 
ordering of S, there is another chain in the design of uninterrupted subsets 
of size b with intersections of size c. Because the first chain already covers 
S, the second chain must have nonzero intersections with every subset of the 
first chain. Consider the part of this chain that has nonzero intersections 
with B and take the subset C with the smallest left intersection with B of 
size a. If a > c then the assumption EPI that c is the largest intersection is 
violated and we are finished. Therefore, a < c. Then the right c-partner of 
C has an intersection of size min(b, a +  c) with B, which obviously violates 
EPI. ■ 

Lemma 5 SI is implied by EPI and USU 

Proof. In lemma 4 the right c-partner of a subset is shifted c units to the 
right, and by traversing the chain of right c-partners one closes the circle by 
reencountering the subset one started with. Now suppose that SI does not 
hold, then the chain must have crossed the edge of S more than once. Then 
again consider the subset that while tracing the chain of right c-partners, 
starting with B, after covering S for the first time crosses the edge of S with 
smallest left intersection of size a with B, and repeat the reasoning of the 
previous lemma. ■ 

Corollary 6 A basic design with EP I and US U has exactly k subsets with 
n = k(b - c) = ks 

The previous lemma's and the content of their proofs imply the main 
result of this section: 

Theorem 7 A basic design is circular if and only if it has USU and EPI 

3.2 Linear Basic Designs 

In many respects linear basic designs resemble circular designs except that 
the chain does not go round but has a beginning and an end. There is an 
ordering of S where the first subset only has a right c-partner, and the last 
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subset only a left c-partner, and the rest of the subsets a left and a right 
c-partner. Except for the last subset S is partitioned by the first (k - 1) 
shifts. Therefore, in linear designs an adapted property SI does apply for 
S - B, and we have that (k - l)s = n - b, again with k the number of 
subsets. A less favorable property of linear basic designs is that the unit 
frequency is, in general, not homogeneous. The first and last s units have 
frequency 1, whereas the frequency of units in the midrange of S is related to 
the frequency of units in a circular design. Their frequency equals min(k, b\s 
or (b - 1)\s + 1), because the frequency cannot be larger than the number 
of subsets. 

Linear designs are also less attractive in the present context of the below 
treated recursive application of basic designs. In a certain variant, where 
intersection sizes are constant over recursion levels, recursion does not matter. 
That is the design does not change with the number of recursion levels. 
With circular designs recursion does matter also with constant intersection 
sizes. Also linear designs are less homogeneous the more recursion levels are 
involved. The begin and end units have frequency one whatever the recursion 
level, whereas the frequency of some of the middle units may double with 
almost every recursion level. 

3.3 Balanced Block Design 

The balanced block design is obtained as follows. First one chooses a wanted 
booklet size. The booklet size is divided by two. This gives the block size d. 
Next the item bank is partitioned into a number k of blocks of about size d 
(see Appendix). Then each pair of blocks defines a booklet. And the number 
of booklets in the design equals k(k - 1)/2. The balanced block design has 
some beautiful properties such as EIF and LPDO. A disadvantage is that the 
number of booklets tends to be high, a property that it shares with designs 
produced with more than a few levels of recursion of the circular and linear 
designs. 

Although the balanced block design can be recursively applied in an arbi
trary number of recursion levels, it is easily shown that the resulting design is 
equivalent with a design that is directly obtained without a recursive appli
cation (see also below the Theorem on LPDO conservation with recursion). 
Therefore, it is produced directly. 
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Figure 8: A simple example of a common anchor design 

3.4 Common anchor design 

The design where all subsets share the same set of units is called the common 
anchor design, see Figure 8. 

An obvious advantage of this type of design is that the distance between 
two arbitrary units is at most two. An obvious disadvantage is that a small 
subset of units, the anchor, obtains much more observations than all other 
units, resulting in very unequal estimation errors of item parameters. Because 
all subsets are connected, the graph theoretical representation is not very 
informative for this basic design. Moreover, the recursive application, treated 
below, is not as straightforward as for the circular and linear basic designs. 
This is caused by the fact that in a common anchor design the units are not 
considered equal. The anchor units have, from a design point of view, another 
status than the other units. By themselves they constitute a complete design, 
whereas the other units can be considered part of a completely disconnected 
linear design. The design is connected only by the complete design of the 
anchor test. Therefore, recursive construction, if at all useful, would have 
to follow another path than it is conceived here. As such these designs fall 
outside the scope of this treatment, even more so than the balanced block 
design. Since common anchor designs are often used, however, it would be 
nice to compare the results of common anchor designs with the other designs. 
Therefore, common anchor designs with a range of anchor sizes, booklet sizes, 
and bank sizes will be studied, and compered with the results for the other 
design types. 

3.5 Other basic designs 

Lemma 8 If a basic pattern of subsets of b :2: 2 units is complete, that is, 
contains all (�) subsets of b units, it is LPDO. 
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Proof. Suppose a basic pattern contains all G) subsets of b 2:: 2 units. 
Choose an arbitrary pair P of units, and an arbitrary subset SP of b units 
that contains P, then the basic pattern contains SP, because it contains all 
subsets of b units, and moreover SP contains P. ■ 

The converse is not true in general, only for b = 2. For b > 2 a basic 
pattern may be LPDO and yet may not contain all (�) subsets. An example is 
the complete basic pattern (n, b) = (4, 3) with subset {1, 2, 3} left out. More 
in general there are (�_:::-;) subsets that contain a certain pair P of units, so 
that G.:::-;) - 1 of these subsets may be omitted, while retaining a subset that 
contains P, and a subset for any other pair P', because at most (;_:::-;) - 1 of 
subsets that contain P' are omitted. Therefore, the question emerges which 
subsets a basic pattern must at least contain to be LDPO. For the following 
situation this can be calculated easily. Not only the number of subsets is 
found but also a way to construct the desired subset structure. 

If n = me, b = kc, and n = r (b - c) + c for some integers k, m, r, the 
minimum number of subsets of S for a basic pattern P to be LPDO can be 
found as follows. First note that the size of c is immaterial for this problem, 
therefore, choose c = 1, so that k(= b) can also be omitted from the problem. 
Then the problem can be structured as shown in Table 1. 

Table 1: construction of an LPDO design with booklet size b 

Used units 
1 l + b - 1  
#booklets 1 

1 + 2(b - 1) 
l + b - 1 

l + r (b - 1) 
1 + (r - l) (b - 1) 
= r + ( b - 1) I:;,:; i 
= r + (b - l)r(r - 1)/2 

So n = 1 + r (b - 1) is partitioned into one set of one unit and r sets of 
b - 1 units. Take the first unit, and add the first of r sets of b - 1 units. 
This results in 1 booklet. Next add the second set of b - 1 units. Each of 
the 1 + b - 1 already used units has to be combined with the new set of b - 1 
units to create an LPDO booklet series of 1 + 1 + b - 1 booklets. This goes on 
until all r subsets of b - 1 units are used, at which point r + (b - l)r (r - 1)/2 
booklets are created. 
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4 Recursive designs 

In this section recursive designs are defined, and some properties are proved. 
In constructing a design for a set of items, one divides the set into a pattern 
of subsets. Ideally the pattern exhibits certain desirable properties like equal 
or homogeneous item frequencies, or iargest pairwise distance equal to zero. 
In a recursive design we start the division of the item set into a basic pattern 
of subsets, and repeat this process for each of the subsets, either with the 
same basic pattern, or with some other basic pattern, or even different basic 
patterns for each of the subsets. This subdivision of subsets can be repeated 
until subsets (booklets) of a desirable size are obtained. If at each recursive 
step the same basic pattern is used, the design is called I-Recursive, else D
Recursive. In the sequel, the question will be addressed whether interesting 
properties of basic patterns are retained with recursive repetition. First, two 
constancy theorems on equal item frequency (EIF) and zero largest item pair 
distance (LPDO) are presented. 

Theorem 9 If within each recursive level the same basic pattern with EIF 
is applied then EIF holds for the entire design. Basic patterns may differ 
between recursive levels. 

Proof. It is enough to prove that given a pattern of subsets with EIF, 
if each of the subsets is again divided into the same pattern with EIF, the 
resulting design retains this property. It is easily seen that item frequency 
equals the product of the item frequencies over the recursion levels. Because 
this holds for each item, all items have equal frequency. ■ 

Theorem 10 If the basic patterns of all recursion levels conform to LPDO, 
this holds for the entire design. Basic patterns may differ within and between 
recursive levels. 

Proof. Again it is enough to prove this for one level to the next. We 
start with a LPDO pattern. Now choose an arbitrary pair P. LPDO means 
that for P there is a subset that contains P. This subset is again divided 
with a LPDO pattern , which means that there is a subset of this subset that 
contains P. ■ 

The two Theorems above are easily generalized as follows. Like we have 
EIF, so we also may have equal pair frequency EPF, and, in general EtF, 
for subsets of size t. Denote the frequency of subsets of size t in an EtF 
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design with At, then, for instance, an EIF design with item frequency f is 
ElF with A1 = f, and an EPF design E2F, etc. Then the above theorems 
are generalized by 

Theorem 11 If a design G is recursively generated by application of D basic 
EtF patterns with respective frequencies Atd, {d = l ,  . .  , D) then G is an EtF 
design with Ate = nf=l Atd·  

Proof. Again proof is only necessary for level 2 recursion. So assume 
that we have two basic EtF patterns with respective frequencies A1, and A2 , 

and generate a design D by recursive application of these two basic patterns. 
Choose a t-subset T. Then there are A1 subsets in basic pattern 1 containing 
T. Each of these A1 subsets contains A2 subsets that contain T. Therefore D 
contains A1 A2 subsets that contain T. ■ 

Because the LPD of a design determines to a large extent the estimation 
error of pairwise parameter differences, it is important to know how LPD 
develops with recursive design constructions if basic patterns are used with 
LPD greater than zero. To derive an inequality we introduce the concept of 
multilevel graph. A recursive design is in a natural way linked to a multilevel 
graph. First consider the graph of the highest level design. The blocks are 
represented as the nodes of the graph, and there is an edge between two 
nodes if the corresponding blocks overlap. Now apply a design to each of the 
blocks. On the level of the graph this means that each node is represented 
by a higher level graph. 

The fat triangle in the graph represents the first level of the graph. A 
fat line between two squares A and B indicates that there are connections 
between one or more pairs of level 2 points, of which one member of each pair 
belongs to A and the other to B. The first level connection between the two 
upper squares is indicated by the fat line, the level two connections between 
these two squares by thin lines. 

With these concepts in mind an upper bound for the distance between 
two level n points can now be formulated. 

Theorem 12 The LPD in an n-level graph with LPDi at level i equal to mi 
is bounded from above by I:�=l TI;=i 

mi 

Proof. Choose a pair of units that have to be connected and for each unit 
a booklet that contains them. These two booklets can be represented as a 
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Figure 9: Recursive design with triangle first level design and square second 
level design ( see graph below) . To simplify the picture the second level is 
expanded only for first level blocks A and B. 

pair of nodes ( an , bn) at level n for which a path has to be found, and start at 
element an . Take the element an-l from which an was produced, and likewise 
bn-l, and so on up to a1 and b1 . Then at level 1 there are at most m1 edges 
to be crossed to go from a1 to b1 , visiting level 1 nodes a1 = a10 . .. a1m1 = b1 . 
However, to cross a level 1 edge like a10 to an one has at level 2 to find a 
route of at most m2 edges from a2 to a level 2 node a; that shares a unit 
with a level 2 node a; produced by an. One has to process the next level 
1 edge in the same way. After processing the last level 1 edge one still has 
to process at most m2 level 2 edges to find b2 , giving a total distance of at 
most m1 m2 + m2 level 2 edges. Continuing at level 3 one obtains in the same 
vain at most (m1m2 + m2)m3 + m3 = m1m2m3 + m2m3 + m3 level 3 edges. 
Continuing up to level n one obtains a distance of at most E�1 rr;=i ffij 

level n edges from an to bn. Note that after arriving at booklet bn one has to 
increase the distance at most by one to reach the wanted unit in bn. ■ 

This theorem yields a Corollary that is essential for CML-estimation. 
Connectedness of a recursive design is guaranteed if the employed basic de
signs are: 

Corollary 13 Recursive application of connected basic designs results in a 
connected design. 

Remark 14 Note that the LPD will in most cases be smaller than this upper 
bound. As an example see the above figure. For instance, above it was shown 
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Figure 10: Multilevel graph of the above design with triangle first level design 
and square second level design. The second level connections between the 
upper two square designs are depicted. 

that LPDO is kept with recursive constructions, whereas this theorem gives n 
as an LPD upper bound for an n-level design construction of LPDO patterns. 

5 Standard errors of item parameter estimates 

In this section the effect on standard errors of parameter estimates are evalu
ated as a function of recursive design characteristics. To this end a number of 
simplifying assumptions are to be made to eliminate less essential variables. 
The evaluation is restricted to the Rasch model where all item and person 
parameters are assumed equal. Moreover, the number of records per booklet 
is assumed constant. The investigation is restricted to I-recursive designs, so 
that the basic design is the same at all recursion levels. 

The standard errors of item parameters are found as follows. Minus the 
second derivatives w.r.t. all item pairs in a record are accumulated over 
records in the so-called Information matrix I. With the above assumptions 
the information matrix I is proportional to the n x n matrix where diagonal 
cell (i, i) holds the count over booklets of the occurrence of item i, and 
offdiagonal cell ( i, j) i -f. j the frequency of items i and j in the same booklet 
weighted by - 1/(d - 1), with d the booklet size (see also Verhelst, 1993, 
Formula (12)). To compare different designs, the information matrix must 
be made invariant for the number of observations per item. Because we are 
only interested in the effects of the design structure, and not in the amount of 
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ones that is produced to represent this structure, I is divided by the average 
number of observations per item. 

n Is = I--
D++ (1) 

where D ++ denotes the count of nonblank cells in D. To obtain the covari
ance matrix C of the parameter estimates, the first row and column of the 
information matrix Is is deleted. The resulting matrix 10 is inverted, and 
after adding a first zero row and column it is pre- and postmultiplied by 
a normalization matrix P. As an estimation of the standard errors of the 
parameter estimates one takes the square root of the diagonal elements of 
the covariance matrix C. 

[ 
0 O' l 

Cnxn = Pnxn O l- 1  Pn xn 
0,n-lxn-1 

(2) 

For the normalization matrix P we take the normalization with mean item 
parameter equal to zero. 

The quality of a design is difficult to evaluate directly from the contents of 
Is or Cnxn · Pukelsheim (1993) discusses several real functions on the space of 
information matrices or covariance matrices to judge design quality. Among 
them are the n-th root of the determinant of I. See also Eggen, 2004, eh 3, 
for the meaning of the determinant of 10 as a measure for the information 
content of a design. Other measures of design quality, which are clearer 
to interpret, are derived from the covariance matrix Cnxn : the mean and 
standard deviation of the square root of the variances, the diagonal elements 
of Cnxn , and the square root of the values of the smallest and largest element 
on this diagonal. 

The number of items n will take values 100, 200, 500 and the booklet 
sizes are 20, 30, 40, 60. The basic designs are linear or circular. The number 
of recursion levels is related to the subset ratio, the larger the subset ratio 
the more recursion levels are needed to arrive at the desired booklet size (see 
also the Appendix) .  The maximum of the subset ratio is set at 0. 75, with 
a maximum number of booklets 77147 at n = 500, b = 20, resulting from 
11  recursion levels. The intersection ratio c/b will take values .25, and .50. 
Note that b is the subset size,· and only represents the booklet size for subsets 
of the last recursion level. In the Appendix it is explained why the user set 
intersection ratio often is not equal to the realized intersection ratio, and 
indeed may differ quite substantially. 
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5.1 Results 

Our primary interest is in the mean square root of the estimation error per 
observation as a function of booklet size and subset ratio. Furthermore, it 
must be emphasized that user control of intersection ratio is sacrificed for 
constant bank size and booklet size (see Appendix). This loss of control is 
especially felt for user set intersection ratio 0.25. At intersection ratio set 
equal to 0.5 its realized values are always close to 0.5 (Figure 12). The depen
dency of realized intersection ratio on subset ratio for user set intersection 
ratio = 0.25 is shown in Figure 11. In comparing Figures 11 and 12 note also 
the scale values on the vertical axis. 

500 Items 

Uwr lnLRol 0,25 

.. • . .. 
0,5 •• 

0 

0.4 0, 

g 
. • 

0,3 

0 0 

0 0 0 . . • 
0.2 • 

0.1 

0.1 0,3 0,5 0.7 

SubRalio 

Figure 11: Dependeny between realized intersection ratio and subset ratio 
for user set intersection ratio = 0.25 

Because the results for n = 100, and 200 do not essentially differ from 
n = 500 items, discussion is restricted to the latter case. 

Figures 13 and 14 show that for linear designs the estimation error hardly 
depends on recursion depth for the lower and intermediate levels, as was to 
be expected, but is negatively related for the higher recursion levels. The 
increasing loss of homogeneity of unit frequencies with recursion level is to 
be hold responsible for this effect. Moreover, for all combinations of booklet 
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Figure 12: Dependency between realized intersection ratio and subset ratio 
for user set intersection ratio = 0.5. 

size and subset ratio the estimation error is higher than for circular designs. 
For both design types estimation error decreases with booklet size, although 
this dependency almost vanishes for the highest recursion levels in circular 
designs. The user set intersection ratio 0.5 gives a smoother picture of the 
mentioned relations, because for this value the effective intersection ratio 
remains about constant with subset ratio. Minimum and Maximum values 
are shown in Figure 15. Apparently for intermediate values of the subset 
ratio and for small and large booklet sizes the estimation error for some 
unit parameters surges. This must, of course, be a consequence of greater 
variability of unit frequencies. Because of an artifact of the spline smoothing 
algorithm the maximum surface sometimes runs below the minimum. 

The n-th root of the determinant gives an altogether different picture in 
Figure 16. Note, that a low estimation error is a positive property, while a 
low determinant is a negative property. 

For the lower subset ratios, that is, less recursion levels, linear designs 
exhibit only a little less quality than circular designs as measured by the 
n - th root of the determinant of the standardized information matrix. They 
diverge, however, markedly for the higher subset ratios. Although the esti-
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Figure 13: Mean square root of estimation error as a function of subset ratio 
(x-axis) and booklet size (y-axis). User intersection ratio = 0.25, effective 
0.16 ... 0.53. Booklet size and subset ratio decrease toward the left front corner. 

mation error also diverges for higher recursion levels, it also shows a large 
quality difference for the designs with less recursion levels. It is not clear why 
these two quality measures do not agree for the designs with less recursion 
levels. For user set intersection ratio=0.25 the dependency between recur
sion level and realized intersection ratio also interferes. Therefore the two 
pictures for user set intersection ratio 0.25 and 0.5 differ, and the second in 
Figure 17 reflects the behavior of the n-th root of the determinant in a less 
obtrusive way. 

In Figure 17 for circular designs the n-th root of the determinant appears 
almost constant around 0.95, not affected by recursion level nor booklet size, 
whereas for the linear designs it worsens for higher subset ratios. Especially 
with decreasing booklet size the quality of linear designs deteriorates. In a 
complete design the n-th root of the determinant equals 0.96 for n = 100, 
0.99 for n = 500 and its limit for n ----+ oo equals 1.0. 

Looking at the homogeneity of estimation variances over items one sees 
a negative dependency for linear designs on the number of recursion levels, 
whereas, see Figure 18, this property for circular designs is hardly effected. 
This negative relationship for linear designs also results from increasingly 
unequal item frequencies with increasing recursion level. 
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Figure 14: Estimation error as a function of subset ratio (x-axis increasing 
from right to left) and booklet size (y-axis, increasing from front to back). 
User intersection ratio = 0.5, effective ±0.5. Booklet size and subset ratio 
decrease toward the left front corner. 

As already mentioned in section 3.3, Balooced Block Designs are produced 
directly, without the intervention of recursion. Balanced Block Designs are 
better than any of the other designs, as could be already expected from its 
properties EIF and LPDO. The results are shown in Table 2. 

Table 2. Results of Balanced Block Designs 

Bk Size 
20 
30 
40 
60 

Realized 
20 
30 
40 
58 

#Bklets 
1225 
528 
300 
136 

{1/Deter 
0.973 
0.979 
0.982 
0.985 

Mean JEstErr 
1.0186 
1.0115 
1.0080 
1.0044 

On both criteria, the n-th root of the determinant, and the mean square 
root of the estimation error, Balanced Block Designs score better than the 
other designs. However, circular designs come close, with appreciably smaller 
numbers of booklets for the lesser recursion levels. For n = 500 recursion 
level 2, for example, the results are shown in Table 3. 
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Figure 15: Circular designs min and max of square root values on the diagonal 
of the covariance matrix 

Table 3. Results of circular designs recursion level 2 

Bk Size 
20 
30 
40 
60 

Realized 
20 
30 
40 
60 

#Bklets 
100 
64 
49 
36 

v'Deter 
0.937 
0.949 
0.965 
0.969 

Mean ✓EstErr 
1.198 
1. 105 
1.053 
1.028 

For Common Anchor designs, recursive application is not meaningful. 
However, interesting relations between booklet size, anchor size and design 
quality can be obtained. Quality as reflected by the mean square root of the 
estimation error is shown in Figure 8. 

With an item bank of 500 items, the optimum anchor size for small book
lets (20 Items) is 4, whereas for 60 items it is 8. With an Item bank of 100 
items these figures are respectively 5 and 12. Comparing the means with 
those of the recursive circular designs it appears that the latter are some
what more efficient. With an item bank of 500, items, and booklets of 60 
items, the lowest value for circular designs is 1.01, the highest 1.06, whereas 
for common anchor designs these values ar respectively 1.09, and 1.14. The 
minima and maxima of the square root of the estimation errors are shown in 
Figure 20. The minima are, of course, for the common anchor units with a 
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500 Items 

User lnt. Ral 0.25 

Figure 16: n-th root of the determinant of the standardized Information 
matrix, user set intersection ratio = 0.25, effective 0.16 . . .  0.55 

maximum number of observations, whereas the maxima for the other units 
are large. 

However, the n-th root of the determinant gives another relation with 
quality of anchor size and booklet size. According to this measure, quality 
increases with booklet size and decreases with anchor size. A strong decrease 
of quality is found for the small booklets (20 items), and a moderate decrease 
for the large booklets (60 items). For small anchors the quality increase for 
booklet size is hardly noticeable. 

As already mentioned, it is a disadvantage of common anchor designs that 
the number of observations for the anchor is in general so much higher than 
those for the rest of the items, resulting in large differences in estimation 
error. This is reflected in Figure22. Comparing these values with those in 
Figure 18 reveals that the standard errors of estimation are here much larger. 
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Figure 17: n-th root of the determinant of the standardized Information ma
trix, user set intersection ratio = 0.5. Booklet size and subset ratio increase 
toward the left front corner. 

6 Discussion 

In the above pages we have tried to create and unveil some structure in the 
overwhelming variety of subset structures that can function as a design of test 
booklets from a larger set of items. We first studied the basic circular and 
linear designs, and next unveiled some properties of recursive applications 
of this type of basic design. The main result of this exploration is that 
necessary and sufficient properties for a design to be circular are USU and 
EPI. This means that there is an ordering of S where the booklets consist 
of an uninterrrupted series of items and each booklet has exactly one pair 
of booklets with intersection of size c, where c is the largest intersection in 
the design. We also gave expressions for the frequency of items, in a plain 
circular design, and upper bounds for recursive designs. 

To investigate the accuracy of item parameter estimates we had to in
troduce some simplifications. Circular designs are, as was to be expected, 
superiorto linear designs in this respect . Our main indices for design quality 
per observation were the average estimation error and the determinant of the 
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Figure 18: standard deviation of the square root of diagonal elements of the 
covariance matrix. Booklet size and subset ratio decrease toward the left 
fron corner. 

standardized information matrix. We found that the average estimation error 
with circular designs for smaller booklets (20 units) increases somewhat with 
increasing recursion level, especially for the first two or three levels. How
ever, the determinant seems invariant for number of recursion levels. The 
results on the effect of recursion level on design quality differ. The n-th root 
of the determinant appears not to be influenced, but the average estimation 
error shows a positive relationship. Because the latter measure directly rep
resents what we aim for, it seems safe to suppose that quality increases with 
recursion level. 

The number of booklets can grow tremendously with increasing recursion 
level . In our examples the largest number of booklets in one design amounts 
to more than 177.000. With paper and pencil tests these numbers are not 
manageable. In the near future, however, where every student is supposed to 
interact with a wireless foldable foil screen, these numbers will not pose a real 
problem. However, the results show, that if a large number of booklets poses 
no problem, the best results are obtained with a balanced block design. When 
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Figure 19: Common Anchor design: mean square root diagonal elements of 
covariance matrix 

the number of booklets is relevant, then one should opt for a circular design 
with a few recursion levels. With such designs the number of booklets is quite 
manageable. For the first three levels, for example, with n = 500, booklet 
size 60, they are 17, 36, 64. But even if the variety of designs as presented 
here is not used in practice, the present study gives some insight in how the 
construction of a design influences its quality, and how, for instance, these 
designs compare with the often used common anchor design. 

With the common anchor designs it was remarkable that small anchor 
tests with 4 to 8 items for respectively 20 and 60 item tests were optimal for 
a bank with 500 items. The common anchor design is less efficient than the 
circular design , as measured by the estimation error as well as the n-th root 
of the determinant of the standardized information matrix. 
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Figure 20: Common Anchor: min and max values of the square root of the 
estimation errors 
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8 Appendix : Algorithmic implementation 

Circular Designs 
In a practical setting some of the determinants of a design, such as total 

number of items n, booklet size d, and wanted booklet intersection ratio 
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500 Items 

Common Anchor 

Figure 21: Common Anchor : n-th root of the determinant of the standard
ized information matrix 

which determines the shift size s are fixed. Clearly, within these practical 
constraints it is, in general, not the case that n = ks, for circular designs, or 
n - b = (k - l)s for linear designs. Moreover, given a certain ratio of subset 
size and unit count, one does not automatically end up with the wanted 
booklet size d .  Therefore, some precautions are taken to produce a design as 
close as possible to the wanted criteria within the practical constraints. 

In the computer program the user sets the values 
n : number of units at recursion level 0 
d : booklet size 
r 8 : subset ratio 
r i : intersection ratio 
A subset ratio r 8 is specified, that is given a set of size n, the subset size mv 

at recursion level v is given by mv = r �n. Now, given a total number of units, 
not every subset ratio will result in the wanted booklet size d. Therefore, if, 
after v = vd recursion levels we want 

(3) 
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Figure 22: Corrunon Anchor: Standard deviation of the square roots of the 
estimation variances. 

then the subset ratio must be 

(4) 

Consequently, if the number of levels vd is chosen, the subset ratio r 8 that 
results in the wanted booklet size is fixed. 

Further, given a wanted intersection ratio r i, that is the intersection size 
at recursion level v, is given by 

(5) 

with mv the subset size, with m0 = n. The shift size then equals Sv = mv -Cv. 
However, in general, for instance for circular designs, it is not the case that 
n / s at the zeroth recursion level or mv / Bv at recursion level v is an integer, 
as required for a basic design. To accommodate this requirement, the shift 
size, and, therefore, the intersection size, is adapted for circular designs as 
follows. First, from one level to the next the set size Ov is passed as a floating 
point number to be sure that with the right subset ratio one ends with the 
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wished booklet size d, with nv = r <YUnd (  Ov) .  Then, at level v the number of 
subsets kv = r ound( Ov / Sv), because for a circular design one needs at least 
three subsets. Therefore, if kv < 3 its value is changed to 3. This gives a 
rest number of not used or too few units Pv = nv - Sv * kv . Note that Pv 
can be negative. Then the shift size is increased with Pv \kv. This leaves 
qv = Pv mod kv < kv unused units. These are accounted for by increasing 
the shift size for Qv subsets with one unit if qv > 0 or decreasing the shift 
size by one for -qv units if qv < 0. For a linear design a similar strategy is 
implemented. In this strategy complete control by the user of the intersection 
ratio is sacrificed for using the entire item bank and producing booklets with 
the size the user wants. 

Real Circularity 

There is another pointthat should be stressed in implementing the produc
tion of recursive circular designs. In a first implementation, the construction 
of a basic design given a subset was always started at the item with the low
est index in the subset. Take, for instance, a subset that starts near the end 
of its superset and 'turns around' the right edge of its superset. The first 
booklet of the basic design in this subset starts at the first item of its super
set instead of its own starting item. This proved to produce an unwanted 
high dependency of item frequency on position. The frequency of the last 
item could be 1, against 32 for the first item which resulted in a very high 
estimation variance of the last item parameter compared to the variance of 
the first. The dependency of frequency on position was much less by starting 
the construction of subsets at the start of the superset itself. 

A small example can clarify the issue. Attend to the subdivision of the 
third subset ( third thick line in upper part) of the circular design of Figure 
23. In the first set of thin lines, the subdivision has started at index 1, in 
the second set of thin lines the subdivision has started at the start of subset 
three, that is at one third from the right edge. In shifting the second subset 
(second thick line) to create the third susbset, its first item is at a distance 
of one third from the right edge. The item with the lowest index in the third 
subset, however, has index 1. If one starts the second level recursion at item 
indexed 1, that is at the very left of the figure, (first set of thin lines) this 
item has at the second level frequency four, and the last item, at the right 
keeps having frequency one, whatever the recursion level. In the second set 
of thin lines we start at the start item of the third subset (implementing real 
circularity), that is, at one third from the right edge. Then this start item 
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Figure 23: Starting the recursive repetition of the upper basic design for the 
third subset at index 1 (first subdivision) or at the first item of the third 
subset, index at 2/3 of the index range (second subdivision) 

has frequency three or four at level two, and the last item frequency two. 
Start items always have a frequency advantage, but with real circularity it is 
not too often the item with index 1 in the previous level set. 

Balanced Block Designs 
The balanced block design is constructed as follows: The user defines a 

wanted block size d ,  it is assumed that his wanted booklet size equals 2d. 
Then 

k - raund(n/d) 
m - raund(n/k) 
e - n - mk 

(6) 

where k denotes the number of blocks, and m is the realized block size. The 
first le i  ::; min(m/2, k/2) blocks are diminished by one (e < 0) , or increased 
by one (e > 0).  And every pair of these blocks defines a booklet. Because, in 
general, m =/:- d ,  the realized booklet size can also deviate from the wanted 
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booklet size. Note that booklets can deviate at most two units from the 
'realized' book length 2m. 

Common Anchor Designs 
In the implementation of common anchor designs, the anchor size a is 

considered a given. Therefore, no intersection size can be varied to obtain 
an integer number of booklets of the desired size that fit into the item bank. 
Given a, and a wanted booklet size, only the booklet size can be varied to 
obtain a cover of the item bank. The algorithm to obtain a booklet size as 
close to the wanted booklet size, and have a cover of the bank is as follows. 
Denote the wanted booklet size with d ,  realized booklet size with m ( except 
for correction by e, see below) 

k 

m 
e 

round((n - a)/(d - a) 

round(a + (n - a)/k) 

n - a - k(m - a) 

(7) 

where le ! < min((m - a)/2, k/2) denotes the number of booklets that 
is one larger ( e > 0) or one smaller ( e < 0) than m. Consequently, the 
realized booklet size can deviate somewhat from the desired size. Keeping 
the anchor on a fixed value, and allowing relatively small deviations from 
the wanted booklet size allow a clearer picture of the effect of anchor size on 
design quality. 
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