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A Poisson-Gamma model for speed tests

N.D. Verhelst and F.H. Kamphuis�

National Institute for Educational Measurement (Cito)
Arnhem, The Netherlands

Abstract

The present report discusses two applications of the Poisson mea-
surement model for counts as originally developed by Rasch. To ac-
count for the distribution of the latent variable, a gamma distribution
is hypothesized. Parameter estimation for the measurement model
and for the distribution model are discussed in detail. In the �rst
application - a collective test for technical reading - the model �ts the
observed data very well. In the second application - an individual test
for technical reading- poor �t was found. Extending the distribution
model to a mixture of two gamma variables leads to an excellent �t.
Special attention is given to the estimation of the reliability.
Key words: Poisson model, gamma distribution, latent class mod-

els, reliability

1 Introduction

The main purpose of this report is to present an investigation on a psycho-
metric model for pure speed tests. Speed tests can be categorized in two
main types. In the �rst type, the testee is performing a given task, and the
basic observation is the time needed to �nish the task. The second type con-
sists of performing an, in principle in�nite, series of subtasks, and the basic
outcome is the number of subtasks �nished within a given time period. The

�We are indebted to Niels Veldhuijzen for his careful reading of the manuscript and the
106 suggestions for improving it.
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subtasks themselves are easy to perform, and generally di¤erences in di¢ -
culty between subtasks are nonexistent or ignored. This report is on tests of
the latter type.
Such an investigation will comprise several parts, each of which will be

given attention to. These parts are:

1. Giving some theoretical justi�cation for the chosen model and an in-
vestigation of its mathematical features;

2. A detailed treatment of the parameter estimation procedure, with suf-
�cient attention to cases where practical considerations necessitate the
use of incomplete designs;

3. Computational aspects of the parameter estimation procedure;

4. Giving attention to the validity of the model: can it be shown that the
model describes the observations to a high degree of accuracy?

5. Giving attention to the practical use of the model and its outcomes.
In particular, attention must be given to the relation between a highly
specialized model and a far less structured theory of measurement,
Classical Test Theory, whose use is paramount among practitioners of
educational testing.

To make the presentation not too abstract, and to demonstrate that the
model is useful in practice, it will be applied to two complex data sets. In
Section 2, the data sets will be introduced. In Section 3, the model is intro-
duced. In Section 4, the parameter estimation problem of the Poisson part is
discussed, while in Section 5, the gamma part is introduced and parameter
estimation is discussed for that part. In Section 6 the relation between the
present model and Classical Test Theory is discussed, with special attention
to the problem of reliability. In Section 7 the results of the application of the
model to one of the tests are reported. For the other test, however, the model
fails to explain important features of the data. Therefore, an extension of
the model is proposed. This is the subject matter of Section 8. The report
concludes with a discussion (Section 9).
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2 The tests and the data

In the student monitoring system developed by Cito for use in primary ed-
ucation, two di¤erent speed tests of the second type, aimed at measuring
technical reading ability are used. The �rst one is a series of tests for collec-
tive administration; the tests are labeled �tempo tests�(TT). The other one
is administered individually and is called the �three minutes test �(TMT).
Both tests and the data collection design for the calibration are discussed
next.

2.1 The tempo tests

The student monitoring system provides tests to primary schools in di¤erent
domains, such that performances of the same student at di¤erent ages can
be meaningfully compared to each other, as well as to the performances
of students in the same grade. For most domains tests were provided which
could be used in six of the eight grades of Dutch primary education 1. Usually
tests are administered twice a year, once in the middle of the school year and
once near the end. Speci�c tests are indicated by an acronym designating the
target grade and the period in the school year when it has to be administered.
For example, a test designated for group 6 and to be administered in the
middle of the school year is designated as M6, while the test intended for the
end of the same grade is designated as E6. For each test norms are provided
and a psychometric model is used to evaluate progress on a single underlying
scale from one administration moment to the next.
For the domain of technical reading, a series of tests is provided from M4,

E4, etc., to M8, and for each testing occasion a parallel test is o¤ered as well.
In the calibration study reported here a total of 19 tests has been used.
A single test consists of a coherent text where some words are left out. At

each gap, three words are o¤ered and the student has to choose the one word
out of three that �ts best the context. Students are instructed to underline
or cross the best �tting word, and in the test instructions it is stressed that
the text must be read and that students have to work as fast as they can.

1The Dutch system of primary education consists of eight grades (called �groups�), the
�rst two being equivalent to Kindergarten in many other countries. Formal instruction to
reading and arithmetic starts in group 3.
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Here is an example:

The job got out of ... [had hand hard].

Each text has about one hundred gaps, and a gap appears on every line
of the text. The texts are constructed to �t with the general level of reading
comprehension for the grade they are intended for. This was checked by com-
puting a readability formula (Staphorsius, 1994) on all the fully completed
texts which are used in this research.
In the data collection design used to calibrate the texts and to derive the

norms, each student takes two tests in a linked design. Data were collected
in a period of �ve consecutive years in the early nineties.
As the test is meant to �t in a student monitoring system, where the

reading speed can be monitored, it is unavoidable that di¤erent subtests are
used at di¤erent age levels for two reasons: 1) using the same test at di¤erent
ages with the same student may cause bias due to memory e¤ects, and 2),
due to the development of reading ability, texts suited for low age levels
will not be usable at higher age levels and vice versa. So the model has to
provide means of measuring the same concept (reading speed) using di¤erent
measuring instruments.
In the model to be discussed in Section 3, it is essential that the number

of words that can be read within the allotted reading time is unbounded.
To prevent that students would reach the end of the text within the allotted
time, the total reading time was adapted to the grade level for which the
texts were constructed, ranging from 4 minutes for the higher grades to 8
minutes for the lower grades.

2.2 The three minutes test

The three minutes tests consists of a set of three cards, labeled 1, 2 and
3 respectively. Each card contains a list of isolated words, and the tested
student is requested to read aloud each word as fast as possible but without
making reading errors. The allotted time is one minute per card, and the test
consists of one, two or three cards. The basic outcome is the count of the total
number of words read per card and the total number of errors per card. Cards
are constructed using words of similar phonological structure. The cards are
referring to three types of orthographic structures: monosyllabic consonant-
vowel-consonant patterns, monosyllabic words with consonant clusters and
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polysyllabic words. Card 1 is intended to be the easiest and card 3 the most
di¢ cult one.
For each card three parallel forms are constructed. Parallel forms contain

the same words but presented in a di¤erent order, in order to avoid rote
learning.
For the calibration study, data were collected in two waves. In January

2008 data were collected in M3, M4,... up to M8 and in June 2008 data
were collected again in E3 to E7, where the same students were tested as in
January. At each wave each student took a form of the cards 1, 2 and 3, but
the same card was never administered to the same student at the two testing
occasions. Cards 1, 2 and 3 were administered in the order of increasing
di¢ culty as this will be the practice when the test is released.
The sample sizes for the di¤erent (half) grades for the tempo tests and

the three minute tests are given in Table 1.

Table 1. Sample sizes

grade M3 E3 M4 E4 M5 E5 M6 E6 M7 E7 M8
TT � � 1212 1513 810 857 854 864 837 792 655
TMT 1025 942 1018 920 954 811 879 765 779 704 775

3 The psychometric model

A very simple and parsimonious model can be derived from the following
model about time investment. Suppose the time used to process a single bit
of information (for the tempo tests, this means reading of the text up to the
next item and responding to it, and for the TMT it just means reading the
next word) is exponentially distributed with parameter �: Denote by S the
number of items �nished in a total time span � : Then it can be proven (Lord
and Novick, 1968, pp. 490-491) that S is Poisson distributed with parameter
� = ��.
Now we can let the parameter � depend on person as well as task char-

acteristics, i.e., we consider �vi as our basic parameters, and we decompose
them as

�vi = � i�v�i; (�v; �i > 0) (1)

where � i is the time allotted to text i or card i and is expressed in an arbitrary
unit; v denotes the person. This model is a slight generalization of the Poisson
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model developed by Rasch (1960), because it allows explicitly for variation
in the time allotted to make each subtest.
Since the right hand side of (1) consists of a product of three factors, there

are two opportunities to choose units of the scale. One could multiply � i and
divide �v by an arbitrary positive constant c1 and multiply �v and divide �i
by another arbitrary constant c2 without a¤ecting the product. One of these
indeterminacies can be solved by choosing the unit of time, which in the
present report will be minutes. The other determinacy is solved by choosing
a normalization, which will be discussed in more detail in the next section.
This section ends with a short note on terminology. The term task will

be used to refer to a text in the TT or to a card in the TMT. The term item
designates a subtask in both tests, i.e. indicating a gap in the TT or a word
in the TMT.

4 Parameter estimation

We start with the complete case: all students take the same k tasks. The
likelihood of the data is

L =
Q
v

kQ
i

�xvivi

xvi!
exp(��vi) (2)

where v denotes the student, and i the task; xvi is the value of the ran-
dom variable, and indicates the number of items �nished within the allotted
reading time. Taking logarithms and using (1) gives

` = ln(L) =
X
v

kX
i

[xvi ln � i � ln(xvi!)]

+
X
v

sv ln �v +

kX
i

ti ln�i

�
X
v

kX
i

� i�v�i (3)

where

sv =
kX
i

xvi and ti =
X
v

xvi
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This clearly shows clearly that the model is an exponential-family model with
su¢ cient statistics sv for the �-parameters and ti for the �- parameters.

4.1 Joint Maximum Likelihood estimation (JML)

For the complete case, the estimation equations are easily derived:

@`

@�v
=
sv
�v
�
X
i

� i�i; (4)

and
@`

@�i
=
ti
�i
� � i

X
v

�v: (5)

Of course we need a normalization (see (1)). A suitable one in the complete
case is X

i

� i�i = C; (6)

with C an arbitrary positive constant. So we have from (4)

�v =
sv
C
; (7)

and substituting this result in (5) we �nd that

�i =
Cti

� i
P

v sv
: (8)

Notice that (7) and (8) are explicit solutions; no iterations are required.
In the incomplete case, things are a little bit more involved. De�ning the

design indicator variables as

dvi =

�
1 if task i has been administered to student v;
0 otherwise,

the likelihood of the data is

L =
Q
v

kQ
i

�dvixvivi

(dvixvi)!
exp(�dvi�vi); (9)
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where xvi is an arbitrary number if dvi = 0. One �nds as su¢ cient statistics
for �v and �i respectively:

sv =
X
i

dvixvi; (10)

and
ti =

X
v

dvixvi; (11)

and as likelihood equations

�v =
svP

i dvi� i�i
; (12)

and
�i =

ti
� i
P

v dvi�v
: (13)

This system can be solved iteratively (i.e. applying (12) and (13) alterna-
tively), while at the same time renormalizing the � parameters after each
evaluation of (13). Of course, the normalization is arbitrary, and a simple
one, like

Q
i �i = 1 will do.

If the number of tasks is �xed and the number of students increases, so
will the number of � parameters, whence it is not sure that the � parameters
are estimated consistently by using this method of estimation. Therefore we
consider conditional maximum likelihood.

4.2 Conditional Maximum Likelihood Estimation (CML)

To investigate the conditional likelihood, it proves useful to introduce a slight
reparametrizetion of the model. De�ne

�i = � i�i: (14)

With a complete design, the CML estimates are easily found using a
nice theorem proved by Rasch (1980) and again by Lord and Novick (1968,
Theorem 21.2.4, p. 484). We state the theorem here without proof.

Theorem 1 Let X1; X2; : : : ; Xk be independent Poisson random variables
with parameters �1; �2 : : : ; �k and let S = X1 + X2 + � � � + Xk; then the
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conditional distribution of X1; X2; : : : ; Xk given S = s is multinomial with
index s and parameters

pi =
�iPk
j �j

; (i = 1; : : : ; k):

Use of this theorem leads immediately to the CML-estimates in a com-
plete design. In incomplete designs, however, it is not clear at all how to use
this theorem to derive the CML estimation equations. Therefore, we follow
a di¤erent approach here.
Conditioning on the su¢ cient statistic for �; it is readily found that the

conditional likelihood of the scores (x1; : : : ; xk) on k tasks is given by

Lc = Pr(x1; : : : ; xkjs; �1; : : : ; �k) =

Y
i

�xii
xi!X

�

Y
i

�yii
yi!

(15)

where
P

� runs over all k-tuples (y1; : : : ; yk) of nonnegative integers such thatP
i yi = s. The denominator of (15) is a combinatorial function of s and the

� parameters, which at �rst sight seems quite complicated, but which turns
out to be utterly simple to evaluate. De�ne


s(�) , 
s(�1; : : : ; �k) =
XP
i
yi=s

Y
i

�yii
yi!

(16)

Consider the case with k = 2: A total score of s can arise in exactly s + 1
ways: y1 takes the values 0 to s; and y2 takes the values s � y1: If y1 takes
the value j, the corresponding term in the sum of (16) is

�j1
j!
� �s�j1

(s� j)!
whence we obtain


s(�1; �2) =

sX
j=0

�j1
j!
� �s�j2

(s� j)!

=
1

s!

sX
j=0

�
s

j

�
�j1�

s�j
2

=
1

s!
(�1 + �2)

s (17)
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To generalize to the case with arbitrary k; we need the following theorem.

Theorem 2 
s(�1; : : : ; �k) =
1

s!

"
kX
i

�i

#s
Proof. The proof is by induction. It trivially holds for k = 1: The induction
hypothesis is that it holds for k � 1: The variable yk in the sum of (16) can
take the values 0 through s: If it takes the value j; the sum of the other y
values is s� j; and these values can be distributed in an number of ways over
the values y1 through yk�1: But the contribution of all these possibilities is
exactly 
s�j(k � 1): Therefore, if yk = j; the contribution to 
s(k) is

�jk
j!
� 
s�j(k � 1);

which is, by the induction hypothesis, equal to

�jk
j!
�

hPk�1
i �i

is�j
(s� j)! :

Therefore


s(�1; : : : ; �k) =
sX
j=0

�jk
j!
�

hPk�1
i �i

is�j
(s� j)!

=
1

s!

h
�k +

Pk�1
i �i

is
=

1

s!

hPk
i �i

is
: (18)

It is easy to see that 
0(�) = 1: To have consistent notation, we de�ne


s(�) = 0 if s < 0: (19)

Using (18), one obtains a useful recursive relation:


s(�) = 
s�1(�)�
Pk

i �i
s

(20)
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from which it follows immediately that


s(�) Q 
s�1(�)()
Pk

i �i Q s (21)

and it follows that 
s(�), considered as a function of s; is either monotonously
decreasing (if

Pk
i �i < 1); takes the value 1 for s = 0 and s = 1 and then

decreases (if
Pk

i �i = 1), or is single-peaked, since s is unbounded and
Pk

i �i
is independent of s.
For computational purposes, it may be useful to have a rough estimate of

the order of magnitude of the combinatorial function 
. From (18) and the
Taylor expansion of the exponential function, it follows immediately that

1X
s=0


s(�) = exp
hPk

i �i

i
(22)

This relation may be useful in choosing a suitable normalization.
From (18) it follows that

@

@�i

s(�) = 
s�1(�): (23)

To derive the likelihood equations in case of an incomplete design, de�ne
the vector �v as the vector of �-parameters belonging to the tasks which have
been administered to student v. From (15), we immediately have that the
conditional log-likelihood for a single subject v is

`cv =
kX
i

xvidvi ln �i � ln 
sv(�v) (24)

where sv is the score of student v; de�ned by (10). Now assume that student
v has answered to task i; where i denotes a speci�c task, then we �nd

@`cv
@�i

=
xvi
�i
�

sv�1(�v)


sv(�v)

and for all students who have responded to task i; we �nd, using (11) and
(23) that

@`c
@�i

=

P
v xvidvi
�i

�
X
v

dvi

sv�1(�v)


sv(�v)

=
ti
�i
�
X
v

dvisv [1
0�v]

�1 (25)
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From (25) the likelihood equations immediately follow:

�i =
tiP

v dvisv [1
0�v]

�1 ; (i = 1; : : : ; k) (26)

4.3 The relation between CML and JML

Taking into account the reparameterization (14), the JML equation for �i
can be written as

�i =
tiP
v dvi�v

: (27)

Substituting (12) for �v one obtains

�i =
tiP

v dvisv

hP
j dvj�j

i�1 (28)

but this is the same as (26), whence it follows that JML and CML yield the
same estimates for �i (and hence for �i). So the procedures using JML or
CML for the task parameters, followed by a maximum likelihood estimation
of the � parameters (with the � parameters �xed at their CML estimates)
lead to identical results. This is quite di¤erent from the Rasch model for
binary responses.

4.4 Estimation of �

Since the CML-estimates of the �-parameters are identical to the JML-
estimates, the estimates of � at the CML-estimates of � are identical to
the JML-estimates of �: De�ning

b�v =P
i

dvi� ib�i; (29)

and using (12), we �nd that b�v = svb�v : (30)

Using (4), we �nd that

�E
�
@2`

@�2v

�
=
E(sv)

�2v
=
�v
�v
;
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from which we �nd that

SE(b�v) =r�v
�v
�

sb�vb�v =
p
svb�v : (31)

If b�v = �v, then the estimator (30) is conditionally unbiased as can easily be
seen:

E(b�j�) = 1

�
E(Sj�) = 1

�
� �� = � (32)

5 The population model

The estimation problem discussed in the previous section are of limited value
when it comes to construct norm tables. The term �norm tables�is in fact
synonymous with the distribution of the measured variable (displayed in
a table). Tables of the 99 percentiles P1 to P99 are very common. But
an important question is which variable will be tabulated. In the present
context one might wish to determine the distribution of the reading ability, �;
or the distribution of the estimated reading ability b�. In the latter approach,
two ways can be followed: either using JML and obtaining task and person
parameters at the same time, or using CML to estimate the task parameters,
then �xing these parameters at their estimates and obtaining ML estimates
of the person parameters. Both procedures lead to the same estimates for
task and person parameters.
Basing norm tables on the estimated person parameters from a represen-

tative sample from some population will give a consistent estimate of the
percentiles of the estimated theta values for the test forms which have
been used in the calibration research. But if in the application of the
test in real life, other test forms are used, these percentiles will become bi-
assed. Here is a concrete example: in the calibration research of the TT,
each student has taken two texts (in order to realize a connected design),
but in the practical application of the test, the administration of the TT will
only use a single text, with the consequence that the estimated theta values
of real applications will have a larger standard error than the ones based on
two texts. Using the general formula of variance decomposition,

V ar(b�) = V ar[E(b�j�)] + E[V ar(b�j�)] (33)

and using (32), the �rst term in the right-hand side of (33) is the variance of
the true person parameters, and the second term is the average error variance,
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which will vary depending on which and how many tests are administered.
Therefore we prefer to estimate the distribution of the latent variable � itself.
A well known method to estimate the percentiles is to consider the per-

son parameters � as realizations of a random variable. The assumed dis-
tributional form of this random variable is the population model, and in
an empirical context this distribution must be estimated. Two distribution
families are frequently used to model positive continuous variables: the log-
normal and the gamma distribution. As the gamma distribution and the
Poisson distribution go well together (the gamma is the conjugate of the
Poisson distribution), we will pay attention to the gamma distribution in the
present section.

5.1 The gamma distribution

The probability density function (pdf) of the gamma distribution is given by

g(�;�; �) =
��

�(�)
���1 exp(���); (�; � > 0): (34)

where � is the random variable and � and � are the parameters of the distri-
bution. �(:) is the gamma function, and can be considered as an extension
of the factorial function to continuous arguments. When the argument is a
positive integer, it holds that

�(�) = (�� 1)!

The relation between the two parameters and the �rst moments of the
gamma distribution are simple:

E(�) =
�

�
; (35)

and
V ar(�) =

�

�2
: (36)

5.2 The marginal distribution of the scores

Suppose the random variable S is the total number of tasks �nished by some
student when administering him or her k texts in a total time of

Pk
i=1 � i units.
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The measurement model (the Poisson model) assumes that the distribution
of S is Poisson with parameter

� �
kP
i

� i�i;

where the quantities � are assumed to be known, and the di¢ culty parameters
� can be estimated by CML. As is done in applications of latent regression,
the parameters � will be treated as known and �xed at their CML-estimates.
We will use the shorthand notation

� =
kP
i

� i�i: (37)

The marginal probability of s is then given by

f(s) =

Z 1

0

(��)s exp(���)
s!

� ��

�(�)
���1 exp(���) d�: (38)

Multiplying and dividing the right-hand side of (38) by

(� + �)s+� � �(�+ s)

makes it possible to get rid of the integral, giving as a result

f(s) =
�(�+ s)

s!�(�)
� �s��

(� + �)s+�
: (39)

De�ning

p =
�

� + �
;

equation (39) can be written as

f(s) =
�(�+ s)

s!�(�)
ps(1� p)�; (40)

which is the negative binomial distribution, also known as the Gamma-
Poisson distribution.
Although it is possible to start from (40) to �nd the MML estimates

of � and �; and the text parameters � at the same time, the estimation
procedure in the case of incomplete designs (with texts of di¤erent di¢ culty)
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and di¤erent reading times, leading to di¤erent values of the parameter �
in di¤erent cells of the design, is quite involved. Instead, we will �x the �
parameters at their CML-estimates, and use the marginal distribution only
for estimating the � and �-parameters. This implies that the estimates of
the population parameters only depend on the total score that a student has
obtained on all tasks which have been administered to him of her. Moreover,
we will not use the form (40) but (39) and simplify it further to get rid of
the �-functions.
Using the recurrence relation

�(z + 1) = z�(z)

and taking into account that s is a non-negative integer, we �nd as an explicit
expression without use of the �-functions:

f(s) =
�s��

s!(� + �)s+�
�
s�1Q
i=0

(�+ i): (41)

The product in the right-hand side of (41) equals 1 if s = 0.
To compute the distribution, we notice from (39) that

f(0) =

�
�

� + �

��
= (1� p)�

and that
f(s) = f(s� 1)� p� �+ s� 1

s
; (s > 0): (42)

Using (42) in the in�nite sum
P1

x=0 sf(s), and using the fact that
P1

x=0 f(s) =
1, we readily �nd the relation

E(S) = p� + pE(S);

whence it follows that

E(S) = �
p

1� p =
��

�
: (43)

For the variance, the result is

Var(S) = �
p

(1� p)2 =
��

�

�
1 +

�

�

�
(44)

These two moments can be used to �nd suitable moment estimators of �
and � as starting values for the MML procedure. Moreover, notice that the
variance is larger than the mean, showing clearly that the negative binomial is
a good candidate for explaining overdispersion phenomena in Poisson models.
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5.3 Estimation procedure

The log-likelihood function is just the logarithm of (41) and equals

lnL(�; �; s) = C + � ln(�) +
s�1P
i=0

ln(�+ i)� (s+ �) ln(� + �): (45)

where C = � ln(s!) does not depend on the parameters. The partial deriva-
tives are

@ lnL

@�
= ln

�

� + �
+
s�1P
i=0

1

�+ i
;

(where the sum equals zero if s = 0), and

@ lnL

@�
=
�

�
� (s+ �) 1

� + �
:

For the second partial derivatives we �nd

@2 lnL

@�2
= �

s�1P
i=0

1

(�+ i)2
;

@2 lnL

(@�)2
= � �

�2
+ (s+ �)

1

(� + �)2

and
@2 lnL

@�@�
=
1

�
� 1

� + �

Using the moment estimators as starting values and applying the Newton-
Raphson algorithm to solve the likelihood equations did not give any prob-
lems in all the applications. Usually two or three iterations were su¢ cient to
give estimates accurate to about ten decimal digits.

5.4 Estimation of � (revisited)

The marginal model gives an opportunity to estimate � as the expected a
posteriori ability level. The posterior distribution of � given the score s is
also gamma:

�js s Gamma(�+ s; � + �)
from which it is immediately found that

E(�js) = �+ s

� + �
: (46)
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The expected a posteriori (EAP) value of � can be used as an alternative
estimator of �, instead of (30), the JML-estimator. The relation between the
EAP-estimator and the JML-estimator b� is easily checked: it holds that

E(�js) Q b� , s R ��

�
= E(S)

which shows that there is a shrinking towards the mean. This also means
that the EAP-estimator is (conditionally) biassed.
The posterior standard deviation, which can be used as a substitute for

the standard error is

SD(�js) =
p
�+ s

� + �
(47)

The following relation holds:

SD(�js) < SE(b�), s >
��2

�(� + 2�)
= E(s)� �

� + 2�

which shows that the posterior standard deviation is larger than the standard
error of the JML-estimate only for relatively small values of the score.

6 The reliability of the speed tests

Given the latent value of �; the score distribution is Poisson with parameter
(and expected value) ��: Its variance also equals ��; and can be considered
as the variance of the measurement error. Since � is assumed to be gamma
distributed (with parameters � and �), the expected error variance is

E[V ar(Sj�)] = �E(�) = ��

�
(48)

Combining this with (44), we �nd

�SS0 = 1�
E[V ar(Sj�)]
V ar(S)

= 1� 1

1 +
�

�

=
�

� + �
= p (49)

The reliability of the JML-estimates b� is the same, because b� is propor-
tional to the score S (see equation 30.) The expression �=(�+�) clearly shows
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that the reliability of a test depends on characteristics of the test (through
the parameter �) as well as on characteristics of the population where the
test is to be applied (through the parameter �). If the population is �xed,
the only way to in�uence the reliability is to alter the test such that its �-
parameter changes. It is well known that the standard way of increasing the
reliability of a test is making it longer. In the case of the speed tests discussed
here, this means increasing the allotted reading time, and at the same time
lengthening the task (text or card) such that the end is not reached in the
lengthened reading time. If the reading time is increased by a factor f; then
the reliability becomes

�SS0(f) =
f�

f� + �
=

f�SS0
1 + (f � 1)�SS0

which is the well-known Spearman-Brown formula.
Good use of the formula (49) can be made to estimating the correlation

between two latent concepts where the same kind of model is used, by ap-
plying the correction for attenuation on the observed correlation between the
two series of scores. This avoids using a multivariate gamma distribution.

7 Results for the tempo tests

This section is divided into three subsections. In the �rst one, results are
presented for the �-parameters. Next the results for the population models
are presented and in the �nal subsection the problem of the validity of the
model is addressed. There it will appear that the theoretical model discussed
thus far, is valid for the tempo tests and can be trusted for applications.

7.1 The di¢ culty of the tempo test forms

In Figure 1 the CML-estimates of the �-parameters are displayed graphically.
The labels along the horizontal axis indicate the grade for which the texts
were originally constructed. The estimates are displayed along the vertical
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axis. The product of the 19 estimates equals one.
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Figure 1. �-estimates for the 19 texts of the tempo tests

At �rst sight it may be puzzling that there is no clear indication of a
trend in the estimates. The two most di¢ cult texts - the ones with the
lowest �-value - are constructed for M4 (the �rst) and for M8 (the last but
one) respectively. To understand the power and at the same time the limits
of the model used, two aspects must be taken in consideration. The �rst is a
clear interpretation of the parameters of the model; the second one concerns
the data collection design.
The basic parameter of the psychometric model, �vi; is the mean of the

Poisson distribution, and its dimension is therefore the same as the basic
observation which is a frequency, and might be labeled as �number of subtasks
completed�. In the model the Poisson parameter is decomposed as a product
of three factors:

�vi = � i�i�v

and it may be useful to assign a dimension to each of the three factors. Here
is how one can do this:

1. � i is a time, and the unit is free, but we have chosen minutes as the
unit;

2. �i is a dimensionless number, called �impediment�by Rasch (1980, pp.
17). A text with a �-value of 1 could be referred to as a standard
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text. It the sigma value of a particular text is less than one, then its
impediment is greater than the one of a standard text and this will lead
to less subtasks completed;

3. Since �vi is the number of subtasks completed, it must follow that �v
is the number of subtasks completed per unit of time, i.e., a measure
of reading speed.

Now suppose two students, one of grade 4 and one of grade 8, have the
same reading speed. The model then implies that their expected perfor-
mances on whatever text is the same, but given the construction principles
of the texts, this is a highly unrealistic assumption. The texts constructed
for grade 8 usually will contain words and grammatical structures which are
in general inaccessible to grade 4 students, and conversely, it may seem quite
unrealistic to assume that a grade 8 student - with �ve to six years of formal
instruction in reading - goes through a very simple text in the same way as
a young student with quite limited experience in reading.
In principle, these implications can be tested empirically, but such a test

would imply bringing students in a very unnatural situation, causing all kinds
of special e¤ects (such as frustration, boredom, a feeling of humiliation, etc...)
which in all probability would interfere with the concept of reading speed. In
the data collection design, therefore, texts were only administered to students
of the same grade or a neighboring grade which they were constructed for.
The extent to which the kind of extrapolations (such as what will a grade 4
student do on a text aimed at group 8) discussed in the previous paragraph
hold or do not hold therefore remain unanswered.

7.2 The population parameters

For the nine grade-and-period combinations (M4 to M8), a gamma distri-
bution has been estimated, using the CML-estimates of the �-parameters
as �xed constants. In Table 2, the estimates together with their estimated
standard errors are displayed. In the last two columns estimated average and
standard deviation, using (35) and (36) are displayed as well.

Table 2. Parameter estimates of the tempo test distributions
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grade � SE(�) � SE(�) Mean SD
M4 9:99 0:45 1:81 0:08 5:53 1:75
E4 10:31 0:41 1:64 0:07 6:29 1:96
M5 14:24 0:81 2:12 0:12 6:71 1:78
E5 15:08 0:83 2:02 0:11 7:48 1:93
M6 14:19 0:77 1:70 0:09 8:37 2:22
E6 18:14 1:02 1:98 0:11 9:16 2:15
M7 16:88 0:95 1:72 0:10 9:82 2:39
E7 17:67 1:03 1:77 0:10 9:96 2:37
M8 19:85 1:34 1:93 0:13 10:27 2:31

The cumulative distributions of the reading speed variable are displayed
in Figure 2. The black curves are the distributions at the medium moment,
the grey ones at the end moments; the curves are neatly ordered in the same
way as the means displayed in Table 2. The general trend of a larger variation
with increasing grades (see the column �SD�in Table 2) is depicted by curves
becoming �atter, the higher the grade.
The most remarkable feature, however, of Figure 2 is the very small

progress in performance for the four highest groups (representing a time span
of full two years) for the very weak readers (the lowest 5%, say). Percentile
5 is 5.9 subtasks per minute at M6 and only 6.8 at M8.
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Figure 2. Cumulative distributions of the reading speed for TT (M4 to M8)
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In Figure 3, �ve percentiles of the distributions are displayed. From
bottom to top: P10, P25, the median, P75 and P90. The dashed line through
the medians is a linear trend line, showing that the estimated medians tend
to level o¤ a bit in the two highest grades, although perhaps less than one
would expect if the tempo tests are to be interpreted as tests of technical
reading.

0

2

4

6

8

10

12

14

M4 E4 M5 E5 M6 E6 M7 E7 M8

R
ea

di
ng

 s
pe

ad

Figure 3. Percentiles 10, 25, 50, 75 and 90 for the reading speed in the tempo tests

7.3 The validation of the model for the tempo tests

A powerful and very elementary way of validating the model, especially in
the case where percentiles of the ability distribution have to be estimated,
is by looking at the accuracy of predicting the observed distribution of the
scores. In Figure 4, the frequency polygons of the results for the E4 sample,
observed and predicted frequencies are displayed. Since 150 score points
are displayed, and the total sample size for this population is about 1500;
it is to be expected that the observed frequency polygon will show many

23



irregularities, such that it is quite di¢ cult to judge the �t of the model.
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Figure 4. Observed and predicted frequencies for E4

To get rid of this irregular appearance, one can use cumulative frequency
polygons. Observed and expected polygons for M4 and E4 are displayed in
Figure 5. The left two curves apply to M4, and virtually coincide, while
for E4 the �t is not as good. These two examples represent a best and a
worst case for the nine populations (M4 to M8) which have been estimated.
In general, however, the �t is satisfactory, and is a good basis to trust the
estimated distributions which are displayed graphically in Figure 2.
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Figure 5. Cumulative distributions for M4 and E4
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A good statistical �t of the model, however, does not imply an optimal
quality for the use of the tests in individual cases. In Table 3, the reliabilities
of the individual texts (considered as a single test) are given for the popula-
tions for which they were originally constructed: three texts for M4, and two
texts for the remaining measurement moments. In the second column the
reading time for the texts is displayed. Although the trend is not linear, it is
clear that the reliabilities drop as the reading time decreases. For individual
texts, the reliability might be deemed too low, but it can be increased by
letting students take two or more texts.

Table 3. Reliabilities of the individual texts

grade �
M4 8 0:80 0:81 0:83
E4 8 0:82 0:84
M5 7 0:76 0:77
E5 7 0:78 0:77
M6 6 0:79 0:77
E6 6 0:76 0:74
M7 5 0:75 0:76
E7 5 0:74 0:77
M8 4 0:69 0:65

The values in Table 3 are computed using formula (49). Take the �rst
test constructed for grade M4 as an example. Its �- value is 0:91; so that the
associated �-value is 8� 0:91 = 7:28: The �-parameter estimate is 1:81 (see
Table 2), and applying formula (49) yields

�SS0 =
7:28

7:28 + 1:81
= 0:80:

8 Results for the three minute tests

The three minutes test has been administered to a calibration sample ranging
from the grades M3 to M8. As the basic outcome of this test is also a count
(the number of words correctly read), the same model has been applied as
with the tempo tests. The results, however, were disappointing, as may be
seen from Figure 6, where the distributions of observed and predicted scores
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are displayed for M3.
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Figure 6. Validation of the Poisson-Gamma model for M3

The observed distribution shows at the same time a rather tight con-
centration of observations around the modal score (around 40) and a rather
heavy tail for scores larger than 75; say. The theoretical model apparently
is not capable of grasping these two features at the same time. A possible
solution of this problem is to conceive of the M3 population as a composition
of two unknown subpopulations or latent classes. This idea is elaborated in
the next section.

8.1 A latent class model

The basic idea is that the measurement model (the Poisson model) is valid for
all members of the total population. This means that each task is character-
ized by a single �-parameter. The distribution of the latent variable (reading
speed), however, di¤ers for the two classes. The concrete assumption we are
working with is that in both classes the latent variable is gamma-distributed,
but with di¤erent parameters. As the classes are not identi�ed, we have no
ready-made estimate of the number of students in the sample belonging to
each class. We will assume that a proportion �1 of the population belongs
to class 1; and the remaining proportion �2 = 1� �1 belongs to class 2.
In summary then �ve parameters have to be estimated from the data:

�1 and �1; the gamma distribution parameters for class 1; �2 and �2 for
the gamma distribution in class 2, and the mixing proportion � = �1. The
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EM-algorithm (Dempster, Laird and Rubin, 1977) is very well suited for
estimating these parameters.

8.2 The EM-algorithm

In this section we give a rather informal description of the EM algorithm as
applied to the present problem.
If we knew for each student whether he/she belongs to class 1 or to class

2; the problem would be quite simple. The best estimate for the mixing
proportion � is the proportion (in the sample) of students belonging to class
1: For the estimation of the parameters of the two gamma distributions, one
could proceed in the same way as with the model with one gamma distribu-
tion: for each subsample the gamma distribution for the corresponding class
is estimated. The total computational load would then be about the double
of the case with a single distribution.
If we do not know to which class each student belongs, then we have to

estimate this in some way. The procedure can be described by the following
scheme:

step 0 (Initialisation) Find some suitable values for the �ve parameters,
and label them e�1; e�1; e�2; e�2 and e�: These values are called the current
estimates of the parameters.

step 1 (E-step) Using e�1; e�1; e�2; e�2 and e�; compute the conditional prob-
ability for each student that he belongs to class 1 (or class 2); given his
score s on the test. This probability is denoted aseP (C = cjs); (c = 1; 2)

where we use the symbol eP to indicate that we have to use the current
value of the parameter estimates to compute these probabilities. Then
the expected number of students having the score s and belonging to
class c is given by

ns eP (C = cjs)
where ns is the observed number of students with score s:

step 2 (M-step) Perform the analysis as if the expected frequencies com-
puted in the previous step were the observed frequencies. The outcome
of this analysis are new parameter estimates which we denote as b�1;b�1; b�2; b�2 and b�:
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step 3 (decision) If the new estimates are close enough (following a preset
criterion) to the current estimates, accept the new estimates as the
solution and stop. Otherwise, replace the current estimates by the new
estimates and go to step 2.

We give some more detail on how to compute the conditional probability
mentioned in the description of the E-step. From Bayes� theorem we can
write eP (C = cjs) = eP (C = c and s)eP (s) =

eP (sjC = c) eP (C = c)eP (s) : (50)

Using (50) and the fact that eP (C = 1) = e�, we �nd that
er12(s) = eP (C = 1js)eP (C = 2js) = eP (sjC = 1)e�eP (sjC = 2)(1� e�) : (51)

and eP (sjC = c) is given by (41) using the current parameters e�c and e�c; (c =
1; 2): This gives as a result:

er12(s) = e�e�11 (� + e�2)s+e�2e�e�22 (� + e�1)s+e�1 �
s�1Q
i=0

e�1 + ie�2 + i : (52)

Then it is simple to show that

eP (C = 1js) = er12(s)
1 + er12(s) : (53)

The M-step consists of three separate procedures. The new estimate of �
is very simple: b� = 1

n

P
s ns

eP (C = 1js) (54)

where n =
P

s ns is the total sample size. In the other two procedures, the
parameters of the gamma distribution in each class are estimated, separately
for each class. The estimation procedure for a class is carried out in the same
way as in the model with a single distribution, with the only di¤erence that
in each class c the observed frequencies ns are replaced by ns eP (C = cjs).
The positive thing to mention about the EM-algorithm, when carried

out properly is that in each iteration the likelihood will increase and that
eventually the procedure will converge, irrespective of how strict the criterion
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is. A less pleasant feature of the algorithm is that convergence can be very
slow such that many iterations are needed until convergence. Moreover, it
is not certain that the maximum of the likelihood function is found in this
way. This is not due to the EM-algorithm, but to the fact that it is not
known whether the likelihood function has a single maximum or several local
maxima. Convergence to a local maximum may occur if the initial estimates
(see step 0 of the algorithm) are not well chosen. In carrying out the analyses,
the algorithm converged several times to a solution with b� = 1; i.e., a solution
with a single distribution. By trial and error we found that a starting valuee� = 0:5, two equal e�-parameters (equal to the initial estimate for the case
of a single distribution) and two e�-parameters, chosen close to but at either
size of the initial estimate of the single distribution case let the algorithm
converge to a solution which was certainly acceptable. This acceptability is
discussed in the next subsection.
In all analyses the convergence criterion was set to 0:00005 for the pa-

rameter �, i.e. if je� � b�j < 0:00005, the outcome of the last M-step was
accepted as the solution.

8.3 Validation and norms

To get a clear understanding of the latent class model, the two estimated
distributions for M3 are displayed graphically in Figure 7. The estimate of
� is 0:537; meaning that about 54% of the M3 population belongs to this
class. The two inner curves in the Figure represent the distribution in each
class, but both curves are scaled such that the total area under the curves
correspond to � and (1 � �) respectively. The outer curve is just the sum
of the two inner curves, and the total area under this curve equals one as it
should in a probability distribution.
Class 1 is represented by the peaked inner curve, and it is clear that the

right tail for values larger than 40; say, is very close to zero. The second
class (the �atter one of the two inner curves) has a heavy right tail. The
outer curve is the sum of the two inner curves, and we see that in this curve
both features of the observed distribution of the scores (see Figure 6), a tight
concentration around the mode and a tick right tail are appearing in the
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theoretical mixture distribution.
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Figure 7. The estimated distributions for M3

Constructing such a curve, however, is a theoretical exercise, and from
Figure 7 it can not be concluded that the mixture distribution is valid; in
other words, the curves in Figure 7 represent a theoretical construct and one
has to check if this construct is in agreement with the observed data.
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Figure 8. Observed and predicted score distribution for M3

The expected (=predicted) number of students with a score s is given by

E(ns) = n[�f1(s) + (1� �)f2(s)] (55)
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where n is the sample size and f1(s) and f2(s) are given by (41), using the �
and �-parameters for class 1 and 2 respectively. If the theoretical model is
valid, then a good correspondence should be found between the expected and
observed distribution of the scores. These two distributions are displayed as
frequency polygons for M3 in Figure 8. By comparing this �gure with Figure
6, a clear improvement is immediately obvious.
To get rid of the irregularities caused by the relative small sample size,

cumulative distributions are displayed in Figure 9, jointly for M3 and E3.
For E3, a model with two latent classes has been used as well. In both cases
a very close agreement between observed and expected frequencies is found,
yielding a strong evidence for the validity of the model.

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250
observed scores

cu
m

ul
at

iv
e 

pr
op

or
tio

n

Figure 9. Observed and expected distributions for M3 and E3

To avoid misunderstandings about the meaning of this �gure, it should be
remembered that students of M3 only got two cards (the two easiest ones),
while in E3 each student had to read three cards. The median for M3 is
about 41; meaning that the median student from M3 reads about 41 words
from the two cards jointly; the median of E3 is about 100; but this is the
median score for the three cards jointly. The big shift between the two pairs
of curves is the combined e¤ect of being a better reader in E3 and having had
three cards instead of two. This �gure certainly cannot be used for deriving
norm tables. It is only meant as evidence for the validity of the model.
For all grades the latent class model has been used for the TMT, and the

correspondence between observed and expected frequencies was very similar
to the ones displayed in Figure 9.
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Norms are derived from the cumulative distributions of the �- variable.
These distributions are displayed graphically in Figure 10, the dark curves
representing from left to right M3, M4,...,M8 and the grey ones (red on a
color display) E3, E4,...,E7. The left-most curve (for M3) is the cumulative
form of the outer curve in Figure 7.
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Figure 10. Cumulative distributions of the reading speed for TMT (M3 to M8)

We notice three remarkable features in this �gure. At the median (the
0:50 grid line) it is clear that that the largest growth in reading speed occurs
in the �rst year to one and a half year of formal reading instruction (from
M3 to M4), the growth from E3 to M4 being larger than in the previous half
year. The second remarkable feature is the same as was seen with the tempo
tests: from M6 onwards there is scarcely any progress for the weakest 5% of
the population.
The most remarkable thing about this �gure, however, is the huge vari-

ation in M3 and E3, which is mainly due to the best performing quarter of
these two populations. A plausible explanation of this phenomenon might be
sought in the fact that a number of young students can already read when
starting grade 3, either because they have learnt it at home, for example, or
because they repeat the third grade.
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8.4 Further results

8.4.1 The �-parameters

In Table 4, the estimates of the �-parameters are given. Remember that three
di¤erent cards with di¤erent levels of di¢ culty were constructed (1; 2 and 3)
and for each card three parallel forms (labeled a, b and c) were developed.
The three parallel forms at each level have very similar parameters estimates,
while the three levels clearly di¤er in di¢ culty, the smallest value representing
the most di¢ cult test. The product of the nine estimates in Table 4 equals
one; this is the (arbitrary) normalization.

Table 4. �-parameter estimates for the TMT

levelnform a b c gm
1 1:154 1:144 1:156 1:151
2 1:016 1:010 1:023 1:016
3 0:856 0:858 0:850 0:855

Since the parallel forms have virtually the same parameter estimates,
we will treat them as being really parallel and assign a common value to
them. This value is the geometric mean2 (gm) of the three estimates, and is
displayed in the right-most column of the table.

8.4.2 The reliability

The use of the latent class model makes the expressions for the reliability a
bit more complicated than in the model with a single gamma distribution
for reading speed, although the idea is the same: the basic expression is the
�rst equation in (49), which is repeated here for convenience:

�SS0 = 1�
E[V ar(Sj�)]
V ar(S)

:

Using (48) gives

E[V ar(Sj�)] = �E(�) = �
P2

c=1 �c
�c
�c
= E(S) (56)

2The geometric mean of three positive numbers is the cubic root of their product.
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where �1 = � and �2 = (1��): The parameter � in (56) is the parameter for
the di¢ culty of the test. Since we intend to report the reliabilities for each
card separately, and � i = 1 for each card, the �-parameter represent just a
single �-parameter. If cards are combined, the �-parameter is the sum of the
�-parameters involved.
For the total variance of the score S; we use again the variance decompo-

sition rule, but now conditioning on the latent classes:

V ar(S) = E[V ar(SjC)] + V ar[E(SjC)] (57)

The �rst term in the right-hand side of (57) is easily found from (44):

E[V ar(SjC)] =
P2

c=1 �c
��c
�c

�
1 +

�

�c

�
and using (43) it is readily found that

V ar[E(SjC)] =
P2

c=1 �c

�
��c
�c

� E(S)
�2

where E(S) is given by (56).
In Table 5 the reliabilities of the cards of the TMT are displayed for all

grades. The last column is the reliability for the test consisting of the three
cards

Table 5. Reliabilities of the TMT

grade 1 2 3 1+2+3
M3 0:912 0:902 0:885 0:965
E3 0:908 0:897 0:880 0:963
M4 0:888 0:875 0:854 0:954
E4 0:861 0:845 0:821 0:942
M5 0:824 0:805 0:776 0:925
E5 0:803 0:782 0:752 0:915
M6 0:741 0:717 0:680 0:883
E6 0:698 0:671 0:632 0:859
M7 0:754 0:730 0:695 0:890
E7 0:753 0:729 0:694 0:889
M8 0:693 0:666 0:627 0:856
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In all grades the reliability diminishes with the level of the card, and this is
caused by the fact that the di¢ culty of the cards increases with level while the
allotted reading time is held constant. From grade M6 on the reliability might
be deemed unacceptably low, and especially in M8 it looks disappointingly
low. The main reason for this drop, however, is to be attributed to the
decreasing variance of the reading ability with increasing grades on the one
hand, and with the particular feature of the Poisson model in which the
measurement error increases with increasing value of the variable, i.e., the
better students perform, the higher the measurement error is.

8.4.3 Local Independence

With the design used in this research, however, another method is available
for estimating the reliabilities. The true score of student v on card i equals
�i�v; from which it easily follows that the correlation (across students) of the
true scores on two di¤erent cards equals one, i.e., the cards, considered as
separate tests, are congeneric. For two congeneric tests it holds that their
intercorrelation equals the square root of the product of their reliabilities.
From the analysis on the calibration data (see Table 4), it followed that

the parallel versions of the three cards were indeed parallel, so that it is
not really necessary to treat parallel versions as di¤erent tests. The data
collection design was set up in such a way that all students from E3 onwards
took three cards, one at each level of di¢ culty. So for every grade we can
compute the empirical correlation between all pairs of cards, and compare
these with the expected value that follows from the model. In Table 6, the
predicted correlations (from the model) and the empirical correlations are
displayed for the grades E3, M5 and M7.

Table 6. Predicted and observed correlations between cards

predicted observed
pair: (1; 2) (1; 3) (2; 3) (1; 2) (1; 3) (2; 3)
E3 0:902 0:894 0:890 0:928 0:897 0:945
M5 0:814 0:800 0:790 0:897 0:852 0:894
M7 0:742 0:724 0:712 0:866 0:825 0:869

There are two remarkable and systematic di¤erences between predicted
and observed correlations, which also occur in the other grades. The ob-
served correlations are higher, and sometimes substantially higher, than the
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predicted ones. The second di¤erence is more subtle, but systematic: for
each grade the correlation for the pair (1; 3) is the middle one in the pre-
dicted cells, but the lowest one in the observed cells.
The reliability of the test consisting of the three cards jointly can be es-

timated by using Cronbach�s alpha, for example. In Table 7, these estimates
are displayed together with the estimates issuing from the Poisson-Gamma
model (see right-most column of Table 5).

Table 7. Estimated reliabilities

Poisson-Gamma Cronbach�s alpha
E3 0:963 0:964
M5 0:925 0:952
M7 0:890 0:948

The estimates based on the empirical correlations are substantially higher
than the ones predicted from the Poisson-Gamma model for the grades M5
and M7.
From these di¤erences, two questions follow, a theoretical one and a prac-

tical one. The theoretical question is how to explain this di¤erence, and the
practical one is which estimates to use in practical applications. We start
with the theoretical problem.
Since the observed correlations are higher than predicted from the Poisson-

Gamma model, this model does not incorporate a source of common vari-
ation in the data. A basic assumption to most IRT-models is that of local
independence, saying essentially that on the three cards the result is driven
by a single variable (technical reading ability), and that all deviations in
the observed scores from their expected values are independent across cards.
This assumption is the same as the assumption of uncorrelated measurement
errors in Classical Test Theory. But all data from a single student were col-
lected in a single session, and cards were always presented in the order 1, 2,
33. The general pattern of the correlations (Table 6), shows that the highest
correlations are always found in pairs containing the middle card 2. This
suggest an autoregressive model of order one, given by

s1 = P (��1) (58)

st = (1� �)P (��t) + �st�1; (t = 2; 3; 0 � � < 1)
3One could object to this invariant order as being a methodological negligence, but in

real applications this same order is always maintained, and applying di¤erent orders might
confuse students, and lead to even more unexplained sources of variance.
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where st is the observed score on card t and P (��t) is a deviate in a Poisson
distribution with parameter ��t: If the parameter � = 0; the model as we
have used it results. If � > 0; there is a direct in�uence from the preceding
performance. This could be interpreted as the e¤ect of frustration and moti-
vation: a low performance on a card has a negative in�uence on the following
card, and a high performance has a positive in�uence.
To check if such a simple model could explain the pattern of the corre-

lations as displayed in Table 5, a small simulation study was run. For each
of the three grades (E3, M5 and M7) the �ve parameters of the latent class
model were �xed at the value of their estimates in the calibration study and
for the three cards the �-parameters were �xed at the values in the right-most
column of Table 4. For each of the three grades, a sample of 1000 students
was drawn from the mixture gamma distribution, and for each drawn value
of �; model (58) was applied. For each data set of 3000 students (1000 stu-
dents in each of the three grades) all parameter values were estimated, and
the correlations between the scores on the three cards were computed (per
grade) and stored. This whole procedure constitutes a single replication of
the simulation study.
Five values of the �-parameter were used: 0; 0:05; 0:10; 0:15 and 0:20;

and for each value of � twenty replications were carried out.
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Figure 11. Correlations between scores in simulated data

In Figure 11, the results for the correlations between scores on the three
cards are displayed graphically for grade M7. The results for the other two
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grades show similar patterns. In the �gure, each symbol represents an average
correlation over 20 replications. The lowest line corresponds to a � of zero,
and lines lie higher with increasing value of �: One sees, indeed that even
with a quite low positive value of �; the typical pattern, visible in the right-
hand panel of Table 6 crops up: the two pairs of cards containing card 2 have
the highest correlations. Therefore we can conclude that the simple model
(58) o¤ers a good explanation of the di¤erences found in Tables 6 and 7.
But as we have solved one problem, we may have created other ones.

All conclusions on norms have been based on the validity of the Poisson-
Gamma model - implying local independence - but from the results on the
correlations and of the simulation study, it is clearly demonstrated that the
model is not valid, because the assumption of local independence is violated.
Strictly speaking, all conclusions based on the model assumption are invalid,
but sticking to such an ultra-othodox point of view would make all work
with formal models void, because all assumptions of all models are violated
to some degree. A more realistic approach is to investigate to which extent
a violation of one or more assumptions in�uences the inferences made on the
results of an analysis using an invalid model. As the main application for the
present report is to construct norm tables, i.e. to estimate the distribution
of the latent variable, based on all available information, the main criterion
to judge the usefulness of the model resides in the correspondence between
predicted and observed score distributions. In the simulation study, this
correspondence has been checked graphically for the �rst replication in all
three grades and for the �ve values of �; and in all cases the produced �gures
show an excellent �t as exempli�ed in Figure 9, which is reassuring.
In summary then, we can state the following conclusions:

1. For each grade (M3 to M8) three cards (two for M3) have been admin-
istered to a sample of students (see Table 1 for sample sizes) in a �xed
sequence from easy to di¢ cult.

2. From the analysis, it appears that the parallel cards are indeed parallel
(see Table 4).

3. From the analysis using the Poisson model as measurement model and
the latent class model (a mixture of two gamma distributions) as pop-
ulation model, an excellent correspondence is found between the ob-
served and predicted distribution of the sum of the scores on all
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administered tests. The scores on the separate tests (cards) have
only been used to estimate the �-parameters.

4. From the analysis of the intercorrelations between the scores on the
three cards, it appears clearly that the assumption of local indepen-
dence is violated. A simple autoregressive model of order 1 can repro-
duce the pattern of the correlations.

Table 8. Cronbach�s alpha

grade 1+2 1+2+3
M3 0:964 �
E3 0:967 0:971
M4 0:956 0:968
E4 0:959 0:970
M5 0:941 0:957
E5 0:943 0:958
M6 0:921 0:942
E6 0:932 0:943
M7 0:930 0:948
E7 0:943 0:955
M8 0:941 0:947

As to the practical question on how to evaluate the reliability of the
scores, it is clear from the previous analysis that the mere application of the
Poisson-Gamma model leads to an underestimation of the reliability, because
the assumption of local independence is not ful�lled: correlations between
performances on separate cards are systematically higher than predicted by
the model, because there are extra sources of covariation beyond the mere
technical reading ability. But these sources are systematic and therefore
they will contribute to the true score variance. This is the reason why a
reliability estimate based on the observed correlations is to be preferred to
the theoretical predictions as given in Table 5. A drawback of this approach is
that it is not possible, for example, to give a good estimate of the reliability
of the cards 2 and 3 separately, because in the data collection design, no
students have answered to these cards in isolation. For the same reason, we
cannot estimate the reliability of the total test score if the cards would be
administered in the reverse order as they have been. What we can do is
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to give an estimate for the scores obtained on cards 1 and 2 (administered
in that order) and on the cards 1, 2 and 3 administered as they have been.
As an estimate of the reliability we use Cronbach �s alpha. The results are
displayed in Table 8. The second column is an estimate of the reliability of
the sum score on cards 1 and 2; the right-most column is the reliability of
the sum score on all three cards.

9 Discussion

In this report a psychometric analysis has been applied to two speed tests for
technical reading, developed in the framework of Cito�s student monitoring
system. In both tests, the basic observation is a count. In the tempo tests,
the number of correctly completed subtasks is counted; in the three minute
test the count is the number of words read correctly within three minutes.
The allotted reading time is �xed for all students, but may vary from task
to task.
It may be discussed, if the count should re�ect the number of subtasks

completed or the number of subtasks completed without error. Although this
problem is certainly relevant with respect to the construct validity of the test,
from a psychometric point of view, the distinction is barely relevant. In fact,
for both tests discussed in this report, analyses have been carried out for both
cases, and the success in predicting the observed distributions did not show
any substantial di¤erence. Of course, the results did di¤er, by de�nition one
could say, since the number of correct subtasks cannot exceed the number of
completed subtasks.
The psychometric model used was originally proposed by Rasch, almost

�fty years ago. Rasch, however, was averse to modeling the distribution of
the abilities in populations, and considered the work of the psychometrician
as �nished when reasonable estimates of person abilities could be produced.
So for the work reported here, only the part referring to the Poisson model
is due to Rasch.
The extension of this model to the Poisson-Gamma model is mainly the

work of Jansen and her colleagues at the university of Groningen (e.g., Jansen
and van Duijn, 1992; Van Duijn and Jansen, 1995; Jansen, 1997). The
detailed elaboration of this model to incomplete designs and the extension
to the case of two latent classes is new, and has not been published before.
Also new is the proof that JML- and CML-estimates are identical.
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One problem with the model, however, remains unsolved. Jansen and
Van Duijn (1992) have shown that estimating the �-parameters by CML or
estimating them jointly with the parameters of the gamma distribution (by
marginal maximum likelihood, MML) leads to identical results in a complete
design, i.e., a design where all students have taken the same set of tasks.
Their method of proof, however, does not generalize to the case of incomplete
designs (as the ones that were used for this report). If di¤erent estimates
would result, this would have an impact on the estimates of the gamma
parameters as well. The impact will probably not be very important since
the CML-estimates are consistent and the sample sizes used were not very
small, but from an academic point of view, it would be reassuring if the
di¤erences could be evaluated.
The most important �nding, however, in preparing this report is the

result that the model has a practical value in a large scale testing system,
and this �nding outweighs greatly the remaining psychometric and statistical
problems.
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