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Abstract 

In this paper it is demonstrated how statistical inference from mul­

tistage test designs, where students are administered different modules 

of items depending on their responses to earlier modules, can be made 

with the method of conditional maximum likelihood. It is shown how 

the match between item difficulty and student proficiency may result 

in a better fit of simple measurement models, owing to the avoidance 

of undesirable response behavior like slipping and guessing. Attention 

is given to the assessment of model fit. The results were illustrated 

with simulated data as well as with real data. 





1 Introduction 

For several decades, test developers have been working on the development 

of adaptive test designs in order to obtain more efficient and robust mea­

surement procedures. The general idea is that the better match between 

item difficulty and the proficiency of the students leads to more efficient 

parameter estimates and lowers the risk of undesirable response behavior, 

like guessing and slipping. Consequently, adaptive designs can go along with 

simpler models, e.g., the necessity of guessing parameters may diminish, and 

these simpler models may still fit the data well. 

Two well-known examples of adaptive designs are computerized adaptive 

testing (CAT) and multistage testing (MST). Although both include a va­

riety of designs, the general difference between CAT and MST is that, in 

CAT, items are selected individually, while, in MST, items are selected in 

blocks/modules. An example of an MST design is given in Figure 1. In the 

first stage, all students take the first module1 . This module is often called 

the routing test. In the second stage, students with a score lower than or 

equal to c on the routing test take module 2, whereas students with a score 

higher than c on the routing test take module 3. Every unique sequence of 

modules is called a booklet. 

CAT versus MST Research on MST has primarily focused on the struc­

ture of the design (e.g., the number of modules or the number of items per 

module), automated test assembly, and efficiency comparisons with ordi­

nary paper-and-pencil testing and CAT (see Zenisky, Hambleton, & Luecht, 

2010, for an overview). CAT designs are more efficient, while some benefits 

of MST designs are that it offers test developers the opportunity to have 

control over the content of the total test form and more control over item 
1 We use a superscript (m) to denote random variables and parameters that relate to 

the m-th module. 
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booklet 1 

booklet 2 

stage 1 
x(ll 

x(l) <c + -

x(l) >c + 

stage 2 
x(2) x(3) 

Figure 1: Example of a multistage design. 

exposure. In addition, test takers may skip an item or change a response 

within the module (Luecht & Nungester, 1998; Luecht, Brumfield, & Brei­

thaupt, 2006; Mead, 2006; Hendrickson, 2007; Zenisky et al., 2010). 

However, these applications of MST designs, as well as CAT designs, are 

based a calibrated item bank. But, and this is another benefit of MST, an 

item bank is not required. Items could be assigned to modules by content 

specialists, or based on a minor pretest, and then calibrated after test ad­

ministration. The only requirement is a suitable measurement model and a 

method to obtain estimates for the parameters. In other words, in MST the 

benefits of adaptive testing can be accomplished without an item bank. 

In the past, only a few studies focused on the calibration of items in an MST 

design. Those were based on Bayesian inference (Wainer, Bradlow, & Du, 

2000) or marginal maximum likelihood (MML) inference (Glas, 1988; Glas, 

Wainer, & Bradlow, 2000). In this paper, we consider statistical inference 

from the conditional maximum likelihood (CML) perspective (Andersen, 

1973a). A benefit of this method is that, in contrast to Bayesian infer­

ence or MML, no assumptions are needed about the distribution of ability 

in the population, and it is not necessary to draw a random sample from the 

population. However, it has been suggested that the CML method cannot 

be applied with MST (Glas, 1988; Eggen & Verhelst, 2011). We will show 
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in Section 1 that this conclusion is not correct, and we consider parameter 

estimation by the CML method with MST feasible. In Section 2, we will 

propose how the model fit can be evaluated. Some illustrations are given to 

elucidate our results (Section 3). Throughout the paper, we use the MST 

design in Figure 1 for illustrative purposes. The extent to which our results 

for this simple MST design generalize to more complex designs is discussed 

in Section 4. 

2 Conditional Likelihood Estimation 

Throughout the paper, we will use the Rasch model (Rasch, 1960) in our 

derivations and examples. The model is defined as follows: 

(1) 

in which M and N denote the number of persons and items, respectively. 

The Rasch model is an exponential family distribution with the sum score 

and 

Xp+ = L Xpi sufficient for 0p 
i 

X+i = L Xpi sufficient for bi. 

Statistical inference about X is hampered by the fact that the person pa-

rameters 0p are incidental. That is, their number increases with the sample 

size. It is known that, in the presence of an increasing number of inciden­

tal parameters, it is, in general, not possible to estimate the (structural) 

item parameters consistently (Neyman & Scott, 1948). This problem can 

be overcome in one of two ways. The first is MML inference (Bock & Aitkin, 

1981): if the students can be conceived of as a random sample from a well­

defined population characterized by an ability distribution G, inferences can 

be based on the marginal distribution of the data. That is, we integrate the 
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incidental parameters out of the model. Rather than estimating each stu­

dent's ability, only the parameters of the ability distribution need to be 

estimated. The second is CML inference: since the Rasch model is an ex­

ponential family model, we can base our inferences on the distribution of 

the data X conditionally on the sufficient statistics for the incidental pa­

rameters. Obviously, this conditional distribution no longer depends on the 

incidental parameters. Under suitable regularity conditions, both methods 

can be shown to lead to consistent estimates of the item difficulty parame­

ters. 

2.1 Estimation of Item Parameters 

Suppose that every student responds to all three modules (X(l), x(2) and 

x(3)). That is, we have complete data for every student. We now consider 

how the ( distribution of the) complete data relate( s) to the ( distribution 

of the) data from MST and derive the conditional likelihood upon which 

statistical inferences can be based. 

The complete data likelihood can be factored as follows2 : 

where 

2Whenever possible without introducing ambiguity, we ignore the distinction between 

random variables and their realizations in our formulae. 

4 



and ,s(b(m)) is the elementary symmetric function of order s: 

,s(b(m)) = L IT exp(-xib1m)), 
x:x+=s i 

which equals zero if s is smaller than zero or larger than the number of 

elements in b(m). 

The various elementary symmetric functions are related to each other in 

the following way: 

IX+ (b) = L 1i (b(l)hj (b(2)),k (b(3)). 
i+j+k=x+ 

To turn a sample from X into a realization of data from MST, we do the 

following: If the score of a student on module 1 is lower than or equal to c, 

we delete the responses on module 3, otherwise, we delete the responses on 

module 2. We now consider this procedure from a formal point of view. 

Formally, considering a student with score module 1 lower than or equal 

to c and deleting the responses on module 3 means that we consider the 

distribution of x(l) and xC2) conditionally on 0 and the event xt1) :S c: 

D ( (l) (2)10) 
P, ( (1) (2) 10 X(l) < ) _ .Cb(l2) X X 

b(l2) X , X , + _ C -
(I) , 

P0c12) (X+ ::; cl0) 
(2) 

That is, the if refers to conditioning and deleting to integrating out. In the 

following, it is to be implicitly understood that conditional distributions are 

equal to zero if the conditioning event does not occur in the realization of 

the random variable. 

We now show that the conditional distribution in (2) factors as follows: 

pb(l2) (x(l), X(2) 10, xr) '.S c) 

=Pb(l2) (x(l)' x(2) lx�2)' xr) :S c)Pb(l2) (x�2) 10, xt1) :S c). 

That is, the score xf2) is sufficient for 0 and hence the conditional likelihood 

Pbc12) (x(l) , xC2) lx�2), xt1) :S c) can be used for making inferences about 

5 



b(l2). 

First, we consider the distribution of x(l) and x(2) conditionally on xf 2l, 

which is known to be independent of 0: 

where 

'Yx(12) (b(12l) = L 1j(b(l))'Yx(l2)_j(b(2l ). + j=O + 

Second, we consider the probability that xi1l is lower than or equal to c 

conditionally on xi12l: 

Hence, we obtain 

IT ( b(l)) IT ( . ,.(2)) 
p ( (l) (2) JX(l) < (12)) 

_ i exp -Xi i j exp -Xjv_j (3) b(l2) X , X + _ c, X+ - '\"C . (b(l)) (b(2)) 
' 

L..,J=O IJ I x(l2) -3· + 

We next consider the distribution of xi12) conditionally on 0 and xi1) � c. 

Since the joint distribution of xf) and X�) conditionally on 0 has the 

following form: 

we obtain 
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Finally, we can write the likelihood for a single student in MST who receives 

a score lower than or equal to con module 1: 

Pw2l(x(l) ,xC2) /0,xi1)::; c) 

=Pb(12) (x(l) , x(2) /x�2)' x�) ::; c)Pb(l2) (x�2) /0, x�) ::; c) 

_IL exp(-xflbf) ) rr
j 

exp(-xf)b)2)) exp(x�2)0) 
-

I:o:::;j+k'.Sn 1j(b(1)),k(b(2)) exp([j + k]0) 
j�c 

(4) 

Obviously, a similar result holds for a student who receives a score higher 

than con module 1 and hence takes module 3. 

With the results from this section, we can safely use CML inference, using 

(3) as the conditional likelihood. 

2.2 Comparison with Alternative Estimation Procedures 

The first way to deal with an MST design is to ignore the fact that the as­

signment of items depends on the student's previous responses. This means 

that when a student receives a score lower than or equal to con module 1, 

we use the likelihood of the observations conditionally on 0 only 

instead of the correct likelihood in ( 4) as the basis for statistical inferences. 

It has been observed that if we use the conditional likelihood corresponding 

to the distribution in (5) as the basis for estimating the item parameters, 

we get bias in the estimators (Eggen & Verhelst, 2011). In Section 4.1.2, we 

illustrate this phenomenon. If we compare the likelihood in ( 4) with that in 

(5 ), we see that the only difference is in the range of the sum in the denom­

inators. This reflects that in (4) we take into account that values of xi1) 

larger than c cannot occur, whereas in (5) this is not taken into account. 

The second way to deal with an MST design is to separately estimate the pa­

rameters in each step of the design (Glas, 1989). This means that inferences 
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with respect to x(m) are based on the likelihood of x(m) conditionally on 

xim) = x�m) . This procedure leads to unbiased estimates. However, since 

the parameters are not identifiable, we need to impose a separate restriction 

for each stage in the design (e.g. , bi1) = 0 and bi2) = 0). As a consequence, 

it is not possible to place the items from different stages in the design on 

the same scale. More important, it is not possible to use all available infor­

mation to obtain a unique estimate of the ability of the candidate. 

Third, we consider the use of MML inference. In the previous section, we 

derived the likelihood function of the data conditionally on the design. For 

MML inference, we could use the corresponding marginal (w.r.t. 0) likeli­

hood conditionally on the design (Xf) :S c): 

P, (x(l) X(2) IX(l) < c) b{l2),). , + _ 

= r pb{l2)(x<1l , x(2) 10,xf) :S c)fwi,,x(01Xf) :S c)d0, 
ln0 

in which .X are the parameters of the distribution of 0. 

If we use this likelihood, we disregard any information about the parame­

ters that is contained in the (marginal distribution of the) design variable: 

Pw,,.x(xfl :Sc). 

We now consider how we can base our inferences on all available information: 

the responses on the routing test X(l); the responses on the other modules 

that were administered, which we denote by xobs; and the design variable 

xi1) :S c. The complete likelihood of the observations can be written as 

follows 

Pb123(x(l) = x(l) , xobs = xobs 10) =Pb{2)(x(2) = xobs 10)Pb(l) (x(1) = x(l) l0) 

pb(l) (Xf) :S clX(l) = X(l))+ 

pb(3) (x(3) = xobsl0)Pb(I) (x(l) = x(l) 10) 

Pw , (xf) > clX(1) = x(1)). (6) 
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From this we immediately obtain the marginal likelihood function: 

Pb123 (X(l) = X(l)' Xobs 
= Xobs ) 

= r Pb123 (x(1 ) = x(l), xobs 
= xobs l 0 )f>,(0 )d0 (7) lne 

= [Le pb(2J (x(2) = xobs 1 0 )Pb(1) (x(1) = x(1)1 0)f>. (0 )d0] P(x:
1 ) � clx(l) )+ 

[Le pb(3) (x(3
) = xobs l 0 )Pwi (x(l) = x(l) l 0 )J,\ (0 )d0] P (xf) > clx(l) ). 

Since either P (x:1) � clx(l) )  = 1 and P (x:1) > clx(l) )  = 0, or P (x:1) � 

cJx(l) ) = 0 and P (x:1) > cJx(l) )  = 1, the marginal likelihood function we 

obtain is equal to the marginal likelihood function we would have obtained 

had we planned beforehand to which candidates we would administer which 

modules. This means that we may safely ignore the design and use a com­

puter program that allows for incomplete data (e. g. ,  the OPLM program, 

Verhelst, Glas, & Verstralen, 1993) to estimate the item and population pa­

rameters. This is an instance of a situation where the ignorability principle 

applies (Rubin, 1976) .  

As already mentioned, a drawback of the marginal likelihood approach is 

that a random sample from a well-defined population is needed and that 

additional assumptions about the distribution of ability in this population 

need to be added to the model. In Section 4. 1 .2, we show that misspecifica­

tion of the population distribution can cause serious bias in the estimated 

item parameters. 

2.3 Estimation of Person Parameters 

In principle, it is straightforward to estimate the ability parameter 0 of a stu­

dent who was administered the second module by the maximum likelihood 

method from the distribution of the sufficient statistic x:12) conditionally 
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on 0 and the design: 

As usual, we consider the item parameters as known when we estimate abil­

ity. However, as is the case for a single-stage design, the ability is estimated 

at plus (minus ) infinity for a student with a perfect (zero ) score and can 

be  shown to be biased. For that reason, we propose a weighted maximum 

likelihood (WML ) estimator as Warm (1989) did for single-stage designs. 

The weighted likelihood is the likelihood multiplied by the square root of 

the information. 

3 Model Fit 

We have mentioned in the introduction that adaptive designs may be  bene­

ficial for model fit. In order to investigate this presumption, we propose two 

goodness of fit tests for MST designs. These tests are based on the method 

that was proposed by Andersen (1973b ). 

3 .1  Likelihood Ratio Test 

Andersen (1973b ) showed that the item parameters b can be estimated by 

maximizing the conditional likelihood .C(b) as well as by maximizing .c(t)(b ), 

which is 

For a complete design with N items, he considered 

N-1 
Z = 2 L log[.c(t) (f,(t) )] -2 log[.C(b )] 

t=l 

(8) 

as the test statistic. Let us denote Mt as the number of persons with sum 

score t .  It is shown that if Mt ➔ oo for t = 1 ,  · · · ,  N - 1, then Z tends to 
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a limiting x2-distribution with (N - l)(N -2) degrees of freedom, i. e., the 

difference between the number of parameters in the alternative model and 

the null model. 

This likelihood ratio test (LRT) can also be applied with incomplete de­

signs. Then ( 8) generalizes to 
Nb-1 

Z = 2 L L log[£(bt) (h(bt))] - 2 log[£(b)], (9) 
b t=l 

where Nb denotes the number of items in booklet b. This statistic can also 

be applied with an MST design . In that case, the sum over t has to be 

adj usted for the scores that can be obtained.  We will illustrate this for the 

design in Figure 1. 

Let N(m) be the number of items in module m. Then the number of param­

eters estimated in the null model is 

m 
One parameter cannot be estimated owing to scale ident ification. In a gen­

eral booklet structure without dependencies between modules, we estimate 

N(l) + N(2)-1 parameters in each score group in booklet 1 and N(l) + N(3) _ 1 

parameters in booklet 2 (see Figure 2) . In booklet 1, there are N(ll +N(2)+ 1 

score groups; in booklet 2, there are N(l) + N(3) + 1 score groups. However, 

the minimum and the maximum score groups (dark grey in Figure 2) do 

not provide statistical information and therefore the number of parameters 

estimated in the alternative model is (N(l) + N(2) - l )(N(l) + N(2) - 1) + 

(N(l) + N(3)- l ) (N(1l + N(3)- 1) .  Finally, the number of degrees of freedom 

is 

(N(l) + N(2) - l )(N(l) + N(2) - 1)+ 

(N(l) + N(3) - l )(N(l) + N(3) - 1 )­

(N(l) + N(2) + N(3) - 1). 
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N(l) items NC2) items N(3) items 
(---

minimum and 

maximum 
score groups 

scores that do 

not provide 

statistical infor-
- - - -

mation 
score groups 

(---

scale identification 

Figure 2: Degrees of freedom in a general booklet design. 

The number of parameters of the alternative model in an MST design 

is slightly different, owing to the fact that some scores cannot be obtained. 

This can be illustrated by Figure 3. In booklet 1, there are c + N(2) + 1 

score groups. The score group t = 0 does not contain statistical information 

about b(12), as well as the score group t = c + N(2) about b(2). In the latter 

case, all items in x(2) must have been answered correctly. The same kind of 

reasoning holds for booklet 2. The number of parameters estimated in the 

alternative model is (c + N(2l)(N(1) - 1) + (c + N(2) - l)(N(2)) + (N(l) + 

N(2) -c - l)(NC1) - 1) + (N(l) + N(3) - c - 2)N(3). Therefore, the number 

of degrees of freedom is 

(c + N(2l )(N(l) - 1) + (c + N(2) - l)(NC2l)+ 

(N(l) + N(2) - c - l)(N(l) - 1) + (N(l) + N(3) - c - 2)N(3)_ 

(N(l) + N(2) + N(3) - 1). 

Score Groups In (8) and (9) the estimation of b(t) is based on the data 

with sum score t. Here t is a single value. In cases with many items, the 
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c +  N(2) + 1 

I score groups 

N(l) items 

scale identification 

N(2) items N(3) items 

Figure 3: Degrees of freedom in an MST design. 

f--

f-­

f-­

f-­

f-­

f-­

f-­

f-­

f--

f--

scores that 

do not pro­

vide statistical 

information 

(dark grey) , 

and scores that 

cannot be ob­

tained (light 

grey) 

number of parameters under the alternative model becomes huge. Conse­

quently, in some score groups, there may be little statistical information 

available about some parameters, e.g., information about easy items in the 

highest score groups. The LRT may then become conservative, since the 

convergence to the x2-distribution is not reached with many parameters 

and too few observations. To increase the power, the procedure can also be 

based on W sets of sum scores instead of single values t. Then 

Z = 2 L log[_c{Sv) (6(Sv) )] - 2 log[.C(b)], 
v=l 

in which T is the set of possible sum scores t ,  v denotes the v-th score group, 

and Sv c T such that {S1, 82, • • ·, Sv , • • ·, Sw} = T. 

3.2 Item Fit Test 

In the LRT defined above, the null hypothesis is tested against the alterna­

tive hypothesis that the model does not fit. The result does not provide any 

information about the type of model violation on the item level. Instead of 
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0 '-,---,--,---,�-.--.----.-' 

-6 -4 -2 

.... 

(a) A fitting item 

,..,. 

(b) A non-fitting item 

Figure 4: Parameter estimates under the Rasch model in three score groups. 

a general LRT, item fit tests can also be used to gain insight into the type 

of misfit. 

What is known about the maximum likelihood estimates is that 

and, under the null hypothesis that the Rasch model holds, 

(10) 

Since the Rasch model is a member of the exponential family, the variance­

covariance matrix, �, can be estimated by minus the inverse of the second 

derivative of the log-likelihood function. 

If the Rasch model does not fit, the estimates b(Sv) can provide useful in­

formation about the type of violation, for instance, if the item characteristic 

curve (ICC) has a lower asymptote. In this case, the difference between the 

parameters of the score groups will have a certain pattern. This is illustrated 

by Figure 4. Figure 4a symbolizes a case where the Rasch model fits. Here 

all ICCs are parallel. The estimate of the item parameter (i.e. the scale 

value that corresponds to a probability of 0.5 of giving a correct response 

to that item) in the lower scoring group (solid arrow) is expected to be the 
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same as in the middle ( dashed arrow) and the higher score group ( dotted 

arrow) . However, if an item has an ICC with a lower asymptote (see Figure 

4b) , then the estimates of the lower and the middle score groups will be 

different, while the estimates of the middle and the high score groups are 

expected to be almost the same. 

4 Examples 

In this section we demonstrate some properties of CML inference in MST. 

After a short description of the simulation design (Section 4.1. 1 ) ,  we com­

pare the inference from the correct conditional l ikelihood with the incorrect 

inference from ordinary CML and from MML, in which the population dis­

tribution is misspecified (Section 4.1.2 ). In Section 4.1.3 and 4.1.4 we will 

demonstrate, respectively, the robustness and efficiency of the MST design. 

Finally, in Section 4.2 we will also demonstrate how data that were obtained 

from a ordinary linear test can be transformed into data from a MST in order 

to increase the model fit. 

4.1  Simulation 

4.1 .1  Test and Population Characteristics 

The first three examples are based on simulated data. We considered a test 

of 50 items that was divided into three modules. The first module (i. e. ,  the 

routing test ) consisted of 10 items with difficulty parameters drawn from a 

uniform distribution over the interval from -1 to 1. The second and third 

module both consisted of 20 items with difficulty parameters drawn from a 

uniform distribution over the interval from -2 to -1 and the interval from 

0 to 2, respectively. The person parameters were drawn from a mixture 

of two normal distributions: with probability 2/3, they were drawn from a 

normal distribution with expectation -1.5 and standard deviation equal to 
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Table 1: Mean difference true and estimated item parameters. 

MST CML Ordinary CML MML 

module 1 0.0057 0.0299 -0.0886 

module 2 -0.0121 0.1601 -0.2100 

module 3 0.0092 -0.2003 0.2543 

0.5; with probability 1/3 they were drawn from a normal distribution with 

expectation 1 and standard deviation equal to 1. 

When the test was administered in an MST design, the cut-off score, c, for 

the routing test was 5. 

4.1.2 Bias Reduction 

In the first example, 10,000 students were sampled and the test was admin­

istered in an MST design. In order to show the bias of the estimated item 

parameters according to ordinary CML and MML, these estimates, as well 

as the estimates based on the conditional likelihood in (3), were compared 

with the true parameter values. The numbers in Table 1 show, for each 

module, the mean difference between the true parameter values and their 

estimates according to each of the three estimation methods. Both ordinary 

CML and MML inference lead to serious bias in the estimated parameters. 

The MML analysis was based on the (incorrect) assumption of a normal dis­

tribution of the ability parameters with both the expectation and standard 

deviation as parameters. For ordinary CML inference, this bias is due to 

the fact that the MST design is not taken into account. 

To get an impression of the behavior of CML inference based on the condi­

tional likelihood in (3), we repeated the analysis with 100,000 students. This 

gave -0.0002, -0.0023, and 0.0024, respectively, as entries in Table 1. These 

results support the conclusion that CML inference based on the conditional 

likelihood in (3) is a viable and robust method of parameter estimation with 
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MST designs. 

4. 1.3 Goodness of Fit 

In a second simulation study, we demonstrated the model fit procedure that 

is described in Section 3. The simulation consisted of 1,000 trials. In each 

trial, three different cases were simulated. 

• Case 1: the MST design described above. 

• Case 2: a complete design with all 50 items, except for the easiest item 

in module 3 .  The excluded item was replaced by an item according 

to the 3-parameter logistic model (3PLM, Birnbaum, 1968) which is 

defined as follows: 

This 3PLM item has the same item difficulty as the excluded item. 

However, instead of a =  l and c = 0, we have now have for this item 

a = 1.2 and c = 0.25. The slope (i. e. ,  the a-parameter ) was slightly 

changed, so that the ICC is more parallel to the other ICCs . 

• Case 3: an MST with the items of case 2 .  

The ICCs of  case 1 to 3 are displayed in Figure 5 .  Data were generated 

for a sample of 10,000 students and the item parameters of the Rasch model 

were estimated for each case. For the three cases above, an LRT as well as 

item fit tests were performed in each trial based on five score groups in each 

booklet. The score groups were constructed such that within each booklet 

the persons were equally distributed over the different score groups. The 
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(a) Case 1 

-3 -2 -1 

(b) Case 2 and 3 

Figure 5: (a ) The ICCs of the 50 Rasch items for case 1. (b ) The ICCs of 

the 49 Rasch items (gray ), and the ICC of the 3PLM item (bold black ) for 

case 2 and 3. 

number of degrees of freedom in case 1 and 3 is 

2 ( number of booklet ) x 

5 (number of score groups per booklet ) x 

29 (number of estimated parameters per score group ) -

49 (number of estimated parameters in the null model ) 

= 241, 

and in case 2 

5 (number of score groups per booklet ) x 

49 (number of estimated parameters per score group ) -

49 (number of estimated parameters in the null model ) 

= 196 .  
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Table 2: Results Kolmogorov-Smirnov test for testing the p-values of the 

LRTs against a uniform distribution. 

Case 

Case 1 

Case 2 

Case 3 

0.016 

0.968 

0.048 

p-value 

0.774 

<0.001 

0. 100 

Likelihood Ratio Test If the model fits, then the p-values of the LRTs 

and the item fit tests are expected to be uniformly distributed over replica­

tions of the simulation. This hypothesis was checked for each case with a 

Kolmogorov-Smirnov test. The results are shown in Table 2. It can be seen 

that the Rasch model fits in case 1 and 3, but not in case 2. The fit for case 

1 and the lack of fit for case 2 was expected. However, notice that the Rasch 

model also fits for case 3. In that case, one of the items is a 3PLM item, 

but this item is relatively easy and was only administered to students with 

a high score on the routing test, i.e., students with a high proficiency level. 

This indicates that guessing was avoided owing to this match of student 

proficiency and item difficulty. 

Item Fit Test The distribution of the p-values of the item fit statistics 

is displayed graphically by QQ-plots in Figure 6. The item fit tests clearly 

mark the misfitting item in case 2. Notice that, as explained in Section 3.2, 

the item fit test in case 2 shows an effect between the lower score groups 

(i.e, between group 1 and 2, between group 2 and 3, and between group 3 

and 4), while the p-values of the item fit tests between score group 4 and 5 

are nearly uniformly distributed. The graph for case 3 in Figure 6 shows, as 

we already noted in the previous paragraph, that the 3PLM item does not 

cause misfit in the MST administration. 
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(a) Case 1 (b) Case 2 (c) Case 3 

Figure 6: QQ-plots of the p-values of the item fit tests against the quantiles 

of a uniform distribution. 

4.1.4 Efficiency 

The relative efficiency of an MST design is demonstrated graphically by the 

information functions in Figure 7. Here the information of three different 

cases is given: all 50 items administered in a complete design, the average 

information over 100 random samples of 30 of the 50 items administered in a 

complete design, and the MST design described before. In the MST design, 

the total test information is 

Here JC12) (0 ) denotes the Fisher information function for module 1 and 2. 

The distribution of 0 is also shown in Figure 7. It can be seen that, for most 

of the students in this population, the MST with 30 items is much more 

efficient than the linear test with 30 randomly selected items. In addition, 

for many students, the information based on the MST is not much less than 

the information based on all 50 items. 

4.2 Real Data 

The data for the examples based on real data was taken from the Dutch 

Entrance Test ( in Dutch: Entreetoets) ,  which consists of multiple parts that 
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Figure 7: Person information in a complete design with 50 items, an MST 

design with 30 items, and a complete design with 30 items. 

are administered annually to 125,000 grade 5 pupils. One of the parts is a 

test with 120 math items. To gain insight into the item characteristics, we 

first analyzed a sample of 30,000 students with the One-Parameter Logistic 

Model (OPLM, Verhelst & Glas, 1995; Verhelst et al., 1993). For illustra­

tive purposes, we have selected 30 items that seem to have parallel ICCs, 

although the Rasch model did not fit perfectly, R1c = 420.66, df = 87, p < 

0.001. In addition to these 30 items, also one 3PLM item was selected. We 

can consider this example as an MST by allocating the items to three mod­

ules, after which the data of the students with a low (high) score on the 

routing test are removed from the third (second) module. 

In order to demonstrate the item fit tests, we drew 1,000 samples of 1,000 

students from the data. First, we estimated the parameters of the 30 Rasch 

items with a complete design and an MST design. In both cases, all items 

seem to fit the Rasch model reasonably well (see Figure 8a and Figure 8b). 

Then we added the 3PLM item to the Rasch items and again analyzed 

the complete design and the MST design. It can be seen from Figure 8c that 
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Figure 8: QQ-plots of the p-values of the item fit tests from the Entrance 

Test example against the quantiles of a uniform distribution. 

the 3PLM item shows typical misfit in the complete design. The item fit test 

was based on three score groups. There is a substantial difference between 

the parameter estimates of the lower and the middle score group, while there 

seems to be a l ittle difference between the estimates of the middle and the 

higher score groups. If the 3PLM item is administered in the third module 

of an MST design, the fit improves substantially (see Figure 8d ). 
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5 Discussion 

In this paper we have shown that the CML method is applicable with data 

from an MST. We have demonstrated how unbiased item parameters can be 

obtained for the Rasch model and how model fit can be investigated for the 

total test, as well as for individual items. 

It is known that CML estimators are less efficient than MML estimators. 

When the requirements of the MML method are fulfilled, then the MML 

method may be preferable above the CML method. However, in practice, 

for instance in education, the distribution of person parameters may be 

skewed or multi-modal owing to all kinds of selection procedures. It was 

shown in an example that, when the population distribution is misspeci­

fied, the item parameters become seriously biased. For that reason, in cases 

where not so much is known about the population distribution, the use of 

the CML method may be preferable. 

Our presumption was that adaptive designs are more robust against unde­

sirable behavior like guessing and slipping. We have shown in the examples 

that even when some items may lead to guessing when administered to the 

wrong students, then simple models without guessing parameters may still 

fit the data well. The example with real data did also show that a distinction 

could be made between multistage administration and multistage analysis. 

Data obtained from a linear test design can be turned into an MST design 

for the purpose of calibration. 

In this paper, we have used the Rasch model in our examples. It should be 

clear that the method can easily be generalized to other exponential family 

models, e.g., the OPLM (Verhelst & Glas, 1995) and the partial credit model 

for polytomous items (Masters, 1982). 

The design can also be generalized to more modules and more stages. It 

should however be kept in mind that estimation error with respect to the 

student parameters can be factorized into two components: the estimation 
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error of the student parameters conditional on the fixed item parameters, 

and the estimation error of the item parameters. The latter part is mostly 

ignored, which is defensible when it is very small compared to the former 

part. However, when stages are added, while keeping the total number of 

items per student fixed, more information about the item parameters is kept 

in the design, and therefore less information is left for item parameter es­

timation. A consequence is that the estimation error with respect to the 

the item parameters will increase. When many stages are added, it is even 

possible that the increase of estimation error of the item parameters is larger 

than the decrease of estimation error of the student parameters conditional 

on the fixed item parameters. An ultimate case is a CAT, in which all in­

formation about the item parameters is kept in the design and where no 

statistical information is left for the estimation of item parameters. This 

implies that adding more and more stages does not necessarily lead to more 

efficiency. Instead, there exists an optimal design with respect to the ef­

ficiency of the estimation of the student parameters. Finding the solution 

with respect to this optimum is left open for further research. 

24 



References 

Andersen, E. B. (1973a) . Conditional inference and models for measuring. 

Unpublished doctoral dissertation, Mentalhygiej nisk Forskningsinsti­

tut. 

Andersen, E. B.  (1973b) . A goodness of fit test for the Rasch model. 

Psychometrika , 38 , 123-140. 

B irnbaum, A. (196 8) .  Some latent trait models and their use in inferring an 

examinee's ability. In F. M. Lord & M. R. Novick (Eds. ) ,  Statistical 

theories of mental test scores (p. 395-4 79) .  Reading: Addison-Wesley. 

Bock, R. D . ,  & Aitkin, M. (1981). Marginal maximum likelihood estimation 

of item parameters. Psychometrika, 46, 443-460. 

Eggen, T. J .  H. M. , & Verhelst, N. D .  (2011 ). Item calibration in incomplete 

designs. Psychol6gica, 32 , 107 -132. 

Glas, C. A. W. (198 8) . The Rasch model and multistage testing. Journal 

of Educational Statistics, 1 3 ,  45-52. 

Glas, C. A. W. (1989) .  Contributions to estimating and testing Rasch 

models. Unpublished doctoral dissertation, Arnhem: Cito. 

Glas, C. A. W. , Wainer, H . ,  & Bradlow, E. (2000) . MML and EAP estima­

tion in testlet-based adaptive testing. In C. Van der L inden W.J .  

& Glas (Ed. ) ,  Computerized adaptive testing: Theory and practice 

(p. 271-2 87 ). Kluwer Academic Publishers. 

Hendrickson, A. (2007).  An NCME instructional module on multistage 

testing. Educational Measurement: Issues and Practice , 26(2) , 44-

52. 

Luecht, R. , Brumfield, T. ,  & Breithaupt, K. (2006). A testlet assembly de­

sign for adaptive multistage tests. Applied Measurement in Education, 

19, 1 89-202. 

L uecht, R., & Nungester, R. (1998) . Some practical examples of computer­

adaptive sequential testing. Journal of educational measurement, 35 , 

25 



229-249. 

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychome­

trika, 4 1, 149-174. 

Mead, A. (2006). An Introduction to Multistage Testing. Applied Measure­

ment in Education, 1 9 ,  185-187. 

Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially 

consistent observations. Econometrica, 16 ,  1-32. 

Rasch, G. (1960). Probabilistic models for some intelligence and attainment 

tests. Copenhagen: The Danish Institute of Educational Research. 

(Expanded edition, 1980. Chicago, The University of Chicago Press) 

Rubin, D. (1976). Inference and missing data. Biometrika, 63 , 581-592. 

Verhelst, N. D., & Glas, C. A. W. (1995). The one parameter logistic model: 

OPLM. In G. H. Fischer & I. W.  Molenaar (Eds.), Rasch models: 

Foundations, recent developments and applications (p. 215-238). New 

York: Springer Verlag. 

Verhelst, N. D., Glas, C. A. W., & Verstralen, H. H. F. M. (1993). OPLM: 

One parameter logistic model. Computer program and manual. Arn­

hem: Cito. 

Wainer, H., Bradlow, E., & Du, Z. (2000). Testlet response theory : An 

analog for the 3pl model useful in testlet-based adaptive testing. In 

W. Van der Linden & C. Glas (Eds.), Computerized adaptive testing: 

Theory and practice (p. 245-269). Kluwer Academic Publishers. 

Warm, T. (1989). Weighted likelihood estimation of ability in item response 

theory. Psychometrika , 54 , 427-450. 

Zenisky, A., Hambleton, R. K., & Luecht, R. (2010). Multistage testing: 

Issues, desings and research. In W.  Van der Linden & C. Glas (Eds.), 

Elements of adaptive testing (p. 355-372). Springer. 

26 










