
Report Nr 08

Semantic and Syntactic
Simplification of Truth Functions

H.H.F.M. Verstralen

3.4 Cito

semantic and syntactic Simplification of Truth Functions

by

Huub H.F.M. verstralen,

Report Nr 08

Project 'Optimal Item selection•

CITO

Arnhem, The Netherlands, 1990

submitted for publication

Cito lnstituut voor Toetsontwikkeling
Postbus 1034
6BO·i MG Arnhcm

8501 019 1032

I !Ill II 111111\l ll Ill II Ill ll Ill II Ill II Ill I IIII

General Introduction

The purpose of Project •optimal Item Selection' is to solve a number of
issues in automated test design, making extensive use of optimization
techniques. In each report, one or several theoretical issues are raised and
an attempt is made to solve them. Furthermore, each report (where
appropriate) is accompanied by one or more computer programs, which are
implementations of the methods that have been investigated. some of these
programs will be available in the future.

T.J.J.M. Theunissen,
project director.

3

Abstract

some restrictions in Linear Programming (LP) problems are easier formulated
as a Boolean expression. Here we describe a way to translate a Boolean

expression, or the associated function, via a Disjunctive Normal Form (DNF)
representation, to an equivalent aet of linear restrictions. The
transformation of a truth function f into the wanted DNF proceeds in two
steps. First the set PI (f) of prime implicants of f is calculated, and
second a 'cheapest• subset of PI, equivalent with f is chosen. The best

known algorithms for the first step, to find PI (f) , are the semantic
algorithm of Quine (1952) and Mccluskey (1956) or, if one has a Boolean
expression for f, the syntactic algorithm of Quine (1955) . The first

algorithm is appreciably improved, and the scope of the second is enlarged
to include valid formula's. As a consequence it can also be used as a
validity test for Boolean expressions. The second step is discussed as well,

where the suggestions of Quine (1955) are supplemented with two properties
of redundant elements of PI (f) , that make their identification more easy.
However, the set covering approach to the second step appears to be better
suited.

Content Indicators:
CR classification :

G. Mathematics of computing
G.4. Mathematical Software, Algorithm analysis, Algorithm efficiency

General terms: Algorithms, Theory
Key words Boolean Expressions, Boolean functions, Normal Forms,

Validity test, Linear Programming

5

contents

1 Introduction

2 Algorithms for simplification of truth functions

3 TWo algorithms that find all the prime implicants of
a truth function

4

5

3.1 The Quine and McCluskey algorithm
3.2 The syntactic method of Quine

Algorithmic search for the cheapest equivalent combination
of prime implicants

Conclusion

References

Titles of other research reports

7

9

11

15

15

23

27

31

33

35

1 Introduction

our interest in truth functions derives from a wish to incorporate
restrictions that are formulated as Boolean expressions in linear
optimization algorithms for (educational) test construction. The
construction of tests can be greatly aided by the application of
optimization techniques like Linear Programming (LP) , Theunissen (1985) ,

Cito (1990) . An LP program searches an optimum for a goal function in a
space constrained by linear inequalities. However, several test construction

constraints, among which are interitem dependencies, are more naturally
formulated as Boolean expressions. As a simple example of an interitem
dependency one can think of: 'if the test contains item 1, it must also
contain items 2 and 3•. Therefore we face the problem to adapt Boolean
expressions to the LP approach. We proceed by finding a 'cheapest'

Conjunctive Normal Form for an expression, which is easily transformed into
a system of linear inequalities. However, fer an application of such an

algorithm to be succesful in an en line test construction program, speed is

an important desideratum. The speed of the application is influenced by the

speed of the transformation itself, and by what it delivers to the LP
program. Especially the number of linear inequalities must be kept as small
as possible.

Because it is the best known algorithm for Boolean function
simplification, we first involved ourselves with the Quine and McCluskey
algorithm. Although we devised a substantial improvement en the original
algorithm, especially for mere complex expressions, processing times were
considered net entirely satisfactory fer the intended application.
Therefore, and because we start with a Boolean expression, the syntactic
algorithm of Quine (1955) was considered as well. His original proof of the
algorithm explicitly exluded valid expressions. However, it turned out that
some small changes in the proof are sufficient to also include valid
expressions. Moreover, the processing times of our implementation of the
algorithm a�e entirely satisfactory for the class of expressions that we can

expect.
The just mentioned algorithms yield the complete set of Prime Implicants

of a Boolean function. This set may contain redundant elements, which would
lead to superfluous linear inequalities. Therefore, the second step in the
process is to find a cheapest subset of the set of prime implicants that
represents the original expression. In principle this problem can be solved
by following Quine'& (1955) suggestions. We supplemented this approach with

two theorems on the redundancy of prime implicants that enable to simplify
and speed up the algorithm, but are considered interesting by themselves.

9

However, we did not ■ucceed in constructing a ■atisfactory algorithm from

this basis. A greedy algorithm from the set covering literature proved to be

much better suited.

Although we may consider this part of the problem as aatisfactorily

solved, concerns remain about the number of linear inequalities that it
produces.

10

2 Algorithms for simplification of truth functions

A Boolean variable takes values from the ■et B = {0, 1} and a truth
function is a function on Bn (n=0, 1, 2, ...) with values in B. we denote a

Boolean variable, also called a letter, by an index number or by a lower
case letter. The usual basic set of truth functions is denoted as follows:
unary : - (NOT, Negation)

Binary : + (OR, Disjunction)
* (AND, conjunction)

> (IF .. THEN, Implication)

The unary function is notated as prefix, the binary functions are notated as
infix.

All truth functions can be expressed with the help of this notation. A
Boolean expression defines precisely one truth function, while a single
truth function can, in general, be expressed in many ways as a Boolean
expression. Two Boolean expressions are called equivalent if they define the
same truth function. The problem of how to transform a Boolean expression to
an equivalent system of linear inequalities is readily solved by realizing
what kind of expressions hardly needs a transformation. An example of such

an expression is :

a+b * c+d

which is equivalent to the following system of linear inequalities:

a+b > 0
c+d > 0

where a .. d and + and> are interpret�d in their usual arithmetical sense.

In general every Boolean expression of the form :

(1)

is equivalent to the following system of linear inequalities :

(i-1, ... ,n) (2)

where n equals the number of Boolean sums in (1) .

11

A Boolean expression of the form (1) is said to be in conjunctive Normal
Form (CNF) . The negation of (1) together with the property that - (a+b) = -
a•-b (The Morgans Law) produces a ao called Disjunctive Normal Form (DNF) ;
it can be written like (1) but the aequence of n and t is reversed.

The expressions (1) and (2) would not be of very great help were it not
that it can be easily proved that every Boolean expression can be
transformed in an equivalent CNF or DNF. In the sequel we will be concerned
exclusively with DNF representations of Boolean expressions.

Because especially the number of inequalities, but also the number of

variables impede the algorithms for optimal test construction, it is
important to find a DNF representation of a Boolean expression that is as
simple as possible.

From Wegener (1987) and from Sammer (1974) it appears that Quine (1952,
1955) and McCluskey (1956) are still the leading articles on the subject of
simplification of Boolean functions. We found that Wegener (1987) , although
he refers to Quine (1955) , does not in any way hint at its contents. And
Hammer (1974) mentions the consensus method in Quine (1955) , but does not
refer to its source. It seems therefore, that these methods on the one hand
are considered as part of the anonymous mathematical heritage, but on the
other hand partly tend to fade into oblivion.

To explain the algorithms, first some terminology has to be introduced.
We thereby partly follow Quine (1952) and Wegener (1987) . A litteral is a
letter or a negation of a letter. A monom or a clause is a litteral or a
conjunction of litterals. A fundamental formula is a monom containing no

letter twice. Because the only monoms that we are concerned with are
fundamental formulas, in the sequel the term 'monom' means • fundamental
formula'. An alternation, or Boolean sum, of monoms is called a normal
formula. We denote monoms by lower case Greek letters and arbitrary Boolean
expressions by uppercase Greek letters. Let a and p be two monoms. We say
that a subsumes p if all the litterals in p are among those of a. a is
called an implicant of� if a implies �, a is called a prime implicant of�
if it is an implicant of� and subsumes no shorter formula which implies�
When two litterals share the same letter we say that they agree when their
signs are equal. TWo monoms agree when the letters they share have the same
sign. TWo monoms a and p have a consensus 1, also a monom, when they agree
except for one letter, call the disagreeing letter v. The consensus 1 of a
and p consists of exactly all the litterals of a and p (duplicates only

once) except v and -v. We call a and p the parents of their consensus 1• Let
x and x ' (e {O,l} n) be assignments for the variables a1 (icl, .. ,n) . The
assignment x can be related to precisely the one monom a in the variables ai
such that a (x) a 1 and a (x ') c O for all x ' � x. Given this relation between

monoms and assignments we feel free to switch terms from an assignment x and

its thus related monom. (This avoids the more cumbersome introduction of

12

minterms.) we say that a truth function • accepts an assignment x if •<x) �

l, The symbol \ is used for omission. If, e.g., a is a litteral of a monom

a, a\a is the monom we get from a by omitting a.

This ends the introduction of basic concepts and notation. we now turn

to the process of finding a DNF-expres•ion for a Boolean function f. All

methods to thi• end proceed in two major •teps. In the first step all the

prime implicants of a truth function are constructed. The second step looks

for the cheape•t disjunction of prime implicants that accepts precisely the
same set of assignments as f. Theae procedures build on theorem l from Quine

(1952) that every •implest DNF representation of a Boolean expression is a

disjunction of prime implicants. We fir•t treat two methods that are

designed to find all the prime implicants of an arbitrary Boolean expression

or its associated function.

13

3 Two algorithms that find all the prime implicants of a truth function

Although both algorithms build on the aame two principles, consensus and

subsumption, they nevertheless function quite differently. The first and

best known is based on the articles of Quine (1952) and McCluskey (1956) and

is further referred to as Q,M. The aecond algorithm ia based on Quine

(1955) , although he was not the firat diacoverer, as he himself recognised.

This algorithm is further referred to as syn.

3. 1 The Quine and McCluskey algorithm

. -1

Given a truth function • Q&M first finds the set of assignments • (1) =
{ x I •(x) = 1 }. Relate, as indicated above, the assignments with their

unique accepting monoms, then •-1(1) is a DNF representation of • and is

called the developed no.nnal fo.nn of •• because every monom in this DNF

representation of •, contains all variables of •· The algorithm proceeds by

testing for every pair of implicants a and p whether they have a consensus

�- If so, then � is an implicant of •• which contains all the variables of

its parents a and p except the disagreeing letter, and agrees with both its

parents. It follows that it is subsumed by both and therefore can replace

them in the normal form of • without changing the truth function •· The

consensus, which is one variable shorter, is placed at the end of the chain

of implicants that represent • and its parents are marked. This process is

continued with the shorter implicants, until no longer a consensus can be

found. It is important to note that in this process only implicants with the

same variables have to be tested for a consensus. Because, if pairs that do

not share their variables yield a consensus, this consensus must be an

implicant of • with at least as much variables as its parents, and therefore

it is already produced or even already processed. Therefore every pair is

first tested on equality of variable set. It is not difficult to verify that

the unmarked implicants in the chain are precisely the prime implicants of

•· Thia is the process that Quine (1952) proposed for finding the prime

implicants of a truth function.

Mccluskey (1956) improved the processing time of the algorithm by noting

that many comparisons between implicants could be skipped because they

surely do not yield a consensus. TWo implicants will surely not yield a

consensus if their number of negated letters differs not precisely by one.

They possibly yield a consensus when this difference equals one. Therefore

McCluskey arranged the implicants in such a way that first the implicants

with no letters affirmed (at most one implicant) are grouped together, then

those with one letter affirmed, and so on. Comparisons can then be confined

15

to implicants of consecutive groups, all with the same number of variables
and differing by one in number of negated letters. According to Mileto and
Putzclu (1965) the number of comparisons in relation to Quines (1952)
algorithm is reduced by a factor that approaches 3.

subsuming: Quine makes a comparison within all pairs of implicants with
the same number of variables, McCluskey restricts comparison to pairs of
which the members differ by one in number of negations.

However, this approach still produces, in general, a majority of

unneccessary tests fer equality of variable set. 'l'Wo implicants may only
produce a consensus in this precess when they share their letters. This
becomes an increasingly rare event as the proportion of left out variables
of the processed mcncms approaches 0.5, e.g., with a twelve variable
expression when four variables are left cut the odds may be about l to 3000
(if the expression is almost valid) . If it can be arranged that comparisons
are (primarily) restricted to implicants that share their variables, the

algorithm gains in efficiency. The next paragraphs describe how this can be
achieved and what increase in efficiency is to be expected.

Code an implicant a of� as an ordered pair of binary vectors [x,y],
where x = (x1, . . . ,xn) , and y similarly, where n equals the number of
different letters in�- xi = l if letter i occurs in a else xi = 0. Yi = l
if xi z 1 and variab�e i is negated in a. Call the set of implicants of�
with n-k variables of which p (p = 0, ... ,n-k) are negated �I (k,p) . In
Quine (1952) all elements of up •I (k,p) are mutually compared to form
up •I (k+l,p) , while the comparisons in McCluskey are restricted to pairs
(a,�) with a e •I<k,p) and� e �I (k,p+l) , As already mentioned, this
restriction results in an improvement factor approaching 3.

By (quick) sorting the implicants a = [ax,ay] in •r<k,p) according to ax,

we achieve that monoms that share their variables are grouped together. This
allows for a great reduction in tests fer equality of variable set to the
extent that almost only comparisons are made between monoms that share their
variables. Some small changes (indicated with• in the pseudocode below) in
the Quine & McCluskey algorithm accomplish this.

Another difficulty that hinders the process is the fact that the same
consensus can be produced multiple times from different pairs of parents.
Fer example, abc can be produced by abcd and abc� (underline indicates

negation) er by abce and abc! etc. until the last variable. And it not only
£.!E. be, but it will be. Because if abc is an implicant, all its possible

parent-pairs necessarily show up in the two higher regions of the monom
chain, because they are implicants of•• Therefore, if there is no check for
double implicants, they very soon consume all the available memory (for more
details, see Verstralen, 1988) . The above mentioned literature suggests that
it must be tested whether a consensus already has been found. But such a

test is very time consuming.

16

However, this test can be avoided, by identifying a unique monom among

its doubles, and to store only this one. A clue for identifying a unique
monorn is the one-one relation between a ■et of identical monorns and its
parent pairs. In the set of parent pairs there is precisely one member that
has no irrelevant variable lower indexed than its non-agreeing variable, the
new irrelevant variable in their consensus. This can be tasted efficiently,
as can be seen in the part with the Window variable in the following
pseudocode.

{

}

Given the assignments that • accepts in McCluskey 's order.
t indicates 'number of ')

n fvariables in •;
k fleft out variables--> n-k: tvariables in implicant;
p tvariables negated

for k := 0 to n-1 do
for p : = 1 to n-k do begin

ox : = O; { * initialize ox = previous ax }
Firstp := First p in •I (p, k) ; { * Firstp is a variable }

for a E •I (p-1, k) do begin
First : = ax <> ox;

if First then ox : = ax
else p : = Firstp

while px <= ax do begin
if ax = px then begin

if First then begin

First := false;

Firstp := p

end;
Disvars := ay xor py;

{ * Boolean to indicate variable
change}

{ * update ox }

{ * return to Firstp if a
contains same vars }

{ * check only p with same vars

{ * just after First maybe
there are some px < ax }

{ * update Firstp }

{ find the disagreeing vars }

if Disvars and py -= Disvars { just one disagr. var ? }

then
mark (a) ; mark (P) ; { a and p have a consensus}
Window :• Disvars - l;{ Window on all vars with lower

index than disagreeing var}

}

if Window and xp = Window then { test to avoid duplicates }

Adjoin consensus (a, p) to •I (p-1, k+l)

end; { if ax -= px}

next p e U (p, k)

17

end; { while px <z ax}
if a not marked then Adjoin a to PI(t)
next a e tI (p-1, k) ;

end; { for a}
quicksort (tI (p-1, k+l)) ;

end; { for p}
Adjoin all not marked p E tI(psn-k,k) to PI(t)

end; { for k}

The time for eorting turns out to be a minor ratio of total processing time.

To get an impression of the gain that can be expected from the indicated
changes, we calculated the expected number of comparisons between implicants
under the assumption that only implicants with the same variables are

compared. From Monte Carlo experiments we got estimates of the percentages

of the number of comparisons between implicants with the same variables
compared to the total number of comparisons, for the improved and the
original algorithm as well. The expected number of comparisons in the
original Quine & McCluskey algorithm are given in Miletu and Putzolu (1965).

Also estimates of processing times are given.
To derive the expected number of comparisons between implicants of the

same variables, the framework given in Miletu and Putzolu is helpful. To get
a linear notation let a@b = al/ (a-b) lbl : the number of combinations of size
b from a set of size a. Consider a function U (i, u) on Bn with u out of 2n

true assignments or ones with i e {1, .. , 2n@usz}, Let v(s) be a subset of
(n-k) variables of U (i,u) given by a subset s of the index set {l, .. ,n},

s e {l, . .. , n@k}, Denote by r (i, s, k, p) the number of k-cubes of U (i,u) with

p false or O assignments for the n-k variables in v (s) . Then the number of
pairs of k-cubes c (j, s, k) and c (l,s,k) in U (i, u) that share the same
variable set v (s) and such that the number of O assignments in c (j) exceeds
the number in c (l) by one equals:

n-k (:)
l�(i,k) - L :Er(i,s,k,p) r(i,s,k,p-1) (3)

P•l ■•1

Then the expected number of same variable comparisons between k cubes for

functions with u ones is:

18

l
:s (�) n-k

IE(((i,k)) - C(u,k) • -T" L L r(i,e,k,p) r(i,s,lc,p-1)
i Z f:1. ■-1 p-1

By symmetry of i and• this can be aimplified to:

IC(u,lc) • (�)I: frci,l,k,p) r(i,1,k,p-1)
z p-1 f:1.

(4)

(5)

There are (n-k)@p k-cubes c(l, j, k, p) with variable set v(l) and p negated

variables. Now let

then

a(i, j, l, k, p) • 1 if U(i, u) � c(l, j, k, p)

., 0 else

substitution of (6) in (S) yields after reordering summation terms:

By symmet�y of indices j and i this reduces to:

ill
(n-k)

n-k p-1

l((u,lc) - E(n-k) r N(l,h,l)
z p•l p �

where

(n-k
)

IN(l,h,l) • "r' � a(i,1,1,k, p) a(i,h, 1, k,p-1)
t:1. �

(6)

(7)

(8)

(9)

which can be interpreted as the number of functions U(i, u) that contain the

k-cubes c(l, l, k, p) and c(l, h, k, p-1) e. g., in the last n-k variables:

c(l, l, k, p) = x
1

1
0 1

k+p k+p+l

19

1

n

N(l, h, l) is the number of sets formed with u out of z elements wich contain
the w(k+l) • 2 <k+l) elements of c(l, l, k, p) u c(l, h, k, p-1) . The intersection
of both k-cubes is empty because their ■ign differs at least in one variable
in v(l) . It follows that N(l, h, l) • (z-w(k+l)) @(u-w(k+l)) . So that finally
we have :

(10)

Which implies that the expected number of comparisons between cubes with
equal variable sets for an arbitrary Boolean function of n variables with u
true assignments is :

Table 1 gives some data on expected numbers of comparisons for the
improved Quine and McCluskey algorithm (NQ&M) , combined with data from

(11)

Mileto and Putzolu (1965) on the number of comparisons in the original Quine
and McCluskey algorithm (OQ&M) . The processing times refer to an 8MHz IBM-AT
compatible computer (NSI = 7.1) , for an implementation in Pascal (Borland,
1987) . Under Mean tcomparisons NQ&M are given the number of comparisons
between pairs of k-cubes with the same variables. Under %Tot one finds the
percentage of this number in comparison with the total number of comparisons
of NQ&M, as estimated by Monte Carlo experiments, 25 per case if tvars<ll
else 10 per case. For 11 and 12 variables we extrapolated the Mileto and
Putzolu (1965) numbers on OQ&M.

20

Table 1 Results on performance of the improved Quine & McCluskey algorithm

U (i,u) Mean lcomparisons Mean Processing time (sec)
tvars %true OQ&M NQ&M ITot OQ&M/NQ&M OQ&M NQ&M OQ&M/NQ&M

6 25 74.0 50.8 91 1.5 0.04 0.05 0. 80
50 696.4 268.2 94 2 .6 0.10 0.09 1. 11
75 4056.2 902.1 96 4.5 0.28 0.22 1.27

7 25 3 30.5 202.0 94 1.6 0.08 0. 01 1.14
50 3487.4 1088.7 97 3.2 0.29 0.22 1. 32
75 23621.3 38 34.1 98 6.2 1.41 0.63 2.24

B 25 1456.0 794.2 97 LB 0.17 0. 16 1.06
50 17200.2 4392.6 98 3.9 1.04 0.57 1. 82
75 135158. 1 16207. 2 99 B.3 7.05 1.79 3.94

9 25 6379. 7 3 108.4 99 2.1 0. 46 0.37 1. 24
so 83938.1 17678. 0 99 4.8 4.24 1. 68 2. 52
75 761392. 3 68290. 1 99 11.2 32.42 6. 07 5.34

10 25 27888.1 12153. 3 99 2.3 1.60 0.99 1. 62
50 406393. 7 71098. 6 100 5.7 18.48 5.29 3.49

75 4228973. 6 287182. 7 100 14. 7 153. 49 21. 27 7. 21
11 25 121667. 9 47545. 1 100 2. 6 6.3 1 3.29 1. 92

50 1945486. 7 286016. 9 100 6. 8 82.58 19.68 4. 20

75 23089747. 0 1206171. 8 100 19.1 826.35 79.18 10. 44

12 25 53 13 39. S 186238.9 100 2.9 25. 67 11.55 2. 22

50 93 18678. 3 1151306. 9 100 8. 1 388. 28 69. 36 5.60

75 125956770. 3 5061350. 6 100 24.9 4030. 46 302. 70 13. 32

As can be seen from table 1 the improvement of NQ&M is considerable when
processing times start to count, from nine or ten variables onward. Not only

is the improvement, theoretically as well as in practice, strongly dependent
on the percentage of ones, but also on the number of variables. Moreover the
practical improvement factors, although less than theoretically expected,
reflect the theoretical factors better with the greater number of variables.
For 9 variables and higher and 751 true assignments the practical

improvement factors are about SOI or better of the theoretical improvement

factors. It can also be inferred from table 1 that NQ&M compares •almost'
only implicants with equal variables. For 10 variables and more the
percentage non-equal variable comparisons is less than 0.5%.

If we try to extrapolate the improvements for larger numbers of

variables, from table 1 the following relations can be extracted, which can
be assumed to approximately hold:

21

c(25,n) = 2.30 l.12(n-l0)

c(S0,n) • 5.72 l.19 (n-lO)

c(75,n) • 14.73 1.30 (n-lO)

where c(x,n) is the theoretical improvement factor with x% ones and n

variables. For example, for the following values of n we get the theoretical
factors as specified in table 2.

Table 2 Extrapolated approximate theoretical improvement factors for
larger numbers of variables and execution times (seconds)
for NQ&M (1 ES aeconds • 24 hours, 3 E7 seconds • 1 year)

NQ&M Improvement factors NQ&M Execution times
fvars 20 30 50 80 20 30

%true
25 7 20 70 6000 8 ES 8 Ell
50 30 180 6000 11 ES 5 E6 5 El2
75 200 3000 5 ES 15 ES 2 E7 2 El3

Inspection of table 2 readily reveals that numbers of variables appreciably
greater than 20 cannot be processed in the foreseeable future, by NQ&M, just
by the factor time alone. The problem of storing intermediate implicant sets
is not even mentioned here.

The above results were obtained for random Boolean functions. However,
for our problem we also have a Boolean expression. Although I rather
randomly entered some expressions for the program, humanly entered
expressions are by nature of very restricted length. This seems to have the
side effect that the associated functions have much less prime implicants
than random functions. For example, the two twelve variable expressions that
I entered produced reap. 37 and 73 prime implicants, whereas the expected

number of prime implicants for 12 variable random functions of 25, 50 and
75% true assignments is resp. about 1000, 3000 and 6000. on the negative

side this implies longer processing times for NQ&M and much longer for OQ&M.
For the two 12 variable expressions we got resp. 3 minutes against 1.5 hours
(34% true, improvement factor 30) and 14 minutes against 16.3 hours (66%

true, improvement factor 70) . These execution times are prohibitive for our
application, at least with the current hardware. However, the fact that we
possess an expression, opens the possibility for a syntactic approach, which
is treated in the following section.

22

3. 2 The syntactic method of Quine

In many caaes where Truth functions are not given by a function table

but by an expreasion, it proves profitable to directly process the

expression itself, without exploiting its semantics in producing the

developed normal form as above. The developed normal form is indeed

identical to the function table with the function values of O left out.

Quine (1955) developed the following ■yntactic algorithm: • (i) Drop these

obvious superfluities : If one of the clauses of alternation aubswnes

another, drop the ■ubauming clause. Also supplant a v !a by a v a (and a v

aa by! v a) where a is a single letter.

(ii) Adjoin, as an additional clause of alternation, the consensus of

two clauses Operation (ii) is to be regarded as not applying in case

the consensus aubswnes a clause already present. •

Quine (1955, pg 628) proves that repeated application of these two

operations to any non-valid formula • produces precisely all prime

implicants of •· However, some minor changes in the proof ensure that valid

formulas can be included as well, which means that a validity test prior to

the application of the algorithm can be omitted. Moreover, the algorithm

provides an alternative method for testing validity as an alternative for

testing truth for all assignments. we will give the adapted proof below,

with the adaptations indicated.

A second remark concerns the superfluity of the second sentence in the

formulation of operation (i) , which means that the consensus is adjoined and

the subsuming longer parent omitted. The implementation of the second

sentence as a preliminary step might speed up the algorithm. It is

irrelevant for the proof of the algorithm, however.

Before proceeding we need two additional concepts: the empty monom

denoted by n and the empty expression denoted by g, Some authors that

mention the empty monom say that it is a valid expression by convention. But

this choice is not that arbitrary. consider the expression • with one monom

a = ab£, • accepts only the assignment 110 for the variables a, b and c. Now

omit c from • to get • s ab, which accepts 110 and 111 as well. In other

words, the assignment for not present variables doesn't matter, it is

accepted, whatever value the variable is given. Therefore, to be consistent,

a monom with no variables at all must accept all assignments.

The opposite is i, the empty expression. An expression in ONF accepts an

assignment iff one of its monoms does. Therefore g cannot accept any

assignment, because it does not posses any monom, including the empty monom.
g and mare each others opposites: g is inconsistent, and n is valid. we

have the following lemma:

23

Lemma 1: A formula • is valid iff m is a prime implicant.
If m is a prime implicant of • it is the only one.

Proof: suppose • is valid. m clearly implies •• because both are valid.
Therefore m is an implicant of •· Because its shortest subclause is M
itself, m is a prime implicant of •· Furthermore m is subsumed by any monom,
and therefore no other implicant can be a prime implicant of •·
Next, suppose m is a prime implicant of •· Because m accepts any assignment,
• accepts any assignment, therefore • is valid. ■

The proof of Quine• s (1955) theorem can now be reproduced here except for
some changes to include valid formulas. We insert comments between {}· The
proof proceeds by proving that a formula • is still susceptible for an
application of operation (i) or (ii) as long as there is a prime implicant a
of • which is not a clause of •·
{ omit the sentence: • • is implied by . . , it is not true for the empty
monom, and in the original proof the sentence is redundant. } since a is a
prime implicant, it has no letters foreign to •; for any such could be
dropped without impairing the implication. Moreover, since a is a prime
implicant of •• not contained in t, and each clause of • also implies t, no
clause of • is subsumed by a. So there is at least one fundamental formula
(a itself, for one) fulfilling these three conditions: (a) it subsumes a,
(b) it subsumes no clause of • (c) it contains no letters foreign to •

{slight change}. Let p be a longest fundamental formula fulfilling (a) , (b)
and (c) . still p will lack some letter d of •· (for if p contained all
letters oft, then, by (b) , p would conflict with each clause of •• which is
impossible because p impliest) . Now, since p is a longest formula
fulfilling (a) , (b) , and (c) , the longer formulas dp and� must fail to
fulfill (b) ; for they do fulfill (a) and (c) . so dp and� each subsumes a
clause of •· These subsumed clauses must contain d and � respectively, since
they were not subsumed by p alone. { replace the next sentences to the end
of the paragraph by: } They can be denoted by d7 and �7• and p subsumes 7 and

7' . clearly Operation (ii) 'Adjoin consensus' is applicable to •• because
the consensus 77 ' (minus any duplicate litterals) contains no letter both
affirmed and negated, since it is subsumed by a fundamental formula p; and

it subsumes no clause of • since p subsumed none. If 7 = m xor 7 ' = m then
subsequently operation (i) will be applicable. If 7 = m and 7 ' = m then

conclude that • is valid because m is an implicant (Lemma 1) .
This proves that Operations (i) or (ii) are applicable as long as there

is a prime implicant a of •• which is not a clause of •· { Quine concludes
that this implies that (i) and (ii) produce all prime implicants of •· In my

opinion he proved that it does so only if the algorithm stops. But that it
stops does not follow from the proof. } If it stops it clearly produces
precisely all prime implicants, because any other clause, that • might

24

contain is an implicant of • and therefore subsumes one of the prime

implicants and can therefore be omitted by operation (i) . ■

It follows that if a valid disjunction of monoms is processed by Q,M or syn

the empty monom a ia produced.

To see that the alternation of Operations (i) and (ii) stops it is

sufficient to show that a monom that i• removed by operation (i) does not

reappear in the proceas. Thi• mean■ that a circularity is impossible. And

circularity ia the only mechanism in this finite apace that can keep the

algorithm going for ever. The only way a monom a disappears is by operation

(i) because it aubsumea a aborter one a•. Thi• aborter one can only

disappear again because it aubsumea a aborter a''• As a result a cannot be

adjoined again by operation (ii) because this ia precluded by its subsumed

followers a•, a''•··

our implementation of syn does not alternate between (i) and (ii) ,

because this produces many unnecessary subsumption tests in (i) . First, the

list of monoms is sorted according to length, the shortest first. Thereafter

(i) is applied, including the combination of (ii) and (i) for monoms of one

litteral. sorting facilitates the subsumption test, because it is known from

the start, that if subsumption is true, which of the two subsumes the other.

After Operation (i) all pairs of monoms are checked whether they have a

consensus. If so then for every monom in the list of monoms, beginning with

the first, it is checked whether the consensus subsumes it until the first

monom in the list that is longer than the consensus. There the consensus

will be inserted in the sorted list, if there was no subsumed monom in the

list. From the first monom in the list that is longer than the consensus to

the end of the list, Operation (i) is tried. This prevents that over and

over again the same pairs of monoms are tested whether one subsumes the

other. After the first application of Operation (i) , only a newly adjoined

consensus can be subsumed. of course, our implementation follows Quine's

(1952) advice to first find all independent separations of a set of prime

implicants, and to do all the processing for each separation independently.

TWo monoms from different separations do not share a letter.

A program that applies syn to an arbitrary Boolean expression •, must

first transform • to an equivalent DNF. our implementation proceeds by first

parsing the expression •, which produces a tree structure with operators at

its nodes and letters at its leaves. some relatively straightforward

recursive operations on this tree produce a DNF tree of • that is easily

transformed to a disjunction of monoms that is equivalent to •· More details

are given in Verstralen (1988) . on a series of test expressions, the time

for this transformation seemed negligible.

The algorithm syn is very fast and powerful. The expressions we tested

with our implementation of syn, left no doubt whatsoever about this. All

25

expressions except one, were processed in less then one second. The twelve

variable expression that took OQ&M 16 hours and NQ&M 16 minutes was
proceaaed by syn in 0.28 seconds. The exception was the twelve variable

expre■■ion that took the OQ&M 1.5 hours and NQ&M 3.5 minutes. Xt took syn

7.5 seconds. An improvement factor of about 30 relative to NQ&M and of 900

relative OQ&M.

26

4 Algorithmic search for the cheapest equivalent combination of prime
implicants

After having found the complete •et PI<• > of prime implicants of a
function •, the next ■tep in the 1implification process is to find an
equivalent cheapest combination of them. Cheapest is defined here in
relation to the following cost function c . Denote the number of variables in

a by V (a) . Denote the number of prime implicants in a DNF representation

D (• > van • with p (D) . c is any function that fulfills the following
conditions :

IF p (D1) > p (D2) THEN C (01) > C (D2)
IF (p (D1) • p (D2) AND E1V (a) > E2V (a)) THEN C (D1) > C (D2)

where t1 means summation over the monoms in D1•
As Paul (1974) and Wegener (1987) point out, the search for the cheapest

subset CPI (•) of PI (• > that is equivalent with PI<• > can be viewed as a Set
covering problem. call T the set of assignments that is accepted by • and so
by PI<• > • Each member a of PI (• > covers a subset T (a) of T. Let s =

{ T (a) I a e PI<• > } , The problem is to find a cheapest subset of s that
covers T. Because the sets T and T (a) tend to be very large already for
relatively modest expressions, we first explored another route, to solve
this combinatorial NP-complete problem (Paul, 1974) .

The second part of Quine (1955) offers a start. We will describe his
algorithm here and add two theorems of which especially the last appreciably

contributes to the simplicity of the algorithm. Moreover, I think that both
theorems are also interesting from a theoretical point of view.

Let • • be a DNF representation of a truth function consisting exactly of
all its prime implicants. Let a' be a redundant prime implicant of • • · To

see whether a • is redundant one tests whether a ' implies its complement
• • \a' . Quine (1955) : 'This may be quickly decided by testing • • \a ' for truth
when the letters affirmed by a' are marked true and those negated in a ' are

marked false. •
Let • • <a') denote • • \a ' in which a ' is •substituted ' as indicated.

Normally by •testing • • <a ') for truth• is meant : enumerate all assignments
of the remaining variables and check whether • • (a ') accepts them all. But

this procedure can be simplified considerably. First it helps to remark that
all monoms of • • < a') of which the original in • • did not agree with a' are

false for every assignment of their remaining variables. Therefore they do
not contribute to the validity of • • <a ') and can therefore be omitted from
• • (a') from the start. This not only reduces the number of monoms that have
to be tested, but, in general, also the number of variables over which all

assignments have to be considered . Because the number of assignments equals

27

2n, where n is the number of variables, each neglected variable reduces
testing time by a factor 2 ,

Therefore, to test the redundancy of a ', all implicants of • • that do
not agree with a • are discarded. The monoms that agree with a ' and share one
or more litterals with it, can also be simplified. The part of a monom that
agrees with a ' is by the •substitution' collectively set to TRUE.
Consequently the monom accepts an assignment iff its part accepts that it

doesn't share with a •. The substituted variables that the implicants share
with a ' can be omitted from • ' (a ') , without changing the truth function
connected with • • < a ') . These simplifications produce the expression •• which
is of course again a DNF and we have : a ' is redundant iff • is valid. call
A ' the set of implicants of • • that agree with a • and ■hare at least one
letter with a ', call the same set A when the shared litterals with a ' are
left out. If a is a monom in A then denote with a' its original in A ', Call
B the set of monoms of • • that do not share a letter with a '. Clearly B =
B '. • is the disjunction of A and B. call I the set of variables of A . We
will prove the following theorems:
l. If I does not contain all variables of a ' then a' is not redundant.

An algorithm could start with testing whether A ' contains all litterals
of a • . Although the test itself is clearly a shortcut, we did not
succeed in preventing the associated administrative overhead to consume
the time gained. But, when parallel processing is possible, the property
is useful.

2. • is valid if A is valid .
The helpful consequence of this theorem in devising an algorithm is
that we can limit the investigation of the validity of • to A, and

to the variables in I.
Because in the transition from • • to • only the monoms in A have changed ,

it is natural investigate whether the monoms in B can be dispensed with in
the construction of the empty monom in • as a validity test.

Proof of theorem 1 :
Assume that a • is redundant, the variables of a' do not all occur in A ',

and let z be a litteral in a ' not in A '. Then • • \a • accepts all assignments
that a ' accepts, because a ' is redundant. But • • \a ' also accepts all

assignments that are accepted by a ' and -z, because there is no monom in

• • \a ' to notice the change in the assignment for the letter in z . This means
that a ' is not prime because a '\z is also an implicant of • •, contrary to
the assumption. Therefore, for a • to be a redundant prime implicant all
litterals of a ' must occur in A'. In particular A cannot be empty. ■

28

Proof of theorem 2:
If A is valid then surely • i■.

suppose that • is valid, we are ready if we ■how that any assignment
that is accepted by B is accepted by A as well. suppose B is not empty and
contains a prime implicant p of • • • Then • must have an implicant a that
contains no letters foreign to p and either (1) is subsumed by p because it

contains less letters or (2) forms a conjugate parent pair with p with a
consensus 1• Otherwise • would not be valid. Moreover, a cannot be an
implicant of B, for then p would not be a prime implicant of • • · Therefore,
a is an implicant of A. It follows that (2) reduces to (1) , because the

consensus 1 ' of a ' and p must be an implicant of A ' and therefore 1 an
implicant of A. And 1 necessarily is aubsumed by p, because p is a parent of
1 and 1 does not contain letters foreign to p, like its other parent a. It

follows that if B accepts an assignment then so does A. ■

Therefore, B can be neglected in proving the validity of • · Again, the
greatest gain is achieved by the reduction of the number of variables.

Each member of the set RPI (• ' > of prime implicants that is redundant can
only be dismissed individually. As soon as one of them is dismissed, it is
not certain that the rest still is, because there is one monom less in their

complement. But we are certain that those prime implicants that cannot even

be dismissed individually must be a member of the cheapest representation.
The set of prime implicants that cannot be dismissed individually is called

the core. Because we are certain that the core is in the cheapest
representation, we can also be certain that those redundant prime implicants
that imply the core are redundant in every representation and therefore can
surely be dismissed. of the rest of RPI (• > the most • expensive ' redundant
subset must be found. Here we are left again with an NP-complete
combinatorial problem. In our implementation we do in fact a so called

intelligent exhaustive search, that can be interrupted at any moment to give

the best solution found.

We proceed as follows. Sort RPI (• > according to length, the longest

first. If RPI (• > is not empty a best one element solution is to omit the
first element of RPI < • > · Therefore, a better solution must contain two
elements of RPI < • > · Starting with the first two elements of RPI all two
element-combinations are enumerated until a pair is found that implies its

complement. A subset SR of RPI (• > is redundant iff each member of SR implies
PI < • > \SR. Here again theorem 3 pays its service. Before continuing with a
search among all triples if RPI < • > it is good to realize that all already
found nonredundant pairs surely cannot be part of a redundant triple.
Because one of them did not imply the complement of the pair, this implicant

will certainly not imply a complement with less monoms. Therefore the
enumeration with triples is continued in such a way that the already failed
pairs are not included.

29

Nevertheless, complete search for a reasonable complex expression is not
a realistic option. It is , therefore, necessary to revert to heuristic
search. In atead of development of heuristic procedures in the above Quinean
approach it appeared to be easier to implement a heuristic procedure from
the set covering literature . We choae the Chvltal algorithm, syslo e . a .
198 3, pg 215. This greedy algorithm aearches for the prime implicant a that

cover■ its ■et of true aaaignmenta with the least cost per aasignment and
makes it a member of the cover . Next it delete& all aaaignments that are
covered by a and considers the reat problem, etc . .

The next table gives an overview of the results of out implementation of
the Chvltal algorithm along with results of Q&M and syn. j PI I denotes the
number of prime implicants and I j PI I I the size of the amallest cover
according to chvltal 's algorithm .

Table 3 Processing times (h : m : s) for alternative routines for construction
of the set of prime implicants and of Chvltal ' s sc algorithm

Exp u Name tvars syn NQ&M OQ&M fac Chvltal I PI I I I PI I I

1 84 Hammer 6 0 . 22 0.55 1. 04 2 0. 11

2 76 NegAet 8 0 . 11 4. 01 21. 42 5 0.55
3 34 ExtwTl0 10 2.97 12. 20 1 : 38.64 8 5. 99

4 34 ExtwT 12 7. 69 3 : 05. 32 1 : 37 : 49. 12 32 5.31

5 6 6 -ExtwT 12 0 . 17 14 : 02. 61 16 : 20 : 45. 00 70 3 . 24

The expressions (The negation of the expression is processed) :
1 (1*2 *-5) + (1*2 *-6) +

10
10
37

73
9

(3 *-4*6) + (-1*3*-4) + (3 *-4*5) + (-1* 3*6) + (3*5*6) + (-l*-4*-6) +
(-4*5* 6) + (l*-2*6) + (-2* 3*6) + (-2*4*6) + (l*-2* 3) +
(1* 3*6) + (-l*-6) + (3*-4*-6)

2 -((1+2) * (3+4)) + (1+5*-7) -> (6*-8*3)
3 ((-((1+2) * (3+4))) + (1+5) ->

(6 * 8) + ((9*10) -> (-2+8))) ->

(l*((-2+3+4) *(4+5+6)) -> (4* 8*7*6))
4 • 3 except underlined • (-11+12)

5 "" -4

6
10
14
2 8

6

From table 3 it can be concluded that the Chvltal procedure is very fast,
and, because these kind of sc problems in general have relatively few
columns (elements of PI) in relation to the number of rows (true
assignments) , probably will result in an optimal cover.

30

5 conclusion

It seems that the presented results promise the application of Boolean

expressions as constraints in LP programs . However, expression 4 results in

28 prime implicants . Thi■ means that the current approach would add 28

inequality constraints to a test construction problem with this constraint.

This shows that in an average teat construction problem, where probably

aeveral interitem constraints must be considered, the size of the additional

number of linear inequalities will appreciably hamper the algorithms for

test construction. Therefore, there are two directions for further research :

(1) devise algorithms that can handle a greater number of conatraints in

acceptable time and (2) devise an algorithm for transformation of Boolean

expressions into less linear inequalities. The aecond direction offers some

direct prospects because the type of linear inequalities that are produced

by direct translation of a CNF are rather constrained.

31

References

Cito . OTO . A computer program for optimal Test Design.

Arnhem : Cito, Department for Reeearch and Psychometrics, (1990) .
Hammer, P .L . Boolean procedures for bivalent programming .

In : Bammer,P .L . and zoutendijk,G . Hathematical Programming in Theory

and Practice. Amsterdam : North Bolland, (1974) .
McCluskey, E .J., Jr . Minimization of Boolean functions.

The Bell system Technical Journal , 35 (1956) , 1417-1444 .
Mileto, F . and Putzolu, G . statistical complexity of algorithms

for Boolean function minimization. Journal of the Association for
Computing Hachinery, 12 (1965) , 364-375 .

Paul, W. J. Boolesche Minimalpolynome und Oberdeckungsprobleme .
Acta Informatica , 4 (1974) , 321-336 .

Quine, w. v . The problem of simplifying truth functions .

American Mathematical Monthly, 59 (1952) , 521- 53 1.

Quine, w.v . A way to simplify truth functions .
American Mathematical Monthly, 62 (1955) , 627- 63 1.

syslo,M. M., Deo,N. and Kowalik,J.s . Discrete Optimization Algorithms.
Englewood cliffs, NJ : Prentice-Hall, (1983) .

Theunissen, T .J.J , M. Binary programming and test design.
Psychometrika , SO (1 9 85) , 411- 420.

verstralen, H .H .F . M . Processing of Boolean functions in the context of test
construction. Cito, Arnhem, (1988) .

Wegener, I . The complexity of Boolean Functions.

New York : Wiley, (1987) .

33

Nr. 0 1

Nr . 02

Nr. 03

Nr. 04

Nr. 05

Nr. 06

Nr. 07

Titles of other research reports

Item selection using Multiobjective Programming.
A. J. R. M. Gademan (1987) .

Item selection using Beuriatics.
A.F. Razoux Schultz (198 7) .

various mathematical programming approaches toward item
selection.
J. G. Kester (1988) .

Minimizing the number of observations : a generalization of
the Spearman-Brown formula.
P. F. sanders, T.J. J.M. Theunissen and s. M. Baas (1988) .

A new heuristic to solve the item selection problem :
outline and numerical experiments.
A , J. R.M. Gademann (1989) .

Maximizing the coefficient of generalizability under the
contraint of limited resources.
P. F. Sanders, T.J. J.M. Theunissen and S.M. Baas (1989) .

Processing of Boolean functions in the context of test
construction.

H. H . F. M . verstralen (1990) .

35

