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General Introduction 

The purpose of Project •optimal Item Selection' is to solve a number of 
issues in automated test design, making extensive use of optimization 
techniques. In each report, one or several theoretical issues are raised and 
an attempt is made to solve them. Furthermore, each report (where 
appropriate) is accompanied by one or more computer programs, which are 
implementations of the methods that have been investigated. some of these 
programs will be available in the future. 

T.J.J.M. Theunissen, 
project director. 
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Abstract 

some restrictions in Linear Programming (LP) problems are easier formulated 
as a Boolean expression. Here we describe a way to translate a Boolean 

expression, or the associated function, via a Disjunctive Normal Form (DNF) 
representation, to an equivalent aet of linear restrictions. The 
transformation of a truth function f into the wanted DNF proceeds in two 
steps. First the set PI (f) of prime implicants of f is calculated, and 
second a 'cheapest• subset of PI, equivalent with f is chosen. The best 

known algorithms for the first step, to find PI (f) , are the semantic 
algorithm of Quine (1952) and Mccluskey (1956) or, if one has a Boolean 
expression for f, the syntactic algorithm of Quine (1955) . The first 

algorithm is appreciably improved, and the scope of the second is enlarged 
to include valid formula's. As a consequence it can also be used as a 
validity test for Boolean expressions. The second step is discussed as well, 

where the suggestions of Quine (1955) are supplemented with two properties 
of redundant elements of PI (f) , that make their identification more easy. 
However, the set covering approach to the second step appears to be better 
suited. 

Content Indicators: 
CR classification : 

G. Mathematics of computing 
G.4. Mathematical Software, Algorithm analysis, Algorithm efficiency 

General terms: Algorithms, Theory 
Key words Boolean Expressions, Boolean functions, Normal Forms, 

Validity test, Linear Programming 
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1 Introduction 

our interest in truth functions derives from a wish to incorporate 
restrictions that are formulated as Boolean expressions in linear 
optimization algorithms for (educational) test construction. The 
construction of tests can be greatly aided by the application of 
optimization techniques like Linear Programming (LP) , Theunissen (1985) , 

Cito (1990) . An LP program searches an optimum for a goal function in a 
space constrained by linear inequalities. However, several test construction 

constraints, among which are interitem dependencies, are more naturally 
formulated as Boolean expressions. As a simple example of an interitem 
dependency one can think of: 'if the test contains item 1, it must also 
contain items 2 and 3•. Therefore we face the problem to adapt Boolean 
expressions to the LP approach. We proceed by finding a 'cheapest' 

Conjunctive Normal Form for an expression, which is easily transformed into 
a system of linear inequalities. However, fer an application of such an 

algorithm to be succesful in an en line test construction program, speed is 

an important desideratum. The speed of the application is influenced by the 

speed of the transformation itself, and by what it delivers to the LP 
program. Especially the number of linear inequalities must be kept as small 
as possible. 

Because it is the best known algorithm for Boolean function 
simplification, we first involved ourselves with the Quine and McCluskey 
algorithm. Although we devised a substantial improvement en the original 
algorithm, especially for mere complex expressions, processing times were 
considered net entirely satisfactory fer the intended application. 
Therefore, and because we start with a Boolean expression, the syntactic 
algorithm of Quine (1955) was considered as well. His original proof of the 
algorithm explicitly exluded valid expressions. However, it turned out that 
some small changes in the proof are sufficient to also include valid 
expressions. Moreover, the processing times of our implementation of the 
algorithm a�e entirely satisfactory for the class of expressions that we can 

expect. 
The just mentioned algorithms yield the complete set of Prime Implicants 

of a Boolean function. This set may contain redundant elements, which would 
lead to superfluous linear inequalities. Therefore, the second step in the 
process is to find a cheapest subset of the set of prime implicants that 
represents the original expression. In principle this problem can be solved 
by following Quine'& ( 1955) suggestions. We supplemented this approach with 

two theorems on the redundancy of prime implicants that enable to simplify 
and speed up the algorithm, but are considered interesting by themselves. 
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However, we did not ■ucceed in constructing a ■atisfactory algorithm from 

this basis. A greedy algorithm from the set covering literature proved to be 

much better suited. 

Although we may consider this part of the problem as aatisfactorily 

solved, concerns remain about the number of linear inequalities that it 
produces. 
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2 Algorithms for simplification of truth functions 

A Boolean variable takes values from the ■et B = {0, 1} and a truth 
function is a function on Bn (n=0, 1, 2, ... ) with values in B. we denote a 

Boolean variable, also called a letter, by an index number or by a lower 
case letter. The usual basic set of truth functions is denoted as follows: 
unary : - (NOT, Negation) 

Binary : + (OR, Disjunction) 
* (AND, conjunction) 

> (IF .. THEN, Implication) 

The unary function is notated as prefix, the binary functions are notated as 
infix. 

All truth functions can be expressed with the help of this notation. A 
Boolean expression defines precisely one truth function, while a single 
truth function can, in general, be expressed in many ways as a Boolean 
expression. Two Boolean expressions are called equivalent if they define the 
same truth function. The problem of how to transform a Boolean expression to 
an equivalent system of linear inequalities is readily solved by realizing 
what kind of expressions hardly needs a transformation. An example of such 

an expression is : 

a+b * c+d 

which is equivalent to the following system of linear inequalities: 

a+b > 0 
c+d > 0 

where a .. d and + and> are interpret�d in their usual arithmetical sense. 

In general every Boolean expression of the form : 

(1) 

is equivalent to the following system of linear inequalities : 

(i-1, ... ,n) (2) 

where n equals the number of Boolean sums in (1) . 
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A Boolean expression of the form (1) is said to be in conjunctive Normal 
Form (CNF) . The negation of (1) together with the property that - (a+b) = -
a•-b (The Morgans Law) produces a ao called Disjunctive Normal Form (DNF) ; 
it can be written like (1) but the aequence of n and t is reversed. 

The expressions (1) and (2) would not be of very great help were it not 
that it can be easily proved that every Boolean expression can be 
transformed in an equivalent CNF or DNF. In the sequel we will be concerned 
exclusively with DNF representations of Boolean expressions. 

Because especially the number of inequalities, but also the number of 

variables impede the algorithms for optimal test construction, it is 
important to find a DNF representation of a Boolean expression that is as 
simple as possible. 

From Wegener (1987) and from Sammer (1974) it appears that Quine (1952, 
1955) and McCluskey (1956) are still the leading articles on the subject of 
simplification of Boolean functions. We found that Wegener (1987) , although 
he refers to Quine (1955) , does not in any way hint at its contents. And 
Hammer (1974) mentions the consensus method in Quine (1955) , but does not 
refer to its source. It seems therefore, that these methods on the one hand 
are considered as part of the anonymous mathematical heritage, but on the 
other hand partly tend to fade into oblivion. 

To explain the algorithms, first some terminology has to be introduced. 
We thereby partly follow Quine (1952) and Wegener (1987) . A litteral is a 
letter or a negation of a letter. A monom or a clause is a litteral or a 
conjunction of litterals. A fundamental formula is a monom containing no 

letter twice. Because the only monoms that we are concerned with are 
fundamental formulas, in the sequel the term 'monom' means • fundamental 
formula'. An alternation, or Boolean sum, of monoms is called a normal 
formula. We denote monoms by lower case Greek letters and arbitrary Boolean 
expressions by uppercase Greek letters. Let a and p be two monoms. We say 
that a subsumes p if all the litterals in p are among those of a. a is 
called an implicant of� if a implies �, a is called a prime implicant of� 
if it is an implicant of� and subsumes no shorter formula which implies�
When two litterals share the same letter we say that they agree when their 
signs are equal. TWo monoms agree when the letters they share have the same 
sign. TWo monoms a and p have a consensus 1, also a monom, when they agree 
except for one letter, call the disagreeing letter v. The consensus 1 of a 
and p consists of exactly all the litterals of a and p (duplicates only 

once) except v and -v. We call a and p the parents of their consensus 1• Let 
x and x '  ( e {O,l} n ) be assignments for the variables a1 (icl, .. ,n) . The 
assignment x can be related to precisely the one monom a in the variables ai 
such that a (x) a 1 and a (x ') c O for all x '  � x. Given this relation between 

monoms and assignments we feel free to switch terms from an assignment x and 

its thus related monom. (This avoids the more cumbersome introduction of 
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minterms.) we say that a truth function • accepts an assignment x if •<x) � 

l, The symbol \ is used for omission. If, e.g., a is a litteral of a monom 

a, a\a is the monom we get from a by omitting a. 

This ends the introduction of basic concepts and notation. we now turn 

to the process of finding a DNF-expres•ion for a Boolean function f. All 

methods to thi• end proceed in two major •teps. In the first step all the 

prime implicants of a truth function are constructed. The second step looks 

for the cheape•t disjunction of prime implicants that accepts precisely the 
same set of assignments as f. Theae procedures build on theorem l from Quine 

(1952) that every •implest DNF representation of a Boolean expression is a 

disjunction of prime implicants. We fir•t treat two methods that are 

designed to find all the prime implicants of an arbitrary Boolean expression 

or its associated function. 
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3 Two algorithms that find all the prime implicants of a truth function 

Although both algorithms build on the aame two principles, consensus and 

subsumption, they nevertheless function quite differently. The first and 

best known is based on the articles of Quine (1952) and McCluskey (1956) and 

is further referred to as Q,M. The aecond algorithm ia based on Quine 

(1955) , although he was not the firat diacoverer, as he himself recognised. 

This algorithm is further referred to as syn. 

3. 1 The Quine and McCluskey algorithm 

. -1 

Given a truth function • Q&M first finds the set of assignments • (1) = 
{ x I •(x) = 1 }. Relate, as indicated above, the assignments with their 

unique accepting monoms, then •-1(1) is a DNF representation of • and is 

called the developed no.nnal fo.nn of •• because every monom in this DNF 

representation of •, contains all variables of •· The algorithm proceeds by 

testing for every pair of implicants a and p whether they have a consensus 

�- If so, then � is an implicant of •• which contains all the variables of 

its parents a and p except the disagreeing letter, and agrees with both its 

parents. It follows that it is subsumed by both and therefore can replace 

them in the normal form of • without changing the truth function •· The 

consensus, which is one variable shorter, is placed at the end of the chain 

of implicants that represent • and its parents are marked. This process is 

continued with the shorter implicants, until no longer a consensus can be 

found. It is important to note that in this process only implicants with the 

same variables have to be tested for a consensus. Because, if pairs that do 

not share their variables yield a consensus, this consensus must be an 

implicant of • with at least as much variables as its parents, and therefore 

it is already produced or even already processed. Therefore every pair is 

first tested on equality of variable set. It is not difficult to verify that 

the unmarked implicants in the chain are precisely the prime implicants of 

•· Thia is the process that Quine (1952) proposed for finding the prime 

implicants of a truth function. 

Mccluskey (1956) improved the processing time of the algorithm by noting 

that many comparisons between implicants could be skipped because they 

surely do not yield a consensus. TWo implicants will surely not yield a 

consensus if their number of negated letters differs not precisely by one. 

They possibly yield a consensus when this difference equals one. Therefore 

McCluskey arranged the implicants in such a way that first the implicants 

with no letters affirmed (at most one implicant) are grouped together, then 

those with one letter affirmed, and so on. Comparisons can then be confined 
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to implicants of consecutive groups, all with the same number of variables 
and differing by one in number of negated letters. According to Mileto and 
Putzclu (1965) the number of comparisons in relation to Quines (1952) 
algorithm is reduced by a factor that approaches 3. 

subsuming: Quine makes a comparison within all pairs of implicants with 
the same number of variables, McCluskey restricts comparison to pairs of 
which the members differ by one in number of negations. 

However, this approach still produces, in general, a majority of 

unneccessary tests fer equality of variable set. 'l'Wo implicants may only 
produce a consensus in this precess when they share their letters. This 
becomes an increasingly rare event as the proportion of left out variables 
of the processed mcncms approaches 0.5, e.g., with a twelve variable 
expression when four variables are left cut the odds may be about l to 3000 
(if the expression is almost valid) . If it can be arranged that comparisons 
are (primarily) restricted to implicants that share their variables, the 

algorithm gains in efficiency. The next paragraphs describe how this can be 
achieved and what increase in efficiency is to be expected. 

Code an implicant a of� as an ordered pair of binary vectors [x,y], 
where x = (x1, . . .  ,xn) ,  and y similarly, where n equals the number of 
different letters in�- xi = l if letter i occurs in a else xi = 0. Yi = l 
if xi z 1 and variab�e i is negated in a. Call the set of implicants of� 
with n-k variables of which p (p = 0, ... ,n-k) are negated �I (k,p) . In 
Quine (1952) all elements of up •I (k,p) are mutually compared to form 
up •I (k+l,p) , while the comparisons in McCluskey are restricted to pairs 
(a,�) with a e •I<k,p) and� e �I (k,p+l) , As already mentioned, this 
restriction results in an improvement factor approaching 3. 

By (quick) sorting the implicants a =  [ax,ay] in •r<k,p) according to ax, 

we achieve that monoms that share their variables are grouped together. This 
allows for a great reduction in tests fer equality of variable set to the 
extent that almost only comparisons are made between monoms that share their 
variables. Some small changes (indicated with• in the pseudocode below) in 
the Quine & McCluskey algorithm accomplish this. 

Another difficulty that hinders the process is the fact that the same 
consensus can be produced multiple times from different pairs of parents. 
Fer example, abc can be produced by abcd and abc� (underline indicates 

negation) er by abce and abc! etc. until the last variable. And it not only 
£.!E. be, but it will be. Because if abc is an implicant, all its possible 

parent-pairs necessarily show up in the two higher regions of the monom 
chain, because they are implicants of•• Therefore, if there is no check for 
double implicants, they very soon consume all the available memory (for more 
details, see Verstralen, 1988) . The above mentioned literature suggests that 
it must be tested whether a consensus already has been found. But such a 

test is very time consuming. 
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However, this test can be avoided, by identifying a unique monom among 

its doubles, and to store only this one. A clue for identifying a unique 
monorn is the one-one relation between a ■et of identical monorns and its 
parent pairs. In the set of parent pairs there is precisely one member that 
has no irrelevant variable lower indexed than its non-agreeing variable, the 
new irrelevant variable in their consensus. This can be tasted efficiently, 
as can be seen in the part with the Window variable in the following 
pseudocode. 

{ 

} 

Given the assignments that • accepts in McCluskey 's order. 
t indicates 'number of ' ) 

n fvariables in •; 
k fleft out variables--> n-k: tvariables in implicant; 
p tvariables negated 

for k := 0 to n-1 do 
for p : =  1 to n-k do begin 

ox : =  O; { * initialize ox = previous ax } 
Firstp := First p in •I (p, k) ; { * Firstp is a variable } 

for a E •I (p-1, k) do begin 
First : = ax <> ox; 

if First then ox : = ax 
else p : =  Firstp 

while px <= ax do begin 
if ax = px then begin 

if First then begin 

First := false; 

Firstp := p 

end; 
Disvars := ay xor py; 

{ * Boolean to indicate variable 
change} 

{ * update ox } 

{ * return to Firstp if a 
contains same vars } 

{ * check only p with same vars 

{ * just after First maybe 
there are some px < ax } 

{ * update Firstp } 

{ find the disagreeing vars } 

if Disvars and py -= Disvars { just one disagr. var ? } 

then 
mark (a) ; mark (P) ; { a and p have a consensus} 
Window :• Disvars - l;{ Window on all vars with lower 

index than disagreeing var} 

} 

if Window and xp = Window then { test to avoid duplicates } 

Adjoin consensus (a, p) to •I (p-1, k+l) 

end; { if ax -= px} 

next p e U (p, k) 
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end; { while px <z ax} 
if a not marked then Adjoin a to PI(t) 
next a e tI (p-1, k) ; 

end; { for a} 
quicksort (tI (p-1, k+l) ) ;  

end; { for p} 
Adjoin all not marked p E tI(psn-k,k) to PI(t) 

end; { for k} 

The time for eorting turns out to be a minor ratio of total processing time. 

To get an impression of the gain that can be expected from the indicated 
changes, we calculated the expected number of comparisons between implicants 
under the assumption that only implicants with the same variables are 

compared. From Monte Carlo experiments we got estimates of the percentages 

of the number of comparisons between implicants with the same variables 
compared to the total number of comparisons, for the improved and the 
original algorithm as well. The expected number of comparisons in the 
original Quine & McCluskey algorithm are given in Miletu and Putzolu (1965). 

Also estimates of processing times are given. 
To derive the expected number of comparisons between implicants of the 

same variables, the framework given in Miletu and Putzolu is helpful. To get 
a linear notation let a@b = al/ (a-b) lbl : the number of combinations of size 
b from a set of size a. Consider a function U (i, u) on Bn with u out of 2n 

true assignments or ones with i e {1, .. , 2n@usz}, Let v(s) be a subset of 
(n-k) variables of U (i,u) given by a subset s of the index set {l, .. ,n}, 

s e {l, . .. , n@k}, Denote by r (i, s, k, p) the number of k-cubes of U (i,u) with 

p false or O assignments for the n-k variables in v (s) . Then the number of 
pairs of k-cubes c (j, s, k) and c (l,s,k) in U (i, u) that share the same 
variable set v (s) and such that the number of O assignments in c (j) exceeds 
the number in c (l) by one equals: 

n-k ( :) 
l�(i,k) - L :Er(i,s,k,p) r(i,s,k,p-1) (3) 

P•l ■•1 

Then the expected number of same variable comparisons between k cubes for 

functions with u ones is: 
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l 
:s ( �) n-k 

IE(((i,k)) - C(u,k) • -T" L L r(i,e,k,p) r(i,s,lc,p-1) 
i Z f:1. ■-1 p-1 

By symmetry of i and• this can be aimplified to: 

IC(u,lc) • (�)I: frci,l,k,p) r(i,1,k,p-1) 
z p-1 f:1. 

(4) 

(5) 

There are (n-k)@p k-cubes c(l, j, k, p) with variable set v(l) and p negated 

variables. Now let 

then 

a(i, j, l, k, p) • 1 if U(i, u) � c(l, j, k, p) 

., 0 else 

substitution of (6) in (S) yields after reordering summation terms: 

By symmet�y of indices j and i this reduces to: 

ill 
( n-k) 

n-k p-1 

l((u,lc) - E(n-k) r N(l,h,l) 
z p•l p � 

where 

( n-k
) 

IN(l,h,l) • "r' � a(i,1,1,k, p) a(i,h, 1, k,p-1) 
t:1. � 

(6) 

( 7) 

(8) 

(9) 

which can be interpreted as the number of functions U(i, u) that contain the 

k-cubes c(l, l, k, p) and c(l, h, k, p-1) e. g., in the last n-k variables: 

c(l, l, k, p) = x
1 

1 
0 1 

k+p k+p+l 
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N(l, h, l) is the number of sets formed with u out of z elements wich contain 
the w(k+l) • 2 <k+l) elements of c(l, l, k, p) u c(l, h, k, p-1) . The intersection 
of both k-cubes is empty because their ■ign differs at least in one variable 
in v(l) . It follows that N(l, h, l) • (z-w(k+l) ) @(u-w(k+l) ) .  So that finally 
we have : 

(10) 

Which implies that the expected number of comparisons between cubes with 
equal variable sets for an arbitrary Boolean function of n variables with u 
true assignments is : 

Table 1 gives some data on expected numbers of comparisons for the 
improved Quine and McCluskey algorithm (NQ&M) , combined with data from 

(11) 

Mileto and Putzolu (1965) on the number of comparisons in the original Quine 
and McCluskey algorithm (OQ&M) . The processing times refer to an 8MHz IBM-AT 
compatible computer (NSI = 7.1) , for an implementation in Pascal (Borland, 
1987) . Under Mean tcomparisons NQ&M are given the number of comparisons 
between pairs of k-cubes with the same variables. Under %Tot one finds the 
percentage of this number in comparison with the total number of comparisons 
of NQ&M, as estimated by Monte Carlo experiments, 25 per case if tvars<ll 
else 10 per case. For 11 and 12 variables we extrapolated the Mileto and 
Putzolu (1965) numbers on OQ&M. 
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Table 1 Results on performance of the improved Quine & McCluskey algorithm 

U (i,u) Mean lcomparisons Mean Processing time (sec) 
tvars %true OQ&M NQ&M ITot OQ&M/NQ&M OQ&M NQ&M OQ&M/NQ&M 

6 25 74.0 50.8 91  1.5 0.04 0.05 0. 80 
50 696.4 268.2 94 2 .6 0.10 0.09 1. 11 
75 4056.2 902.1 96 4.5 0.28 0.22 1.27 

7 25 3 30.5 202.0 94 1.6 0.08 0. 01 1.14 
50 3487.4 1088.7 97 3.2 0.29 0.22 1. 32 
75 23621.3 38 34.1 98 6.2 1.41 0.63 2.24 

B 25 1456.0 794.2 97 LB 0.17 0. 16 1.06 
50 17200.2 4392.6 98 3.9 1.04 0.57 1. 82 
75 135158. 1 16207. 2 99 B.3 7.05 1.79 3.94 

9 25 6379. 7 3 108.4 99 2.1 0. 46 0.37 1. 24 
so 83938.1 17678. 0  99 4.8 4.24 1. 68 2. 52 
75 761392. 3 68290. 1 99 11.2 32.42 6. 07 5.34 

10 25 27888.1 12153. 3 99 2.3 1.60 0.99 1. 62 
50 406393. 7 71098. 6 100 5.7 18.48 5.29 3.49 

75 4228973. 6 287182. 7 100 14. 7 153. 49 21. 27 7. 21 
11  25 121667. 9 47545. 1 100 2. 6 6.3 1 3.29 1. 92 

50 1945486. 7 286016. 9 100 6. 8 82.58 19.68 4. 20 

75 23089747. 0 1206171. 8 100 19.1 826.35 79.18 10. 44 

12 25 53 13 39. S 186238.9 100 2.9 25. 67 11.55 2. 22 

50 93 18678. 3 1151306. 9 100 8. 1 388. 28 69. 36 5.60 

75 125956770. 3 5061350. 6 100 24.9 4030. 46 302. 70 13. 32 

As can be seen from table 1 the improvement of NQ&M is considerable when 
processing times start to count, from nine or ten variables onward. Not only 

is the improvement, theoretically as well as in practice, strongly dependent 
on the percentage of ones, but also on the number of variables. Moreover the 
practical improvement factors, although less than theoretically expected, 
reflect the theoretical factors better with the greater number of variables. 
For 9 variables and higher and 751 true assignments the practical 

improvement factors are about SOI or better of the theoretical improvement 

factors. It can also be inferred from table 1 that NQ&M compares •almost' 
only implicants with equal variables. For 10 variables and more the 
percentage non-equal variable comparisons is less than 0.5%. 

If we try to extrapolate the improvements for larger numbers of 

variables, from table 1 the following relations can be extracted, which can 
be assumed to approximately hold: 
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c(25,n) = 2.30 l.12(n-l0) 

c(S0,n) • 5.72 l.19 (n-lO) 

c(75,n) • 14.73 1.30 (n-lO) 

where c(x,n) is the theoretical improvement factor with x% ones and n 

variables. For example, for the following values of n we get the theoretical 
factors as specified in table 2. 

Table 2 Extrapolated approximate theoretical improvement factors for 
larger numbers of variables and execution times (seconds) 
for NQ&M (1 ES aeconds • 24 hours, 3 E7 seconds • 1 year) 

NQ&M Improvement factors NQ&M Execution times 
fvars 20 30 50 80 20 30 

%true 
25 7 20 70 6000 8 ES 8 Ell 
50 30 180 6000 11 ES 5 E6 5 El2 
75 200 3000 5 ES 15 ES 2 E7 2 El3 

Inspection of table 2 readily reveals that numbers of variables appreciably 
greater than 20 cannot be processed in the foreseeable future, by NQ&M, just 
by the factor time alone. The problem of storing intermediate implicant sets 
is not even mentioned here. 

The above results were obtained for random Boolean functions. However, 
for our problem we also have a Boolean expression. Although I rather 
randomly entered some expressions for the program, humanly entered 
expressions are by nature of very restricted length. This seems to have the 
side effect that the associated functions have much less prime implicants 
than random functions. For example, the two twelve variable expressions that 
I entered produced reap. 37 and 73 prime implicants, whereas the expected 

number of prime implicants for 12 variable random functions of 25, 50 and 
75% true assignments is resp. about 1000, 3000 and 6000. on the negative 

side this implies longer processing times for NQ&M and much longer for OQ&M. 
For the two 12 variable expressions we got resp. 3 minutes against 1.5 hours 
(34% true, improvement factor 30) and 14 minutes against 16.3 hours (66% 

true, improvement factor 70) . These execution times are prohibitive for our 
application, at least with the current hardware. However, the fact that we 
possess an expression, opens the possibility for a syntactic approach, which 
is treated in the following section. 
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3. 2 The syntactic method of Quine 

In many caaes where Truth functions are not given by a function table 

but by an expreasion, it proves profitable to directly process the 

expression itself, without exploiting its semantics in producing the 

developed normal form as above. The developed normal form is indeed 

identical to the function table with the function values of O left out. 

Quine (1955) developed the following ■yntactic algorithm: • (i) Drop these 

obvious superfluities : If one of the clauses of alternation aubswnes 

another, drop the ■ubauming clause. Also supplant a v !a by a v a (and a v 

aa by! v a) where a is a single letter. 

(ii) Adjoin, as an additional clause of alternation, the consensus of 

two clauses . . . .  Operation (ii) is to be regarded as not applying in case 

the consensus aubswnes a clause already present. • 

Quine (1955, pg 628) proves that repeated application of these two 

operations to any non-valid formula • produces precisely all prime 

implicants of •· However, some minor changes in the proof ensure that valid 

formulas can be included as well, which means that a validity test prior to 

the application of the algorithm can be omitted. Moreover, the algorithm 

provides an alternative method for testing validity as an alternative for 

testing truth for all assignments. we will give the adapted proof below, 

with the adaptations indicated. 

A second remark concerns the superfluity of the second sentence in the 

formulation of operation (i) , which means that the consensus is adjoined and 

the subsuming longer parent omitted. The implementation of the second 

sentence as a preliminary step might speed up the algorithm. It is 

irrelevant for the proof of the algorithm, however. 

Before proceeding we need two additional concepts: the empty monom 

denoted by n and the empty expression denoted by g, Some authors that 

mention the empty monom say that it is a valid expression by convention. But 

this choice is not that arbitrary. consider the expression • with one monom 

a =  ab£, • accepts only the assignment 110 for the variables a, b and c. Now 

omit c from • to get • s ab, which accepts 110 and 111 as well. In other 

words, the assignment for not present variables doesn't matter, it is 

accepted, whatever value the variable is given. Therefore, to be consistent, 

a monom with no variables at all must accept all assignments. 

The opposite is i, the empty expression. An expression in ONF accepts an 

assignment iff one of its monoms does. Therefore g cannot accept any 

assignment, because it does not posses any monom, including the empty monom. 
g and mare each others opposites: g is inconsistent, and n is valid. we 

have the following lemma: 
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Lemma 1: A formula • is valid iff m is a prime implicant. 
If m is a prime implicant of • it is the only one. 

Proof: suppose • is valid. m clearly implies •• because both are valid. 
Therefore m is an implicant of •· Because its shortest subclause is M 
itself, m is a prime implicant of •· Furthermore m is subsumed by any monom, 
and therefore no other implicant can be a prime implicant of •· 
Next, suppose m is a prime implicant of •· Because m accepts any assignment, 
• accepts any assignment, therefore • is valid. ■ 

The proof of Quine• s (1955) theorem can now be reproduced here except for 
some changes to include valid formulas. We insert comments between {}· The 
proof proceeds by proving that a formula • is still susceptible for an 
application of operation (i) or (ii) as long as there is a prime implicant a 
of • which is not a clause of •· 
{ omit the sentence: • •  is implied by . . , it is not true for the empty 
monom, and in the original proof the sentence is redundant. } since a is a 
prime implicant, it has no letters foreign to •; for any such could be 
dropped without impairing the implication. Moreover, since a is a prime 
implicant of •• not contained in t, and each clause of • also implies t, no 
clause of • is subsumed by a. So there is at least one fundamental formula 
(a itself, for one) fulfilling these three conditions: (a) it subsumes a, 
(b) it subsumes no clause of • (c) it contains no letters foreign to • 

{slight change}. Let p be a longest fundamental formula fulfilling (a) , (b) 
and (c) . still p will lack some letter d of •· (for if p contained all 
letters oft, then, by (b) , p would conflict with each clause of •• which is 
impossible because p impliest) . Now, since p is a longest formula 
fulfilling (a) , (b) , and (c) , the longer formulas dp and� must fail to 
fulfill (b) ; for they do fulfill (a) and (c) . so dp and� each subsumes a 
clause of •· These subsumed clauses must contain d and � respectively, since 
they were not subsumed by p alone. { replace the next sentences to the end 
of the paragraph by: } They can be denoted by d7 and �7• and p subsumes 7 and 

7' . clearly Operation (ii) 'Adjoin consensus' is applicable to •• because 
the consensus 77 ' (minus any duplicate litterals) contains no letter both 
affirmed and negated, since it is subsumed by a fundamental formula p; and 

it subsumes no clause of • since p subsumed none. If 7 = m xor 7 '  = m then 
subsequently operation (i) will be applicable. If 7 = m and 7 '  = m then 

conclude that • is valid because m is an implicant (Lemma 1) . 
This proves that Operations (i) or (ii) are applicable as long as there 

is a prime implicant a of •• which is not a clause of •· { Quine concludes 
that this implies that (i) and (ii) produce all prime implicants of •· In my 

opinion he proved that it does so only if the algorithm stops. But that it 
stops does not follow from the proof. } If it stops it clearly produces 
precisely all prime implicants, because any other clause, that • might 
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contain is an implicant of • and therefore subsumes one of the prime 

implicants and can therefore be omitted by operation (i) . ■ 

It follows that if a valid disjunction of monoms is processed by Q,M or syn 

the empty monom a ia produced. 

To see that the alternation of Operations (i) and (ii) stops it is 

sufficient to show that a monom that i• removed by operation (i) does not 

reappear in the proceas. Thi• mean■ that a circularity is impossible. And 

circularity ia the only mechanism in this finite apace that can keep the 

algorithm going for ever. The only way a monom a disappears is by operation 

(i) because it aubsumea a aborter one a•. Thi• aborter one can only 

disappear again because it aubsumea a aborter a''• As a result a cannot be 

adjoined again by operation (ii) because this ia precluded by its subsumed 

followers a•, a''•·· 

our implementation of syn does not alternate between (i) and (ii) , 

because this produces many unnecessary subsumption tests in (i) . First, the 

list of monoms is sorted according to length, the shortest first. Thereafter 

(i) is applied, including the combination of (ii) and (i) for monoms of one 

litteral. sorting facilitates the subsumption test, because it is known from 

the start, that if subsumption is true, which of the two subsumes the other. 

After Operation (i) all pairs of monoms are checked whether they have a 

consensus. If so then for every monom in the list of monoms, beginning with 

the first, it is checked whether the consensus subsumes it until the first 

monom in the list that is longer than the consensus. There the consensus 

will be inserted in the sorted list, if there was no subsumed monom in the 

list. From the first monom in the list that is longer than the consensus to 

the end of the list, Operation (i) is tried. This prevents that over and 

over again the same pairs of monoms are tested whether one subsumes the 

other. After the first application of Operation (i) , only a newly adjoined 

consensus can be subsumed. of course, our implementation follows Quine's 

(1952) advice to first find all independent separations of a set of prime 

implicants, and to do all the processing for each separation independently. 

TWo monoms from different separations do not share a letter. 

A program that applies syn to an arbitrary Boolean expression •, must 

first transform • to an equivalent DNF. our implementation proceeds by first 

parsing the expression •, which produces a tree structure with operators at 

its nodes and letters at its leaves. some relatively straightforward 

recursive operations on this tree produce a DNF tree of • that is easily 

transformed to a disjunction of monoms that is equivalent to •· More details 

are given in Verstralen (1988) . on a series of test expressions, the time 

for this transformation seemed negligible. 

The algorithm syn is very fast and powerful. The expressions we tested 

with our implementation of syn, left no doubt whatsoever about this. All 
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expressions except one, were processed in less then one second. The twelve 

variable expression that took OQ&M 16 hours and NQ&M 16 minutes was 
proceaaed by syn in 0.28 seconds. The exception was the twelve variable 

expre■■ion that took the OQ&M 1.5 hours and NQ&M 3.5 minutes. Xt took syn 

7.5 seconds. An improvement factor of about 30 relative to NQ&M and of 900 

relative OQ&M. 

26 



4 Algorithmic search for the cheapest equivalent combination of prime 
implicants 

After having found the complete •et PI<• > of prime implicants of a 
function •, the next ■tep in the 1implification process is to find an 
equivalent cheapest combination of them. Cheapest is defined here in 
relation to the following cost function c .  Denote the number of variables in 

a by V (a) . Denote the number of prime implicants in a DNF representation 

D (• >  van • with p (D) . c is any function that fulfills the following 
conditions : 

IF p (D1) > p (D2) THEN C (01) > C (D2) 
IF (p (D1) • p (D2) AND E1V (a) > E2V (a) ) THEN C (D1) > C (D2) 

where t1 means summation over the monoms in D1• 
As Paul (1974) and Wegener (1987) point out, the search for the cheapest 

subset CPI (•) of PI (• > that is equivalent with PI<• > can be viewed as a Set 
covering problem. call T the set of assignments that is accepted by • and so 
by PI<• > •  Each member a of PI (• > covers a subset T (a) of T. Let s =  

{ T (a) I a e PI<• > } ,  The problem is to find a cheapest subset of s that 
covers T. Because the sets T and T (a) tend to be very large already for 
relatively modest expressions, we first explored another route, to solve 
this combinatorial NP-complete problem (Paul, 1974) . 

The second part of Quine (1955) offers a start. We will describe his 
algorithm here and add two theorems of which especially the last appreciably 

contributes to the simplicity of the algorithm. Moreover, I think that both 
theorems are also interesting from a theoretical point of view. 

Let • •  be a DNF representation of a truth function consisting exactly of 
all its prime implicants. Let a' be a redundant prime implicant of • • ·  To 

see whether a •  is redundant one tests whether a '  implies its complement 
• • \a' . Quine (1955) : 'This may be quickly decided by testing • • \a '  for truth 
when the letters affirmed by a' are marked true and those negated in a '  are 

marked false. • 
Let • • <a' ) denote • • \a '  in which a '  is •substituted ' as indicated. 

Normally by •testing • • <a ') for truth• is meant : enumerate all assignments 
of the remaining variables and check whether • • (a ') accepts them all. But 

this procedure can be simplified considerably. First it helps to remark that 
all monoms of • • < a' )  of which the original in • •  did not agree with a' are 

false for every assignment of their remaining variables. Therefore they do 
not contribute to the validity of • • <a ') and can therefore be omitted from 
• • (a' ) from the start. This not only reduces the number of monoms that have 
to be tested, but, in general, also the number of variables over which all 

assignments have to be considered . Because the number of assignments equals 
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2n, where n is the number of variables, each neglected variable reduces 
testing time by a factor 2 ,  

Therefore, to test the redundancy of a ', all implicants of • •  that do 
not agree with a •  are discarded. The monoms that agree with a '  and share one 
or more litterals with it, can also be simplified. The part of a monom that 
agrees with a '  is by the •substitution' collectively set to TRUE. 
Consequently the monom accepts an assignment iff its part accepts that it 

doesn't share with a •. The substituted variables that the implicants share 
with a '  can be omitted from • ' (a ') ,  without changing the truth function 
connected with • • < a ') .  These simplifications produce the expression •• which 
is of course again a DNF and we have : a '  is redundant iff • is valid. call 
A '  the set of implicants of • •  that agree with a •  and ■hare at least one 
letter with a ', call the same set A when the shared litterals with a '  are 
left out. If a is a monom in A then denote with a' its original in A ', Call 
B the set of monoms of • •  that do not share a letter with a '. Clearly B = 
B '. • is the disjunction of A and B. call I the set of variables of A .  We 
will prove the following theorems: 
l. If I does not contain all variables of a '  then a' is not redundant. 

An algorithm could start with testing whether A '  contains all litterals 
of a • .  Although the test itself is clearly a shortcut, we did not 
succeed in preventing the associated administrative overhead to consume 
the time gained. But, when parallel processing is possible, the property 
is useful. 

2. • is valid if A is valid . 
The helpful consequence of this theorem in devising an algorithm is 
that we can limit the investigation of the validity of • to A, and 

to the variables in I. 
Because in the transition from • • to • only the monoms in A have changed , 

it is natural investigate whether the monoms in B can be dispensed with in 
the construction of the empty monom in • as a validity test. 

Proof of theorem 1 :  
Assume that a •  is redundant, the variables of a' do not all occur in A ', 

and let z be a litteral in a '  not in A '. Then • • \a •  accepts all assignments 
that a '  accepts, because a '  is redundant. But • • \a '  also accepts all 

assignments that are accepted by a '  and -z, because there is no monom in 

• • \a ' to notice the change in the assignment for the letter in z .  This means 
that a '  is not prime because a '\z is also an implicant of • •, contrary to 
the assumption. Therefore, for a •  to be a redundant prime implicant all 
litterals of a '  must occur in A'. In particular A cannot be empty. ■ 

28 



Proof of theorem 2: 
If A is valid then surely • i■. 

suppose that • is valid, we are ready if we ■how that any assignment 
that is accepted by B is accepted by A as well. suppose B is not empty and 
contains a prime implicant p of • • •  Then • must have an implicant a that 
contains no letters foreign to p and either ( 1 )  is subsumed by p because it 

contains less letters or ( 2 )  forms a conjugate parent pair with p with a 
consensus 1• Otherwise • would not be valid. Moreover, a cannot be an 
implicant of B, for then p would not be a prime implicant of • • ·  Therefore, 
a is an implicant of A. It follows that ( 2 )  reduces to ( 1 ) , because the 

consensus 1 ' of a '  and p must be an implicant of A '  and therefore 1 an 
implicant of A. And 1 necessarily is aubsumed by p, because p is a parent of 
1 and 1 does not contain letters foreign to p, like its other parent a. It 

follows that if B accepts an assignment then so does A. ■ 

Therefore, B can be neglected in proving the validity of • ·  Again, the 
greatest gain is achieved by the reduction of the number of variables. 

Each member of the set RPI ( • ' >  of prime implicants that is redundant can 
only be dismissed individually. As soon as one of them is dismissed, it is 
not certain that the rest still is, because there is one monom less in their 

complement. But we are certain that those prime implicants that cannot even 

be dismissed individually must be a member of the cheapest representation. 
The set of prime implicants that cannot be dismissed individually is called 

the core. Because we are certain that the core is in the cheapest 
representation, we can also be certain that those redundant prime implicants 
that imply the core are redundant in every representation and therefore can 
surely be dismissed. of the rest of RPI (• >  the most • expensive ' redundant 
subset must be found. Here we are left again with an NP-complete 
combinatorial problem. In our implementation we do in fact a so called 

intelligent exhaustive search, that can be interrupted at any moment to give 

the best solution found. 

We proceed as follows. Sort RPI ( • >  according to length, the longest 

first. If RPI ( • >  is not empty a best one element solution is to omit the 
first element of RPI < • > · Therefore, a better solution must contain two 
elements of RPI < • > · Starting with the first two elements of RPI all two 
element-combinations are enumerated until a pair is found that implies its 

complement. A subset SR of RPI ( • >  is redundant iff each member of SR implies 
PI < • > \SR. Here again theorem 3 pays its service. Before continuing with a 
search among all triples if RPI < • >  it is good to realize that all already 
found nonredundant pairs surely cannot be part of a redundant triple. 
Because one of them did not imply the complement of the pair, this implicant 

will certainly not imply a complement with less monoms. Therefore the 
enumeration with triples is continued in such a way that the already failed 
pairs are not included. 
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Nevertheless, complete search for a reasonable complex expression is not 
a realistic option. It is , therefore, necessary to revert to heuristic 
search. In atead of development of heuristic procedures in the above Quinean 
approach it appeared to be easier to implement a heuristic procedure from 
the set covering literature . We choae the Chvltal algorithm, syslo e . a .  
198 3, pg 215. This greedy algorithm aearches for the prime implicant a that 

cover■ its ■et of true aaaignmenta with the least cost per aasignment and 
makes it a member of the cover . Next it delete& all aaaignments that are 
covered by a and considers the reat problem, etc . .  

The next table gives an overview of the results of out implementation of 
the Chvltal algorithm along with results of Q&M and syn. j PI I  denotes the 
number of prime implicants and I j PI I  I the size of the amallest cover 
according to chvltal 's algorithm . 

Table 3 Processing times (h : m : s) for alternative routines for construction 
of the set of prime implicants and of Chvltal ' s  sc algorithm 

Exp u Name tvars syn NQ&M OQ&M fac Chvltal I PI I  I I PI I I 

1 84 Hammer 6 0 . 22 0.55 1. 04 2 0. 11 

2 76 NegAet 8 0 . 11 4. 01 21. 42 5 0.55 
3 34 ExtwTl0 10 2.97 12. 20 1 : 38.64 8 5. 99 

4 34 ExtwT 12 7. 69 3 : 05. 32 1 : 37 : 49. 12 32 5.31 

5 6 6  -ExtwT 12 0 . 17 14 : 02. 61 16 : 20 : 45. 00 70 3 . 24 

The expressions (The negation of the expression is processed) : 
1 (1*2 *-5) + (1*2 *-6) + 

10 
10 
37 

73 
9 

( 3 *-4*6 ) + (-1*3*-4) + (3 *-4*5) + (-1* 3*6) + (3*5*6) + (-l*-4*-6) + 
(-4*5* 6) + (l*-2*6) + (-2* 3*6)  + (-2*4*6) + (l*-2* 3) + 
(1* 3*6)  + (-l*-6) + (3*-4*-6) 

2 -((1+2) * (3+4) ) + (1+5*-7) -> (6*-8*3) 
3 ( (-( ( 1+2) * ( 3+4) ) ) + ( 1+5) -> 

(6 * 8) + ((9*10) -> (-2+8)) ) -> 

(l*((-2+3+4) *(4+5+6) ) -> (4* 8*7*6))  
4 • 3 except underlined • (-11+12) 

5 "" -4 

6 
10 
14 
2 8  

6 

From table 3 it can be concluded that the Chvltal procedure is very fast, 
and, because these kind of sc problems in general have relatively few 
columns (elements of PI) in relation to the number of rows (true 
assignments) , probably will result in an optimal cover. 
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5 conclusion 

It seems that the presented results promise the application of Boolean 

expressions as constraints in LP programs . However, expression 4 results in 

28 prime implicants . Thi■ means that the current approach would add 28 

inequality constraints to a test construction problem with this constraint. 

This shows that in an average teat construction problem, where probably 

aeveral interitem constraints must be considered, the size of the additional 

number of linear inequalities will appreciably hamper the algorithms for 

test construction. Therefore, there are two directions for further research : 

(1) devise algorithms that can handle a greater number of conatraints in 

acceptable time and (2) devise an algorithm for transformation of Boolean 

expressions into less linear inequalities. The aecond direction offers some 

direct prospects because the type of linear inequalities that are produced 

by direct translation of a CNF are rather constrained. 
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