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Abstract 
A test dimensionality assessment approach is proposed that builds upon existing ap­
proaches within non-parametric item response theory. The core of the procedure is 
a novel pairwise association measure based upon information theory and boundaries 
on bivariate distributio:Qs. Asymptotic results on the standard error of the mea­
sure allow to scan for anomalies in the pairwise item association matrix, allowing 
for the detection of serious local item dependence issues in the test. To assess the 
more general underlying dimensionality of the test a divisive clustering procedure 
is used to search for structure among the test items. A criterion that balances the 
homogeneity within clusters and the heterogeneity between clusters is suggested to 
select an optimal partitioning within the set of cluster solutions. The method is 
illustrated using a range of simulated test data under both strict and essential uni­
and multidimensional conditions. 
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1. Introduction 

After the construction of a test or assessment instrument it is important to have 
a way to assess its dimensionality. It is desirable to find a congruent mapping between 
the planned theoretical test structure and the empirically prominent test dimensions. 
Even when prior expectations about the test structure are absent, an assessment of 
dimensionality can provide useful insights in the test structure and in what exactly 
is measured by the test. This information can be helpful in deciding on reporting on 
overall or subscore level, and on item selection and final test composition. In this 
sense, test dimensionality is an important aspect with respect to test development 
and large scale test use. 

Statistically, test dimensionality is formally defined in reference to local stochas­
tic independence in a test response model. Let ½i (i = 1, 2, ... , J) be the response of 
person p (p = 1, 2, .. . , P) to item i of the test, and let 811 be a vector of latent dimen­
sions explaining shared variance among the item scores. Given the item-scores of per­
son p on the test (Y11) and the conditional item response function (Pr(Ypi = Y1Jil8p)), 
the vector 8p satisfying local stochastic independence (LSI), 

Pr(Yp = Ypl8P) = TI Pr(Ypi = Y1Jil8p), 
i=l 

(1) 

is considered to represent the dimensionality of the test. To ensure that this assump­
tion has observable and testable consequences (see e.g., Suppes & Zanotti, 1981), 
a restricting condition needs to be defined on the conditional response functions. 
Traditionally, the monotonicity condition is added, in which the probability of a 
higher value on Ypi increases with higher values on the latent dimensions. 

Conceptually, all this means that 811 is a summary of the information provided 
by a persons item responses, on the relative test performance of a person in the 
population. Notice the reference to the test population; the dimensionality of a test 
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arises due to the heterogeneity resulting from the interaction between test takers 
and test items. Consider a test comprised of multiple items, requiring a varying 
level of two dimensions, algebra-knowledge and reading-ability, for each item. If 
the test population is, for instance, homogeneous with respect to reading-ability, 
only the algebra dimension will be picked up statistically. In a similar way, when 
each item in fact requires the exact same levels of both algebra-knowledge and 
reading-ability; again only one dimension (i.e., the composite ability) will be picked 
up statistically (Ackerman, 1994; Reckase, Ackerman, & Carlson, 1988). Hence, in 
both psychometric traditions, classical test theory and item response theory, it is 
important to define a priori the test population of interest. 

Mathematically the dimensionality issue seems to be clear-cut, yet in practice 
there are some complications. The rigorous yet strict statistical conditions defining 
test dimensionality are unlikely to be obtainable in most applications, and even if 
such an ideal case situation exists, a numerically optimal dimensionality structure 
does not guarantee that it is substantive meaningful or relevant in practice. Fur­
thermore, one has to acknowledge the possibility of statistically equivalent models 
in a multidimensional context; think of the many rotated factor solutions that exist 
in the case of classic factor analysis. Hence, there are still aspects of choice and 
judgement involved in the assessment of test dimensionality. 

From a pragmatic perspective, interest only goes out to the more important, 
"dominant", dimensions among those measured by a test, making abstraction of the 
minor, "noise", dimensions (for a strong stance on this dimensionality topic, see e.g, 
Humphreys, 1984). This implies that the focus is on a vector OP that only needs to 
approximate the above-mentioned statistical conditions, and that minor violations 
of LSI for specific items are tolerated. Connecting these dominant dimensions to 
substantive meaningful aspects is usually also more obvious than trying to give 
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meaning to noise. 

This common-sense idea fostered some theoretical formal work in non-parametric 
item response theory, leading to the definition of essential dimensionality (Stout, 
1987, 1990; Junker, 1993). Basicly, this relaxed dimensionality definition applies a 
weaker form of local stochastic independence, roughly described as the requirement 
that conditional upon the latent dimensions the expected value of the covariances 
between items tends to zero when the item pool grows to infinity. Together with 
work on conditions for strict dimensionality (see e.g., Rosenbaum, 1984; Holland & 
Rosenbaum, 1986) and work on test homogeneity (see e.g., Loevinger, 1948; Mokken, 
1971), the formal work on the statistical definition of dimensionality in latent vari­
able models has provided useful instrumental guidelines for test dimensionality as­
sessment in practice. 

In general, a common starting point for dimensionality assessment is a matrix 
of conditional or unconditional pairwise item association measures. The patterns 
in these item associations can be utilized to derive the underlying dimensionality 
structure (see e.g., Roznowski, Tucker, & Humphreys, 1991; Kim, 1994). For instance 
in Mokken scaling, as implemented in MSP (Molenaar & Sijtsma, 2000) or in R (Ark, 
2007), the Loevinger coefficient, which is a normed unconditional covariance, and 
related aggregated coefficients play an important role in partitioning an item set 
in homogeneous subsets. This approach primarily makes use of the monotonicity 
condition on the item response functions. In contrast, conditional covariances are 
used in the procedures developed by Stout and colleagues (DETECT; Zhang & 
Stout, 1999a, DIMTEST; Stout, 1987; Nandakumar & Stout, 1993,HCA-CCPROX; 
Roussos, Stout, & Marden, 1998, circular MDS; Bolt, 2001), making use of the local 
independence condition to assess test dimensionality. All these approaches result in 
a partitioning of the total item pool into homogeneous item subsets, which are a 



6 
reflection of the aforementioned dominant dimensions in the data. Thus, the fact 
that items within a subset are so similar, is due to their common denominator, being 
the most dominant dimension they are measuring. Note that these non-parametric 
methods only require a limited amount of assumptions and are computationally not 
too demanding. The focus is on the dominant dimensions in the data, and no further 
assumptions are made about the exact relationship between items and dimensions. 
This is also the reason why the more intensive and restrictive parametric methods 
such as confirmatory and exploratory factor analysis for categorical data (see e.g., 
Bock, Gibbons, & Muraki, 1988; Bartholomew & Knott, 1999) are disregarded. For a 
more in depth overview of the different approaches, the interested reader is directed 
to reviews by Tate (2003) and Van Abswoude, Ark, and Sijtsma {2004). 

The dimensionality assessment approach proposed in this paper, is based upon 
information theory and boundaries on bivariate distributions, and will indirectly 
make use of, modify, and integrate some features and aspects of existing non­
parametric approaches. The starting point is again a pairwise item conditional asso­
ciation matrix, also on the local stochastic independence condition (cfr. DETECT), 
but now based upon a measure labeled "signed information rate" (SIR). This new 
pairwise association measure between two random variables U and V is build up 
in terms of their probability distributions, and only takes a O value (SIR = 0) if 
and only if their observed joint distribution Pr(U, V) coincides with the expected 
joint distribution under independence 1r(U, V). This in contrast to the traditional 
covariance in which COV(U, V) = 0 does not necessarily imply that U and V are 
independent, because covariance only measures linear dependence. Thus, the new 
measure SIR gives a more accurate and less restrictive picture of the pairwise as­
sociation. To account for the influence of the discrete nature of the item responses 
on association measures and to allow for better comparison, the SIR measure is 
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normed with respect to the marginal distributions of the random variables (cfr., 
Mokken scaling, and see also Section 2.1.2), and direction of the association is de­
termined by the relative position of. the observed joint distribution Pr(U, V) in its 
limiting boundary space. The standard error of the signed information rate provides 
a means to assess which element of the pairwise item association matrix can be 
regarded as an extreme outlier, that can be expected to have too much influence 
on the direction a dimensionality assessment procedure will take for the given item 
pool. Because the SIR measure can readily be transformed into a distance measure, 
a hierarchical clustering procedure ( cfr. HCA-CCPROX) can be used to construct 
an item tree. This item tree offers a range of partitioning solutions which can be 
evaluated in terms of a dimensionality criterion (cfr. DIMTEST). The criterion used 
is formulated in terms of heterogeneity between partitions and homogeneity within 
a partition, leading to the selection of a clearly expressed structure corresponding to 
the main target of the procedure, that is the dominant dimensions underlying the 
test. 

2. Method 
The proposed method makes use of a necessary condition implied by LSI. If LSI 

holds, each item pair should also be independent conditional on the latent trait(s). 
In practice, this pairwise LSI is more feasible to verify than strict LSI. Although in 
principle pairwise LSI is merely a necessary and not a sufficient condition for LSI, 
it is claimed to be sufficient in general practice (see e.g., McDonald & Mok, 1995). 
Inspecting a Ix I matrix of conditional pairwise item association measures can give 
a good insight in whether pairwise LSI ( and almost certain strict LSI) holds for the 
data at hand and is a good starting point to assess the dimensionality structure. To 
construct such a conditional item association measure for an item pair i and j, a few 
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choices have to be made. The first choice is to determine the conditioning factor. To 
ensure manifest monotonicity of the empirical conditional response functions (see 
e.g., Junker & Sijtsma, 2000), the rest score Y;;•i = �k,,fi,j ½k is given this status. 
This conditioning factor functions as an approximative proxy of the latent traits 
underlying the test (JP � Y,i;•i, and can be regarded as a composite trait. The data 
are grouped according to a binning procedure utilizing Y,i+i ,j. These grouped data 
allow for the construction of non-parametric conditional item response functions and 
of a conditional pairwise association measure, which will form the fundaments for 
the further dimensionality assessment procedure. 

2.1. A Signed Mutual Information Rate 
The chosen association measure is an adapted form of mutual information, 

normed according to the conditional item response functions and modified based 
upon limiting bounds to the joint conditional item response function. To give the 
mathematical foundations of the association measure, some less familiar material, 
originating from information theory, a branch of applied mathematics and engineer­
ing (Shannon & Weaver, 1949; Cover & Thomas, 2006), and from the study on 
distributions with fixed margins (Frechet, 1951; Hoeffding, 1940) needs to be intro­
duced. The basic building blocks are presented first, gradually making the transition 
to the final measure. 
2.1.1. Mutual Information 

The mutual information between two categorical variables U and V measures 
the amount of information obtainable about one variable by observing the other, 
and is given in the following expression 

I(U, V) = H(U) + H(V) - H(U, V), 
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in which H(X) is the entropy or uncertainty around the random variable X, where 
the function H computes minus the expected value of the log probability of a real­
ization of X as 

H(X) = -E [log(Pr(X))] = - L Pr(X = x) log(Pr(X = x)), 
xE!l(X) 

where the sum is over all possible unique realizations x in the outcome space O(X) of 
the random variable. Conceptually, when both variables U and V are independent, 
observing one or both of the variables at the same time does not make a difference 
on the amount of information gained on an individual variable, and hence there is 
no reduction in uncertainty. In this case, their joint entropy H(U, V) is simply the 
sum of their self entropies H(U) + H(V) , such that I(U, V) = 0. In contrast, when 
both variables are dependent, information can be gained from observing U and V 
simultaneously, and the uncertainty around their paired observations reduces, hence 
H(U, V) < H(U) + H(V) and I(U, V) > 0. 

Moreover, mutual information I(U, V) can also be motivated in terms of a 
Kullback-Leibler Divergence V, 

I(U, V) = V (Pr(U, V)ll1r(U, V)) 
= E [log (Pr(U, V))] 1r(U, V) 

L Pr(U = u, V = v) log (p�� � u,; � ))) . 
uE1l(U),vE1l(V) 

7r - U, - V 

Thus, it can be seen as a measure of how close the joint distribution of U and V, 
Pr(U, V) , is to their expected joint distribution under independence, 1r(U, V). Fur­
thermore, because mutual information only equals O if and only if Pr(U, V) and 
1r(U, V) exactly overlap, it captures all dependencies between the two random vari­
ables, not just second-order dependencies as captured by the covariance for instance. 
Reformulating mutual information as a divergence connects it to the more common 
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likelihood ratios in a maximum likelihood framework. 

2.1.2. Normalizing to a Mutual Information Rate 
It is well known that for categorical variables the exact expression of the de­

pendence structure is partly determined by the marginal distributions of the indi­
vidual variables. A typical example can be found when looking at the attainable 
limits of the product-moment correlation of 2 Bernoulli distributed random vari­
ables, U ~ Bern(pu) and V ~ Bern(pv), these are not simply the traditional [-1, 1] 
bounds, but depend on the marginal distributions as parametrized by Pu and Pv (see 
e.g. Cureton, 1959; Joe, 1997, p. 210). Similar considerations also motivated the 
development of the Loevinger coefficient (Loevinger, 1948), an association measure 
used in the Mokken scaling approach (Mokken, 1971) to dimensionality assessment. 
Note that Warrens (2008) provides a discussion of a whole range of association mea­
sures with respect to some margin-independent properties (i.e., properties that are 
in general true, and not only applicable for a specific dataset). 

To take into account the influence of the marginal distributions of U and V 
on the assocation structure, the mutual information measure will be normed with 
reference to the sum of information provided by the individual variables, resulting 
in a mutual information rate, defined as 

I(U, V) I R(U, V) = H(U) + H(V) 

H(U) + H(V) - H(U, V) 
H(U) +H(V) 

where in case of independence I R(U, V) = 0, and 0 < I R(U, V) ::; 1 otherwise. 
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2.1.3. Determining Directionality 
A disadvantage of this association measure is the lack of direction; IR(U, V) 

makes no difference between positive or negative dependencies. A novel signed 
version of this measure SI R(U, V) is proposed based upon the Frechet-Hoeffding 
bounds of bivariate distributions with given margins (Frechet, 1951; Hoeffding, 
1940). The probability distribution space of bivariate cumulative distribution func­
tions (cdf) F(U = u, V = v) = Pr(U � u, V � v) with given margins F(U = u) = 

Pr(U � u) and F(V) = Pr(V � v) , can be defined using 3 essential distributions, 
IT(U, V) = F(U)F(V); 

W(U, V) = max(F(U) + F(V) - 1, O); 

M(U, V) = min(F(U) , F(V)). 
The cdf IT is recognized as the bivariate cdf for the given margins F(U = u) = 

Pr(U � u) and F(V) = Pr(V � v) when U and V would be independent; the cdf 
W is then the bivariate distribution corresponding to absolute negative dependence 
between U and V, and the cdf M is the bivariate distribution corresponding to ab­
solute positive dependence between U and V. For all possible bivariate distributions 
given margins F(U = u) = Pr(U � u) and F(V) = Pr(V :s; v) it holds that 

W(U, V) < IT(U, V) < M(U, V), 
W(U, V) � F(U, V) :s; M(U, V) , 

such that together these 3 cdfs define the limiting boundaries of F(U = u, V = v) = 

Pr(U � u, V � v). 

Using these boundary conditions, the observed joint probability Pr(U, V) can 
be located in Ol[Pr(U), Pr(V)], the entire probability distribution space given fixed 
univariate margins Pr(U) and Pr(V). The translation of the limiting bounds from 
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cdf's to pdf's can easily be done using the following recursive formula based· upon 
quadrant probabilities (see e.g., Mood, Graybill, & Boes, 1974) 

1 1 • 
Pr(U = u, V = v) = L L (-lt1+k2 CDF(U = u - k1 , V = v - k2) ,  

k1=0 k2=0 

where CDF corresponds to the joint cumulative probability. If k1 = 0 then F(U = 

u - k1 ) = F(U = u), and if k1 = 1 then F(U = u - k1) is the cdf of a realization 
of U that falls into the next-lower ordinal category of U. Note that when u already 
falls in the lowest category, by definition of a cdf, F(U = u - k1 ) = F(-oo) = 0. 

To take into account that the probability distribution space n I [Pr( U),  Pr(V)] 
is not necessarily symmetrically centered around the independence case 1r( U, V) , 

normalized divergences are used to assess the relative position of the observed joint 
distribution Pr(U, V) in Ol [Pr(U), Pr(V)]. These normalized divergences Z'v are de­
fined as the ratio of the divergence between the joint distribution and a limiting 
bound and the divergence between the independence distribution and that same 
bound: 

Z (w) = 
V (Pr(U, V)llw(U, V)) 

'v V (1r(U, V)l lw(U, V)) 
Z (m) _ V (Pr(U, V) llm(U, V)) 

'v 
- V (1r(U1 V)l ]m(U, V)) • 

Comparing these normalized divergences then allows for the assignment of direction 
to the mutual information rate IR(U, V) in the following way: 

Z'v (w) < Z'v(m) => sign(IR(U, V))  = -1; 

Z'v (w) = Z'v (m) => sign(IR(U, V)) = O;  

Z'v (w) > Z'v (m) => sign(IR(U, V))  = l.  

Using these results, the novel signed and normed association measure, labeled 
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Signed Information Rate (SIR(U, V)) is defined as 

. I(U, V) SIR(U, V) = sign (Zv(w) - Zv(m)) H(U) + H(V) . 
2. 1 .4 - conditional SIR 

A conditional version of this association measure can easily be obtained by mak­
ing use of conditional entropies and Kullback Leibler Divergences between condi­
tional probabilities, such that for an item pair Y

pi and ½ii the conditional association 
measure is formulated as 

SIR(Y. Y. 'Y.-i,i) . (Z ( ) Z ( )) I(Y,n ,  Y,,ily;;_i,.i) 
m, Pi P+ = sign v w - v m 

( I -iJ) ( I -iJ) H ypi YP+ + H  ½j Y,,+ 
(2) 

where a conditional entropy can be computed as the expected value of the entropy 
given a realization of Yp;•i 

H(Y,n lY;;_i,j) 
= - L Pr(Y�,j = y;.;.•i) L Pr(Ypi = Ypi I r;;:;_i ,j) log ( Pr(Ypi = Ypi I r;,-:;_i,j)) , 

Ypi 

and a similar construction holds for the Kullback Leibler divergence 'v (The outcome 
spaces n were left out for notational parsimony). 

This signed conditional information rate SI R(Y
pi , ½i lYp;·i) is symmetric SI R(U, V) = 

SIR(V, U) , applicable for both binary and polytomuously scored items, only takes 
zero-value in case of conditional independence, and is normed with reference to the 
information provided by the 2 items when conditional independence would hold. 
These properties result in ease of use and interpretation. Furthermore, the Signed 
Information Rate has an intuitive meaning in the context of local stochastic inde­
pendence. Once one knows someone's position on the latent dimensions Op, here 
approximated by r;,;•i , one can not learn anything more about the response to one 
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item from the response to the other item. Hence, these items are not assumed to 
share more information than already contained in y;,-=;_i,;. If there still is excess shared 
information present, this can be used to determine the general test dimensionality 
structure; negative information indicates that both items are probing a different 
aspect, while positive information indicates them to measure a similar aspect. 

2.1. 5. Standard error of SIR 
Derivation of an approximate standard error for SIR is based upon the delta 

method and the observation that the essential sample data underlying the statistic 
are actually the nsuv 's, the counts (see Roulston, 1999) of persons for which hold 
that Ypi = u, Yp; = v, and Y,,;'; = s. Based upon these counts the conditional 
response probabilities are estimated as 

Pr(Ypi = ulY,,;,j) = L nsuv/Ns 

vEO(Y
p3) 

Pr(Yp; = vlY�'j) = L nsuv/Ns (3) 
uEO(Ypi) 

Pr(Ypi = u, ½j = vlY,,+i,j) = nsuv/Ns, 

with N8 the number of persons with Y,,;'j = s. 
Given that nsuv ~ Bin(Ns, Pr(u, vlY,,;'j)), its sampling variance equals 

If we disregard the dependence direction and consider µ(x) = abs(SIR(Ypi , Yp; IY�'j)) = 



IR(Ypi, ½J IY�•j)) as the mean of X8uv with 
hsu = - l�g ( L nauv/Ns) 

vEO(Yp;) 

hav = - log ( L nauv/ Na) 
uEO(Yp,) 

hauv = - log (nauv/Na) 
hau + hav - hsuv Xsuv = 

then an approximate standard error can be computed as 

15 

The standard error of the signed information rate provides a means to assess which 
element of the the J x I pairwise item association matrix SIR can be regarded as 
an outlier and might point at the presence of local item dependency similar to the 
problem of multi-colinearity in multiple regression, rather than to be considered a 
general problem at the underlying dimensionality level. Using a common standard 
normally distributed Z-test it can be checked whether the observed SIR(i, j l0) is a 
statistically extreme value. The test statistics is defined as 

(4) 

Hence, a usefull first step in assessing the dimensionality of the test might be to 
detect outliers, that show such an extreme excess item interdependence. In practice 
one item of such a detected item pair could be argued to be redundant, and it could 
be opted to drop one such item in favour of test efficiency. If not dropped, it should 
be explicitly modeled to prevent distortion of test reliability and other model aspects 
and parameters. 
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2. 2. Divisive Hierarchical Clustering 

When searching for a structure of dominant dimensions, a hierarchical approach 
appears a natural choice. Using the J x I SIR matrix of pairwise conditional associ­
ation measures SJR(Ypi, ½il½�'i) as starting point, a divisive (i.e., top-down) clus­
tering algorithm will be adopted in search for hierarchical cluster structure among 
the items. For the purpose of clustering, the signed mutual information matrix SIR 

is transformed to a dissimilarity matrix D = (1 - SIR)/2. Note that each element 
dii of the matrix D satisfies the properties of a distance metric, 

d · · > 0 i:J - (non-negativity); 
(identity of indiscernibles); 

(symmetry); 
( triangle inequality). 

Hence, D is indeed appropriate for use in cluster analysis. Divisive cluster meth­
ods start by considering the whole set of items as one cluster, and then split up 
the set into successive subclusters until each object is a singleton cluster. There 
are J - 1 successive splitting steps to be made. In each of these steps the cluster 
with the largest dissimilarity ( within the cluster) is selected and then split into two 
new clusters. A variant of the method of MacNaughton-Smith, Williams, Dale, and 
Mockett (1964) is used, which recursively repositions items from the start group, 
initially equivalent with the original cluster, into a new splinter group based upon 
their average distances with respect to all other items in these two groups, until no 
improvement can be made (see also, Kaufman & Rousseeuw, 1990). The resulting 
cluster hierarchy can be represented graphically by means of a divisive tree-diagram 
or dendrogram, in which the stem represents the entire item set, and where a branch 
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splits at a vertical coordinate corresponding to the diameter of that cluster before 
splitting. 

Divisive (top-down) algorithms are often more accurate than their more com­
monly known agglomerative (bottom-up) counterparts. Bottom-up clustering meth­
ods, as for instance used in HCA-CCPROX, make clustering decisions based on local 
patterns without initially taking into account the full dissimilarity matrix, increas­
ing the risk of running into sub-optimal solutions. In contrast, top-down clustering 
methods involve a bit more computation at each step, but benefit from complete 
information about the full dissimilarity matrix when making top-level partitioning 
decisions. If one is only interested in a limited amount of clusters, a top-down al­
gorithm can terminate early, while a bottom-up algorithm needs to go through the 
whole tree ( and do the computations) to reach that same top-level. Both algorithms 
remain prone to errors due to their greedy nature (mistakes in an earlier step can 
not be undone in a subsequent step of the hierarchy). 

2. 2.1. Dimensionality criterion 
Although a cluster hierarchy is informative, it is not the end goal in practice. 

The end goal is an optimal non-hierarchical dimensional representation of the item 
set; optimal in the sense of demarcating the dominant dimensions in the item re­
sponses, yet making abstraction of the minor noise dimensions (cfr., Introduction). 
To formalize this, a criterion is proposed that balances between-cluster heterogene­
ity and within-cluster homogeneity, to allow the selection of that solution in the 
hierarchy with the most outspoken item partitioning. A clear partitioning clarifies 
what is exactly measured by the test and allows for straightforward test scoring and 
communication. 

Thus, the hierarchical cluster tree need to be cut at a certain level, resulting in 



18 

FIGURE 1 .  

Hierarchical cluster tree 
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a partitioning p(K) = { C1, C2, . . .  , CK}, with Ck an item cluster. It is proposed to 
evaluate the I possible partitioning solutions §(K), corresponding to the initial set 
of items §(K = 1) and the I - 1 successive solutions of the hierarchical algorithm, 
and select the solution §(K) maximizing the following criterion: 

where 

For K = 1 dbetween = 0.5 corresponding to the independence situation (i.e., SIR = 0 
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FIGURE 2. 
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and D = (1 - SIR)/2 = 0.5) and such that '11(§(1)) = 0. T he criterion favors 
homogeneous clusters (i.e., small dwithin ) that are well separated (i.e. , large dbetween)­
Note that only a statistically 'nice' multidimensional solution §(K) ) gives rise to 
a positive value of '11 [S(K)] (i.e., between-cluster distance is larger than twice the 
average distance within the total item set). 

3. Example 
Consider the following example test consisting of 10 items generated under a 

compensatory multidimensional model (see e.g., McKinley & Reckase, 1982) 
(5) 
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The item difficulties f3i follow a standard normal distribution. The loadings a are 
chosen such that the first 5 items only measure a relatively stronger first dimension 
(ail ~ N(l.1, 0.05) and ai2 = 0 Vi E {1, . . .  , 5} ), while the next 5 items only 
measure a relatively weaker second dimension (ai2 ~ N(0.9, 0.05) and ail = 0 
Vi E {6, . . .  , 10} ). The latent traits 8p = {0p1 , 0p2} are uncorrelated and standard 
normally distributed. Notice that this resembles the dominant dimensions versus 
noise dimensions idea. Data was generated for P = 1000 persons. 

The first step in the proposed procedure is to construct a pairwise item associa­
tion matrix making use of the non-parametric conditional response functions given 
in Equation 3. Note that one could also work with smoothed versions of these func­
tions (see e.g. , Ramsay, 1991; Habing, 2001). The upper-triangle of the resulting 
pairwise item association matrix SIR (Equation 2) together with the correspond­
ing lower-triangle of p-values according to the Z-test in Equation 4 is presented in 
the matrix below 

[up.tri(SIR) + low.tri(p)] = 

0.022 0.021 0.020 0.019 -0.005 -0.003 -0.007 -0.003 -0.004 
.036 0.008 0.021 0.018 -0.003 0.001 -0.004 -0.003 -0.004 
.041 .251 0.021 0.010 -0.005 -0.002 0.006 -0.004 -0.002 
.045 .037 .037 0.022 -0.007 -0.005 -0.008 -0.010 -0.005 
.054 .064 . 181 .031 -0.006 -0.003 -0.007 -0.005 -0.005 
.334 .407 .324 .267 .301 0.010 0.012 0.012 0.016 
.380 .459 .426 .331 .395 .201 0.007 0.007 0.007 
.271 .354 .307 .236 .278 .150 .282 0.011 0.011 
.388 .395 .369 .182 .322 .146 .286 . 158 0.012 
.374 .346 .419 .330 .339 .091 .263 .162 .137 

Visual inspection of this matrix shows that the items might be measuring different 
aspects (see e.g., the sign pattern). Furthermore some item pairs are evaluated as 
showing rather extreme local dependence (p < 0.05) given the test composite ½+i,i; 
although adopting a more strict significance level to take into account the multiple 
testing would weaken this observation. In any case, it are signs that a unidimensional 
structure might not be adequate for this test. 

A second step is to search for structure by means of a divisive clustering proce-
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dure. The resulting hierarchical tree is shown in Figure 1, and a plot of the proposed 
partitioning criterion '1!(§(K)) over the I possible partitioning solutions in this tree 
is given in Figure 2. It can be seen that the 2-cluster solution (K = 2) is to be 
preferred, but that even cluster solutions up to K = 5 might be considered a better 
representation than unidimensionality K = 1 in statistical terms (Beyond 5 clus­
ters the solutions loose their attractivity in terms of the between-within criterion 
'1!(§(K))). When a strong structure arises, this should also be visible in a sorted 
contrast version of SIR. In Figure 3, the 2-dimensional structure clearly surfaces. 
Darker colors of an { i, j} entry indicate stronger positive interdependence between 
items i and j of the test. Notice that the matrix rows and columns are sorted such 
that items belonging to the same cluster are next to each other. 

Aggregated pairwise SIR measures similar to dwithin and dbetween can be utilized 
as a relative description of the homogeneity within a cluster. For instance, the mean 
SIR value for the item pairs belonging to cluster 1 equals 0.015, while for cluster 
2 this is 0.008, and hence this confirms the simulation design in which dimension 
1 was relatively stronger than dimension 2. In this way, the SIR matrix can be 
summarized in a set of structural informative indices, that can be used for further 
situating the dimensionality assessment results. For instance, to further refine a 
given dimension, one might consider using a similar approach to item selection as in 
Mokken scaling, but now based upon an item-aggregated SIR measure, instead of 
the usual scalability coefficient. However, note that, especially in small item clusters, 
removing an item might have large consequences, not only for the cluster at hand, 
but also for the quality of the overall partitioning. 
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FIGURE 3.  

Sorted contrast SIR matrix 
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4. Simulation Study 
4 . 1 .  Design 

To evaluate the above-presented way of looking at the dimensionality structure 
of a test, a small simulation study was set up. The design considers unidimensional 
and multidimensional test data in terms of both strict and essential dimensionality. 

(1) A first condition consists of unidimensional test data generated under the 
two-parameter logistic model (Birnbaum, 1968) for P = 1000 persons and I =  18 
items, 

Difficulty parameters /3i and person parameters Op were each generated from a stan­
dard normal distribution. Item discrimination parameters were chosen to show a 
relatively large variation (ai ~ N(l, 0. 1), approximate range [0.7, 1.3)) to resemble 
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tests consisting of items with variable strength as indicator of the latent dimension. 
To manipulate the homogeneity of the scale, 4 types of unidimensiomal test data 
were generated. The first type resembled a strong homogeneous test where all items 
are relatively good indicators of the underlying latent variable (ai ~ N(l, 0.1)); the 
second type resembled a less homogeneous test containing a few less efficient indica­
tors of the latent dimension (Vi E {5, 6, . . .  , 18}, ai ~ N(l, 0.1), and ai ~ N(0.2, 0.1) 
truncated at [0.1, 0.3] otherwise); the third and forth type resembled a strong homo­
geneous test in which the item pair { i = 1, j = 5} showed a degree of redundancy 
(i.e., local item dependence). The local item dependence is simulated making use 
of the copula IRT models proposed by Braeken, Tuerlinckx, and De Boeck (2007). 
Frank copula which induces local item dependency in a symmetric fashion around 
the item locations, was chosen. The degree of redundancy was either minor, compa­
rable to Kendall's ,,- of 0.2, or mediocre, comparable to Kendall's 7 of 0.4. 

(2) A second condition consists of threedimensional test data generated under 
a compensatory multidimensional model (cfr. Equation 5) for P = 1000 persons 
and I = 18 items. The relation between items and dimensions underlying the test 
is manipulated, giving rise to two types of tests. In a test of Type A, each item 
only loaded on a single dimension k (aik ~ N(l, 0.1), aik' = 0 otherwise) resem­
bling a simple structure factor loading pattern, whereas in a test of type B, each 
item primarily loaded on a single dimension k, but also loaded to a smaller extent 
on the other dimensions k' (aik ~ N(l, 0.1), and aik' ~ N(0.2, 0.1) truncated at 
[0.1, 0.3] otherwise). The latter corresponds the most to the essential dimensionality 
idea (Stout, 1987, 1990), with dominant and noise dimensions for each item, yet is 
suprisingly not commonly studied in other simulation excercises in this area. The 
correlations Pkk' between the 3 dimensions were either all equal to 0, 0.4, or 0.8. 
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,4..2. Results 

A summary of the simulation study results for the first condition is given in 
Table 1. The results are indicative for the performance of the procedure given essen­
tially unidimensional test data. Overall the performance of the clustering criterion 
w(§(K)) for unidimensionality assesment is quite satisfactory. All unidimensional 
strong-homogeneous datasets were correctly identified as unidimensional, while 95% 
of the unidimensional weak-homogeneous datasets were correctly identified as unidi­
mensional. Note that the 5 cases that were misidentified are characterized by relative 
lower discrimination ai on the less-efficient indicators compared to the other cases. 
Even in the presence of minor LID for an item pair, the clustering criterion cor­
rectly identified 96% of the datasets as essentialy unidimensional. In the presence of 
mediocre LID for an item pair, the clustering criterion identified 42% as unidimen­
sional and 58% as multidimensional. Cases that were assessed to be multidimensional 
are characterized by a larger expression of local item dependence compared to the 
other cases, reflected in larger maximum SIR values. 

Detection of outliers within the SIR matrix was rather succesful. For the 
datasets generated under strict unidimensionality no false positive results occured. 
In 46% of the datasets with one minor LID item pair, 1 pair was detected to show 
excess local item dependence, each time the correct pair {1, 5}. Given the prior re­
sults in which the unidimensionality assessment was rather robust against a minor 
violation of strict LSI, the relative power of the test in detecting a minor LID pair is 
higher than expected. In each dataset with one mediocre LID item pair the correct 
LID pair was detected, and only in one case an additional, false positive, item pair 
occured (p = 0.047). 

A summary of the simulation study results for the second condition is given 
in Table 2. The results are indicative for the performance of the procedure given 
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1 dimension: homogeneity (n = 100 datasets) 

strong weak minor LID pair mediocre LID pair 

w(§(K)) 
chosen K = l  100 95 96 42 

K >  l O · 5 4 58 
mean 0 6.436e-6 4.17e-5 l.27e-3 

SIR 

mean 3.49e-3 3.05e-3 3.53e-3 3.73e-3 

max l.22e-2 l.30e-2 2.12e-2 5.62e-2 

min -5.93e-3 -6.24e-3 -6.lOe-3 -5.96e-3 

SE(SIR) 
p ::;  0.05 0 0 0.46. 1.01·· 
mean(p :::; 0.05) 0.023 0.003 
p {1,5} 0.074 0.002 

(*) In 46 cases the correct LID pair was detected (false negative otherwise) . 

(**) In all cases the correct LID pair was detected. In one case a second pair was detected: false 

positive pair {3, 6} with p = 0.04 7. 

essentially multidimensional test data. In case of type A (resembling simple structure 
factor loadings), the correct dimensionality is determined in at least 97% of the 
cases, unless the correlations among the dimensions are high (p = 0.8), because 
then the test is assessed to be unidimensional. In case of type B ( resembling the 
essential dimensionality idea), the correct dimensionality is determined in at least 
94 % of the cases when the dimensions are uncorrelated, while this decreases to 
32% with medium-sized dimensional intercorrelations (p = 0.4). In the latter case, 
the main choice of the criterion is unidimensionality. When dimensions correlate 
highly, the criterion always points at unidimensionality. Note that when the correct 
dimensionality is assessed, the majority of items is also correctly partitioned. The 
probability of having at least one misclassification is 4% given type A and 25% given 
type B. When the interdimensional correlation increases from p = 0 to p = 0.4, these 
probabilities increase to 29% and 56%, respectively. 

The average number of detected extreme LID pairs and the maximum observed 
SIR value for an item pair decreases with increasing intercorrelations and when 
items also load on other dimensions (type B). The minimal observed SIR value for 
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an item pair follows the opposite pattern. Notice that in the case of high dimensional 
intercorrelations, no extreme LID pairs are detected. 

3 dimensions: structure (n = 100 datasets) 
type A type B 

Pkk' 0 0.4 0.8 0 0.4 0.8 

l!T(S(K)) 
chosen K = l  0 0 97 0 57 100 

K = 2  0 2 0 1 4 0 
K = 3  99 97 2 94 32 0 
K = 4  1 1 1 5 7 0 
K > 4  0 0 0 0 0 0 

mean 8.95e-3 3.43e-3 3.15-6 3.79e-3 2.3oe-4 0 
SIR 

mean 1.96e-3 2.79e-3 3.3oe-3 2.85e-3 3.53e-3 3.9oe-3 

max 2.26e-2 1.84e-2 1.31e-2 l.88e-2 l.6le-2 1.40e-2 

min -8.92.e-3 -7.68e-3 -6.4e-3 -8. 14e-3 -6.45e-3 -5.45e-3 

SE(SJR) 
p � 0.05 1.36 0.21 0 0.28 0.10 0 
mean(p < 0.05) 0.035 0.040 0.038 0.041 

5. Discussion 
The dimensionality assessment approach introduced here, is based upon infor­

mation theory and boundaries on bivariate distributions, and builds on existing non­
parametric approaches ( cfr., DETECT and Mokken scaling). The starting point from 
the procedure is a pairwise conditional item association matrix, now based upon a 
newly-proposed association measure, labeled "signed information rate" (SIR). This 
SIR measures is not restricted to capture only linear association, and only takes a 
zero-value in case of independence. To account for the influence of the discrete nature 
of the item responses on association measures and to allow for better comparison, 
the SIR measure is normed with respect to the marginal distributions of the item 
scores, and direction of the association is determined by the relative position of the 
observed joint distribution Pr(U, V) in its limiting boundary space. 

A basic Z-test making use of the approximate standard error of the association 
measure provides a way to scan the item association matrix for anomalies and de-
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tect extreme locally dependent item pairs that can be expected to have too much 
influence on the direction that a dimensionality assessment procedure will take for 
the given item pool. The results showed that the test has good power in detecting 
item pairs that show local item dependence. Even when the local item dependence 
is minor and ignorable in the sense of essential independence, the test detected the 
target item pair in half of the cases. Furthermore, when one of the items within 
the detected LID pair was left out of the test, all datasets were assessed to be uni­
dimensional. Hence, evaluating item pairs like this shows practical value for test 
construction. 

Because the SIR measure can readily be transformed into a distance measure, 
a hierarchical clustering procedure ( cfr. HCA-CCPROX) can be used to construct 
an item tree. This item tree offers a range of partitioning solutions which can be 
evaluated in terms of a dimensionality criterion (cfr. DIMTEST). For this general 
dimensionality assessment purpose, the criterion '11(§(K)) is suggested to select an 
optimal partitioning, finding a balance between the homogeneity within item clusters 
and the heterogeneity between item clusters. For the assessment of unidimension­
ality, the results show promise for the robustness as well as the sensitivity of the 
procedure. The presence of a minor LID item pair or a small set of atypical items 
did not prevent the procedure in correctly identifying the dominant unidimensional 
structure of the test. 

For the assessment of specific multidimensionality, the performance of the crite­
rion is not fully optimal from a strict statistical perspective. When the dimensionality 
structure is clearly expressed, performance is excellent and the correct number of 
dimensions is identified. However, in case of high inter-dimension correlations the 
criterion judges the test to be unidimensional ( which might well be the case from 
a substantive viewpoint). In case of essential dimensionality and intermediate cor-
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relations, the criterion either correctly identifies the number of dimensions or again 
opts for unidimensionality. In both these cases, the homogeneity within the SIR 

matrix has increased to the extent that the between-within criterion '1!(§(K)) does 
not differentiate between different cluster solutions. Thus, from a practical point 
of view, the criterion inherently chooses for more parsimonious solutions when the 
multidimensionality of the test is not clearly expressed in the data. In fact, one can 
consider this a welcome characteristic for a dimensionality assessment procedure 
and in line with the main goal of only locating the dimensions that are dominantly 
present in the data. 

To increase the power of tests and procedures within dimensionality assessment, 
fundamental developments are needed towards the relationship between the theoret­
ical latent trait and the proxy being used, as well as more specific results in how the 
pairwise conditional associations relate to the strict LSI condition, and these proxies. 
Even under the strict conditions of a Rasch model, in which the total sum score is a 
sufficient statistic for the latent trait, one can merely state that the corresponding 
pairwise conditional item associations are necessarily non-positive (see e.g., Junker, 
1993). In the more general case, in which such a sufficient statistic is unavailable, 
one can merely state that conditional upon the restscore pairwise item associations 
are necessarily non-negative (see e.g. , Rosenbaum, 1984). Another argument is that 
asymptotically, when the size of the item set moves towards infinity, the pairwise 
conditional association measures move towards 0, the value corresponding to inde­
pendence (see e.g., Stout, 1990). The disparity of the results makes it difficult to 
derive expected values for pairwise conditional association measures and formulate 
exact tests in the general context of latent variable models. 

Furthermore, these results and remaining issues might raise the statistical ques­
tion towards the feasibility of distinguishing between specific dimensionality struc-



29 
tures. Given the possibility of many equivalent models in parametric measurement 
(see e.g., the structural equation literature), our capacity in determing a specific and 
unique dimensionality structure among a set of item responses might currently be 
overrated. However, this cautious note should not prevent the further development 
of procedures that generate and evaluate potential candidate structures, but merely 
stresses the importance of the interplay between theory and data in the develope­
ment of an assessment instrument, allowing us to make at least a well-informed and 
supported assessment of test dimensionality. 
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