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Abstract 

Although Masters (1982) used a step rationale to derive the partial 

credit model (PCM), it is argued in the present article that this 

interpretation is not implied by the model. It is shown that if, in the case of 

k Rasch-items, one observes only the number of items correct on K (l<K<k) 

subsets of items (which together partition the original k items), the PCM 

applies perfectly. More generally this implies that the content oriented 

interpretation of a formal model should be handled with care, and that the 

decisive criterion of acceptability of statistical models resides in 

statistical testing. 
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Introduction 

A model tailored to the analysis of item responses scored in ordered 

categories is Master's (1982) Partial Credit Model (PCM). To derive this model 

Masters uses the following item as an example: 

I o. 1 s _ 16 = ? 
\J 0.03 

He assumes that the solution of this item has to proceed in three consecutive 

steps 

1: .75/.03 

2: 25 - 16 

3: ✓9 

His derivation implicitly assumes that a step cannot be successfully completed 

unless its predecessors have been. The partial score earned by a student for a 

particular item equals the number of steps he correctly completes. Together 

with the previous assumption a partial score j implies that exactly the first j 

steps are completed successfully. 

This reasoning however, entails two problems. First the interpretation of 

the parameters. In the PCM there are three parameters associated with the 

example. Given the above reasoning it is a seductive conclusion that the 

parameter associated with a particular step does not change when it would be 

embedded in another item. Molenaar (1983) showed that this conclusion cannot be 

maintained, because the parameter value of a particular step depends on the 

parameter values for the other steps in the item. This interdependency implies 

that the parameter value of a step cannot be interpreted as a measure of its 

difficulty. Second, the more general interpretation of the PCM. It is certainly 

true that the PCM is appropriate for items that allow for a sequential solution 

as indicated by Masters. However, we would make a logical error if we concluded 

that item responses that fit the PCM, are necessarily solved in a sequential 

way and scored according to Master's rule. It cannot be known in advance that 

if, for instance, we would change the scoring rule of the item to a non­

sequential type, the PCM does no longer fit. An obvious possibility is to 
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credit every step yielding a formally correct solution, even if based on a 

faulty result from a previous step, with one point and to choose as the item 

score the ordinary sum score. With this rule a correct first and third step 

would add up to score 2, while Master's rule would only credit the first step 

with a score of 1, More in general, one could conj ecture that the PCM is 

appropriate for all item scoring rules that result in ordered categories, 

without any assumption of a hierarchical solution strategy and its concomitant 

scoring rule. If Masters interpretation would be a necessary consequence of the 

validity of the PCM, one has to accept the fact that the model is appropriate 

only for a restricted type of items. The analysis of polytomous items which are 

clearly not necessarily sequential, would have to performed with other models 

(e. g. , Bock & Aitkin, 1981), However, in most cases there is no way to decide 

whether an item is sequential or not, One could, of course, construct scoring 

rules that enforce a sequence interpretation. In the sequel we will show that 

this endeavour is in vain as the appropriateness of the PCM does not in any way 

necessitates a sequence interpretation. Section 2 contains a formal 

introduction to the partial credit model and section 3 treats a special case 

that clearly violates the assumption of a sequential solution, but, 

nevertheless, is in perfect agreement with the PCM. In section 4 the 

interpretation of the PCM parameters is discussed. 

The Partial Credit Model 

Let k be the number of items in a test and assume that an examinee may 

earn a score o, 1, . .. , mi on item i, where the value mi may be dependent on i. 

The item score (considered as a random variable) on item i is denoted by Xi. 

The PCM is'defined by the following two axioms: 

Prob(Xi =j :b) oc exp(jt)-'Ep;g ), (j =O, ... ,mi ; i =1, ... ,k) ( 1) 
g=O 

and 
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Axiom (2) expresses local stochastic independence, a property of many IRT 

models, The parameter p19 
in (1) is associated with response category g. Note 

that (1) contains p10 in the expression for every j E {O, ... , m1}. Because 

(1) is equivalent with 

exp Cj o- :E PigJ 
Prob(X. =j:b)= g� 

i m Jl. E exp [hb- L Pig] 
hzQ gzQ 

For a particular item i, the probabilities in (3) for all j (j = o, . .. , m1) 

( 3) 

and all 8, determine the parameters p19 
(g = o, ... , m1) only up to an additive 

constant c1• This can easily be shown by multiplying the numerator 

and denominator of the right part of (3) by exp (c1) .  Defining 

(3) can be rewritten as 

exp [j b- :E pig] 
Pr ob ( X . =J· : f) ) = gzO 

i m , 

E exp [hO- t P1g] 
h=O g=O 

(4) 

and it is clear that different values for c1 result in an identical set of 

probability functions for different sets of parameter values. A fruitful choice 

for c1 that simplifies the estimation calculations is: 

C1 = Pia, (i = 1, • • • I k) , 

from which it follows that 

P1a = 0 I (i = 1, • • • I k) , 

and allows (4) to be rewritten as 
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1 + E exp [hb- f: Pig] 
h=l g=l 

Although the numerator in the right part of (5) suggests a sequence 

interpretation, this is definitely not imperative, as the following 

reparameterization (Glas, 1989, p. 14-15) shows. 

Define 

(j = 0' . . . , mi ; i = 1 , . . . , k) 

then (4) can be rewritten as 

m, 

E exp [hb-11 ih] 
h=O 

(5) 

(6) 

which is a slight generalization of a model proposed by Andersen (1977). Notice 

that, since the �•s are unconstrained, so are the �•s. Where the cumulative sum 

in the numerator of (4) could have suggested a sequence interpretation, this 

suggestion has disappeared in (6), where the parameters for the categories are 

arbitrary numbers, that do not impose a theoretically sequential solution 

strategy. 

A Model for Testlets 

The practice of testing often presents us with a set of items that share a 

common part, for example, a text to be read by the examinee. The text can cause 

its items to have higher intercorrelations than items associated with different 

texts. As a result simple IRT models such as the Rasch model must frequently be 

rejected as an adequate description of the item responses. The literature often 

refers to items with a common part with the term 'testlet'. Therefore, an 

appropriate analysis requires a model that adequately deals with the higher 

intercorrelations, or select a higher level model that directly addresses the 

testlet scores as the unit of analysis and not the item scores. As this does 
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not determine yet the nature of these testlet scores, however, we can start 

with a particular definition of a testlet score and subsequently design a 

suitable model that adequately explains these scores. In this section we 

propose a modelled type of testlet analysis, that is, a test with k Rasch items 

partitioned into K (K>l) testlets. So, every testlet contains one or more items 

and the testlet score is the number of correctly solved items in the testlet. 

For every item we have 

exp (0-o1 ) 

l+exp (0-o1 ) ' 
(i = 1, • I k) . (7) 

The partition in testlets can be denoted as follows. Let I =  (1, 2, ... , k}, 

and consider K subsets of I, A c I (a = 1, . . .  , K) with: 

and define 

y« = .Ex .. 
iEA. l. 

suppose we want an analysis using only the testlet scores Y and not 

the item scores X. We derive the density function of Y using an example. Let A 

= {l, 2, 3), and define 

� = exp (0) , 
( 8) 

(i = 1, ... ,k) 

From (7), and from the assumption of local stochastic independence it follows 

that 

(9) 

The sum between brackets in the numerator of (9) contains the products of 

exactly all possible pairs taken from three item parameters. Therefore, this 
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swu is by definition equivalent to the elementary symmetric function (of the 

second order) of 

Elementary symmetric functions of the order s will be denoted by �
5

(�
a). After 

expansion of the denominator of (9) and regrouping of terms, (9) can be 

rewritten as: 

It is easily seen that this result can be readily generalized. Define 

m = IA.I, then we have 
a 

(j = 

Using (8) this can also be expressed by 

Now define 

exp [j'D+lny
j Ct)] 

� exp [h-D + lnyh (.t_ ) ] 
h=O 

a 

(j = 

(10) 

(11) 

(12) 

(13) 

then the formal equivalence of (6) and (9) is evident. Thus, by considering 

'Rasch' testlets as multi-categorical items, these testlets are perfectly 

modeled by the PCM. Moreover, the item scores can definitely not be considered 

as resulting from a sequential solution process. The items in a testlet are not 

subject to any hierarchy as is implied by the Rasch model, and the assumption 

therefore that step j+l can only be successfully completed conditional on the 

success of step j does not hold. 
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The Interpretation of the Parameters. 

When we try to offer an interpretation for the parameters in the special 

case of the 'Rasch' testlets, we should be concerned not to make the same 

mistake for which we try to warn here. The next statement is surely not true: 

'If testlet scores, defined as the number correct score of the items in the 

testlet, can be adequately described by the PCM, then for every testlet its set 

of items can be considered a set of Rasch items. The parameters associated with 

these items can be found by the inverse transformation of (13), that is, with 

given �•s to solve (13) for the E's.' The nonvalidity of this statement easily 

follows from the fact that the �•s are not constrained, whereas it is certainly 

not true that for m arbitrary numbers (13) can be solved. However, even if 

(13) has a solution, then it is still not inevitable to decide for a 

hierarchical interpretation; at most this may be called clever, but it is not 

connected with the PCM as such. Moreover, note that if (13) has a solution for 

the true �•s, this does not necessarily apply to the estimated �•s. One can 

estimate the �•s under the restriction (13), but this means that one does not 

assume the general PCM to hold, because the full parameter space is not used. 

More in general it can be stated that no interpretation that hints at 

behavioral or cognitive strategies is indicated by the model parameters or can 

be compellingly associated with them. The direction of interpretation towards 

the model can be useful and clarifying; the other way around (from model to 

interpretation) is never compelling and in general unnecessary, and perhaps, 

harmfully constraining. 

A totally different type of interpretation can be based on the model 

itself. However, this type of interpretation can barely be expected to 

transcend a paraphrasing of the model in a truly unveiling way. For example, 

with the PCM the following 'interpretation' is always true: the parameter �ij 

(under the constraint (7)) is the unique value of 8 with the same expected 

probability for score j on item i as score j-1 (j>0) (Glas, 1989). However, 

this interpretation is simply implied by the unique solution for 8 of the 

equation 
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which yields 8 = �ij• 

And, of course, more interpretations can be found in a similar way that may be 

useful to comprehend the PCM. For example, it can be shown that, if �ij > �i,j-l 

(j>l), for all 8 in the open interval (�ij• �i,j-1), score j-1 is the modal score 

(that is, it is the score with the highest probability). If the analysis shows 

that this monotonicity is clearly violated, then one or more scores will never 

be modal. In that case one could consider another scoring rule. 

Conclusion 

The above discussion is, of course, not meant to suggest that behavioral 

interpretations are to be avoided or cannot be fruitful. Nor was it written to 

advocate the PCM as the formal model of choice for all data that allow an 

interpretation as a set of ordered categories. The model can better be looked 

at as a formal restriction on the response probabilities, with the status of a 

statistical hypothesis. The 'analysis according to the model ' then naturally 

divides in an estimation part and a testing part. The estimation part can be 

ignored as a technical matter that can be dealt with in an algorithmic fashion. 

The testing part, however, offers the opportunity to test the acceptability of 

behavioral or cognitive interpretations. Of course this does not mean that this 

testing is easy. If, for example, one estimates the PCM-parameters under the 

restriction {13), the resulting parameter space is not a proper subspace of the 

unrestricted one - the restrictions can be written as a set of inequalities -

and in both cases the parameter space has the same dimensionality. So the 

common likelihood ratio test does not apply, and it is not quite clear how the 

restricted model might be tested against the unrestricted one. 

As a general conclusion, there is no evidence that the PCM should be restricted 

to items which allow for a step interpretation. The special case elaborated in 

the previous paragraphs indicates that the model offers a perfect description 

in a case where this interpretation is explicitly excluded. So the PCM may be 

considered as a candidate model for data where the scores can be interpreted as 
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ordered categories and its adequacy should not primarily be judged upon by 

interpretation but by statistical testing. 

9 



10 



References 

Andersen, E.B. (1977). Sufficient statistics and latent trait models. 
Psychometrika, 42, 69-81. 

Bock, R.D. and Aitkin, M. (1981). Marginal maximum likelihood estimation of 
item parameters: an application of an EM algorithm. 
Psychometrika, 46, 443-459. 

Glas, C.A.W. (1989). Contributions to estimating and testing Rasch Models. 
Arnhem, Cito. 

Masters, G.N. (1982). A Rasch model for partial credit scoring. 
Psychometrika, 47, 149-174. 

Molenaar, I.W. (1983). Some improved diagnostics for the Rasch model. 
Psychometrika, 48 1 49-72. 

11 





Recent Measurement and Research Department Reports: 

91-1 N. D. Verhelst & N. H. Veldhuijzen. A New Algorithm For Computing 
Elementary Symmetric Functions And Their First And Second Derivatives. 

91-2 C. A. W. Glas. Testing Rasch Models For Polytomous Items: With An Example 
Concerning Detection Of Item Bias. 

91-3 C.A. W. Glas & N. D. Verhelst. Using The Rasch Model For Dichotomous Data 
For Analyzing Polytomous Responses. 

91-4 N. D. Verhelst & C,A. W. Glas. A Dynamic Gp· 'ralization Of The Rasch 
Model. 








