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Abstract 
 

The sequential probability ratio test (SPRT) is a sequential statistical test developed by Wald 

(1949). In this chapter a general description of the procedure is given. Then the application of 

the SPRT in computerized adaptive testing (CAT) is elaborated. Considered is the basic 

problem of whether a student has mastered a certain criterion or not. Next the extension to the 

three category problems is described. Finally the problem of adaptive item selection in 

combination with the SPRT is discussed. 
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The Sequential Probability Ratio Test in Educational Testing 
 

The sequential probability ratio test (SPRT) was developed more than 60 years ago by Wald 

(1947) for quality control problems. It is a statistical procedure in which a choice is made 

between two simple hypotheses and was initially used to determine whether the majority of 

products (e.g., 80%) in a production process meet specifications or if this was true in fewer 

cases (e.g., 50%). The statistical properties of the SPRT have since been well established. 

Various extensions of the original testing procedure have been proposed in the literature and 

their statistical optimality properties have been studied extensively (see, e.g., Ghosh & Sen, 

1991). In this paper we will not go into detail regarding the statistical properties of the SPRT, 

but will focus on to some successful applications of it in educational testing. 

In education, practitioners make use of test results for many different purposes, but from an 

educational measurement point of view, it generally suffices to distinguish between two main 

aims of testing: the precise estimation of a person’s ability in a certain domain or the 

classification of a person in one of a limited number of proficiency classes. For the latter 

purpose, the SPRT has often been very successfully applied. In what is called sequential 

mastery testing (Lewis & Sheenan, 1990), Ferguson (1969) used a basic application of the 

SPRT to decide whether a student is a master or non-master in a certain domain. Since then, 

starting with Reckase (1983), many algorithms for computerized adaptive testing (CAT) have 

been developed (e.g., Eggen,1999) using the SPRT methodology as their basis. 

The present paper discusses the use of SPRT in CAT. After describing the SPRT and the 

basic elements of CAT, the way the SPRT is used in CAT will be treated. The situation 

considered is how, on the basis of a test, can be decided whether or not a certain criterion or 

standard is met. Lastly, this one cutting-point situation is extended to more than one, together 

with some other extensions. 

 

The sequential probability ratio test 

In sequential testing it is not only the observations X , that are random variables, but also the 

number of observations, K . Inspired by the Neyman-Pearson lemma (1933), which provides 

a method of constructing a most powerful statistical test for deciding between two simple 

hypotheses, Wald (1947) proposed the SPRT. In his treatment of the problem, Wald (1947) 

considered random variables X with two possible values: 1=x  if a product meets the criteria 

and  otherwise.  Next, two statistical hypotheses are formulated: 0x =

The null hypothesis, 0H0 : p p=  ,and the alternative 1:H1 pp =   in which  is the unknown 

proportion of all products meeting the criteria. 

p
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If we denote a series of  observations by k ),....,( 1 kk XXX =  and the probability distribution 

of iX with 1P( ; ) (1 )i ix x
i iX x p p p −= = − , 

then the probability of these k  observations is given by 

0 0
1

0
1

(1 )i
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i
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=
= −∏  if H0 is true and  1

1 1 1
1

(1 )i

k
ix x

k
i

P p p −

=

= −∏  if H1 is true. 

The SPRT then chooses two constants A  and  with B A B<  and, after making every 

observation, computes the ratio of the probabilities  and the decision is made as 

follows: 

0 1/k kP P

1. if , then reject H0; 1 0/k kP P A≥

2. if , then accept H0; 1 0/k kP P B≤

3. if   (the critical inequality of the procedure) then take another observation. 1 0/k kB P P A< <

Intuitively, the procedure is: if the outcomes have much larger probability under H1 than under 

H0, i.e., the likelihood ratio is large, then reject H0; if the ratio is small, accept H0; and if the 

ratio has values within the critical interval, no decision is taken and sampling is continued. The 

constants A and  are dependent on the size of the acceptable decision errors.   B

In practice, the log likelihood ratio is evaluated. This ratio is equal to the sum over i of the 

terms 
1

1 1
1

0 0

(1 )
ln

(1 )

i i

i i

x x
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p p

Z
p p

−

−

⎡ ⎤−
= ⎢ ⎥

−⎣ ⎦
 . (1) 

If the acceptable decision errors are specified by  

 

α≤P( reject H0 H0 is true)  and  β≤P(accept H0 H1 is true)  ( ,α β small constants), (2) 

 

then the SPRT procedure is  

1. if 
1

ln ln
k

i
i

B Z
=

< <∑ A : take another observation 

2. if 
1

ln
k

i
i
Z A

=

≥∑ : reject H0 (3) 

3. if 
1

ln
k

i
i
Z B

=

≤∑ : accept H0.  

 

Wald (1947) has shown that the decision error rates are met if  

1A β
α
−

=  and 
1

B β
α

=
−

 . (4) 
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Furthermore, this SPRT procedure will then stop, with probability 1, with a decision in a finite 

number of observations.  

The SPRT was initially developed for situations in which there is a random sample of a 

variable with a discrete or continuous distribution with one parameter variable and two simple 

hypotheses on the value of that parameter. But the theory is generalized in various directions. 

For our purposes two more general situations are important: 

1. Although the SPRT stops with a finite number of observations with probability 1, in 

educational measurement, it is absolutely necessary to define a maximum test length 

. The procedure is then called the Truncated SPRT (TSPRT). maxk

2. The observations are not random draws from the same distribution, but are independent 

variables from not necessarily the same distribution.   

In the first application by Ferguson (1969), a maximum length was already specified, but the 

answers on the items were assumed to come from the same binomial distribution, which 

implies that all items have the same difficulty. In the CAT application, described next, this is 

not the case.  

 

Computerized adaptive testing 

In computerized adaptive tests (CATs), the construction and administration of the test is 

computerized and individualized. A different test is constructed for every test taker by 

selecting items from an item bank tailored to the ability of the test taker as demonstrated by 

the responses given thus far. CATs assume the availability of an item bank, which is 

calibrated with an item response model. Confining ourselves to item banks with items which 

are dichotomously scored, logistic item response models are commonly used. In item 

response theory (IRT), a relation is specified between the non-observable ability θ  that is to 

be estimated and the probability of correctly answering item . The exact relationship is 

determined by the parameters of the items. A commonly used IRT model is the two-parameter 

logistic model (2PL): 

i

 

exp( ( ))( ) P( 1 )
1 exp( ( ))

i i
i i

i i

a bp X
a b
θθ θ
θ
−

= = =
+ −

, (5) 

 

in which  is the location or difficulty parameter and  the discrimination parameter.  ib ia

In CATs the parameters of the IRT model are always assumed to be estimated with such 

precision that they can be considered to be known. In a CAT, the likelihood function of a  
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student’s ability, θ , plays a central role in the inference on the student.  Given the scores on 

items k , 1,...,ix i = k , this function is given by  

1
1

1

( , ) ( ; ,..., ) ( ) (1 ( ))θ θ θ θ −

=

= = −∏ i

k
ix x

k k i i
i

L x L x x p p , (6) 

which states the probability of getting the observed scores on the items as a function of θ . 

 

In CATs where the main aim is the efficient estimation of the ability θ  of an examinee, this 

likelihood function (6) is the basis for estimating the ability of an examinee as well as for the 

selection of items. The maximum likelihood (ML) estimate of the ability after administering 

items follows from the maximization (6) with respect to k θ . Because of less bias, the 

weighted maximum likelihood (WML) method proposed by Warm (1989) is a good alternative 

for ML.  WML follows, in the case of the 2PL model (5) from 
1/ 2

1
max I ( ) . ( ; )θθ θ

=
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L xθ  . (7) 

In (7), I ( )θi  is the Fisher information function of item , which is defined as the (statistical) 

expectation of the squared relative change of the likelihood function 

i
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This information function is commonly used for item selection in CATs:  an item is selected if it 

gives maximum information at the current ability estimate. This method ensures that each 

examinee is administered items which fit his ability and, consequently,  his ability is estimated 

efficiently.  

 

The SPRT in CAT

When classification in one of two categories is the purpose of testing in CAT, SPRT can be 

applied as follows. On the latent ability scale, a decision or cutting point 0θ  is given which 

distinguishes between, for example, a master and non-master, or between an examinee who 

passes and an examinee 

who fails an exam. A small region on both sides of this point, a so-called indifference zone, is 

selected. The widths of these regions are 1δ and 2δ . The indifference interval expresses the 

 6



fact that, owing to measurement errors, making the right decision about examinees very near 

the cutting point can never be guaranteed. One could also 

say that the interval expresses the indifference of an examiner to the classification of the 

examinees who are very near to the cutting point. Next, the statistical hypotheses are 

formulated: 

 

H0: 0 1 1θ θ δ θ≤ − =   against   H1: 0 2 2θ θ δ θ≥ + = . (8) 

 

If the acceptable decision error rates are specified as in (2), the test meeting these decision 

error rates uses as the test statistic, as mentioned above,  the ratio of the likelihood function 

under H1 and H0: 

 

),...,;(
),...,;();(

11

12
12

k

k
k xxL

xxLLR
θ
θ

θθ =  (9) 

 

and involves the following procedure: 

 

If Decision  

αβθθαβ /)1();()1/( 12 −<<− kLR  administer another item  

)1/();( 12 αβθθ −≤kLR  accept H0 (10)

αβθθ /)1();( 12 −≥kLR  Reject H0  

 

It can easily be shown (Eggen & Straetmans, 2000) that if the 2-PL model (5) is used, the 

critical inequality of this test can be written as  

 

12 1 2 1

(1 )ln ln
(1 ) k

i i
i

C C
a x

β β
α α

θ θ θ θ=

⎛ ⎞ −⎛ ⎞− −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠< <
− −∑  . (11) 

 

In this  

1

1 12 1

1 exp( ( )) 1 ( )ln ln
1 exp( ( )) 1 ( )

k k
i i i

i ii i i

a pC
a p

θ β θ
θ β θ= =

⎛ ⎞ ⎛+ − −
= =⎜ ⎟ ⎜+ − −⎝ ⎠ ⎝
∑ ∑ 2 ⎞

⎟
⎠

 (12) 

which depends only on the parameters of the items on 1θ and 2θ , which are all known 

constants in the procedure, This makes clear that the application of the SPRT is easy 

because the observed weighted score is compared to known constants.  
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Example 

The following example of a simulation study with an operational item bank (Eggen, 1999) 

illustrates the performance of the SPRT in CAT. This item bank contains 250 mathematics 

items which are used in adult education. Most of the items have an open-ended short answer 

format, but all the items are scored dichotomously. The items were shown to fit the one-

dimensional 2-PL model. The scale was fixed by restrictions on the item parameters. The 

mean item difficulty is 0, and the geometric mean of the discrimination parameters is 3.09. On 

this scale, the distribution of the ability in the population was estimated to be normal with a 

mean of .294 and a standard deviation of .522.  

The simulations were conducted as follows. An ability of a simulee was randomly drawn from 

. Three relatively easy starting items were selected and subsequent items 

were selected with the criterion of maximum Fisher information at the current ability estimate. 

The simulee's response to an item was generated according to the IRT model and this 

procedure was repeated for =5000 simulees.  

(0.294;0.522)N

N

For varying acceptable decision error rates and widths of the indifference zone (δ  is 

respectively 0.2 , 0.3 and 0.4 times the standard deviation of θ ), the performance of the 

procedure was evaluated with the mean number of items required to make a decision k and 

the classification accuracy expressed in the percentages of correct decisions (%cor). 

The cutting point on the ability scale in the simulations was 0 0.1θ = , and the maximum test 

length was  . The SPRT adaptive testing procedures were conducted for three 

different error rates and three different widths of the indifference zone. 

max 25K =

As a benchmark, the SPRT procedure was compared to a CAT procedure based on statistical 

estimation. The procedure proposed by Weiss and Kingsbury (1984), but using the Warm 

estimate of the ability (7), was conducted. After each item is administered, an estimate is 

made of the examinee's ability kθ  and of its standard error se( )kθ . Next, a confidence interval 

( .se( ), .se( ))k k k kθ γ θ θ γ θ− +  for the examinee's true ability is constructed, in which γ is a 

constant that is determined by the required accuracy. The procedure delivers another item as 

long as the cutting point 0 0.1θ = is within the interval. If not, the appropriate decision is made. 

In the comparison, the value for γ  was chosen such that about the same accuracy is reached 

as with the acceptable decision errors in the SPRTs. The results are in Table 1 
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Table 1: Mean number of required items ( k ) of percentage of correct decisions (%cor) in a problem 
with one cutting point θ =0 0.1. 

 SPRT Estimation 

 0.11δ =  0.16δ =  0.21δ =   

Error rate k  %cor k  %cor k  %cor k  %cor 

0.05α β= =  23.24 95.76 15.37 95.16 11.37 95.20 15.41 94.58 

0.075α β= =  20.35 95.32 13.54 95.02 9.89 94.70 13.40 94.56 

0.1α β= =  18.72 95.60 12.51 94.90  9.10 93.94 12.97 94.46 

 

The results show that applying the SPRT instead of a traditional estimation procedure possibly 

improves the performance of the CAT. A striking result is that the chosen acceptable decision 

error rates and also the chosen width of the indifference zone hardly influence the 

percentages of correct decisions, but have a major influence on the average number of items 

needed for taking this decision. It is clear that the number of items needed is larger with lower 

allowed error rates and with wider indifference zones. The small differences in the percentage 

correct decisions are always in the expected direction. 

 

Some extensions of the application of SPRT 

The SPRT procedure described above can also be applied to other IRT models and used for 

polytomously scored items (Allen Lau & Wang, 1998). Next, three other extensions of the 

SPRT application will be addressed. 

 

The SPRT in a three-category classification problem 

The Cat application of the SPRT is readily generalized to the case in which there are more 

than two decision categories. Following Eggen (1999),  the generalization to three categories 

will be described. In this case, there are two cutting points, 1θ  and 2θ , by which three levels of 

ability are distinguished. An indifference zone is identified around each cutting point: 

This is sketched schematically in Figure 1. 
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                                                                    Decision 

 

           Cat 1     Cat2             Cat3 

 11δ   12δ    21δ   22δ   

  11θ   1θ   12θ   21θ   2θ   22θ   

 

Figure 1. Schematic representation of the classification problem with three categories. 

 

Two pairs of hypotheses are formulated: 

 

H0_1: 1 11 11θ θ δ θ≤ − = against H1_1: 1 12 12θ θ δ θ≥ + =  

H0_2: 2 21 21θ θ δ θ≤ − = against H1_2: 2 22 22θ θ δ θ≥ + =  

 

The SPRT described in (10) is applied for each pair of hypotheses. The specification of the 

acceptable decision errors are 1 1,α β  and 2 2,α β , as defined in (2). Next, the two SPRTs are 

combined in one procedure.  The decisions to assign a person to a certain category are given 

in Table 2 . 

 

Table 2. Decisions based on combination of two SPRTs 
 Decision on test 1 

H0_1: 11θ θ≤  against H1_1: 12θ θ≥  

Decision on test 2 

H0_2: 21θ θ≤  against  H1_2: 22θ θ≥  

Accept H0_1 Reject H0_1 

Accept H0_2 Category 1 Category 2 

Reject H0_2   Category 3 

 

This combination procedure of the SPRTs originates from Sobel and Wald (1949). It can be 

shown that, by using the 2-PL IRT model (5) or any other model belonging to the exponential 

family, the simultaneous acceptance of the null hypothesis H0_1, and the rejection of H0_2 

cannot occur.  It is noted that Spray (1993) proposed extensions of the use of the SPRT for 

classification in three and more categories. Her generalization is based on the combination 

procedure developed by Armitage (1950) which uses the simultaneous application of three 

SPRTs for classification into three categories instead of only the two needed in the Sobel and 

Wald (1949) combination procedure proposed here. It is beyond the scope of this paper to 

discuss in detail the properties of these two combination procedures of SPRTs. 
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In the practical applications, the combined procedure operates as follows: 

 

If Decision 
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In all other cases Continue testing 

 

In this procedure is as in (12) with the appropriate corresponding constants filled in. From 

this it easily can be seen that if the width of the indifference intervals, e.g., 

C

22 21 12 22θ θ δ δ− = +  , 

increase a shorter test can probably be used to take a decision.  

 

Item selection 

An important part of a CAT algorithm is the item selection procedure, which during testing, 

determines the choice of the items which are administered. In CATs that use the SPRT, item 

selection is often based on a criterion which is in fact closely related to statistical estimation. 

Items are selected that maximize the item Fisher information, which means the item will be 

chosen that minimizes the expected contribution of an item to the standard error of the ability 

estimate of an examinee. An alternative is to base item selection procedures on the Kullback-

Leibler information (Cover & Thomas, 1991). The Kullback-Leibler information expresses the 

expected contribution of an item to the discriminatory power between two hypotheses and, in 

that sense, the K-L information fits the statistical testing algorithm more closely conceptually 

than Fisher information. Eggen (1999) has reported on the comparison of Fisher-based an 

Kullback Leibler-based information in CATs in combination with the application of the SPRT. 

In this context, with hypotheses H0: aθ θ= against H1: bθ θ= , the K-L information is given by 

 

1 1

( ; ) ( ; )
( ) ln (

( ; ) ( ; )

k k
kb b i

b a i b a
i ika a i

L x L x
K E E K

L x L x
θ θ

)θ θ
θ θ= =

= = =∑ ∑ θ θ . (13) 
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It can be seen to be a measure of the expected distance between the two likelihoods of the 

hypotheses. In the CAT-SPRT example, it consists of the sum of the contribution of all the 

items in the test and can be seen to be useful item information index. When the K-L test 

information, (13), is maximized by selecting items having a maximum contribution, the 

expected difference between the log likelihoods under both hypotheses is maximized. This is 

the same as making the likelihood ratio more extreme, which is, in turn, expected to minimize 

the number of items needed to take a decision because the test statistic is the likelihood ratio. 

In the case of the 2PL model (5), the K-L information is easily computed as 

 

1 ( )
( ) ( ) ( ) ln

1 ( )
i b

i b a i b a i b
i a

p
K a p

p
θ

θ θ θ θ θ
θ

⎛ ⎞−
= − + ⎜ ⎟⎜ ⎟−⎝ ⎠

 . 

 

Example (continued) 

The performance of the K-L item selection methods will be shown by an example using the 

same item bank and simulation design described in the above (Eggen (1999)) . For a 

classification problem in three categories, the cutting points were 1 0.13θ = − and 2 0.33θ =  

and the maximum test length was max 25k = . In this three-way classification problem, there 

are more possibilities for K-L item selection. The first is to select the item which maximizes the 

K-L information at two fixed points. Possible choices are (see Figure 1):  

K2a. 1 1a 2θ θ δ= + and 2 2b 1θ θ δ= −   

K2b. 1aθ θ= and 2bθ θ=   and  

K2c. 1 1a 1θ θ δ= − and 2 2b 2θ θ δ= + . 

In each case the items will be selected with maximum information to distinguish between two 

hypotheses. This may cause a problem because a decision in one of three categories is 

needed.  One way to deal with this problem is to look for the nearest cutting point and to 

select the items with maximum K-L information around this cutting point (K3). The nearest 

cutting point is determined without estimation by comparison of the score with the midpoints of 

the critical intervals of the tests. As a benchmark, in the comparison the same method for 

finding the cutting point is combined with selecting the item maximum Fisher information at 

this point (F3). 

 

The results of the comparison when the error rates are all 0.05 or 0.1 and with 0.13δ =  are 

presented in Table 3. 
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Table 3. Mean number of required items ( k ) of percentage of correct decisions (%cor) in a problem 

with two cutting points θ = −1 0.13 and θ =2 0.33 .  

 Error rates 

 0.05 0.1 

Selection k  %cor k  %cor 

K2-a 18.7 89.5 16.3 88.1 

K2-b 18.4 88.4 16.3 88.6 

K2-c 18.7 87.9 16.4 88.6 

K-3 16.8 90.1 14.2 89.4 

F 16.8 89.6 14.3 88.5 

 

A comparison of the selection methods shows that the differences between them 

are consistent over the different error rates. Furthermore, it is seen that varying the exact fixed 

points for which the K-L information is computed has no impact on the performance of the 

adaptive test. All three methods designed for distinguishing between two points, K2-a, K2-b, 

and K2-c, perform about the same. But the performance of these “two points” methods is 

clearly worse than the methods in which during testing first the “best” cutting point is selected 

and then the item with maximum information. It is seen that, in the latter case, there are no big 

differences in the performance of the adaptive tests when either the Fisher or Kullback-

Leibner information is used.  

 

Stochastic curtailment of the TSPRT 

Finkelman (2004, 2008) recently introduced the application of stochastic curtailment  to 

enhance the performance of the Truncuated SPRT in educational testing. The idea of this 

method is to stop testing sooner without losing accuracy. The method of curtailment 

determines whether further testing will possibly change a classification decision which would 

be taken if testing were stopped directly. Stochastic curtailment (Lan, Simon & Halperin, 1982) 

also extends the observation to the case in which a change in decision is possible but unlikely. 

In an example, Finkelman (2004) showed that in the case of one cutting point, a reduction of 

20% in the number of items needed, while keeping the same accuracy, can be reached by 

applying stochastic curtailment. 
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Conclusion 

The sequential probability ratio test has been shown to be a very useful statistical procedure. 

In this paper the applications in the context of educational testing were explored. If 

classification in a limited number of categories is the main goal of computerized adaptive 

testing, the (combination of more) SPRT gives very efficient algorithms.    

 14



References 

 

Armitage, P. (1950). Sequential analysis with more than two alternative hypotheses, and its 

relation to discriminant function analysis. Journal of the Royal Statistical Society, B, 12, 

137-144. 

 

Allen Lau, C. & Wang T. (1998). Comparing and Combining Dichotomous and Polytomous 

Items with SPRT Procedure in Computerized Classification Testing. Paper AERA, San 

Diego, April 1998.  

 

Cover, T.M. & Thomas, J.A. (1991). Elements of information theory. New York: Wiley. 

 

Eggen, T.J.H.M. (1999). Item selection with adaptive testing with the sequential probability 

ratio test. Applied Psychological Measurement, 23, 249-261. 

 

Eggen, T.J.H.M & Straetmans, G.J.J.M. (2000). Computerized adaptive testing for classifying 

examinees into three categories. Educational and Psychological Measurement, 66, 713-

734. 

 

Ferguson, R.L. (1969). The development, implementation, and evaluation of a computer-

assisted branched test for a program of individually prescribed instruction. Unpublished 

doctoral dissertation, University of Pittsburgh, Pittsburgh PA.   

 

Finkelman, M . (2004). Statistical issues in computerized adaptive testing. Unpublished 

doctoral dissertation, Standford University, California.  

 

Finkelman, M . (2008). On Using Stochastic Curtailment to Shorten the SPRT in Sequential 

Mastery Testing.  Journal of Educational and Behavioral Statistics. 

 

Ghosh, B.K. & Sen, P.K. (1991).  Handbook of Sequential Analysis. Marcel Dekker, Inc: 

New York. 

 

Lan, K.K.G., Simon, R., & Halperin, M. (1982). Stochastically Curtailed Tests in Long-Term 

Clinical Trials. Communications in Statistics- Sequential Analysis, 1, 207-219. 

 

Lewis, C. & Sheenan, K. (1990). Using Baysian decion theory to design a computerized 

mastery test.  Applied Psychological Measurement, 14, 376-386. 

 15



Neyman, J & Pearson, E.S. (1933). On the problem of the most efficient tests of statistical 

hypotheses. Philosophical Transactions of the Royal Society of London. Series  A,  231, 

289-337. 

 

Reckase, M.D. (1983). A procedure for decision making using tailored testing. In: D.J. Weiss 

(Ed.), New horizons in testing (pp. 237-255). New York: Academic Press. 

 

Sobel, M., & Wald, A. (1949). A sequential decision procedure for choosing one of three 

hypotheses concerning the unknown mean of a normal distribution. Annals of 

Mathematical Statistics, 20, 502-522. 

 

Spray, J.A. (1993). Multiple-category classification using a sequential probability ratio test. 

(Research report 93-7). Iowa City: American College Testing. 

 

Wald,  A. (1947).  Sequential Analysis. Wiley: New York. 

 

Warm, T.A. (1989). Weighted maximum likelihood estimation of ability in item response  

theory. Psychometrika,54, 427-450. 

 

 16


	voorbl.2008-2.pdf
	Measurement and Research Department Reports                                             2008-2 
	The Sequential Probability Ratio Test in  
	Educational Testing 
	 
	 
	Measurement and Research Department Reports                          2008-2 



	2008-2.pdf

