
Balancing simple models and complex reality
Contributions to item response theory

in educational measurement

Het balanceren van simpele modellen
en de complexe werkelijkheid

Bijdragen aan de item respons theorie
voor het onderwijskundig meten

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op
gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge

het besluit van het college voor promoties in het openbaar te
verdedigen op vrijdag 13 mei 2016 des middags te 12.45 uur

door

Maria Bolsinova

geboren op 15 oktober 1988
te Moskou, Rusland



Promotoren: Prof. dr. H. Hoijtink
Prof. dr. G.K.J. Maris

This thesis was (partly) accomplished with financial support from CITO Dutch
National Institute for Educational Measurement



Contents

1 Introduction 7
1.1 Outline of Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Outline of Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I Contributions to modeling response time and accuracy 13

2 A test for conditional independence 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Testing CI between response time and accuracy . . . . . . . . . . . 17
2.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Posterior predictive checks for CI 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Model specification, estimation and PPC . . . . . . . . . . . . . . . 39
3.3 Discrepancy measures . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Test level decision criterion . . . . . . . . . . . . . . . . . . 42
3.4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Specificity of the PPC . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Sensitivity of the PPC . . . . . . . . . . . . . . . . . . . . . 47

3.5 Empirical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Modeling conditional dependence 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Specification of the hierarchical model . . . . . . . . . . . . . . . . 66
4.3 Motivating example: violation of conditional independence . . . . . 67
4.4 Residual log response time as a covariate for the parameters of the

ICC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3



4.4.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.3 Model selection and Goodness-of-fit . . . . . . . . . . . . . 75

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.1 Fitted models . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.4 Posterior predictive checks . . . . . . . . . . . . . . . . . . . 77
4.5.5 Effect of residual time on the ICC . . . . . . . . . . . . . . 78
4.5.6 Sensitivity analysis: robustness to outliers . . . . . . . . . . 82

4.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

II Bayesian contributions to item response theory 91

5 Unmixing Rasch scales 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 State examination of Dutch as a second language . . . . . . . . . . 95
5.3 Relaxing the assumptions of the Rasch model . . . . . . . . . . . . 97
5.4 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Mixture of Rasch scales . . . . . . . . . . . . . . . . . . . . 100
5.4.2 Density of the data, prior and posterior distributions . . . . 102

5.5 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.1 Algorithm for unmixing Rasch scales . . . . . . . . . . . . . 103
5.5.2 Determining the number of scales . . . . . . . . . . . . . . . 107

5.6 Evaluation of the MCMC algorithm . . . . . . . . . . . . . . . . . 108
5.7 Choosing a scoring rule for the NT2 exam . . . . . . . . . . . . . . 110

5.7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.7.2 Unmixing Rasch scales . . . . . . . . . . . . . . . . . . . . . 110
5.7.3 Cross-validation of the unmixed scales . . . . . . . . . . . . 111

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.9 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Using expert knowledge for test linking 125
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Measurement model and equating design . . . . . . . . . . . . . . . 128
6.3 Elicitation of prior knowledge for test linking . . . . . . . . . . . . 130

6.3.1 Adaptation of the Angoff method . . . . . . . . . . . . . . . 130
6.3.2 Rulers method . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Empirical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4



6.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4.3 Expert elicitation. Study 1 . . . . . . . . . . . . . . . . . . 140
6.4.4 Expert elicitation. Study 2 . . . . . . . . . . . . . . . . . . 148

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7 Can IRT solve the missing data problem? 159
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2 Why IRT cannot solve the missing data problem . . . . . . . . . . 161
7.3 What IRT allows us to infer about the distribution of missing re-

sponses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.3.1 A simple case: m = 1 . . . . . . . . . . . . . . . . . . . . . 164
7.3.2 Simulated examples . . . . . . . . . . . . . . . . . . . . . . 168

7.4 Empirical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.4.1 Method and data . . . . . . . . . . . . . . . . . . . . . . . . 172
7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8 Epilogue 183

5



6



Chapter 1

Introduction

Essentially, all models are wrong,
but some are useful.

George E.P. Box

In educational measurement, data obtained using educational tests are gath-
ered both for practical and scientific purposes, for example for individual assess-
ment or to study the effects of educational policies. While these data often have
a very complex structure, we try to capture their most important aspects with
relatively simple models. The reason is that statistical models are needed to make
inferences about the unobservable constructs of interest (e.g., reading ability, for-
eign language proficiency, and arithmetic ability) on the basis of observed test
data. A general and commonly used framework for modeling data from tests is
item response theory [IRT].

IRT focuses on observed item responses and using relatively simple models
explains (predicts) item responses by item and person characteristics, and their
interactions. Various parametric IRT models specify the so called item response
functions for the relationship between the observed response and the latent vari-
able (usually called ability or proficiency in the context of educational measure-
ment). This allows one to estimate the level of ability given the response data.
In this dissertation IRT models for dichotomous data (i.e., each response is ei-
ther correct or incorrect) are considered. For a comprehensive overview of IRT,
the reader is referred to Lord and Novick (1968), Lord (1980), Hambleton and
Swaminathan (1985), and van der Linden and Hambleton (1997).

This dissertation presents various contributions to item response theory in ed-
ucational measurement which in one way or another search for an optimal balance
between simple models and complex reality. The dissertation consists of two parts:
Part I presents contributions to modeling response time and accuracy and Part II
presents Bayesian contributions to IRT. The final chapter concludes with an epi-
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Chapter 1

logue reflecting upon the main results of the dissertation and discussing some
suggestions for further research.

1.1 Outline of Part I

Educational testing is increasingly carried out in a computerised form instead of a
traditional paper-and-pencil form. This allows one to record not only the responses
given by the students but also how long it takes them to respond. A wide range
of IRT literature deals with developing ways of incorporating response time data
into measurement models with the aims of, for example, improving the precision of
ability estimation, identifying aberrant response behaviour, or explaining response
processes (for an overview see Lee & Chen, 2001; van der Linden, 2009).

When jointly modeling the response times and the response accuracy it is often
assumed that they can be modelled by a set of latent variables, usually called abil-
ity and speed. It is also often assumed that the relationship between the response
accuracy and the response time can be fully explained by the relationship between
the latent variables. That is, conditional independence between the response time
and accuracy is assumed given the latent variables. In other words, although cor-
rect responses might be on average slower or faster than incorrect responses, when
the latent variables are taken into account there are no differences between the
distributions of the response times of correct and incorrect responses.

The conditional independence assumption is important both from the statisti-
cal and the substantive point of view (van der Linden, 2009). If one also assumes
that response accuracy depends only on the ability latent variable and response
time depends only on the speed latent variable, as is done in the hierarchical
framework for modeling response time accuracy (van der Linden, 2007), then one
obtains a model with a simple structure. Under this model very clear interpreta-
tions of speed and ability latent variables would be available and unconfounded
measurement of the two would be warranted.

However, conditional independence is an assumption which may be violated
in practice, and testing it is an important step in modeling response time and
accuracy jointly. Chapters 2 and 3 of this dissertation present two methods for
testing this assumption. In Chapter 2, we propose to test conditional independence
using Kolmogorov-Smirnov tests (Kolmogorov, 1933). The equality of the response
time distributions given a correct and an incorrect response is tested in every
subgroup of persons with the same value of the sufficient statistic for ability. This
test is of a semi-parametric nature: It is parametric with respect to the model
for response accuracy (i.e., an exponential family model is required), but non-
parametric with respect to the model for response times and the type of violation
of conditional independence against which the assumption is tested. The Type I
and Type II error rates of the procedure are investigated in simulation studies and
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its use is illustrated in an educational measurement application.
In Chapter 3, posterior predictive checks (Rubin, 1984; Meng, 1994; Gelman,

Meng, & Stern, 1996) for conditional independence are proposed which focus on
different possible consequences of conditional dependence: residual correlations be-
tween response time and accuracy given ability and speed, difference between the
variances of response times of the correct and incorrect responses, and difference
between the item-rest correlations of the slow and the fast responses. Specificity,
sensitivity, and robustness of the procedure are evaluated in simulation studies.
Furthermore, an example of applying the procedure to an educational test is pre-
sented.

If the assumption of conditional independence is retained after being tested,
then standard models based on this assumption can be applied. However, in prac-
tical educational measurement applications there might be residual dependencies
between response times and response accuracies that cannot be explained by the
latent variables (Ranger & Ortner, 2012). In Chapter 4, we focus on one applica-
tion like this and propose an extension of the hierarchical model for response time
and accuracy (van der Linden, 2007) which takes the conditional dependencies
into account. The effects of the residual response time (i.e., the response being
relatively fast or slow compared to what would have been expected for this person
on this item) on both the intercept and the slope of the item response function
are incorporated in the model.

1.2 Outline of Part II

The chapters in the second part of the dissertation are connected to each other not
by the substantive questions which are addressed, but by the statistical framework
that they have in common, namely Bayesian statistical inference. For a general
introduction to this framework see, for example, Gelman, Carlin, Stern and Rubin
(1995) and Gill (2008). Two important properties of the Bayesian framework which
make it very useful in the context of item response theory are that it enables one
to estimate very complex models using its powerful simulation-based techniques
and that it allows one to include background information beyond the observed
data in the analysis.

From the Bayesian perspective the parameters in the statistical model are con-
sidered to be random variables. The full specification of a statistical model includes
the specification of the data generating distribution (density of the data) and the
prior distribution of the model parameters. The latter includes possible knowl-
edge about the plausible values of the parameters before observing the data, for
example collected from experts. The density of the data and the prior distribution
are combined in the posterior distribution which represents the knowledge about
which values the model parameters are likely to have given the observed data.
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Inferences are made based on this posterior distribution. The so called Markov
chain Monte Carlo methods [MCMC] can be used to sample from the posterior
distribution even if it is highly multidimensional and does not have a closed form
(Hastings, 1970; Gelfand & Smith, 1990; Tierney, 1994; Robert & Casella, 2004;
Gamerman & Lopes, 2006). This provides a relatively simple and straightforward
way of estimating models with a large number of parameters which are much more
difficult to estimate using classical frequentist methods.

In Chapter 5 the usefulness of the Bayesian approach for estimating complex
multidimensional models is highlighted. In this research project we provide a
solution to the problem of choosing a scoring rule for an educational test. We argue
for the use of scoring rules which are simple and easy to interpret but contain all
the information about the person’s ability. The simplest scoring rule like that is
the using the sumscore (i.e., number of correct responses), which follows from the
Rasch model (Rasch, 1960). However, this model is often too restrictive to fit real
data. Therefore, a new extension of the Rasch model is proposed which relaxes
some of its assumptions but still has a rather simple scoring rule. We call this new
model a multi-scale Rasch model, since it assumes that the test consists of a set
of scales each following a Rasch model, but the scale memberships of the items
are not known a priori and need to be estimated. Once the scales are identified,
the test can be scored with a set of sumscores in each of the scales, since these
sumscores contain all the information about persons’ abilities measured by the
scales. An MCMC algorithm for identifying the Rasch scales is developed and
evaluated.

In Chapter 6 we illustrate the second advantage of the Bayesian statistical
framework introduced in the beginning of this section, namely the possibility of
including prior knowledge in the analysis. The substantive problem that we focus
on is making the results of different test versions comparable using linking and
equating procedures (for a comprehensive overview of linking and equating see
Kolen and Brennan, 2004). If a new test version is used each year, then the new
test results are not directly comparable to the results of the reference test version
due to possible differences in difficulty of the two tests and possible differences in
the ability distribution in the new and the reference population. In high-stakes
testing the amount of data that are available to link the reference and the new test
is often very limited due to security reasons, which leads to low precision of the
linking results. We propose and evaluate two methods for the elicitation of prior
knowledge about the difference in difficulty of the two tests from subject-matter
experts. This prior knowledge is included in test linking procedures in the form
of prior distributions to improve the quality of linking. Two empirical elicitation
studies for the primary school arithmetics test are presented.

In Chapter 7 the following attractive feature of the Bayesian estimation tech-
niques is used: It allows one to take different sources of uncertainly about the
model parameters into account. If some model parameters are not fully identified
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it is still possible to sample from their posterior distribution, and their posterior
variance would include both the uncertainty due to sampling variability in the data
as well as the uncertainty due to the non-identifiability. Using a simulation-based
approach it is possible to attempt to separate these two types of uncertainty and
hence assess the impact that non-identifiability has on the model inferences. In
this chapter, this is investigated in the context of the distribution of the missing
data in incomplete non-equivalent group testing designs. We show that while the
distribution of the unobserved scores of the reference population on the new test is
not fully identified, the uncertainty about this score distribution is very small and
can be ignored in practice. Furthermore, we demonstrate using simulated and real
data examples that ignoring the non-identifiability issue while assuming a normal
distribution for ability may lead to bias in test equating.
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Contributions to modeling
response time and accuracy
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Chapter 2

A test for conditional
independence between response
time and accuracy

1 Abstract. An important distinction between different models for response time
and accuracy is whether conditional independence (CI) between response time and
accuracy is assumed. In the present study, a test for CI given an exponential family
model for accuracy (for example, the Rasch model or the One Parameter Logistic
model) is proposed and evaluated in a simulation study. The procedure is based
on the non-parametric Kolmogorov-Smirnov tests. As an illustrative example, the
CI test was applied to data of an arithmetics test for secondary education.
Keywords: conditional independence, item response theory, Kolmogorov-Smirnov
tests, response times, sufficiency.

2.1 Introduction

Computer based testing makes it simple to record not only the response a student
gives to an item, but also the response time. Response times provide an additional
source of information about student’s performance. There are different approaches
to modeling response times within item response theory (IRT). In the last decade
the most popular approach is joint modeling of the distribution of response time
and accuracy:

f(X = x,T = t |Θ = θ,H = η, ξ), (2.1)

1This chapter has been published as Bolsinova, M., & Maris, G. (2016) A test for conditional
independence between response time and accuracy. British Journal of Mathematical and Statis-
tical Psychology DOI: 10.1111/bmsp.12059. Author contributions: B.M. and M.G. designed the
research, B.M. performed the research, B.M. wrote the paper, M.G. provided feedback on the
paper.
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where X is a random vector of responses with realisations x = 1 if it is correct
and x = 0 if it is incorrect for each element Xi,∀i ∈ [1 : n], T is a random
vector of response times with realisations t, Θ and H are random latent variables
representing ability and speed with realisations θ and η, and ξ are item parameters,
including item characteristics related to time. For shorter notation, we will use

f(x, t | θ, η) (2.2)

instead of (2.1) throughout the paper.
When modeling this joint distribution, one of the main questions is whether for

each item i the response Xi and the response time Ti are independent conditional
on the latent variables; that is

Xi ⊥⊥ Ti |Θ, H. (2.3)

For example, in the hierarchical framework (van der Linden, 2007) a multilevel
model for X and T is built on the assumption of conditional independence [CI]
with all the dependence between responses and response times absorbed in the
higher-level correlation between the latent variables Θ and H. This assumption is
also crucial for the drift diffusion model (Ratcliff, 1978; Tuerlinckx & De Boeck,
2005; Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006).

At the same time, there are models that allow conditional dependence between
response time and accuracy (Ranger & Ortner, 2012). Moreover, some models
assume a certain sort of dependence between Xi and Ti, like some of the race
models (Pike, 1973; Townsend & Ashby, 1983) and the Signed residual time [SRT]
model (Maris & van der Maas, 2012). According to the latter model, the highly
able students tend to give fast correct responses and slow incorrect responses,
whereas the students with low ability give slow correct responses and fast incorrect
responses.

We have to emphasise that independence is assumed conditional on the par-
ticular set of latent variables. If it is violated, it does not mean that there may
not exist another set of latent variables conditional on which Xi and Ti are inde-
pendent.

The assumption of CI betweenXi and Ti is attractive from a statistical point of
view, but in real applications there might be sources of violation of this assumption.
For example, the speed with which a student answers test items can fluctuate
unsystematically, or attention may fluctuate randomly (Pieters & van der Ven,
1982). Another possible explanation for the dependence between Xi and Ti is
that fast and slow responses are governed by different cognitive processes, such
that different IRT models hold for the fast and the slow responses (Partchev &
De Boeck, 2012).

Testing the assumption of CI is very important because if this assumption does
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not hold, then such models as the diffusion models and the hierarchical models
cannot be true. On the other hand, if it does hold, then an equally large number
of models (such as most race models) cannot be true, because they imply some
kind of dependence.

The CI assumption as stated in (2.3) cannot be directly tested because θ and
η are unobservable. A testable statement implied by the CI assumption must be
formulated. We will show in the next section that, if the marginal model for X
is an exponential family IRT model, CI implies that given a sufficient statistic
S(X) the distribution of response times should not differ between the groups of
respondents with correct and incorrect responses. In this study we propose a
procedure for testing the CI assumption in this form:

f(ti|Xi = 1, S(X) = s) = f(ti|Xi = 0, S(X) = s). (2.4)

The approach we take in this paper is of a semi-parametric nature. The purpose
is to test the assumption of CI in isolation from other assumptions about the joint
distribution of X and T, but under the assumption of sufficiency of S(X). We are
interested not in formulating a specific detailed model for the joint distribution of
responses and response times, but in testing general assumptions to rule out models
that cannot be true if these assumptions do not hold. Because of the assumption
of sufficiency of S(X), our approach is parametric with respect to modeling the
probability of a correct response, but it is non-parametric with respect to modeling
the response times and the joint distribution of X and T.

The paper is organised as following. In Section 2.2, we discuss how the non-
parametric Kolmogorov-Smirnov test can be used to test the assumption of CI
between response time and accuracy. In Section 2.3, a simulation study is pre-
sented. In Section 2.4, we present an illustrative example. The paper ends with a
discussion.

2.2 Testing CI between response time and accuracy

Van der Linden and Glas (2010) used the Lagrange Multiplier [LM] test for testing
the null hypothesis of the CI between responses and response times against a
parametric alternative. Under the null hypothesis, responses and response times
to item i are assumed to be independent given ability θ and speed η. Hence,
the joint distribution of the responses and response times is the product of their
marginal distributions:

f(xi, ti|θ, η) = f(xi|θ)f(ti|η). (2.5)
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Note, that Equation 2.5 is derived using additional assumptions:

f(xi | θ, η) = f(xi | θ), (2.6)

f(ti | θ, η) = f(ti | η). (2.7)

Under the alternative, response times are distributed differently for Xi = 0 and
Xi = 1, and this difference is modelled by adding an extra parameter λi to the
response times model. This parameter is the shift in the distribution of Ti for the
correct responses relative to the incorrect responses. Hence, the CI assumption is
tested against a specific parametric alternative; that is, one has to have appropriate
extra parameters for the test to work. A problem with this approach is that after
adding a new parameter to the model, the marginal distributions of X and T are
no longer explained by the same IRT model and response time models.

Another disadvantage of the LM test is that although it is meant as an item
level test, a test for one item is dependent on whether CI holds for all other items.
The null hypothesis is:

H0i : λi = 0, λj = 0, ∀j 6= i, (2.8)

and the alternative is:
Hai : λi 6= 0, λj = 0, ∀j 6= i. (2.9)

If CI is violated for some of the items j 6= i, then H0i may have a high probability
of being rejected due to misspecification of these λjs even if λi is actually 0.

Unlike the parametric approach described above, we propose to test the CI
assumption without having to specify a parametric model for this dependence.
The non-parametric test is constructed in such a way that the null hypothesis is
tested against the alternative of any kind of dependence. The LM test would have
better results in the cases of dependence of the same form as it is modelled by
the additional parameter λi. But it is not appropriate and it is likely to perform
worse if the dependence between Xi and Ti is of a different kind.

Because we want to avoid being committed a specific model for response times,
it is important to note, that CI between response time and accuracy given θ and η
(as in Equation 2.5) together with the assumptions in (2.6) and (2.7) implies that
response time and accuracy are independent given θ only:

f(xi, ti|θ) =

∫
R

f(xi|θ)f(ti|η)f(η|θ)dη = f(xi|θ)
∫
R

f(ti|η)f(η|θ)dη =

= f(xi|θ)f(ti|θ)⇐⇒ Ti ⊥⊥ Xi|Θ. (2.10)

Thus, CI can be tested by considering the distribution of Xi and Ti given θ and
we do not need to condition on η.
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In many cases, the response accuracy alone is modelled using simple IRT mod-
els like the Rasch model [RM] (Rasch, 1960), in which the probability of a correct
response of person p to item i is predicted from the difficulty of the item (βi) and
the ability of the person (θp):

Pr(Xpi = 1) =
exp(θp − βi)

1 + exp(θp − βi)
. (2.11)

For example, the SRT model (Maris & van der Maas, 2012) implies the RM for
response accuracy. The probability of a correct response for an unbiased diffusion
model (Ratcliff, 1978) can also be represented as a RM if the boundary separation
is determined by an experimental condition and does not vary across the items
(Tuerlinckx & De Boeck, 2005). While these models amount to having a RM
for the marginal distribution of X, they differ in whether they assume the CI
assumption when modeling a joint distribution of X and T.

An important property of the RM is that it belongs to the exponential family,
meaning that there exists a sufficient statistic S(X) summarising all the informa-
tion about the ability contained in the response vector. Having a sufficient statistic
is equivalent to the following CI assumption (Dawid, 1979):

X ⊥⊥ Θ |S(X). (2.12)

In the RM the number of items answered correctly is a sufficient statistic. A
more flexible model allowing items to have different weights in the estimation of
ability is the One parameter logistic model [OPLM] (Verhelst & Glas, 1995) which
has the weighted sumscore

∑
i aiXpi as the sufficient statistic, where ai is a pre-

specified item weight of item i which is restricted to positive integers. Another
example of an IRT model with the number of correct responses as the sufficient
statistic for θ is the interaction model (Haberman, 2007). Furthermore, even more
flexible models can be considered with the number of correct responses as the
sufficient statistic, for example a model with a separate item parameter for each
score group which is used for testing the fit of the Rasch model (Andersen, 1973).

We shall prove next, that if the IRT model holds and if CI between Xi and Ti
holds, then the distributions of Ti for a correct and an incorrect response are the
same given the value of the sufficient statistic.

Theorem. If X ⊥⊥ Θ|S(X) and X ⊥⊥ T|Θ, then

(Ti|Xi = 1, S(X) = s) ∼ (Ti|Xi = 0, S(X) = s)

Proof. Let us denote by S(X(i)) the sufficient statistic computed for the vector X
excluding item i.
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f(ti|Xi=1, S(X)=s) =

∫
R

f(ti|θ,Xi=1, S(X)=s)f(θ|Xi=1, S(X)=s)dθ

↓ X ⊥⊥ T|Θ

=

∫
R

f(ti | θ)f(θ|Xi = 1, S(X) = s)dθ

↓ X ⊥⊥ Θ|S(X)

=

∫
R

f(ti | θ)f(θ|S(X) = s)dθ

↓ X ⊥⊥ Θ|S(X)

=

∫
R

f(ti | θ)f(θ|Xi = 0, S(X(i)) = s)dθ

= f(ti |Xi = 0, S(X) = s)

A violation of the equality of the distributions in (2.4) can be attributed either
to a violation of the sufficiency of S(X), such that the IRT model does not hold,
or to a violation of CI. But if the exponential family IRT model holds for the
response accuracy taken alone, the decision to take the response times into account
should not change it. Thus, a difference between the distributions in (2.4) implies a
violation of the CI assumption, given the sufficiency of S(X) for response accuracy.

Having a sufficient statistic is important because it allows one to match the
distributions of ability given different response patterns:

f(θ |Xi = 1, S(X(i)) = s−∆i) = f(θ |Xi = 0, S(X(i)) = s), (2.13)

where ∆i is the difference between the values of the sufficient statistic for two
response vectors which differ only in the value of Xi, which is equal to ai in the
OPLM and to 1 in the RM.

More generally the same approach to testing CI can be used in non-exponential
family models if for a target item i there exist different response patterns X(i) = y
and X(i) = z such that the conditional distributions of the ability are equal:

f(θ |Xi = 1,X(i) = y) = f(θ |Xi = 0,X(i) = z). (2.14)

The response patterns that provide matching distributions of ability can be in
principle empirically determined with large enough sample size. Then CI can be
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tested by testing the equality of the distributions:

f(ti |Xi = 1,X(i) = y) = f(ti |Xi = 0,X(i) = z). (2.15)

To test the equality of distributions in (2.4), we can use any statistic based
on empirical distribution functions. A particular statistic of this kind is the
Kolmogorov-Smirnov statistic, which is equal to the maximum of the absolute
value of the discrepancy between the empirical distribution functions of the ran-
dom variables Y1 and Y2:

D = max
y
|Fn(y)−Gm(y)|, (2.16)

where Fn(y) is the proportion of observations of Y1 smaller than or equal to y,
and Gm(y) is the proportion of observations of Y2 smaller than or equal to y. This
statistic is consistent and has known exact and asymptotic distributions under
H0 : Y1 ∼ Y2 (Kolmogorov, 1933).

We can divide the persons into groups conditional on their sufficient statistics
and test whether within each group response times for correct responses have the
same distribution as response times for incorrect responses. For each item i we
test for all values of s whether (2.4) holds. Let us by n+

is and n−is denote the
number of respondents with a sufficient statistic equal to s giving a correct and
an incorrect response to item i, respectively. If (2.4) holds, then the maximum of
the discrepancy between the empirical distributions of Ti |Xi = 1, S(X) = s and
Ti |Xi = 0, S(X) = s, denoted by Dis, has the following distribution:

Pr {Dis ≤ d} = 1− 2
∞∑
k=1

(−1)k+1 exp

−2k2

(
d

√
n+
isn
−
is

n+
is + n−is

)2
. (2.17)

If the probability Pr{Dis ≥ d} is smaller than a chosen significance level α for the
observed value d of the discrepancy between the empirical distributions in (2.4),
then the hypothesis of the equality of these distributions is rejected. The equality
of the empirical distributions in (2.4) can be tested only if there is at least one
correct response and one incorrect response to item i among the persons with the
sufficient statistic equal to s.

The CI test consists of multiple comparisons: a Kolmogorov-Smirnov test re-
sulting in a p-value pis is performed for each item i and each value of the sufficient
statistic s testing the null-hypothesis

H
(is)
0 : Ti |Xi = 1, S(X) = s ∼ Ti |Xi = 0, S(X) = s. (2.18)

First, for each item a Kolmogorov-Smirnov test is performed for several s.
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Based on these tests for different s, we test (2.4) for an item across all the values
of the sufficient statistic:

H
(i)
0 : H

(is)
0 is true for all s. (2.19)

Each of these tests is performed on a separate part of the data: a group of students
with a certain value of the sufficient statistic; therefore, these tests are indepen-
dent. If a null-hypothesis holds for k independent tests, then the p-values of those
tests are independently and identically uniformly distributed. Therefore, to test
(2.19) we can test whether the p-values from testing separate H is

0 are uniformly
distributed:

H
(i)
0 is true =⇒ pis ∼iid U(0, 1), (2.20)

Using the one-sample Kolmogorov-Smirnov test, the H(i)
0 is tested against the one-

sided alternative H(i)
1 : pis <st U(0, 1), meaning that the uniform distribution is

stochastically greater than the distribution function of pis. This alternative is used
because if H(is)

0 is not true, then pis tends to be small. The p-value of this test,
denoted by pi, will indicate whether CI holds for item i. The Kolmogorov-Smirnov
test is chosen here over other alternatives, such as the Fisher’s method (Fisher,
1925), because exploratory analysis indicated that it seems to be a relatively more
powerful procedure in this context.

We prefer testing the uniformity of pis over using a multiple testing correction
of the p-values for two reasons. First, we are more interested in directly testing
the hypothesis H(i)

0 itself, rather than in deciding which of the pis are significant.
Second, we expect that in realistic applications if the CI is violated then H

(is)
0

would not be true for a range of s and not just for one or two values of the
sufficient statistic. In this case testing uniformity would have a higher power than
a multiple testing correction, since H(i)

0 will be rejected if none of the individual
p-values is smaller than .05, but many of them tend to be small.

The proposed test should work with both short and long tests. For long tests,
the power of the separate tests of H(is)

0 may be relatively low, since there may be
few persons with a particular value of the sufficient statistic. However, at the level
of testing H(i)

0 power is re-gained because information from many individual tests
is aggregated. On the other hand, if there are few items on a test and, hence, few
pis per item, then H(i)

0 is tested using a relatively small number of piss. However,
this does not need to result in a low power for testing H(i)

0 because the piss are
the results of relatively powerful tests.

In addition to tests for individual items, we want to know whether CI holds
for all the items in the test:

H0 : H
(i)
0 is true for all i. (2.21)
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The uniformity of the p-values pis is tested for n items. Unlike the tests of H(is)
0 ,

these n tests are performed on the same data. Since the tests are not independent,
the joint distribution of their p-values is not known. Therefore, in this case we
employ a multiple testing correction. We can use, for instance, the minimum
and the maximum values of pi to determine whether pi have marginal uniform
distributions without specifying the dependence between them.

Pr
(

min(pi) ≤ p
)

= Pr
(⋃

i

(pi ≤ p)
)
; (2.22)

Pr
(

max(pi) ≤ p
)

= Pr
(⋂

i

(pi ≤ p)
)
. (2.23)

The right-hand sides of the equations can be bounded using Fréchet inequalities
with the probability under perfect positive dependence as the upper bound and
the probability under perfect negative dependence as the lower bound (Fréchet,
1951):

max
(

Pr(pi ≤ p)
)
≤ Pr

(⋃
i

(pi ≤ p)
)
≤ min

(
1,
∑
i

Pr(pi ≤ p)
)

p ≤ Pr{min(pi) ≤ p} ≤ min(1, np)

max
(
0, 1− n+

∑
i

Pr(pi ≤ p)
)
≤ Pr

(⋂
i

(pi ≤ p)
)
≤ min

(
Pr(pi ≤ p)

)
max

(
0, 1− n+ np) ≤ Pr

(
max(pi) ≤ p

)
≤ p

(2.24)

If pmin ≤ α/n or/and pmax ≤ α, then it is highly unlikely that pi have uniform
marginal distribution, where α is a significance level. Then, the CI assumption
should be rejected for the set of items as a whole.

If one further wants to decide for which of the items H(i)
0 should be rejected,

then the Holm-Bonferroni method can be used (Holm, 1979). First, order the
p-values pi from lowest to highest, denoted by p(1), . . . , p(n), and let the corre-
sponding hypotheses be H0(1), . . . ,H0(n). For a given significance level α = .05,
select the minimal index k such that

p(k) >
.05

n+ 1− k
. (2.25)

Reject the null hypotheses H0(1), . . . ,H0(k−1) and do not reject the null hypotheses
H0(k), . . . ,H0(n). If k = 1, none of the null hypotheses H(i)

0 should be rejected. If
there is no k satisfying (2.25), then all H(i)

0 should be rejected.
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2.3 Simulation study

A simulation study was carried out to evaluate the proposed CI test. The study
included empirical computation of the type I error probabilities and the power
against different violations of CI. The procedure was applied to simulated data
with the response accuracy following the RM or the Two-parameter logistic model
[2PL] (Lord & Novick, 1968). In the second case the true model does not have a
sufficient statistic and the procedure is an approximation.

For examining the type I error probabilities, the data were simulated according
to the hierarchical model for response time and accuracy (van der Linden, 2007)
with a RM or a 2PL for response accuracy and a lognormal model for response
times

f(x, t)=
∏
p

∏
i

exp(xpiai(θp − bi))
1 + exp(ai(θp − bi))

αi√
2πtpi

exp

(
−α2

i (ln tpi−(βi−ηp))2

2

)
, (2.26)

where ai, bi, αi and βi are item discrimination, item difficulty, item time discrim-
ination, item time intensity parameters, respectively. In the case of the RM, the
item discrimination parameters ai were equal to 1 for all the items. Both for the
case of the RM and for the case of the 2PL, the distribution of the response times
was:

tpi ∼ lnN
(
βi − ηp,

1

α2
i

)
. (2.27)

The following conditions were varied: sample size (N = 2,000, 5,000, 10,000),
number of items (n = 20, 40), correlation between speed and accuracy (ρ = 0, 0.5).

Three types of violation of the CI were considered:

• Type 1: The location of the lognormal distribution of the response time Tpi
depends on the response Xpi:

tpi ∼ lnN
(
βi − ηp +

λxpi
αi

,
1

α2
i

)
. (2.28)

This is a type of violation for which the LM test has been developed. The
following values of λ were considered: 0.2, 0.5, 0.8, -0.2, -0.5, -0.8, represent-
ing small, medium and large effect sizes. For the conditions where ρ = 0,
only the positive values of λ were used, since the procedure is symmetric for
correct and incorrect responses.

• Type 2: The difference between the locations of the lognormal distribution
given a correct and an incorrect response depends on the ability level of a
person

tpi ∼ lnN
(
βi − ηp −

κθp(2xpi − 1)

αi
,

1

α2
i

)
. (2.29)
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The difference between the locations of the distributions of Ti given an incor-
rect and a correct response is equal to 2κθp

αi
. If κ > 0, then correct responses

are faster for students with high ability, whereas incorrect responses are
faster for students with low ability. Moreover, the difference between the
two distributions becomes larger when θp takes more extreme values. This
type of violation corresponds to what the SRT model predicts (Maris & van
der Maas, 2012). The values of κ (0.125, 0.313 and 0.501) were chosen for the
simulation such that on average the absolute difference between the values
of the location parameters of the response times distributions for the correct
and the incorrect responses was equal to 0.2, 0.5 and 0.8, respectively.

• Type 3: The distributions of Tpi given a correct and an incorrect response
differ not in the location but in the variance:

tpi ∼ lnN

βi − ηp,(ν(1−xpi)

αi

)2
 . (2.30)

The extra parameter ν represents the ratio between the standard deviations
of the logarithm of the response times for the correct and the incorrect
responses. If ν > 1, then the variance of the response times is larger for
incorrect responses than for correct responses. In the simulation study we
used ν = 1.5 and ν = 2.

The data were simulated in the following way: First, for each person p the
ability and the speed parameters were simulated:

{θp, ηp} ∼ MVN
(
{0, 0},

[
1 ρ
ρ 1

])
. (2.31)

Second, for each item i item parameters were sampled: bi and βi from N (0, 0.5),
αi from lnN (0, 0.5); ai = 1 for the RM, and ai ∼ lnN (0, 0.5) for the 2PL. The
distribution chosen for the discrimination parameters in the 2PL allows for quite
large differences between the item discriminations within a test: the 1st and the
3rd quartiles of the chosen distribution of ai are equal to 0.64 and 1.60, respec-
tively. And the expected minimum and maximum values for the discrimination
parameters in a test of 20 items are equal to 0.28 and 4.04, respectively.

Third, response accuracy data were simulated:

Xpi ∼ Bernoulli
(

1

1 + exp(ai(bi − θi))

)
,∀p ∈ [1 : N ], ∀i ∈ [1 : n]. (2.32)

Finally, response times data were simulated according to (2.27) for computing the
type I error probabilities, and according to (2.28), (2.29) or (2.30) for computing
the power against the different violations of CI.
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Table 2.1: Type I error of the CI test

ρ N n RM 2PL
H0 H

(i)
0 H0 H

(i)
0

0 2,000 20 .031 .002 .040 .002
40 .020 .000 .020 .001

5,000 20 .026 .001 .026 .001
40 .031 .001 .019 .001

10,000 20 .027 .002 .028 .001
40 .025 .001 .021 .001

0.5 2,000 20 .042 .002 .051 .003
40 .026 .001 .019 .000

5,000 20 .026 .001 .114 .007
40 .026 .001 .040 .001

10,000 20 .023 .001 .301 .019
40 .017 .000 .044 .001

In each condition 1,000 data sets were replicated. The CI test was carried out
for each item conditioning on the sumscore. The CI test was performed using
the ks.test R-function (R Core Team, 2014). If n+

isn
−
is <10,000 then the exact

p-values were computed, otherwise the approximate p-values were used which may
be slightly conservative.

The percentage of data sets for which H0 was rejected was calculated as the
test-level type I error rate or power. Moreover, the percentage of items for which
H

(i)
0 was rejected was calculated as the item-level Type I error or power. The

results are presented in Tables 2.1, 2.2, 2.3, and 2.4.
Due to the multiple testing corrections both within an item and across items,

the CI test is rather conservative. For the data sets simulated under the RM all
type I error probabilities were below .05. When the procedure was an approxi-
mation (responses were generated under the 2PL), the number of items was small
(n = 20), the sample size was large (N=5,000 and 10,000) and ρ = .5, the type I
error rate was inflated. This happened because for the items with relatively high
or relatively low discrimination (on average in the simulated data sets the discrim-
ination parameters ranged from 0.25 to 4) the conditional distributions in (2.13)
can be rather different from each other, which causes differences between the dis-
tributions in (2.4) due to the correlation between θ and η . These small differences
were detected when the sample size was large. When the number of items increases
then the differences between the distributions in (2.13), and consequently between
the distributions in (2.4) decrease and the type I error inflation is not observed.
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Table 2.2: Power of the CI test against the violation of the CI of Type 1
ρ N n RM 2PL

λ = 0.2 λ = 0.5 λ = 0.8 λ = 0.2 λ = 0.5 λ = 0.8

H0 H
(i)
0 H0 H

(i)
0 H0 H

(i)
0 H0 H

(i)
0 H0 H

(i)
0 H0 H

(i)
0

0 2,000 20 .28 .02 1 .72 1 .92 .25 .02 1 .68 1 .91
40 .13 .00 1 .57 1 .88 .14 .00 1 .55 1 .87

5,000 20 .83 .16 1 .91 1 .98 .82 .15 1 .90 1 .98
40 .73 .06 1 .88 1 .97 .75 .07 1 .86 1 .97

10,000 20 1 .57 1 .97 1 .99 1 .53 1 .96 1 .99
40 1 .40 1 .95 1 .99 1 .38 1 .95 1 .99

.5 2,000 20 .31 .02 1 .76 1 .94 .39 .03 1 .69 1 .90
40 .12 .00 1 .63 1 .91 .16 .01 1 .60 1 .88

5,000 20 .87 .19 1 .93 1 .99 .97 .27 1 .87 1 .96
40 .79 .08 1 .91 1 .98 .86 .11 1 .87 1 .97

10,000 20 1 .63 1 .98 1 1 1 .58 1 .93 1 .98
40 1 .47 1 .97 1 .99 1 .45 1 .94 1 .98

λ = −0.2 λ = −0.5 λ = −0.8 λ = −0.2 λ = −0.5 λ = −0.8

H0 H
(i)
0 H0 H

(i)
0 H0 H

(i)
0 H0 H

(i)
0 H0 H

(i)
0 H0 H

(i)
0

.5 2,000 20 .28 .02 1 .76 1 .94 .40 .03 1 .76 1 .94
40 .14 .00 1 .63 1 .91 .16 .01 1 .63 1 .91

5,000 20 .87 .18 1 .93 1 .99 .92 .24 1 .93 1 .98
40 .79 .08 1 .91 1 .98 .82 .09 1 .91 1 .98

10,000 20 1 .63 1 .98 1 1 1 .65 1 .97 1 .99
40 1 .46 1 .97 1 .99 1 .49 1 .97 1 .99
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Table 2.3: Power of the CI test against the violation of the CI of Type 2

ρ N n RM 2PL
κ = .125 κ = .313 κ = .501 κ = .125 κ = .313 κ = .501

H0 H
(i)
0 H0 H

(i)
0 H0 H

(i)
0 H0 H

(i)
0 H0 H

(i)
0 H0 H

(i)
0

0 2,000 20 .20 .01 1 .62 1 .89 .22 .01 1 .56 1 .85
40 .11 .00 1 .52 1 .87 .14 .00 1 .48 1 .82

5,000 20 .66 .08 1 .88 1 .97 .72 .10 1 .84 1 .95
40 .70 .05 1 .88 1 .97 .75 .07 1 .82 1 .95

10,000 20 .99 .45 1 .96 1 .99 1 .42 1 .93 1 .98
40 1 .38 1 .95 1 .99 1 .35 1 .92 1 .98

.5 2,000 20 .23 .02 1 .68 1 .92 .28 .02 1 .61 1 .88
40 .12 .00 1 .59 1 .90 .13 .00 1 .55 1 .86

5,000 20 .70 .10 1 .91 1 .98 .84 .15 1 .87 1 .97
40 .73 .07 1 .90 1 .98 .83 .09 1 .86 1 .96

10,000 20 1 .52 1 .97 1 .99 1 .55 1 .95 1 .99
40 1 .44 1 .96 1 .99 1 .43 1 .94 1 .99

Table 2.4: Power of the CI test against the violation of the CI of Type 3

ρ N n RM 2PL
ν = 1.5 ν = 2 ν = 1.5 ν = 2

H0 H
(i)
0 H0 H

(i)
0 H0 H

(i)
0 H0 H

(i)
0

0 2,000 20 .69 .10 1 .66 .68 .09 1 .62
40 .39 .02 1 .51 .46 .02 1 .48

5,000 20 1 .49 1 .85 1 .46 1 .83
40 1 .40 1 .81 1 .38 1 .80

10,000 20 1 .71 1 .91 1 .69 1 .91
40 1 .64 1 .89 1 .61 1 .88

.5 2,000 20 .73 .12 1 .72 .78 .13 1 .68
40 .48 .03 1 .58 .49 .03 1 .55

5,000 20 1 .56 1 .88 1 .56 1 .88
40 1 .47 1 .85 1 .46 1 .85

10,000 20 1 .77 1 .94 1 .80 1 .95
40 1 .71 1 .92 1 .70 1 .92
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The procedure also works better if the variance of the discrimination parameters is
smaller: When two extra conditions were added to the simulation study: n = 20,
ρ = 0.5, ai ∼ lnN (0, 0.1) (on average the discrimination parameters ranged from
0.56 to 1.83), N=5,000 and N=10,000, the test level type I error probabilities
were .026 and .041, respectively.

The test-level power was larger than .8 for the smaller effects (λ = 0.2,−0.2,
κ = .125 and ν = 1.5) when N=10,000, and for all conditions with larger effects.
The item-level power against the violation of the CI of Type 1 and Type 2 was
larger than .8 for all conditions when the effect was large (λ = 0.8,−0.8 or κ =
0.501), for all conditions except those with N = 2, 000 when the effect was medium
(λ = 0.5,−0.5 or κ = 0.313). None of the conditions had an adequate item-level
power when the effect was small (λ = 0.2,−0.2 or κ = 0.125). The item-level
power against the violation of CI of Type 3 was below .8 for all conditions with
ν = 1.5, but it was larger than .8 for all conditions except those with smaller
samples (N = 2, 000) when ν = 2.

The power in the conditions simulated under the RM was generally larger than
the power in the conditions simulated under the 2PL, but the differences were very
small. Therefore, for the conditions in which the Type I error probabilities are
adequate our procedure can serve as a useful approximation for testing the CI
assumption.

2.4 Example

The CI test was applied to the data of the computerised Arithmetics test which was
a part of the central exams in the Netherlands at the end of secondary education
in 2013. A test version with a large number of respondents (N=10,369) was used.
The respondents, whose response times were not recorded, were deleted from the
data together with those respondents who had more than 10% of missing responses.
The final sample size was 10,267.

The test consisted of 60 items. However, some items were excluded for sub-
stantive reasons. 16 items were removed to make the test more homogeneous in
terms of the cognitive processes involved in the item responses. These were the
last ten items because due to the restrictive time limit they were not reached by
many of the students, and the response process under this time pressure may be
different. And to obtain a scale with only open-ended items, all six multiple-
choice items were removed, because different cognitive processes may be involved
when choosing from alternatives compared to generating a response. Furthermore,
eight low quality items were removed due to extreme easiness (with proportions
of correct responses > .85) or low item-rest correlations (< .25). The RM and the
OPLM model were fitted to the data with responses to the remaining 36 items
using the OPCML software (Verhelst & Glas, 1995). The fit of the models was
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Table 2.5: Empirical example: model fit statistics

Model R1c df p

Rasch model 2951.83 105 .000
OPLM (36 items) 284.97 105 .000
OPLM (30 items) 180.41 87 .000

tested with the R1c statistic (Glas, 1988), see Table 2.5. The RM fitted consider-
ably worse, therefore we continued with the OPLM. After deleting six misfitting
items, the OPLM had a reasonable fit in the scale of remaining 30 items. Since
the sample size was very large, the model was rejected by a formal test, however
as can been seen in Figures 2.1a and 2.1b, the discrepancy between the observed
and the expected proportion of students giving a correct response given the sum-
score was very small even for the items with the highest misfit (Items 13 and 21).
In Table 2.6 the item parameters and the item-fit statistics are presented. As
the simulation results indicated that the CI test is robust against small violations
from the exponential family model, the validity of the procedure should not be
threatened in this empirical example.

The CI test was applied to the remaining 30 items (see results in Table 2.6).
Since the response times were recorded only up to a second, there were a lot of
exactly equal data points in the response times data. Therefore, the exact p-values
of the Kolmogorov-Smirnov test could not be computed due to the presence of ties
in the empirical distributions. Since in small samples approximate p-values can
be very inaccurate, a bootstrap version of the Kolmogorov-Smirnov two-sample
test allowing for ties in the data was used, which is can be performed using the
ks.boot R-function in the Matching package (Sekhon, 2011) based on the results
from Abadie (2002).

The CI test detected violations of the CI assumption for 25 out of 30 items. For
most of these items the correct responses were slower than the incorrect responses.
As an illustration, the empirical cumulative distribution functions of the response
times to item 30 given four different values of the sufficient statistic are presented
in Figure 2.2. There were also two items for which the incorrect responses were
slower than the correct responses. Figure 2.3 shows item 3 as an example. Finally,
for five items the test did not detect a violation of CI, which is illustrated in
Figure 2.4 for item 15.

2.5 Discussion

Determining whether CI between Xi and Ti holds is crucial for modeling their joint
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distribution correctly. In the present study, we constructed a statistical procedure
for testing this assumption and showed an example of its application.

The advantages of the presented test are that the results of the CI test for a
particular item do not depend on whether the CI holds for all other items, and
that the test does not require a specification of the kind of violation against which
CI is tested. One of the limitations of the procedure is that it requires large
sample sizes, but this is not a problem for large scale computerised examinations.
Another limitation is that the test is based on having an exponential family model
for X. However, we have shown how in principle the procedure can be extended
(see Equations 2.14 and 2.15), for example it is sufficient to have subscales each
fitting a RM. Moreover, in the simulation study we have shown that under certain
conditions the procedure is robust to minor violations of the RM. Furthermore,
not only the restrictive Rasch model but more flexible models have the number of
the correct responses as the sufficient statistic (Andersen, 1973; Haberman, 2007).

In the context of measurement response times are often used to provide extra
information about ability by borrowing strength from the measurement of speed
for the measurement of ability, which can be done using the hierarchical model
for response time and accuracy (van der Linden, 2007). However, the hierarchical
model may be applied only if CI holds. Testing this assumption is crucial to
decide whether the information from response times can be used for increasing the
precision of the estimates of the ability by taking the correlation between θ and η
into account. If a violation of the assumption is detected for most of the test items,
then it is not justifiable to use response times for improving the precision of the
estimates of θ in the way that is done by the hierarchical model. If the assumption
is violated for only few items one might consider to remove these items and proceed
with applying the hierarchical model, or retain the full set of items but apply a
different model which allows for conditional dependencies.

As we have mentioned in the introduction, the CI test is meant for testing
independence conditional on a particular set of latent variables. If CI given θ and
η is violated, then one of the ways to proceed is introducing other latent variables
that would explain the dependence between Xi and Ti, such that conditional on
the new set of latent variables Xi and Ti are independent.

Our study raises questions for further research both in the parametric and the
non-parametric approaches to the response times modeling. In the parametric
approach, the question is what new interpretable parameters can be added to the
model to allow for dependence between Xi and Ti. Another question is to what
extent the models are robust to violations of the CI assumption.

In the non-parametric approach, the research can go in the direction of testing
less restrictive assumptions than the CI assumption. For example, one could
consider developing tests for the following assumptions: 1) the distributions in
(2.4) differ only in their means but not in the variance; 2) the difference between
the distributions in (2.4) is constant across ability levels.
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Figure 2.1: Expected (solid line) and observed (dots) proportion of correct re-
sponses to an item given the number of items answered correctly
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Figure 2.2: Item 30: Correct responses (solid line) are slower than incorrect re-
sponses (dashed line)
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Table 2.6: Item parameters, item fit statistics and item level results of the CI test

Item Item parameters Item fit CI test
ai βi(SE) S-test (df) p-value pi

Item 1 6 -0.27 (0.004) 12.88 (7) .075 .014∗

Item 2 11 0.07 (0.002) 11.98 (7) .101 .002∗

Item 3 6 -0.23 (0.004) 5.01 (7) .658 .000∗

Item 4 6 0.04 (0.004) 4.40 (7) .733 .000∗

Item 5 6 0.16 (0.004) 18.28 (7) .011 .000∗

Item 6 6 -0.31 (0.005) 13.17 (7) .068 .250
Item 7 6 -0.15 (0.004) 4.85 (7) .679 .000∗

Item 8 5 0.22 (0.005) 12.92 (7) .074 .000∗

Item 9 5 0.27 (0.005) 5.58 (7) .590 .000∗

Item 10 6 0.06 (0.004) 7.15 (7) .413 .000∗

Item 11 10 -0.06 (0.002) 21.10 (7) .004 .001∗

Item 12 6 -0.30 (0.005) 8.62 (7) .281 .000∗

Item 13 6 0.03 (0.004) 20.42 (7) .005 .591
Item 14 6 -0.12 (0.004) 5.92 (7) .549 .000∗

Item 15 5 -0.28 (0.005) 15.29 (7) .033 .050
Item 16 9 0.14 (0.003) 13.69 (7) .057 .182
Item 17 11 0.10 (0.002) 17.47 (7) .015 .000∗

Item 18 12 0.02 (0.002) 6.17 (7) .521 .000∗

Item 19 7 -0.06 (0.003) 7.57 (7) .372 .000∗

Item 20 6 -0.05 (0.004) 6.63 (7) .468 .059
Item 21 10 0.11 (0.002) 35.34 (7) .000 .000∗

Item 22 8 0.24 (0.003) 15.36 (7) .032 .000∗

Item 23 12 0.06 (0.002) 5.56 (7) .592 .000∗

Item 24 8 -0.01 (0.003) 6.77 (7) .453 .013∗

Item 25 10 -0.01 (0.002) 2.66 (7) .915 .000∗

Item 26 7 -0.08 (0.003) 17.62 (7) .014 .009∗

Item 27 5 -0.05 (0.004) 16.76 (7) .019 .000∗

Item 28 5 0.24 (0.005) 11.86 (7) .105 .002∗

Item 29 6 0.15 (0.004) 11.17 (7) .132 .000∗

Item 30 9 0.09 (0.003) 8.81 (7) .266 .000∗

Note: ∗ - H(i)
0 is rejected.
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Figure 2.3: Item 3: Incorrect responses (dashed line) are slower than correct
responses (solid line)
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Figure 2.4: Item 15: No difference between correct responses (solid line) and
incorrect responses (dashed line)
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Posterior predictive checks for
conditional independence
between response time and
accuracy

1 Abstract. Conditional independence (CI) between response time and response
accuracy is a fundamental assumption of many joint models for time and accuracy
used in educational measurement. In this study posterior predictive checks (PPC)
are proposed for testing this assumption. These PPC are based on three discrep-
ancy measures reflecting different observable consequences of different types of
violations of CI. Simulation studies are performed to evaluate the specificity of
the procedure, its robustness and its sensitivity to detect different types of con-
ditional dependence, and to compare it to existing methods. The new procedure
outperforms the existing methods in most of the simulation conditions. The use
of the PPC is illustrated using arithmetics test data.
Keywords: conditional independence, hierarchical model, posterior predictive
checks, response times.

3.1 Introduction

When modeling response accuracy [RA] (i.e., a response being correct or incorrect)
and response time [RT] in educational and cognitive tests conditional independence
[CI] between RA and RT to the same item is often assumed given the speed and

1This chapter has been published as Bolsinova, M. & Tijmstra, J. Posterior predictive checks
for conditional independence between response time and accuracy. Journal of Educational and
Behavioral Statistics, 41, 123-145. Author contributions: B.M. and T.J. designed the research,
B.M. performed the research, B.M. wrote the paper, T.J. provided feedback on the manuscript.
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the ability parameters (van der Linden, 2007, 2009). The relationship between the
RAs and the RTs is assumed to be fully explained by the higher-level covariance
between speed and ability, such that there is no residual dependence left. The CI
assumption can be represented in the following way:

f(xpi, tpi | θp, τp,ψi) = f(xpi | θp, τp,ψi)f(tpi | θp, τp,ψi), (3.1)

where xpi is the coded binary response of person p to item i having a value of
1 if the response is correct and a value of 0 otherwise, tpi is the RT of person p
on item i; θp and τp are the ability and the speed of person p, respectively; and
ψi is a vector of item parameters of item i. For the full specification of the joint
model for the RT and RA, the models for xpi and tpi have to be specified and the
higher-level models for the person parameters and for the item parameters need
to be specified.

In the hierarchical framework for modeling RT and RA (van der Linden, 2007),
it is also assumed that the RA depends only on the ability of the person and the
item parameters related to RA, denoted by φi (e.g., difficulty and discrimination)
and that the RT depends only on the speed of the person and the item parameters
related to speed, denoted by ϕi (e.g., item time intensity):

f(xpi, tpi | θp, τp,φi,ϕi) = f(xpi | θp,φi)f(tpi | τp,ϕi), (3.2)

where ψi = {φi,ϕi}. These extra assumptions together with the CI assumption
result in a simple structure which makes interpretations of speed and ability rela-
tively straightforward, but this interpretation is warranted only if the assumption
of CI holds. When CI is violated, then this does not just result in inaccurate
estimates but in a misrepresentation of the underlying constructs. Therefore, it is
important to investigate whether CI can be maintained or whether more complex
models are needed to capture the remaining dependence between RT and RA.

CI can be violated in different ways. For example, a residual correlation be-
tween the vector of RAs of all persons to item i and the vector of RTs of all
persons answering item i may remain after taking the relationship between speed
and ability into account. Such residual correlations can for example be modeled
using the joint model for RTs and RAs of Ranger and Ortner (2012). These resid-
ual correlations may be more than just measurement artefacts, since for example
the sign of the residual correlate may depend on the item difficulty (Bolsinova, de
Boeck, Tijmstra, 2015).

Violations of CI might not always show up in the form of residual correlation
across all persons, since the residual relationship between RT and RA may differ
across persons. For example, if there is a negative residual correlation between RT
and RA for persons with low ability and a positive residual correlation for persons
with high ability, then these correlations may cancel out at the population level.
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However, this type of violation of CI might show up as heterogeneity of variances
(i.e., as differences between the variances of RTs given a correct and given an
incorrect response), and/or as an interaction effect between RT and ability on
RA.

An interaction effect between RT and ability may not only be a result of
different residual correlations at different ability levels, but also arise from time
heterogeneity of response processes, that is fast and slow responses being qualita-
tively different, as suggested by the results of Partchev and De Boeck (2012) and
of Goldhammer, Naumann, Stelter, Toth, and Rölke (2014). These examples are
not meant to be exhaustive, but rather to illustrate that CI can be violated in
many different ways, which may threaten the validity of the model. This means
that it is important for tests of CI to be able to pick up on these different types
of violations.

There are two procedures available in the literature for testing CI. One of them
has been proposed from the perspective of the hierarchical model (van der Linden
& Glas, 2010). Here, the RTs under CI are modeled using a lognormal distribution
with the mean parameter depending on the item time intensity ξi and the person
speed and the item variance parameter, denoted by σ2

i :

Tpi ∼ lnN (ξi − τp, σ2
i ). (3.3)

This model is tested against a parametric alternative:

Tpi ∼ lnN (ξi − τp + λixpi, σ
2
i ), (3.4)

where the added parameter λi captures the difference in the location of the distri-
bution of RTs for correct and for incorrect responses. The hypothesis: H0 : λi = 0
is tested against Ha : λi 6= 0 using a Lagrange Multiplier [LM] test. While this
test is able to detect differences in the location of the two RT distributions, it is
not suited for other types of violations of CI. Moreover, the LM-test requires the
parametric shape of the distribution of RTs to be correctly specified.

A different approach has been proposed by Bolsinova and Maris (2016). Their
test of CI requires an exponential family model, for example the Rasch model
(Rasch, 1960), to hold for the RA, which makes it possible to test the following
hypothesis:

∀i,∀s : f(ti |Xi = 1, S(X) = s) = f(ti |Xi = 0, S(X) = s), (3.5)

meaning that for each item within each group of persons with the same value of
the sufficient statistic S(X), the distribution of the RTs of the correct responses is
the same as the distribution of the RTs of the incorrect responses. Equality of the
RT distributions is tested using Kolmogorov-Smirnov [KS] tests. The advantage
of this approach is that it does not require a specification of the kind of violation
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against which CI is tested. However, the exponential family model for the RA
is required or at least this model should not be strongly violated. Moreover, due
to the fact that the equality of the RT distributions is tested separately for each
group of persons with different values of the sufficient statistic, a large overall
sample is required to achieve reasonable power (Bolsinova & Maris, 2016).

While the number of available tests for CI is limited, a wide range of method-
ologies have been developed for evaluating the assumption of local independence
(i.e., CI between item scores) in the context of item-response theory (IRT) models
that do not take RT into account. These methodologies propose measures that
capture residual dependencies within item pairs that remain after conditioning
on the latent variable(s) explaining the item scores. Some of these measures are
based on the observed and expected frequencies in contingency tables, such as χ2,
G2, and the standardized log odds ratio residual (Chen & Thissen, 1997). The
Mantel-Haenszel statistic is also based on the observed contingency table, but
considers this table separately for each value of the restscore (Ip, 2001; Sinharay,
Johnson, & Stern, 2006). Other measures are based on associations between item
residuals in some form or other, such as the Q3 (Yen, 1993), the model-based
covariance (MBC; Reckase, 1997), and the standardized model-based covariance
(SMBC; Levy, Xu, Yel, & Svetina, 2015).

There are a number of relevant differences between the evaluation of local inde-
pendence and that of CI between RA and RT. For example, while the assessment
of local independence focuses on item-pairs, the evaluation of CI between RA and
RT is done for individual items. Furthermore, RT is a continuous variable, which
prevents a direct application of many of the existing measures to the context of
assessing CI between RA and RT, especially those based on contingency tables.
However, some of the methods of detecting local dependence may provide valu-
able starting points for the development of new ways of evaluating CI between
RA and RT. Research on detecting violations of local independence (Levy et al.,
2009; see also Sinharay et al., 2006) suggests that among others the Q3 and SMBC
were found to have relatively high power to detect violations of local independence
(Levy et al., 2009; 2015). This finding provides motivation for considering a sim-
ilar discrepancy measure in the context of evaluating CI between RA and RT, as
will be proposed in the subsequent section.

However, because these methods for assessing local independence solely con-
sider the item scores, they are not tailored towards detecting the different types of
violations of CI that may be relevant and realistic in the context of jointly model-
ing RA and RT that were discussed before. For example, they are not designed to
be able to detect differences in the variance of one variable (in our case, RT) for
different values of the other variable (RA). Neither are they aimed at detecting
differences in discrimination conditional on RT. Therefore, we will not only con-
sider measures of residual correlation (similar to detecting local dependence), but
also measures for other consequences of violations of CI.
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In the present paper we present a new procedure for detecting violations of
CI between RT and RA, which aims to overcome the limitations of the existing
methods (LM and KS-tests). Based on the general framework of posterior predic-
tive checks [PPC] (Rubin, 1984; Meng, 1994; Gelman, Meng, & Stern, 1996), we
developed a PPC procedure using three discrepancy measures targeted at different
ways in which CI can be violated.

The paper is organised as follows. In Section 3.2, the hierarchical model for RTs
and RAs is elaborated and PPC are introduced. In Section 3.3, three item-level
discrepancy measures of conditional dependence are introduced and a test-level
decision criterion for either rejecting or retaining the CI assumption is described.
Section 3.4 presents simulation studies focused on the specificity, robustness and
sensitivity of PPC for CI. The performance of the new procedure is compared
to that of the existing methods for testing CI. In Section 3.5 the use of PPC is
illustrated for an empirical example. The paper is concluded with a discussion.

3.2 Model specification, estimation and PPC

In this paper we consider a version of the hierarchical model with a log-normal
model for the RTs (van der Linden, 2006) as presented in Equation 3.3; and a
two-parameter logistic model for the RA (Birnbaum, 1968):

Pr(Xpi = 1) =
exp(αi(θp − βi))

1 + exp(αi(θp − βi))
, (3.6)

where αi and βi are the discrimination and the difficulty parameters of item i. We
consider these particular models in this paper, but in general the PPC method
can be used for a different specification of the model for the RAs and for the
RTs, provided that one can sample from the posterior distribution of the model
parameters.

At the item level, the dependence between the item parameters is modeled by
a multivariate normal distribution:

[ξi, lnσ
2
i , lnαi,−αiβi]T ∼MVN (µI ,ΣI), (3.7)

where µI is the item mean vector and ΣI is the item covariance matrix. The logs
of the variance of RT and of the discrimination parameter are modeled because
these parameters are restricted to positive values. The intercept of the item re-
sponse function (−αiβi) is modeled instead of the difficulty (βi) because it makes
estimation of the model more stable.

At the person level, a bivariate normal distribution is used to model the de-
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pendence between speed and ability:

[θp, τp]
T ∼MVN

(
[0, 0]T ,ΣP

)
, (3.8)

where ΣP is the person covariance matrix. To ensure the identification of the
model, the mean vector of the person parameters is constrained to a zero vector
and the variance of θ is constrained to one.

The model can be estimated using a Gibbs Sampler algorithm (see Appendix
A for the details). At each iteration g of the Gibbs Sampler after the burn-in
a sample from the posterior distribution of the model parameters given the data
is obtained. Using these values a new replicated data set with RAs and RTs is
generated under the model:

X
(g)
pi ∼ Bernoulli

(
exp(α

(g)
i (θ

(g)
p − β(g)

i ))

1 + exp(α
(g)
i (θ

(g)
p − β(g)

i ))

)
, (3.9)

T
(g)
pi ∼ lnN

(
ξ

(g)
i − τ

(g)
p , σ

2(g)
i

)
. (3.10)

The discrepancy measures of interest are computed at each iteration g for both the
observed data D(g) and the replicated data D(g)

rep. The posterior predictive p-value
[PPP-value] is the probability of obtaining a replicated discrepancy measure larger
than the observed measure (Rubin, 1984; Meng, 1994; Gelman et al., 1996). This
probability can be approximated by the number of iterations in whichD(g) ≤ D(g)

rep.
In the next section we will discuss which discrepancy measures can be indicative
of different violations of CI.

3.3 Discrepancy measures

In the Introduction we discussed three possible consequences of violations of CI:
residual correlation between RT and RA, heterogeneity of variances of RT between
the correct and the incorrect responses, and interaction effect of RT and ability on
RA. Here we describe three discrepancy measures that address these consequences
of violations of CI.

The first discrepancy measure considers the partial correlation between the
observed RAs and the observed RTs to item i given the persons’ ability and speed
parameters.

D
(g)
1i = Cor(Xi, Ti |θ(g), τ (g)) (3.11)

This correlation can be computed using ppcor R-package. This discrepancy mea-
sure directly captures residual correlations between Xi and Ti which cannot be
explained by the latent variables. If CI holds then the expectation of this correla-
tion is equal to zero for each item. This measure is similar in spirit to discrepancy
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measures that have been proposed in the context of evaluating local independence,
such as the Q3-statistic (Yen, 1984) and the SMBC-statistic (Levy et al., 2015).
These existing measures capture residual correlations for item-pairs that remain
after conditioning on the latent variable(s) explaining RAs. The proposed dis-
crepancy measure differs from these existing measures in that here only a single
residual correlation is considered per item (rather than n − 1 item-pair compar-
isons per item), and this residual correlation is obtained for two variables that are
of a different type (RA is discrete, while RT is continuous).

The second discrepancy measure considers the difference between the log of the
variance of the observed RTs of the correct responses and the log of the variance
of the observed RTs of the incorrect responses:

D2i = ln (V ar(Ti |Xi = 1))− ln (V ar(Ti |Xi = 0)) (3.12)

This discrepancy measure is aimed at the kind of violation of CI in which there
is not necessarily a residual correlation between the RAs and the RTs, but where
the two distributions of RTs differ in their variances. For example, for some items
correct responses might generally tend to be less variable in terms of RT, because
the underlying response processes may be more similar to each other than those
leading to incorrect responses.

The final discrepancy measure considers the difference between the item-rest
correlation of the item for fast responses and the item-rest correlation of the item
for slow responses:

D3i = Cor(Xi,
∑
j 6=i

Xj |Ti < Ti,med)− Cor(Xi,
∑
j 6=i

Xj |Ti > Ti,med) (3.13)

where the slow and the fast responses are defined as the observed responses with
a RT longer or shorter than the sample median RT to the item (Ti,med), respec-
tively. This measure is aimed at a type of violation of the CI where slow and
fast responses do not necessarily differ in the probability of a correct response
but where they do differ in the strength of the relationship between the item and
the measured ability. As has been found in empirical data and as predicted by
measurement models (Coyle, 2003; Maris & van der Maas, 2012; Bolsinova, de
Boeck, & Tijmstra, 2015) slow responses may sometimes be more or less informa-
tive about a person’s ability than the fast responses. The item-rest correlation is
used since it is a simple classical test theory statistic which roughly captures the
discriminatory power of the item.

The last two measures are test statistics, meaning that they do not depend
on the values of the model parameters. For the observed data they have to be
computed only once. This is not the case for the first measure, since it conditions
on the values of θ and τ , and hence this measure needs to be computed for the
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observed data at each iteration.
At each iteration three replicated discrepancy measures are computed per item

in the same way as the observed measures in Equations 3.11, 3.12, and 3.13 but
using the replicated data X(g) and T(g) instead of the observed data X and T.
Each of the three PPP-values per item, denoted by p1i, p2i, and p3i, can be approx-
imated as the number of iterations is which the replicated discrepancy is larger
than the observed discrepancy.

In the case of these three discrepancy measures both PPP-values close to zero
and those close to one indicate that the model does not adequately capture the as-
pects of the data summarised by these discrepancy measures, since both highly pos-
itive and highly negative residual correlations, differences between log-variances,
and differences between item-rest correlations are indicative of conditional depen-
dence.

3.3.1 Test level decision criterion

Based on the observed distribution for each of the three PPP-values of the items
in a test, a researcher has to decide whether there are too many extreme values
to retain the assumption of CI. This means that some criterion has to be chosen
that determines whether a PPP-value should be considered extreme. We suggest to
symmetrically consider PPP-values below π

2 and above 1−π
2 to be extreme, where π

is some small value, for example .05. It may be noted that since PPP-values are not
necessarily uniformly distributed under CI (Meng, 1994), π is not necessarily equal
to the false positive rate. We suggest for each discrepancy measure to compare
the number of items with an extreme PPP-value, denoted by nextreme, with the
distribution of the number of items with an extreme PPP-value that would be
obtained if they were independently and identically uniformly distributed on the
interval [0,1]. This amounts to using a binomial distribution for the number of
successes with a probability of π out of n trials. A decision about CI being violated
is taken if for at least one of the measures the number of extreme PPP-values
satisfies the condition(

1−
nextreme∑
k=0

(
n

k

)
πk(1− π)n−k

)
< pcrit, (3.14)

where pcrit is a chosen value on the interval from 0 to 1 which is supposed to be ac-
ceptably low, for example .05. If the distribution of the PPP-values is not uniform
but more concentrated around .5, then this makes the criterion more conservative,
because the probability of an extreme value will be smaller than under uniformity.
Because uniformity and independence of the PPP-values are not guaranteed the
proposed criterion should not be taken to imply that the false positive rate is fixed
at a specific known value pcrit. Rather, the theoretical binomial distribution pro-
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vides a mathematically convenient starting point from which to derive a criterion
that may be useful but which performance needs to be assessed, as will be done in
the simulation study. When using multiple PPC, one might choose to use a lower
value for pcrit to prevent the inflation of the overall chance of a misclassification
of the data set as having a violation of the CI due to multiple testing. Here we
use .05/m, where m is the number of PPC that are used to assess CI.

3.4 Simulation studies

3.4.1 Specificity of the PPC

Specificity when the lower-level models are correctly specified

Methods

The data were generated under CI using the hierarchical model for the RT and
RA, using a 2PL model for the RA (see Equation 3.6) and a lognormal model for
the RTs (see Equation 3.3). The item and the person parameters were simulated
in the following way:

[θp, τp]
T ∼MVN

(
µP = 0, σ2

θ = σ2
τ = 1, ρθτ

)
; (3.15)

[ξi, ln(σ2
i ), ln(αi),−αiβi]T ∼MVN

(
µI = 0,ΣI = I4[1, 0.5, 0.5, 1]T

)
. (3.16)

For each combination of sample size (500, 1000 or 2000), test length (20 and
40) and correlation between ability and speed (0 and .5) 500 replicated data sets
were simulated. The hierarchical model was fitted to each of the replicated data
sets using the Gibbs Sampler (see Appendix A) with 3000 iterations (including
1000 of burn-in), and each second iteration after the burn-in was used for the
PPC with the three discrepancy measures described in the previous section.

First, the performance of each of the discrepancy measures was evaluated sep-
arately as if only one measure were used for testing CI, where pcrit = .05 was
used. Following that criterion and the guidelines in Equation 3.14, a conclusion
about CI being violated for the test was drawn if nextreme > 3 for n = 20 and if
nextreme > 4 for n = 40. Second, the performance of the combination of the three
discrepancy measures was evaluated, where pcrit = .05/3 was used for each of the
PPC. CI was considered to be violated if for at least for one of the three measures
nextreme > 3 for n = 20 or nextreme > 5 for n = 40.

The type I error rates of the existing procedures (the LM-test and the KS-
tests) were also evaluated in this simulation study. For the LM-test Bonferroni
correction was used to control for the effect of multiple comparisons. For the
KS-tests, the equality of the RT distributions was tested after conditioning on
the number of items correct and CI was rejected if either the minimum of the
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Figure 3.1: Distributions of the PPP-values for the three discrepancy measures
under CI for all 12 conditions combined. Each histogram is based on 180,000
PPP-values.

item-level p-values was smaller than .05/n or their maximum was smaller than .05
(Bolsinova & Maris, 2016).

Results

Figure 3.1 shows the histograms of the PPP-values for the three discrepancy mea-
sures for all the simulation conditions combined. The three observed distributions
closely resemble a uniform distribution. However, for p1i the extreme values are
slightly under-represented compared to a uniform distribution.

Table 3.1 shows for each condition the proportion of data sets where a violation
of CI was falsely detected, based on each of the PPC individually and based
on the three checks combined. For p1i, the false discovery rate was generally
lower than for the other two checks, which is in line with the observation made
in the previous paragraph that the distribution of p1i (Figure 3.1) shows some
deviation from uniformity. For p2i and p3i, the false discovery rate was close to
the proportion of rejections that would be expected for PPP-values with an i.i.d.
uniform distribution (.016 for n = 20 and .048 for n = 40). For the combination of
the three checks, the proportion of false positives is somewhat lower than expected
for i.i.d. uniformly distributed PPP-values (.048 for n = 20 and .042 for n = 40).

Table 3.1 also includes the observed type I error rates of the LM-test and the
KS-tests. The type I error rate of the LM-test is in most of the conditions slightly
lower than .05. The KS-tests are even more conservative, since correction for
multiple testing is performed both within an item and between the items (Bolsinova
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Table 3.1: Proportion of data sets generated under CI where a violation of CI was
detected based on each of the three PPC individually and combined, the LM-test
and the KS-tests (500 replications).

n N ρθτ PPC LM-test KS-tests
p1i p2i p3i {p1i, p2i, p3i}

20 500 0 .000 .014 .012 .026 .030 .016
.5 .004 .020 .010 .034 .056 .026

1000 0 .004 .008 .006 .018 .046 .012
.5 .012 .018 .008 .038 .036 .034

2000 0 .004 .014 .012 .030 .044 .034
.5 .012 .014 .016 .040 .038 .068

40 500 0 .028 .038 .032 .020 .040 .000
.5 .024 .032 .030 .018 .056 .004

1000 0 .030 .036 .044 .030 .036 .016
.5 .040 .056 .028 .022 .042 .012

2000 0 .018 .034 .040 .018 .030 .028
.5 .010 .048 .050 .032 .036 .026

& Maris, 2016).

Specificity when the lower-level models are misspecified

The first simulation results showed that the PPC rarely classify data sets generated
under CI as having violations of the assumption. Next, we evaluate the robustness
of the PPC to the misspecification of the RT model and the RA model. These
lower level misspecifications do not affect the relationship between the RAs and
the RTs and do not influence CI. However, it could be that the performance of
the procedure is affected because the posterior predictive distribution is obtained
using the wrong model. We investigated whether the specificity of the PPC suffers
from these misspecifications.

Methods

Two misspecifications of the lower-level models were considered. First, a possibility
is that the model for the RTs is misspecified. Here, we consider a situation where
the data generating model for the RTs includes an extra item parameter:

tpi ∼ lnN(ai(ξi − τp), σ2
i ), (3.17)
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where ai is an extra item parameter similar to the item discrimination in the model
for the RA (Fox & van der Linden, 2007; Klein Entink, Fox, & van der Linden,
2009) which reflects that items might differ with respect to the decrease in RT as
speed increases. Second, the model for RA can be misspecified. Here, we consider
the case where the data generating model is not a 2PL but a three-parameter
logistic model (Birnbaum, 1968):

Pr(xpi = 1) = ci + (1− ci)
exp(αi(θp − βi))

1 + exp(αi(θp − βi))
, (3.18)

where ci is the guessing parameter of item i. The extra item parameters were
simulated as follows: ai ∼ lnN (0, 0.5) and ci ∼ U(.2, .3).

First, the robustness of the PPC under a baseline condition (N = 1000, n =
20, ρθτ = .5) was analysed. Then, the effect of changing one of these design
parameters was investigated, resulting in 5 simulation conditions for each type of
misspecification (note that to investigate the effect of sample size both a smaller
and a larger sample size were considered).

For each condition 500 data sets were simulated under CI. The hierarchical
model with lower level models defined in (3.3) and (3.6) was fitted to the replicated
data sets and the PPC were performed. Robustness of the PPC was compared to
that of the LM-test (see Appendix B for details) and the KS-tests.

Results

Table 3.2 shows that when the RT model was misspecified, the specificity of the
PPC did not appear to be effected: The proportions of the data sets in which
a violation of CI was falsely detected were similar to those when the lower-level
models were correctly specified (see Table 3.1). The type I error rate of the KS test
was not inflated. The type I error rate of the LM-test was strongly inflated (up to
1) in the conditions with correlated speed and ability. This means that unlike the
other two tests the LM-test is very much dependent on the correct specification
of the RT distribution.

When the RA model was misspecified, the specificity of p1i and p2i was hardly
affected. However, the specificity of the p3i suffered from this misspecification
when ρθτ = .5, in the sense that the false discovery rate was considerably larger
than when the RA model was correctly specified (see Table 3.1). This happens
because when θ and τ are correlated the ability of persons with slow responses
is on average lower than the ability of persons with fast responses, and therefore
the item-rest correlation for the slow responses (corresponding to on average lower
ability) decreases due to guessing, which makes the distribution of p3i not uniform
but skewed with a large number of values close to 0. The performance of the
combination of the three PPC was affected due to the problem with p3i. If guessing
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Table 3.2: Robustness of the tests of CI against the misspecifications of the lower
level models (500 replications). The data were generated under CI, but during
estimation either the RT or the RA model was misspecified.

N n ρθτ PPC LM-test KS-tests
p1i p2i p3i {p1i, p2i, p3i}

RT model misspecified
1000 20 0.5 .012 .012 .026 .050 .984 .046
500 20 0.5 .000 .018 .024 .042 .872 .012
2000 20 0.5 .008 .018 .016 .042 1 .056
1000 40 0.5 .038 .020 .042 .038 1 .016
1000 20 0 .000 .014 .006 .020 .006 .030
RA model misspecified
1000 20 0.5 .020 .018 .034 .072 .052 .024
500 20 0.5 .006 .018 .028 .048 .048 .020
2000 20 0.5 .012 .008 .114 .130 .040 .040
1000 40 0.5 .024 .046 .106 .056 .054 .006
1000 20 0 .006 .008 .028 .040 .056 .026

is an important factor in a test then it may be advisable either not to use p3i or
to use a model that accounts for the guessing behaviour. The type I error rates
of the LM-test and of the KS-tests were not inflated when the RA model was
misspecified

3.4.2 Sensitivity of the PPC

Methods

To evaluate how well the PPC detect violations of CI, we simulated data under
different models with five different types of violations of CI. The exact specification
of each violation can be found in Tables 3.3 and 3.4, and the choice of these
conditions is motivated below.

Types 1 and Type 2 both specify that the distribution of tpi depends on
whether the response xpi is correct or incorrect. The violation of Type 1 is the
kind of violation for which the LM-test for CI (van der Linden & Glas, 2010) was
designed: The location parameters of the lognormal distribution of RTs differ for
the correct responses (ξi + λiσi) compared to the incorrect responses (ξi). Type
2 captures the idea that the dependence between RT and RA is not necessarily
constant across persons and could depend on the person’s ability, as is predicted
by the Signed Residual Time model (Maris & van der Maas, 2012) and as has
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Table 3.3: Specification of the models for RT and RA for the different types of
violations of CI

Distribution of tpi Pr(xpi = 1) Distribution of extra
parameters

1 lnN
(
ξi+λiσixpi−τp, σ2

i

)
see Equation 3.6 λi ∼ N (0, σ2

λ)

2 lnN
(
ξi− (−1)xpi

2 ηθpσi−τp, σ2
i

)
see Equation 3.6 -

3 lnN (ξi − τp, σ2
i + σ2

p) see Equation 3.6 σ2
p∼ lnN(ρσθp,(1−ρ2

σ))

4 see Equation 3.3 e
(αi(θp−βi−δit

∗
pi))

1+e
(αi(θp−βi−δit∗pi))

δi ∼ N(0, σ2
δ )

5 see Equation 3.3 e

(
αiγ

t∗pi
i

(θp−βi)
)

1+e

(
αiγ

t∗
pi
i

(θp−βi)
) γi ∼ lnN(0, σ2

γ)

Table 3.4: Specification of medium and small violations of CI of each type.
Medium Small Comments
violation violation

1 σ2
λ=0.627 σ2

λ=0.251 Across items on average the absolute standardised
difference in the means of the log RTs for correct
and incorrect responses is 0.5 or 0.2, respectively.

2 η=−0.627 η=−0.251 Across persons on average the absolute standardised
ldifference in the expected log RTs for correct
and incorrect responses is 0.5 or 0.2, respectively.

3 ρσ=−.5 ρσ=−.2 -
4 σ2

δ =0.627 σ2
δ =0.125 Across items on average the absolute difference

in the difficulties given fast and slow responses is
0.5 or 0.2, respectively.

5 σ2
γ =0.627 σ2

γ =0.125 Across items on average the absolute difference in
the logs of discriminations given fast and slow
responses is 0.5 or 0.2 (i.e, the ratio of the
discriminations is 1.65 or 1.22), respectively.
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been addressed by the KS-tests of Bolsinova and Maris (2016). Here, ηθp is the
standardized difference between the expectation of the log RTs for the correct
responses and for the incorrect responses for person p. A negative value of η has
been used, meaning that for persons with a high ability correct responses are faster
than incorrect responses, while for persons with a low ability incorrect responses
are faster than correct responses.

Type 3 focuses on the variances of log RTs. While CI predicts equal residual
variances of the log RTs for correct and incorrect responses, this does not have to
hold in practice. It could be the case that the RTs of low-ability test takers are
more varied than those of high-ability test takers, for example because the former
may sometimes skip or guess on a question. Because high-ability test takers will
have a higher proportion of correct responses, this will result in a lower residual
variance for correct responses than for incorrect responses, meaning that CI (given
θ and τ) is violated. We specified this condition by setting the variance of log RT to
be person- as well as item-dependent, where the person component of the variance
is negatively correlated with ability.

Types 4 and 5 capture violations of CI due to differences between fast
and slow response processes, a possibility that has been discussed in the liter-
ature (Partchev & De Boeck, 2012; Goldhammer et al., 2014; Bolsinova et al.,
2015). Different item response functions were specified depending on a response
being relatively fast or slow, compared to what would be expected under the log-
normal RT model. In Table 3.3 we use a dummy variable t∗pi to indicate whether
a response is relatively slow for person p on item i, obtained through

t∗pi = I
(
tpi > exp

(
ξi − τp + σ2

i /2
))
. (3.19)

In Type 4 the difficulties differ for slow responses (βi + δi) compared to fast
responses (βi). In Type 5 the discriminations are different: αiγi and αi for slow
and fast responses, respectively, capturing the idea that the amount of information
that a response provides is different for slow and fast responses (Coyle, 2003; Maris
& van der Maas, 2012).

First, for each of the types of violations the assumption of CI was tested in
a baseline condition: N = 1000, n = 20, ρθτ = .5 and a medium violation of
CI. Second, the effect of changing one of the following parameters compared to
the baseline condition was evaluated: sample size (500 or 2000 instead of 1000),
test length (40 items instead of 20), correlation between ability and speed (.0
instead of .5) and size of violation (small instead of medium), resulting in five
extra conditions per type of violation. Finally, one extra condition was used: with
N = 2000 and a small violation, because we expected that a sample size of 1000
might not be enough for detecting small violations. In each of the conditions, PPC
with the combination of {p1i, p2i, p3i} (see Section 3.4.1 for details), the LM-test
and the KS-tests were performed in each of 100 simulated data sets.
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Results

Figure 3.2 shows the distribution of the PPP-values for the baseline condition for
each of the types of violations of CI. Violations of Type 1 and 4 resulted in a large
number of extreme p1is, meaning that the observed residual correlations between
RAs and RTs are generally stronger than expected under CI. Violations of Type
2 resulted in a large number of small p2is, meaning that differences between the
observed variances of the RTs of the correct responses and those of the incorrect
responses are generally higher (i.e., more positive) than expected under CI. Ad-
ditionally, violations of Type 2 resulted in an even larger number of large p3i,
meaning that the differences between the observed item-rest correlations for the
slow responses and for the fast responses are generally lower (i.e., more negative)
than expected under CI. Violations of Type 3 resulted in a large number of large
p2is, meaning that differences between the observed variances of the RTs of the
correct responses and those of the incorrect responses are generally lower (i.e.,
more negative) than expected under CI. Violations of Type 5 resulted in a large
number of extreme p1is and also a rather large number of extreme p3is.

Table 3.5 shows the proportion of data sets in which violations of CI were
detected in each of the conditions by each of the three procedures (PPC, LM-
test and KS-tests). Because in practice we recommend to use the combination of
discrepancy measures in order to be able to detect a variety of ways in which CI
might be violated, we present only the results based on the combination of the
three measures in Table 3.5 (see Section 3.3.1 for details). The results for the
individual discrepancy measures can be found in Appendix C.

The PPC and the LM-test detected violations of Type 1 in all simulated data
sets in all conditions. The KS-tests did not have adequate power (>.8) in the
condition with N = 1000 and a small violation, but did have adequate power in
all other conditions. Only the PPC had adequate power in all the conditions of
Type 2. The LM-test lacked power to detect violations of Type 2 when the sample
size is small (N = 500) and when the size of violation is small. The KS-tests
had lower power than the LM-test and the PPC in all conditions of Type 2. For
violations of Type 3 the PPC had adequate power in every condition, except for the
combination of small violation and N = 1000. The KS-tests were however unable
to detect this type of violation adequately. The LM-test had in most conditions
lower power to detect violation of Type 3 than the PPC, but performed better
than the PPC when the violations were small and N = 1000. However, using the
LM-test results in a misrepresentation of the kind of violation present in the data:
The locations of the two distributions are actually the same while the variances
are different. The PPC outperformed the other two procedures in all conditions
of Type 4, but had relatively low sensitivity when the violation was small (.48
and .74 when N = 1000 and N = 2000, respectively). The most difficult type of
violation to detect was Type 5. Only with the PPC power above .8 was achieved

51



Chapter 3

Table 3.5: Proportion of correctly detected violations of CI using PPC - posterior
predictive checks using the combination {p1i, p2i, p3i}, LM - Lagrange Multiplier
test (van der Linden & Glas, 2010), KS - Kolmogorov-Smirnov tests (Bolsinova &
Maris, 2016). For the specifications of medium (m) and small (s) sizes of violation
see Table 4. Based on 100 replications.

N n ρθτ Size Type 1 Type 2 Type 3
PPC LM KS PPC LM KS PPC LM KS

1000 20 .5 m 1 1 1 1 .95 .87 1 .74 .06
500 20 .5 m 1 1 .91 1 .66 .19 .91 .75 .02
2000 20 .5 m 1 1 1 1 .99 1 1 .72 .05
1000 40 .5 m 1 1 1 1 .99 .69 1 .87 .01
1000 20 .0 m 1 1 .99 1 .94 .80 .97 .64 .04
1000 20 .5 s 1 1 .45 .87 .27 .09 .59 .76 .04
2000 20 .5 s 1 1 .85 .99 .44 .23 .78 .79 .05
N n ρθτ Size Type 4 Type 5

PPC LM KS PPC LM KS
1000 20 .5 m .99 .99 .54 .68 .52 .12
500 20 .5 m .96 .84 .24 .34 .37 .03
2000 20 .5 m 1 .99 .86 .96 .76 .38
1000 40 .5 m 1 1 .59 .92 .77 .10
1000 20 .0 m .99 .92 .43 .65 .63 .11
1000 20 .5 s .48 .30 .01 .09 .11 .04
2000 20 .5 s .74 .53 .21 .24 .27 .12

in two conditions: When either the sample size was large or the number of items
was large. In all other conditions the PPC performed similarly to the LM-test,
while both outperformed the KS-tests.

3.5 Empirical example

To illustrate the performance of the PPC for CI, the procedure was applied to data
of an arithmetics test which is a part of the exit examination in Dutch secondary
education. The data of the students from a common educational background
(preparatory higher vocational education) to one of the test versions (consisting of
52 items) was used. Only the items with proportions of correct responses between
.2 and .8 were used, resulting in a final test length of 38 items. Data from one
person were deleted because the total time on the test was 197 seconds while all
other students spent more than 1000 seconds on the test. The final sample size
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was 610.
A hierarchical model with a 2PL model for RA (3.6) and a log-normal model

for RT (3.3) was fitted to the data using a Gibbs Sampler (see Appendix A). Two
chains with 11,000 iterations each (including 1,000 iterations of burn-in) were used.
Convergence was evaluated using R̂-statistic (Gelman & Rubin, 1992) for all item
parameters and for the higher level item and person parameters, and overall with
the multivariate scale reduction factor (Brooks & Gelman, 1998). All univariate
R̂-statistics and the multivariate scale reduction factor were below 1.1, indicating
reasonable convergence. After the burn-in in every second iteration a replicated
data set was simulated and discrepancy measures were computed (i.e., in total
10,000 samples from the posterior predictive distribution obtained using the two
chains were used).
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Figure 3.3: Histograms of the discrepancy measures between the observed data
and the hierarchical model assuming CI for the arithmetics test data.

The PPC resulted in 22 extreme p1is (either above .975 or below .025), 32
extreme p2is and 8 extreme p3is. Based on these results we conclude that CI
is violated for the data set at hand, since for at least one of the discrepancy
measures (and in this case for all) the number of extreme PPP-values exceeded
5 (see Equation 3.14). Therefore, the hierarchical model does not seem to hold
for these data. Among the items with an extreme p1i, RA had a positive residual
correlation with RT for 14 items and a negative residual correlation with RT for
8 items. Among the items with an extreme p2i, the RT distribution of correct
responses had a higher variance than the RT distribution of incorrect responses
for 2 items and a lower variance than the RT distribution of incorrect responses
for 30 items. Among the items with an extreme p3i, observed item-rest correlation
was higher for the fast responses for 6 items and was higher for the slow responses
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for 2 items. Figure 3.3 shows the histograms of the discrepancy measures of the
observed data. Since the first discrepancy measure is computed at each iteration,
its expected a posteriori estimate is calculated for each item, denoted by EAP(D1i).
The values of the observed discrepancy measures give some indication of the size
of violations of CI. For example, for 6 items the EAP of the residual correlations
exceeded the benchmark of small effect size, and for 7 items the variance of the
log RTs of incorrect responses was at least three times as large as the variance of
the log RTs of correct responses.

3.6 Discussion

PPC presented in this paper offer a powerful, robust and flexible approach to
testing CI. In most conditions of the simulation study, the PPC detected violations
of CI more often or at least as often as the existing tests of CI. Results strongly
indicate that the proposed PPCmethod can be useful in detecting different types of
violations of CI, but further research may be needed to determine the performance
of the procedure in a wider range of realistic scenarios.

The three proposed discrepancy measures capture different ways in which CI
may be violated. D1i measures the residual correlation that remains between RA
and RT after taking speed and ability into account.

Positive residual correlations which were the most common in the empirical
example could be explained by persons varying their effective speed as a conse-
quence of changing their position on the speed-accuracy trade-off (van der Linden,
2009). However, negative residual correlations cannot be explained in this way.
A possible explanation for the negative correlations, which were also found in the
empirical example, is that respondents finish working on an item if they have
found a correct response, but may continue working on the item if they have not
yet found the correct answer. In that case it could be that slow responses are
less often correct, resulting in a negative residual correlation. Further research is
needed to reveal the different possible causes of residual correlations for different
types of items.

D2i captures differences in the variance of RTs depending on whether a response
is correct or incorrect. High values of p2i, as were observed for many of the items
in the empirical example, indicate that RT is more variable for incorrect responses
and may reflect that the underlying response processes are more heterogeneous
than those resulting in correct responses. This could also be of substantive interest,
because it may be relevant to distinguish between different processes that lead to
an incorrect response (e.g., guessing, anxiety, or misapplying a response strategy).

D3i was designed to measure difference between fast and slow responses in
terms of the item discrimination, as has been suggested in the literature (Partchev
& De Boeck, 2012; Goldhammer et al., 2014). A large number of extreme p3i
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values might indicate that fast and slow responses have underlying processes that
are qualitatively different and as a result certain type of responses based on one
process (e.g, careful deliberation) might be more informative about ability than
response based on other processes (e.g., guessing). It may be relevant to take this
into consideration when modeling the data, as has been suggested by Bolsinova et
al. (2015).

In our treatment of the PPC method we proposed to use a combination of
discrepancy measures, rather than base the decision to reject CI on a single dis-
crepancy measure. The motivation for this choice is that in practice it may be
difficult to anticipate which types of violations are likely to occur in the data.
Furthermore, it could very well be that for different items different types of vi-
olations are present, making it useful to look at the set of discrepancy measures
that cover a range of potential consequences of these violations. Additionally,
having information about these different types of discrepancies provides a more
informative picture of the likely sources of the violation and may provide a user
with suggestions of where it makes sense to extend the model to incorporate those
sources. However, as mentioned before care should be taken when inferring the
source of conditional dependence, because the observed discrepancies may be due
to a variety of different sources. Also there may be other types of violations that
are not addressed by the discrepancy measures presented in this paper. However,
we offer a flexible framework that can be extended with new discrepancy measures
if particular violations of CI are suspected.

As we have shown in the simulation study the PPC procedure is rather robust
to violations in the lower level models for RT and RA unlike the LM-test, which
is important because a model used for analysis is always a simplification of reality.
Moreover, the procedure can be easily extended to deal with more complex lower-
level models, for example including a time discrimination parameter or a guessing
parameter or including a different RT distribution, as long as a Bayesian estimation
algorithm for these models is available.

The method requires a choice of a higher-level model, but is flexible with
respect to which model is chosen. In this paper the hierarchical model for RT
and RA (van der Linden, 2007) which is prevalent in educational measurement
was used, but the general method can readily be adapted to be applicable for
other models that assume CI, for example the diffusion model (Ratcliff, 1978) or
the independent race model (Tuerlinckx & De Boeck, 2005), provided methods
are available for sampling from the posterior distribution of the model parameters
and for simulating data under the model.

Whereas the PPP-values may help users determine if conditional dependence is
present, the proposed discrepancy measures may provide insight into the severity
of those violations. These measures can function as indicators of effect sizes of the
different ways in which CI can be violated (partial correlation, ratio of variances,
difference between item-rest correlations), as illustrated in the empirical example.
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As such they may be useful in determining the likely impact of observed violations
of CI on model-based inferences. However, further research into the robustness of
models assuming CI is needed for such an assessment to be realistic.

Using PPC CI is tested for a particular set of latent variables (in the case of
the hierarchical model, these are θ and τ). If CI is violated for this particular
set, it does not mean that CI cannot hold for a different set of latent variables. If
an alternative CI model with a new set of latent variables is formulated, then the
CI assumption can be again tested with PPC using samples from the posterior
distribution of the parameters of the new model. This also means that the PPC
can be used in the context of modeling conditional dependence to check whether
an attempt to model conditional dependence has been successful.

The aim of this paper has been to provide new powerful methods of detecting
a variety of violations of CI. Evaluating the practical impact of particular types
of violations of CI on inferences that are made based on the model that make
this assumption is beyond the scope of this paper. However, violations of CI
may not only be relevant with regard to their consequences for the accuracy of the
model inferences, but may also reveal substantively relevant aspects of the response
process that are not accounted for in the model that is used. Investigating the
ways in which CI is violated may therefore be of substantive interest. The proposed
PPC framework and possible extensions of it may prove useful in addressing this
substantive questions in future research.

3.7 Appendices

Appendix A

Although the variance of θ is constrained to 1, to improve the convergence of the
model at each iteration of the Gibbs Sampler the full covariance matrix ΣP is
sampled and at the end of each iteration all parameters are transformed to fit the
scale defined by σ2

θ = 1.
For the Bayesian estimation of the model, prior distributions for the item and

the person hyper parameters (µI , ΣI and ΣP) have to be chosen. We choose
vague prior distributions: independent normal distributions with a zero mean and
a large variance (100) for the elements of µI , half-t distributions with ν = 2
degrees of freedom and a scale parameter A = 2 for the standard deviations of
the item parameters (Gelman, 2006), marginally uniform joint distribution for the
correlations between the item parameters (Huang & Wand, 2013) and an inverse-
Wishart distribution with 4 degrees of freedom and the identity matrix I2 as the
scale parameter for ΣP (Hoff, 2009). Note, that the results are not sensitive to
the choice of the scale parameter, because in the posterior distribution the prior
is dominated by the data when N � 4 (Hoff, 2009, p.110). Independent prior
distributions are assumed
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Here we describe a Gibbs Sampler for sampling from the joint distribution of
the model parameters, which is proportional to the product of the prior distribu-
tion and the density of the data:

p(θ, τ , ξ,σ2,α,β,ΣP ,µI ,ΣI |X,T) ∝ p(ΣP)p(µI)p(ΣI)×∏
p

MVN (θp, τp; ΣP)
∏
i

1

σ2
i αi
MVN (ξi, lnσ

2
i , lnαi,−αiβi;µI ,ΣI)×

∏
p

∏
i

1

tpiσi
exp

(
−(ln tpi − (ξi − τp))2

2σ2
i

)
exp(xpi(αi(θp − βi)))
1 + exp(αi(θp − βi))

. (3.20)

To ensure better convergence we re-parameterise the 2PL model for RA in
terms of the slope (αi) and the intercept (β∗i = −αiβi) of the item response
function:

Pr(Xpi = 1) =
exp(αiθp + β∗i )

1 + exp(αiθp + β∗i )
. (3.21)

In the Gibbs Sampler the model parameters are subsequently sampled from
their conditional posterior distributions given the current values of all the other
parameters (Geman & Geman, 1984; Casella & George, 1992). Below is the de-
scription of the steps of the algorithm.

Step 1: For each item i sample the time intensity parameter from

p(ξi | . . . ) ∝ exp

(
−

(ξi − µ∗ξ)2

2σ∗2ξ

)∏
p

exp

(
−(ln tpi − (ξi − τp))2

2σ2
i

)
, (3.22)

where µ∗ξ and σ
∗2
ξ are the conditional mean and the conditional variance of ξi given

the other item parameters of item i:

µ∗ξ = µ1 + σ1,−1Σ
−1
−1

(
(lnσ2

i , lnαi, βi)
T − µ−1

)
(3.23)

σ∗2ξ = σ2
I,1 − σ1,−1Σ

−1
I,−1σ

T
1,−1, (3.24)

where µ−1 is a vector of the means of other item parameters except time intensity,
ΣI,−1 is a covariance matrix of the three remaining item parameters and σ1,−1 is
a vector of covariances between item time intensity and other item parameters.

The distribution in (3.22) is a normal distribution:

(ξi | . . . ) ∼ N


∑
p(ln tpi+τp)

σ2
i

+
µ∗ξ
σ∗2ξ

N
σ2
i

+ 1
σ∗2ξ

,
1

N
σ2
i

+ 1
σ∗2ξ

 (3.25)

57



Chapter 3

Step 2: For each item i sample the variance of log RT from

p(σ2
i | . . . )∝

(
1

σ2
i

)N
2

+1

exp

(
−

(lnσ2
i − µ∗lnσ2)2

2σ∗2
lnσ2

)∏
p

exp

(
−(ln tpi − (ξi − τp))2

2σ2
i

)
,

(3.26)
where µ∗lnσ2 and σ∗2lnσ2 are defined similarly to µ∗ξ and σ∗2ξ in Equations 3.23
and 3.24. To sample from (3.26) Metropolis-Hastings algorithm is used with a
proposal distribution

σ∗2 ∼ IG

(
N

2
,

∑
p(ln tpi − (ξi − τp))2

2

)
, (3.27)

and an acceptance probability

Pr(σ2
i → σ∗2) = min

(
1, exp

(−(lnσ∗2 − µ∗lnσ2)2 + (lnσ2
i − µ∗lnσ2)2

2σ∗2
lnσ2

))
. (3.28)

Step 3: For each person p sample the ability parameter from

p(θp | . . . ) ∝ N
(
θp;

ρθτ
στ

τp, (1− ρ2
θτ )

)∏
i

exp(αiθp + β∗i )

1 + exp(αiθp + β∗i )
, (3.29)

where ρθτ
στ
τp and (1−ρ2

θτ ) are the mean and the variance of the conditional normal
distribution of θp given τp.

To sample from this distribution the single variable exchange algorithm
(Marsman, Maris, Bechger, & Glas, 2015) is used. First, sample a candidate value

θ∗ ∼ N
(
ρθτ
στ

τp, (1− ρ2
θτ )

)
; (3.30)

then using this value simulate a response vector x∗:

x∗i ∼ Bernoulli
(

exp(αiθ
∗ + β∗i )

1 + exp(αiθ∗ + β∗i )

)
,∀i ∈ [1 : n]. (3.31)

The probability of accepting θ∗ as a new value of θp is:

Pr(θp → θ∗) = min

(
1, exp

(
(θ∗ − θp)

(∑
i

αixpi −
∑
i

αix
∗
i

)))
. (3.32)
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Step 4: For each person p sample the speed parameter from

p(τp | . . . ) ∝ exp

(
−(τp − στρθτθp)2

2(1− ρ2
θτ )σ2

τ

)∏
i

exp

(
−(ln tpi − (ξi − τp))2

2σ2
i

)
, (3.33)

where στρθτθp and (1 − ρ2
θτ )σ2

τ are the mean and the variance of the conditional
normal distribution of τp given θp. The conditional posterior in (3.33) is normal:

(τp | θp, . . . ) ∼ N

∑i
(ξi−ln tpi)

σ2
i

+
στρθτ θp

(1−ρ2θτ )σ2
τ∑

i
1
σ2
i

+ 1
(1−ρ2θτ )σ2

τ

,
1∑

i
1
σ2
i

+ 1
(1−ρ2θτ )σ2

τ

 . (3.34)

Step 5: For each item i sample the item discrimination parameter from

p(αi | . . . ) ∝
1

αi
exp

(
−

(lnαi − µ∗lnα)2

2σ∗2lnα

) ∏
p

exp(αiθp + β∗i )

1 + exp(αiθp + β∗i )
. (3.35)

where µ∗lnα and σ∗2lnα are defined similarly to µ∗ξ and σ
∗2
ξ in Equations 3.23 and 3.24.

To sample from (3.35) Metropolis-Hastings algorithm is used with a lognormal
distribution with the location parameter equal to the log of the current value of
the discrimination parameter.

Step 6: For each item i sample the item intercept parameter from

p(β∗i | . . . ) ∝ exp

(
−

(β∗i − µ∗β∗)2

2σ∗2β∗

) ∏
p

exp(αiθp + β∗i )

1 + exp(αiθp + β∗i )
. (3.36)

where µ∗β∗ and σ
∗2
β∗ are defined similarly to µ∗ξ and σ

∗2
ξ in Equations 3.23 and 3.24.

To sample from (3.36) Metropolis-Hastings algorithm is used with a normal dis-
tribution with the mean equal to the current value of the intercept parameter.

Step 7: Sample the covariance matrix of the item parameters from:

p(ΣI | ξ,σ2,α,β∗,µI)∝p(ξ,σ2,α,β∗|µI ,ΣI)|ΣI |−
ν+8
2

4∏
k=1

(
ν (ΣI)kk+

1

A2

)− ν+4
2

.

(3.37)
A Metropolis-Hastings algorithm is used to sample from this conditional posterior
with the candidate value Σ∗ sampled from the Inverse-Wishart distribution with
n degrees of freedom and the scale matrix equal to∑

i

(
(ξi, lnσ

2
i , lnαi, β

∗
i )T − µI

) (
(ξi, lnσ

2
i , lnαi, β

∗
i )T − µI

)T
, (3.38)
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such that the acceptance probability is equal to:

Pr(ΣI → Σ∗) = min

1,
|Σ∗|−

ν+3
2
∏4
k=1

(
ν (Σ∗)kk + 1

A2

)− ν+4
2

|ΣI |−
ν+3
2
∏4
k=1

(
ν (ΣI)kk + 1

A2

)− ν+4
2

 . (3.39)

Step 8: Sample the mean vector of the item parameters from

p(µI | ξ,σ2,α,β∗,ΣI) ∝ p(ξ,σ2,α,β∗ |µI ,ΣI)p(µI). (3.40)

With a multivariate normal prior for µI , this conditional posterior is also a mul-
tivariate normal with a mean vector equal to

(
(100I4)−1 + nΣ−1

I
)−1

Σ−1
I

(∑
i

ξi,
∑
i

lnσ2
i ,
∑
i

lnαi,
∑
i

β∗i

)T (3.41)

and the covariance matrix equal to
(
(100I4)−1 + nΣ−1

I
)−1.

Step 9: Sample the covariance matrix of person parameters from

p(ΣP |θ, τ ) ∝ p(θ, τ |ΣP)p(ΣP). (3.42)

This is the conditional posterior of the covariance matrix of a multivariate normal
distribution, which given the Inverse-Wishart prior is known to be an inverse-
Wishart distribution (see for example, Hoff (2009)):

(ΣP |θ, τ ) ∼ Inv-Wishart

(
4 +N, I2 +

∑
p

(θp, τp)(θp, τp)
T

)
(3.43)

Step 10: Re-scale model parameters to equate the variance of ability to 1:

θp → θp
σθ
, ∀p ∈ [1 : N ]

αi → αiσθ, ∀i ∈ [1 : n]
µlnα → µlnα + lnσθ

ΣP →
[

1 ρθτ
ρθτ σ2

τ

] (3.44)

Appendix B

Here, we briefly describe how the LM-statistics were computed in the simulation
studies. When investigating the robustness of the LM-test, for the data sets sim-
ulated under the two misspecifications of the lower level models, the item time
intensities and the item variances for the lognormal model in Equation 3.3 were
estimated using a Gibbs Sampler and the person speed parameters were computed
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as follows (van der Linden & Glas, 2010):

τ̂p = (
∑
i

1

σ̂2
i

(ξ̂i − ln tpi))/
∑
i

1

σ̂2
i

. (3.45)

RT residuals were calculated:

ẑpi = (ln tpi − (ξ̂i − τ̂p))/σ̂i, (3.46)

and the LM-test statistic was computed for each item:

LMi =

(∑
p

xpiẑpi
σ̂i

)2

/
∑
p

xpi
σ̂2
i

−

(
xpi
σ̂2
i

)2

∑
i

1
σ̂2
i

. (3.47)

Under CI LMi has a χ2-distribution with one degree of freedom.
Since the LM-test was designed for situations where the item parameters are

known (van der Linden & Glas, 2010), in the first and the third simulation studies
the true values of ξ and σ2 were used instead of the estimates when computing
the persons parameters (see Equation 3.45), the RT residuals (see Equation 3.46)
and the LM-statistics (see Equation 3.47).

Appendix C

Table 3.6: Proportion of correctly detected violations of CI with three discrepancy
measures (100 replications)

N n ρθτ Size Type 1 Type 2 Type 3 Type 4 Type 5
p1i p2i p3i p1i p2i p3i p1i p2i p3i p1i p2i p3i p1i p2i p3i

1000 20 .5 m 1 .00 .11 .81 1 1 .00 1 .01 .99 .14 .04 .58 .09 .25
500 20 .5 m 1 .01 .07 .43 .91 1 .00 .91 .02 .96 .10 .03 .28 .05 .01
2000 20 .5 m 1 .04 .33 1 1 1 .02 1 .04 1 .28 .11 .81 .30 .61
1000 40 .5 m 1 .05 .52 1 1 1 .01 1 .05 1 .37 .18 .96 .25 .67
1000 20 .0 m 1 .01 .14 .81 .01 1 .00 .97 .00 .99 .08 .08 .54 .04 .28
1000 20 .5 s 1 .00 .03 .11 .26 .83 .01 .58 .02 .48 .01 .00 .06 .02 .01
2000 20 .5 s 1 .02 .04 .27 .62 .99 .01 .77 .01 .74 .05 .00 .20 .02 .02
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Chapter 4

Modeling conditional dependence
between response time and
accuracy

1 Abstract. The assumption of conditional independence between response time
and accuracy given speed and ability is commonly made in response time mod-
eling. However, this assumption might be violated in some cases, meaning that
the relationship between the response time and the response accuracy of the same
item cannot be fully explained by the correlation between the overall speed and
ability. We propose to explicitly model the residual dependence between time and
accuracy by incorporating the effects of the residual response time on the intercept
and the slope parameter of the IRT model for response accuracy. We present an
empirical example of a violation of conditional independence from a low-stakes ed-
ucational test and show that our new model reveals interesting phenomena about
the dependence of the item properties on whether the response is relatively fast
or slow. For more difficult items responding slowly is associated with a higher
probability of a correct response, whereas for the easier items responding slower
is associated with a lower probability of a correct response. Moreover, for many
of the items slower responses were less informative for the ability because their
discrimination parameters decrease with residual response time.

Keywords: conditional independence, hierarchical model, item response theory,
residual dependence, response times.

1This chapter is conditionally accepted for publication in Psychometrika as Bolsinova, M., de
Boeck, P. & Tijmstra, J. Modeling conditional dependence between response time and accuracy.
Author contributions: B.M., deB.P. and T.J. designed the research, B.M. performed the research,
B.M. wrote the paper, deB.P. and T.J provided feedback on the manuscript.
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4.1 Introduction

Educational tests are often taken in a computerised form, which allows one to
not only collect the students’ responses, but also the response times. This can
be useful since response times can be an important source of information about
the students’ performance (Luce, 1986; van der Linden, 2009). One of the most
popular approaches for the joint modeling of item response accuracies and their
response times in educational measurement is the hierarchical framework (van
der Linden, 2007). In this framework the dependence between response time
and accuracy of an item is taken to be fully explained by a correlation between
a person’s overall ability and overall speed, such that conditional on the latent
variables speed and ability, for each item i the response time Ti and the response
accuracy Xi are assumed to be independent.

The hierarchical framework has been successfully used in several applications
in educational and psychological testing (van der Linden, 2008; van der Lin-
den & Guo, 2008; Klein Entink, Kuhn, Hornke, & Fox, 2009; Goldhammer &
Klein Entink, 2011; Loeys, Rossel, & Baten, 2011; Petscher, Mitchell, & Foorman,
2014; Scherer, Greiff, & Hautamäki, 2015). Although the hierarchical model as-
suming conditional independence is convenient from a statistical point of view and
provides clear interpretations of the individual differences in speed and accuracy
and the relations between them, in some cases the fundamental assumption of
conditional independence is violated, implying that the higher-level dependencies
between the speed and the ability parameters do not fully explain the dependence
between the response time and the response accuracy (Partchev & De Boeck,
2012; Ranger & Ortner, 2012; Chen & De Boeck, 2014; Bolsinova & Maris, 2016).
Conditional dependence between time and accuracy may for example arise from
respondents varying their speed or using different strategies to solve the items
throughout the test. In this paper we propose to explicitly model the residual
dependence between time and accuracy within each item after the higher-level
correlation between overall speed and ability has been taken into account.

In the hierarchical framework (van der Linden, 2007) the joint distribution
of response accuracy and response time is modeled as a product of the marginal
distributions of accuracy and time, which are obtained using standard IRT and
response time models, respectively (e.g., a two-parameter logistic model for re-
sponse accuracy and a log-normal model for response time). A more general way
of modeling the joint distribution of response time and accuracy that does not
require conditional independence is to decompose their joint distribution into a
product of a marginal and a conditional distribution in one of two ways. One pos-
sibility is to have a standard IRT model for the marginal dsitribution of response
accuracy (e.g., a two-parameter logistic model) and multiply it with the condi-
tional distribution of response time given a response being correct or incorrect, as
has been suggested by Bloxom (1985). Van der Linden and Glas (2010) have pur-
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sued such an approach, but with the goal of developing a test for the assumption
of conditional independence rather than obtaining a substantively interpretable
joint model. A second possibility is to have a standard model for the marginal
distribution of response time (e.g., a log-normal model) and multiply it with the
conditional distribution of response accuracy given response time.

In this study we consider the latter approach: Letting the parameters of the
response accuracy model depend on whether the response is relatively fast or slow.
We consider this second approach, because this aims at improving the model for
response accuracy, which is the model that is often most important for practical
applications. This choice is in line with the idea that response accuracy could be
affected when a respondent provides a response to a particular item that is faster
or slower than would be expected based on that person’s overall speed. Extending
the model for response accuracy by incorporating response time allows one to
study in more detail the impact that the relative speed of the response has on
the response accuracy. Research by Partchev and De Boeck (2012) indicates that
there likely are important differences in the response processes of fast versus slow
responses. Working with the conditional distribution of response accuracy given
response time makes it possible to study these differences.

We consider an extension of the two-parameter model for response accuracy,
in which both the intercept (item easiness) and the slope (strength of relationship
between the probability of a correct response and the measured ability) of the
item characteristic curve (ICC) are dependent on whether the response is rela-
tively fast or slow. Including response time in the model for response accuracy
has a long tradition in response time modeling (Roskam, 1987; van Breukelen &
Roskam, 1991; Verhest, Verstralen, & Jansen, 1997; van Breukelen, 2005; Wang
and Hanson, 2005; Wang, 2006). One important aspect that differentiates our
approach from these existing approaches is that not only the main effect of time
on accuracy (i.e., effect on the intercept), but also the interaction effect between
time and ability (i.e., effect on the slope) is included in the model for response
accuracy.

It may be noted that one could also choose to model conditional dependence at
the level of the joint distribution by specifying a bivariate distribution for response
time and response accuracy that includes an item-level residual correlation, as is
done by Ranger and Ortner (2012). However, this approach does not provide
a direct translation of how the probability of a correct response changes as a
function of response time, and corresponds to only allowing possible effects of
response time on the intercept of the item response function, and not the slope. For
these reasons, we propose to introduce time-dependent parameters in the response
accuracy model which allows for more versatility and results in additional item
parameters that have a straightforward interpretation.

The paper is organised as follows. In Section 4.2 we describe the specification
of the hierarchical model for response time and accuracy which is extended in
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this paper. In Section 4.3 we introduce a motivating empirical example which we
will be using throughout the paper. We show that for this data set conditional
independence between response time and accuracy assumed by the hierarchical
model is violated. In Section 4.4 we propose a modification of the hierarchical
model that explicitly models the effects of the relative speed of a response on the
parameters of the ICC. Instead of dichotomising the response times into fast versus
slow, as in the IRTree approach of Partchev and De Boeck (2012), we consider the
relative speed of the response as a continuous measure that serves as a covariate for
the parameters of the ICC. When using a continuous measure of speed no arbitrary
dichotomisation of response time is required, which may have the advantage of
avoiding a loss of information. The full model and its constrained versions are
described and a Bayesian estimation method is proposed. In Section 4.5 we return
to the empirical data set. Different models for the conditional dependence between
time and accuracy are fitted to these data. The best model is chosen based on
the DIC, and its goodness-of-fit is investigated with posterior predictive checks.
Substantive interpretations are given to the estimated model parameters. In order
to provide evidence for the stability of the conclusions drawn from the data set of
interest, we present a small scale simulation study in Section 4.6 that investigates
the parameter recovery when data are simulated using the estimates from the
empirical data set as true values. The paper concludes with a discussion.

4.2 Specification of the hierarchical model

Let us by X denote an N × n matrix of responses of N persons to n items taking
values of 1 if the response is correct and 0 otherwise, and by T an N ×n matrix of
the corresponding response times. The hierarchical model for response times and
accuracy is (van der Linden, 2007):

f(X,T) =
∏
p

∏
i

f(tpi | τp,γi)f(xpi | θp, δi), (4.1)

where tpi and xpi are the response time and accuracy of person p on item i, τp
and θp are the speed and the ability parameters of person p, and γi and δi are the
vectors of item parameters of item i related to time and accuracy, respectively. At
the lower level of the hierarchical model both the model for response accuracy and
the model of response time need to be specified. At the higher level the models for
the relationship between the person parameters (θp and τp) and for the relationship
between the item parameters (δi and γi) need to be specified. Below we describe
the full specification of the hierarchical model considered in this study.
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The model for the response accuracy is the following (Birnbaum, 1968)

Pr(Xpi = 1 | θp) =
exp(αiθp + βi)

1 + exp(αiθp + βi)
, (4.2)

that is, δi = {αi, βi}, where αi > 0 and βi are the slope and the intercept of the
ICC of item i which relates the ability of the person to the probability of a correct
response to the item. The slope αi reflects the discriminative power of the item,
since it specifies the strength of the relationship between the latent ability and the
response to the item, and the intercept βi reflects item easiness.

The model for the response times is

Tpi | τp ∼ lnN (ξi − τp, σ2
i ), (4.3)

that is γi = {ξi, σ2
i }. The mean of the logarithm of response time of person p

to item i depends on the item time intensity (ξi) and the person speed, and the
variance parameter depends on the item. The residual variance of response time
σ2
i can be interpreted as the inverse of item time discrimination (van der Linden,

2006), that is, the larger 1
σ2
i
is, the larger the proportion of variance of response

time explained by the variation of speed across persons is.
At the higher level, a multivariate normal distribution for the item parameters

{ξi, ln(σ2
i ), ln(αi), βi} and a multivariate normal distribution for the persons pa-

rameters {θp, τp} with the identifiability restrictions of µθ = µτ = 0 and σ2
θ = 1

are assumed.

4.3 Motivating example: violation of conditional inde-
pendence

We present an analysis of a data set of the Major Field Test for the Bachelor’s
Degree in Business2 which is a low-stakes educational test. This test is used
to assess mastery of concepts, principles and knowledge of graduating bachelor
students in business. The test is not used for making individual-level decisions,
but for evaluating educational programmes. The test consists of 120 multiple-
choice items separated into two part. Only the first part of the test was analysed
in this study. The time limit for this part was one hour, while the average time
used by the respondents was 42 minutes. Some items in the test are based on
diagrams, charts and data tables. The test items cover a wide range of difficulties
and are aimed at the evaluation of both depth and breadth of business knowledge.
From the original sample with the responses of 1000 persons to 60 items, 11 items

2Source: Derived from data provided by Educational Testing Service Copyright c©201x ETS.
www.ets.org. The opinions set forth in this publication are those of the author(s) and not ETS.
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were removed due to low item rest correlations (< .1). The responses for which
response times were equal to 0 were treated as missing values.

To test the assumption of conditional independence between response times
and accuracy given speed and ability we used the Lagrange Multiplier test of van
der Linden and Glas (2010). In this test for each item the hierarchical model
assuming conditional independence (van der Linden, 2007) is tested against a
model which allows for differences in the expected log-response time for correct
and incorrect responses by including an extra item parameter in the model for the
response times:

tpi ∼ lnN
(
ξi + λi(1− xpi)− τp, σ2

i

)
. (4.4)
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Figure 4.1: Distribution of the p-values of the Lagrange Multiplier test for con-
ditional independence between response time and accuracy. Most of the p-values
are below .05, indicating that conditional independence is violated.

Figure 4.1 shows the distribution of the p-values for the item-level conditional
independence test. For more than half of the items, conditional independence
is violated (α = .05 for each test). These results indicate that the assumption
of conditional independence cannot be maintained for these data. However, as
has been demonstrated in simulation studies (Bolsinova & Tijmstra, 2016), the
Lagrange multiplier test of van der Linden and Glas (2010) also may pick up
violations of conditional independence that are of a different type than what is
specified in Equation 4.4. Therefore, this test does not yet tell us in what way
exactly the hierarchical model for response time and accuracy is violated.

To investigate in which way conditional independence is violated we performed
two posterior predictive checks (Meng, 1994; Gelman et al., 1996; Sinharay et al.,
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2006) that focus on differences in the behaviour of the items with respect to re-
sponse accuracy between slow and fast responses, following the approach proposed
by Bolsinova and Tijmstra (2016). Here, we defined slow and fast responses by a
median split by defining a transformed time variable:

t∗pi =

{
1 if tpi ≥ tmed,i
0 if tpi < tmed,i

, (4.5)

where tmed,i is the median response time for item i. Our goal is to investigate
whether observed differences between the slow and the fast responses to the dif-
ficulty of the items and their discriminatory power are unlikely to be observed
under the hierarchical model assuming conditional independence.

When posterior predictive checks are implemented the measures of interest
have to be repeatedly computed for replicated data sets. Therefore, for reasons
of computational convenience we decided not to estimate IRT difficulty and dis-
crimination parameters separately for the slow and for the fast responses, but to
compute simple classical test theory statistics which can be viewed as proxies for
the difficulty and discrimination, namely the proportion of correct responses and
the item-rest correlation. For each item two discrepancy measures were computed:
the difference between the proportion of correct responses to the item among slow
responses and among fast responses,

D1i =

∑
p xpit

∗
pi∑

p t
∗
pi

−
∑

p xpi(1− t∗pi)∑
p(1− t∗pi)

, (4.6)

and the difference between item-rest correlations of the item among slow and fast
responses,

D2i = Cor
(
xi,slow,x

(i)
+,slow

)
− Cor

(
xi,fast,x

(i)
+,fast

)
, (4.7)

where xi,slow and xi,fast are vectors of responses of all persons such that t∗pi = 1

or t∗pi = 0, respectively; x
(i)
+,slow and x

(i)
+,fast are vectors of the numbers of correct

responses to all the items excluding item i of all persons such that t∗pi = 1 or
t∗pi = 0, respectively.

To assess whether the observed values D1i and D2i are plausible under the
hierarchical model, they can be compared to values drawn from the posterior pre-
dictive distribution of these measures given the data and the model. This posterior
predictive distribution can be obtained using draws from the posterior distribu-
tion of the model parameters. The conditional independence model was estimated
using a Gibbs Sampler. The prior distributions and the sampling procedure were
specified following the specification of Bolsinova and Tijmstra (2016), which means
that independent vague priors were used for the hyper-parameters (mean vector
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and covariance matrix of the item parameters, variance of speed, and correlation
between speed and accuracy). Two independent chains with 10000 iterations each
were used. The first 5000 iterations in each chain were treated as burn-in and
were discarded. To reduce the risk of autocorrelation every 5-th sample after the
burn-in was used, resulting in 1000 samples from each chain. Using each of these
2000 samples a new replicated data set was simulated according to the hierarchical
model: X

(g)
rep, T

(g)
rep, where superscript g denotes g-th sample from the posterior

distribution. In each replicated data set D(g)
1i and D

(g)
2i were computed for each

item. For each item two posterior predictive p-values were computed:

p1i =

∑
g I(D1i > D

(g)
1i )

2000
, (4.8)

p2i =

∑
g I(D2i > D

(g)
2i )

2000
. (4.9)

If p1i is close to 0 or close to 1, it means that the difference between the proportion
of correct responses among the slow and the fast responses observed in the empir-
ical data are not likely under the model. Similarly, if p2i is close to 0 or is close
to 1, the observed difference between the item-rest correlations is unlikely under
the model. Figure 4.2 shows the histograms of the posterior predictive p-values
of the items for the model assuming conditional independence. The large number
of extreme p-values indicate that the model does not capture an important aspect
of the data, namely that the items behave differently for the slow and the fast re-
sponses. We will modify the model such that it will better explain the behaviour
of the items.

Next, we investigated whether the observed deviation from conditional inde-
pendence in the data can be explained by the extended hierarchical model in
Equation 4.4, in which the model for response time is extended, while the same
model for response accuracy (see Equation 4.2) is used as in the hierarchical con-
ditional independence model. In this model, conditional independence as specified
in Equation 4.1 is violated, and this violation is taken to be fully explained using
the additional parameter λi. This way of modelling conditional dependence is in
line with the first approach described in the Introduction, that is, the distribution
of response time is modeled conditional on whether the response is correct or not.

To determine whether this extension of the hierarchical model is able to fully
explain the observed deviation from conditional independence in the data, we
analysed to what extent the observed D1i and D2i would be plausible under this
model. Figure 4.3 shows the histograms of the posterior predictive p-values for
the extended hierarchical model. The situation has improved with respect to the
difference in the proportion of correct responses, but not with respect to the differ-
ence in the item-rest correlations. The finding that there was only an improvement
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Figure 4.2: Posterior predictive p-values for the hierarchical model assuming con-
ditional independence: a) difference between the proportion of correct responses to
an item for slow and fast responses; b) difference between the item rest correlations
for slow and fast responses

with respect to the differences in the proportion of correct responses could be ex-
pected, since the extended hierarchical model only allows for a shift in the mean
conditional response time for correct an incorrect responses. That is, such a shift
cannot account for any observed variation in the discriminative power of an item as
a function of response time, as reflected in differences in the item-rest correlations.

Based on these results, we suggest extending the hierarchical model such that
it takes into account that both the proportion of correct responses to the items
and their discriminative power might change as a function of response time. In
the next section we propose to consider extending the model for response accuracy
using residual log response time as a covariate for the parameters of the IRT model
(both the intercept and the slope).

4.4 Residual log response time as a covariate for the
parameters of the ICC

4.4.1 Model specification

When considering the possible effects of having relatively fast or slow responses,
we want to disentangle the particular response time from the overall speed of a
person and the overall time intensity of an item. That is, it is not tpi in isolation
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Figure 4.3: Posterior predictive p-values for the model with an extra parameter for
the difference in response times distributions of the correct and incorrect responses:
a) difference between the proportion of correct responses to an item for slow and
fast responses; b) difference between the item rest correlations for slow and fast
responses

that informs us whether a response is relatively slow or fast, but rather the dif-
ference between tpi and the expected response time for person p on item i. Two
identical response times might differ with regard to whether they are fast or slow,
depending on the speed of the corresponding persons and the time intensity of the
items. Because of this, it may be reasonable to use a standardised residual of the
log response time (derived from Equation 4.3) to capture the extent to which a
response should be considered to be fast or slow. Let us denote the standardised
residual log response time of person p to item i by zpi:

zpi =
ln tpi − (ξi − τp)

σi
. (4.10)

If zpi > 0, it means that the response of person p to item i is relatively slow,
while if zpi < 0 it is relatively fast. The residuals are standardised in order to
make the regression coefficients specifying the effects of residual time on accuracy
comparable across items by taking into account the differences in σi. If conditional
independence between response times and accuracy given ability and speed holds,
then the probability of a correct response to item i does not depend on whether
the response is relatively slow or relatively fast, given ability and speed.

We suggest to use a time-related covariate both for the intercept and for the
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slope of the ICC, such that it can also capture the difference between the dis-
criminative power of the items for the slow and fast responses as observed in the
empirical data. Let the slope and the intercept in Equation 4.2 depend on the
standardised residual of the log response time:

αi = α0iα
zpi
1i , or equivalently

ln(αi) = ln(α0i) + ln(α1i)zpi, and (4.11)

βi = β0i + β1izpi. (4.12)

Since the slope parameter in the two-parameter logistic model is restricted to
positive values, a linear model for ln(αpi) rather than for αi is used. Another
reason for using a multiplicative effect for the slope instead of the linear effect
is that the slope parameter is itself a multiplicative parameter. The parameters
α0i and β0i are the baseline slope and the baseline intercept of the item response
function of item i, which refer to the responses xpi which are answered as fast as it
is expected for person p on item i (i.e., zpi = 0). The parameters α1i and β1i are
the effects of zpi on the slope and the intercept of the ICC. If α1i = 1 or β1i = 0
it means that there is no effect of residual log response time of the slope or on the
intercept, respectively.

If one would assume that persons keep a constant speed across items (which is
usually assumed within the hierarchical modeling framework), then β1i would be
closely related to the conditional accuracy function (van Breukelen, 2005), since
the residual response time does not reflect a change in effective speed. However,
if the effective speed does vary across items (e.g., faster at the end of the test
because of a strict time limit), then this would be partly reflected in the residual
response time (i.e., part of the residual is the deviation of the effective speed on
item i from the average effective speed τ). In that case the effect β1i > 0 relates
to the speed-accuracy trade-off (Luce, 1986), that is, investing less time in solving
the item decreases the probability of a correct response.

The full model allows the effects of the covariate to vary across the items.
However, one might assume that the effect of responding relatively fast or slow is
the same for all the items, choosing one of the constrained models: equal α1i and
β1i, equal α1i but varying β1i, or equal β1i but varying α1i. It may be noted that if
one chooses to model only the effects on the intercept (i.e., varying β1i and α1 = 1
for all items) then the model is similar in structure to the model of Ranger and
Ortner (2012) with the exception that we consider a logistic model for response
accuracy instead of a normal ogive model.

As in the hierarchical model that assumes conditional independence, we need
to specify the joint distribution for the item parameters and the joint distribu-
tion of the person parameters. The dependence between the item parameters of
individual items is modeled by a multivariate normal distribution for the vector
{ξi, ln(σ2

i ), ln(α0i), ln(α1i), β0i, β1i} with a mean vector µI and a covariance matrix
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ΣI . Logarithmic transformation is used for the parameters which are restricted
to positive numbers. A multivariate normal distribution is used to model the de-
pendence between speed and ability. The mean vector of the person population
distribution is constrained to zero and the variance of θ is constrained to one
to ensure the identification of the model, similar to the hierarchical conditional
independence model. The two person population parameters of interest are the
correlation between speed and ability (denoted by ρθτ ) and the variance of speed
(denoted by σ2

τ ).

4.4.2 Estimation

For the estimation of the model we developed a Gibbs Sampler (Geman & Geman,
1984; Casella & George, 1992) implemented in R programming language (R Core
Team, 2014) to obtain samples from the joint distribution of the model parameters:

f
(
α0,α1,β0,β1,θ, ξ,σ

2, τ ,µI ,ΣI , σ
2
τ , ρθτ |X,T

)
, (4.13)

which includes both the parameters of the individual persons and items and the
hyper-parameters of the person population distribution and the item population
distribution.

Although the variance of θ is constrained to 1, to improve the convergence of
the model at each iteration of the Gibbs Sampler the full covariance matrix ΣP
is sampled and at the end of each iteration all parameters are transformed to fit
the scale defined by σ2

θ = 1 (see Appendix for details). Prior distributions for the
item and the person hyper-parameters have to be specified. We choose vague prior
distributions: normal distributions with a zero mean and a large variance (100)
for the means of the item parameters, half t-distributions with ν = 2 degrees of
freedom and a scale parameter A = 2 for the standard deviations of the items
parameters, marginally uniform joint distribution for the correlations between the
item parameters (Huang & Wand, 2013) and an inverse-Wishart distribution with
4 degrees of freedom and identity matrix I2 as the scale parameter for ΣP (Hoff,
2009). Results are not sensitive to the specification of the prior scale parameter,
because the posterior distribution is dominated by the data when the sample size
is large (Hoff, 2009, p.110). Prior distributions are assumed to be independent.

The estimation algorithm includes Metropolis-Hastings steps (Metropolis, Ro-
senbluth, Rosenbluth, Teller, & Teller, 1953) and a modification of the composition
algorithm by Marsman et al. (2015). In the Gibbs Sampler, the model parameters
are subsequently sampled from their full conditional posterior distributions given
the current values of all other parameter. The details about how to sample from
each of the conditional posteriors are described in the Appendix.

For model comparison purposes, modifications of the algorithm have also been
developed to estimate the constrained models (equal α1i and β1i, equal α1i but
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varying β1i, or equal β1i but varying α1i), models with different time related covari-
ates (one might be interested in the effect of tpi and ln tpi on the IRT parameters
instead of zpi), the hierarchical model assuming conditional independence, and
the modified hierarchical model with an extra parameter for the difference in the
location parameters of the distribution of the response times given a correct and
an incorrect response (see Equation 4.4).

4.4.3 Model selection and Goodness-of-fit

To select the best model the deviance information criterion [DIC] can be used,
because it adequately takes the complexity of hierarchical models into account
(Spiegelhalter, Best, Carlin, & van der Linden, 2002). The DIC can be computed
using the output of the Gibbs Sampler. First, at each iteration (after discarding
the burn-in and thinning) the deviance is computed. For example for the full
model the deviance is:

D(g) = −2 ln
(
f
(
X,T |α(g)

0 ,α
(g)
1 ,β

(g)
0 ,β

(g)
1 ,θ(g), ξ(g),σ2(g), τ (g)

))
, (4.14)

where the superscript (g) denotes the g-th iteration of the Gibbs Sampler; this
expression does not include the hyper-parameters σ2

τ , ρθτ , µI and ΣI because
the distribution of the data is independent of the hyper-parameters given the
individual item and person parameters. Second, the deviance is computed for the
posterior means of the model parameters:

D̂ = −2 ln
(
f
(
X,T | α̂0, α̂1, β̂0, β̂1, θ̂, ξ̂, σ̂

2, τ̂
))

. (4.15)

The DIC is equal to:

DIC = 2

∑
gD

(g)

G
− D̂, (4.16)

where G is the total number of iterations which are taken into account when
computing the DIC.

To evaluate the absolute fit of the best fitting model, posterior predictive checks
for a global discrepancy measure between the data and the model can be used,
for example the log-likelihood of the data under the model. For each g-th sample
from the posterior distribution of the model parameters given the observed data, a
replicated data set (X(g)

rep,T
(g)
rep) is simulated under the model and the log-likelihood

is computed both for the observed data and the replicated data:

LL
(g)
obs=ln

(
f
(
X,T|α(g)

0 ,α
(g)
1 ,β

(g)
0 ,β

(g)
1 ,θ(g), ξ(g),σ2(g), τ (g)

))
, (4.17)

LL(g)
rep=ln

(
f
(
X(g)
rep,T

(g)
rep|α

(g)
0 ,α

(g)
1 ,β

(g)
0 ,β

(g)
1 ,θ(g), ξ(g),σ2(g), τ (g)

))
. (4.18)
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The posterior predictive p-value is the proportion of samples in which the observed
data is less likely under the model than the replicated data. If the posterior
predictive p-value is small, then the data are unlikely under the model.

The goodness-of-fit can be further evaluated using posterior predictive checks
based on D1i and D2i statistics (see Equations 4.6 and 4.7).

4.5 Results

4.5.1 Fitted models

Eight different models for response time and accuracy were fitted to the data
set of interest. First, the hierarchical model assuming conditional independence
was estimated. Second, the modification of the hierarchical model with an extra
parameter for the difference between the log-normal distributions of the response
times given a correct and an incorrect response (see Equation 4.4) was fitted.
Third, four models with residual log-response time (zpi) as a covariate for the
parameters of the ICC were estimated: the full model and its three constrained
versions (equal α1i and β1i, equal α1i but varying β1i, equal β1i but varying α1i).
Finally, two models with alternative time related covariates (tpi and ln tpi) for the
parameters of the ICC were fitted.

4.5.2 Convergence

Convergence was assessed using R̂-statistic (Gelman & Rubin, 1992) for all the
hyper-parameters individually and overall with the multivariate scale reduction
factor (Brooks & Gelman, 1998). For all eights fitted models all multivariate R̂
and the multivariate scale reduction factor were smaller than 1.1, indicating that
convergence was not an issue.

4.5.3 Model selection

The values of the DIC of the different models are presented in Table 4.1. As
expected based on the results of the test for conditional independence, the hierar-
chical model assuming conditional independence fits worse than the models taking
conditional dependence between time and accuracy into account. When models
for response accuracy are considered that include zpi as a covariate for the item
slope and intercept, allowing both these effects to vary across items improves the
model, as evidenced by the fact that the full model has the lowest DIC, while the
model with fixed effects has the highest DIC of the four models. It can also be
observed that the full model outperforms the extension of the hierarchical model
that includes a shift parameter (λi) for the model for response time. Finally, the
residual log-response time is a better predictor of the parameters of the ICC than
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Table 4.1: DIC of the fitted models

Model DIC
CI model 466624.5

Model with extra λi 465498.5
zpi as a covariate equal α1 and β1 466280.4

equal α1 465550.5
equal β1 466100.3
full model 465452.7

ln(tpi) as a covariate full model 465605.9
tpi as a covariate full model 465853.2

the response time or the log-response time, as can be seen from the comparison
of the three full models with different specifications of the time related covariates.
Since the full model with zpi as a covariate is the best performing model, this is
the model that will be the focus in the remaining of the paper.

4.5.4 Posterior predictive checks

In the previous subsection we concluded that the full model with zpi as a covariate
fits the best of the fitted models. Now, we will further investigate its goodness-
of-fit using posterior predictive checks. First, we performed a posterior predictive
check for the global discrepancy measure. The posterior predictive p-value is equal
to .35 (i.e., the proportion of iterations in which the log-likelihood of the observed
data was lower than the log-likelihood of the data replicated under the model),
which means that the observed data is not much more unlikely under the model
than the data simulated under the model.

Second, we performed the same posterior predictive check as for the model as-
suming conditional independence in Section 4.3. Figure 4.4 shows the histogram
of the posterior predictive p-values for the difference between the proportion of
correct responses to the items among the slow and the fast responses (see Equa-
tion 4.6) and for the difference between the item-rest correlations among the slow
and the fast responses (see Equation 4.7). Neither of the two measures resulted
in a disproportionate amount of extreme posterior predictive p-values, which indi-
cates that the model adequately captures these aspects of the data. These results
are in line with what could be expected, since the posterior predictive checks focus
on exactly the kind of dependencies that are meant to be captured by the added
parameters β1i and α1i.
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Figure 4.4: Posterior predictive p-values for the full model with residual response
time as a covariate for item parameters: a) difference between the proportion of
correct responses to an item for slow and fast responses; b) difference between the
item rest correlations for slow and fast responses.

4.5.5 Effect of residual time on the ICC

Figure 4.5 displays the estimates of the effect of zpi on the intercept and the slope
of the ICC. For many of the items the credible intervals for these effects exclude
0 and 1, respectively, which indicates that the residual log response time does
have an effect on the behaviour of the items. The estimates of α1i differ across
items. However, for most of them, these estimates are below 1, which means that
these items discriminate worse if the response is slower. The effect of zpi on the
intercept (β1i) is more variable across items compared to the effects on the slope
(α1i). For most of the items the effects on the intercept are negative, that is, the
probability of correct responses among the relatively slow responses (zpi > 0) was
lower than among the relatively fast responses (zpi < 0). For some of the items
β1i are positive, that is, the easiness of the item is higher for the relatively slow
responses.

To zoom in on the differences between relatively fast responses (zpi = −1) and
relatively slow responses (zpi = 1), we present the scatterplots of the predicted
slopes and intercept of the items given two values of zpi (see Figure 4.6). The
predicted values for the intercepts (see Figure 4.6a) lie both above and below the
diagonal, meaning that for some items the probability of a correct response is
higher for slow responses and for other items the probability of a correct response
is higher for fast responses. The predicted values of the slopes (see Figure 4.6b) lie
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Figure 4.5: Estimated effects of residual response time on the slope and the inter-
cept of the ICC

mainly above the diagonal, meaning that for these items the relationship between
item response and the ability θ is stronger for fast responses.

Table 4.2 presents the posterior means and the 95% credible intervals for the
means and the variances of the item parameters, and the correlations between
them. On average the items have a low baseline discrimination (-0.57 on the
log scale, corresponding to a baseline discrimination parameter of 0.57), and are
relatively easy (the mean of the baseline intercept is 0.17). The effects of residual
log response time on the intercept and on the logarithm of the slope are on average
negative (-0.21 and -0.27, respectively) but the variance of the effect is larger for
the intercepts than for the slopes (0.15 and 0.04, respectively).
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Figure 4.6: Predicted intercepts (a)) and slopes (b)) of the ICC given a slow
response (zpi = 1) on the x-axis and given a fast response (zpi = −1) on the y-axis
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The baseline intercept of the ICC is negatively correlated with the effects on the
intercept (-.75) and on the log of the slope (-.62). Figure 4.7 shows the scatterplots
of the effects of zpi on the intercept (a) and on the slope (b) of the ICC against
the baseline intercept of the ICC. For very difficult items the effect of being slow
is positive and for easier items the effect of being slow is more and more negative.
In other words, for very difficult items being slow increases the probability of a
correct response, whereas for very easy items being slow decreases the probability
of a correct response. Moreover, slow responses are less informative (have lower
discrimination) than the fast responses for the easy items, and are either more
informative or equally informative as the fast responses for the difficult items.

As can be observed in Table 4.2, the effect of zpi on the intercept and the
effect on the log of the slope are strongly correlated (.73). Part of this correlation
is explained by considering the baseline intercept, which is negatively correlated
with both effects. However, after conditioning on the baseline intercept a positive
correlation of .47 remains. This can be taken to indicate that items differ in the
extent to which differences between fast and slow responses are present. That is,
some items show both a strong effect on the slope and the intercept, whereas for
other items both effects are weaker, indicating that there may not be any large
differences between fast and slow responses for those items.

Item time intensity is negatively correlated with item baseline intercept (−.44),
that is more difficult items require more time. This negative correlation between
item baseline intercept and time intensity is in line with expectations of van der
Linden (2007). Furthermore, time intensity is positively correlated with the effects
of residual time on the item intercept (.52) and the item slope (.44). The first of
these two correlations means that in our example spending relatively more time
on the time intensive items increases the probability of a correct response while
it decreases the probability of a correct response on items that do not require a
lot of time. The second correlation implies that in this test time intensive items
become more informative if answered relatively slowly, whereas items with low
time intensity discriminate better if they are answered fast relative to what is
expected for the combination of the person and the item.

4.5.6 Sensitivity analysis: robustness to outliers

For the original analysis none of the response time outliers were removed. However,
it is important to check if the presence of outliers with respect to response time
affects the estimates of the model parameters. To do that, we fitted the full
model with zpi as a covariate to the data set without the responses that were
considered to be possible outliers. Responses with the item-wise z-scores of the
log-response times below the 0.1-th quantile or above the 99.9-th quantile of the
standard normal distribution were identified as outliers, resulting in the removal
of 514 responses out of the total of 49,000 responses.
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Table 4.3: Difference between the estimates of the hyper-parameters of the items
after the removal of the outliers compared to the original estimates

ξi ln(σ2
i ) ln(α0i) ln(α1i) β0i β1i

ξi 0.01
ln(σ2

i ) -0.10 -0.03
ln(α0i) -0.02 0.04 0.00
ln(α1i) -0.06 -0.10 -0.01 0.00
β0i 0.00 0.02 -0.02 0.03 0.05
β1i 0.03 -0.05 0.01 0.03 -0.02 0.01
µI 0.02 -0.13 0.01 0.00 0.03 -0.01

Removing the outliers resulted in the decrease of standard deviation of speed
from 0.33 [0.31,0.34] in the original data set to 0.28 [0.27,0.29] in the data set
without the outliers, and in the decrease of the correlation between speed and
accuracy from -.09 [-.16,-.02] to -.02 [-.09,.05]. These effects of the removal of
the outliers are not very influential for the overall conclusions, since στ is not
the primary parameter of interest, and ρθτ was already too low to assign any
substantive relevance to it.

With respect to the estimates of the item hyper-parameters, removing outliers
mostly effected the estimates related to the ln(σ2

i ), as could have been expected
from the fact that removing extreme values from the sample decreases the esti-
mated variance. Its mean and variance decreased and the correlations with other
item parameters became less strong. The 95% credible intervals for the correla-
tions between ln(σ2

i ) and other three parameters (ln(α1i), β0i, β1i) included zero
after the removal of the outliers. For this reason, we do not give any substan-
tive interpretations to these correlations. Table 4.3 summarises the differences
between the estimates of the item hyper-parameters after and before the removal
of the outliers.

4.6 Simulation study

To assess parameter recovery of the model a simulation study based on the empir-
ical example was performed. In this applied paper we are not aiming at showing
the performance of the model for various combinations of item hyper-parameters,
person hyper-parameters, test and sample sizes, but rather mainly at the specific
combination of those factors from the empirical data that we are dealing with.
Therefore, in the simulation study we used the estimates of the item and the
person hyper-parameters to simulate replicated data sets of the same sample size
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(1000 persons) and the same number of items (49). To investigate how parameter
recovery is effected by decrease in sample size and number of items and to evaluate
the applicability of the model in a wider range in conditions, three more condi-
tions were considered: N = 500, n = 49, N = 1000, n = 25, and N = 500, n = 25.
For each condition, 100 data sets were simulated under the full model with zpi
as a covariate for the parameters of the ICC. In each replication the model was
fitted using the Gibbs Sampler with one chain of 10000 iterations (including 5000
iterations of burn-in).

Table 4.4 shows the simulation results: the average EAP estimates of the
hyper-parameters and the number of the replications (out of 100) in which the
true value was within the 95% credible interval. First, let us consider the results
obtained when the same sample size and the number of items as in the empir-
ical example were used. The mean vector of the item parameters, the standard
deviation of speed and the correlation between speed and ability were correctly re-
covered. The correlations between the item parameters are estimated to be closer
to zero than the true values, and the variances of the item parameters are slightly
overestimated. However, this bias is relatively small and does not influence the
substantive interpretation of the relations between the item parameters.

When the sample size was reduced (500 instead of 1000), the results were not
seriously effected. However, when the number of items was reduced (25 compared
to 49), the bias of the variances of item parameters and of the correlations between
them increased. This is likely due to the fact that these hyper-parameters were
estimated based on a relatively small sample of items. In the condition with
N = 1000 and n = 25 the number of 95% credible intervals which contained
the true value is smaller than when the sample size was smaller. This can be
explained by the fact that the posterior variance is smaller when the sample size
is larger. Overall these results indicate that for accurate recovery of the item
hyper-parameters test size should not be too small.

4.7 Discussion

In the paper we provide empirical evidence that a higher level dependence be-
tween the persons’ speed and ability cannot always fully explain the dependence
between response time and accuracy. For cases in which CI is violated, we propose
an approach to modeling the conditional dependence by introducing an effect of
residual response time on the intercept and on the slope of the ICC. In the applied
example the proposed model accounts for differences in item properties between
the fast and the slow responses.

The conclusions drawn from the fitted model in the empirical example are
interesting from a substantive point of view. The negative correlation between
the baseline item intercept and the effect of the residual response time on the
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Table 4.4: Results of the simulation study: the EAP estimates of the hyper-
parameters averaged across 100 replications and the number of replications in
each the true value was within the 95% credible interval

True value Average EAP Coverage rate (%)
N 1000 500 1000 500
n 49 25 49 25 49 25 49 25

µξ 3.50 3.51 3.50 3.50 3.48 96 95 95 95
µln(σ2) -1.49 -1.48 -1.48 -1.48 -1.49 95 97 96 98
µln(α0) -0.57 -0.57 -0.59 -0.59 -0.59 96 90 91 95
µln(α1) -0.27 -0.26 -0.27 -0.27 -0.28 97 96 93 94
µβ0 0.17 0.17 0.16 0.20 0.18 97 95 96 93
µβ1 -0.21 -0.21 -0.22 -0.22 -0.22 97 94 94 91
σ2
ξ 0.20 0.22 0.24 0.24 0.24 97 81 94 94
σ2

ln(σ2) 0.12 0.14 0.17 0.16 0.19 94 77 77 79
σ2

ln(α0) 0.12 0.15 0.17 0.14 0.16 95 85 90 88
σ2

ln(α1) 0.04 0.05 0.10 0.05 0.06 92 83 92 91
σ2
β0

1.39 1.50 1.53 1.50 1.55 95 87 92 92
σ2
β1

0.15 0.16 0.20 0.16 0.18 95 88 97 93
σξ,ln(σ2) 0.40 0.33 0.33 0.33 0.29 91 88 97 96
σξ,ln(α0) 0.11 0.10 0.02 0.12 0.06 96 84 95 94
σξ,ln(α1) 0.44 0.38 0.33 0.36 0.27 93 88 96 94
σξ,β0 -0.44 -0.40 -0.37 -0.39 -0.36 99 84 96 95
σξ,β1 0.53 0.48 0.40 0.47 0.41 96 86 95 93
σln(σ2),ln(α0) -0.05 -0.05 -0.03 -0.01 -0.02 98 88 94 98
σln(σ2),ln(α1) 0.33 0.27 0.21 0.23 0.16 96 84 96 96
σln(σ2),β0 -0.30 -0.24 -0.23 -0.24 -0.23 97 89 94 98
σln(σ2),β1 0.32 0.25 0.24 0.24 0.22 92 87 94 95
σln(α0),ln(α1) -0.05 -0.06 -0.02 -0.04 -0.02 98 90 96 98
σln(α0),β0 0.13 0.12 0.08 0.09 0.09 94 88 94 96
σln(α0),β1 -0.10 -0.10 -0.08 -0.07 -0.11 96 87 95 96
σln(α1),β0 -0.62 -0.55 -0.43 -0.52 -0.39 94 86 96 91
σln(α1),β1 0.73 0.63 0.49 0.58 0.42 94 82 92 83
σβ0,β1 -0.75 -0.69 -0.59 -0.67 -0.63 90 84 90 91
ρθτ -0.09 -0.09 -0.10 -0.09 -0.09 95 97 93 95
στ 0.33 0.33 0.33 0.33 0.33 96 96 93 94
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intercept is consistent with the results of Goldhammer et. al (2014), who also pro-
vided evidence for the increase of the probability of a correct response for difficult
items and the decrease of the probability of the correct response for easy items
for slow responses. It is important to note that since most of the effects of resid-
ual log-response time on the item intercept are negative, this kind of conditional
dependence cannot be explained by the speed-accuracy trade-off.

The average negative effect of the residual response time on the item slope is
contradicting the findings regarding the ‘worst performance rule’ (Coyle, 2003),
which predict that slow responses contain the most information about persons’
ability. One possible explanation could be that the ‘worst performance rule’ applies
to the difficult items but not to the easy items (see Figure 4.7), which are perhaps
better answered using fast automated strategies. Another possible explanation
for the decrease of the item discriminative power if a person takes more time on
the item than expected, is that if responses are fast, then all persons are using
the same strategy, whereas the more time persons take the more diverse strategies
they may use, hence making the relationship between the measured ability and
the probability of a correct response weaker. However, care should be taken with
any of these interpretations, since a long response time might also simply be a
product of the respondent not having spent all of the recorded time on solving the
item.

Modeling conditional dependence between response time and accuracy allows
one to reveal more about the relationship between time and accuracy than just one
overall correlation between ability and speed. In the presented example, we were
able to detect interesting patterns of positive and negative relationships between
time and accuracy, while overall the correlation between ability and speed was
close to zero. It would be interesting to investigate whether similar conditional
dependence phenomena would be observed in other data sets in which the corre-
lation between the two latent traits would be strong and negative or strong and
positive.
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4.8 Appendix

Here, we describe a Gibbs Sampler for sampling from the joint posterior distribu-
tion of the model parameters, which is proportional to the product of the prior
distribution and the density of the data:

p(θ, τ , ξ,σ2,α0,α1,β0,β1,ΣP ,µI ,ΣI |X,T) ∝ p(ΣP)p(µI)p(ΣI)×∏
p

MVN(θp, τp;ΣP)
∏
i

1

σ2
i α0iα1i

MVN(ξi, lnσ
2
i, lnα0i,lnα1i,β0i,β1i;µI ,ΣI)×

∏
p

∏
i

1

tpiσi
exp

(
−(ln tpi−(ξi−τp))2

2σ2
i

)
exp(xpi(α0iα

zpi
1i θp+β0i+β1izpi)))

1+exp(α0iα
zpi
1i θp+β0iβ1izpi))

. (4.19)

Before the algorithm can be started initial values have to be specified. Identity
matrices are used for ΣP and ΣI ; zero mean vector is used for µI . It is important
for the initial values of ξ, σ2 and τ to be chosen close to where the posterior density
is concentrated since these parameters determine the values of the residuals of log
response times. First, random values are chosen for these parameters: ξi0 ∼
N (0, 1), σ2

i0 ∼ lnN (0, 1), ∀i ∈ [1 : n] and τp0 ∼ N (0, 1),∀p ∈ [1 : N ]. Second,
for 20 iterations values are drawn from the conditional posterior distributions
of each of these parameters given the response time data only and an improper
prior p(ξ,σ, τ ) ∝

∏
i

1
σ2
i
. Random initial values are chosen for the parameters

in the response accuracy models: α0i0 ∼ lnN (0, 0.2), α1i0 ∼ lnN (0, 0.2), β0i0 ∼
N (0, 0.5), β1i0 ∼ N (0, 0.5),∀i ∈ [1 : n], and θp ∼ N (0, 1), ∀p ∈ [1 : N ].

After initialisation the algorithm goes through the steps described below, in
which the parameters are sampled from their full conditional posterior distribu-
tions.

Step 1: For each person p sample the person speed parameter τp from:

p(τp | . . . ) ∝ p(τp |ΣP , θp)f(Tp | τp, . . . )f(Xp | τp, . . . ). (4.20)

Sampling is done using Metropolis-Hastings algorithm with a candidate value
drawn from the proposal density:

τ∗ ∼ N

∑i
(ξi−ln tpi)

σ2
i

+
στρθτ θp

(1−ρ2θτ )σ2
τ∑

i
1
σ2
i

+ 1
(1−ρ2θτ )σ2

τ

,
1∑

i
1
σ2
i

+ 1
(1−ρ2θτ )σ2

τ

 . (4.21)

which is proportional to the product p(τp |ΣP , θp)f(Tp | τp, . . . ). The acceptance
ratio is equal to:

Pr(τp → τ∗) = min

(
1,
f(Xp | τ∗, . . . )
f(Xp | τp, . . . )

)
. (4.22)
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Step 2: For each item i sample the time intensity parameter from

p(ξi | . . . ) ∝ p(ξi |µI ,ΣI , σ2
i , α0i, α1i, β0i, β1i)f(Ti | ξi, . . . )f(Xi | ξi, . . . ). (4.23)

Sampling is done using Metropolis-Hastings algorithm with a candidate value
drawn from the proposal density

ξ∗ ∼ N


∑
p(ln tpi+τp)

σ2
i

+
µ∗ξ
σ∗2ξ

N
σ2
i

+ 1
σ∗2ξ

,
1

N
σ2
i

+ 1
σ∗2ξ

 , (4.24)

where µ∗ξ and σ
∗2
ξ are the conditional mean and the conditional variance of ξi given

the other item parameters of item i. This proposal is proportional to the product
of the density of the RT data and the density of ξi given other item parameters of
item i and the item hyper parameters. The acceptance probability is:

Pr(ξi → ξ∗) = min

(
1,
f(Xi | ξ∗, . . . )
f(Xi | ξi, . . . )

)
. (4.25)

Step 3: For each item i sample the variance of log RT from

p(σ2
i | . . . ) ∝ p(σ2

i |µI ,ΣI , ξi, α0i, α1i, β0i, β1i)f(Ti |σ2
i , . . . )f(Xi |σ2

i , . . . )
(4.26)

Metropolis-Hastings algorithm is used with a proposal distribution

σ∗ ∼ IG

(
N

2
,

∑
p(ln tpi − (ξi − τp))2

2

)
, (4.27)

and an acceptance probability

Pr(σ2
i →σ∗)=min

1,
f(Xi|σ∗, . . . )
f(Xi|σ2

i , . . . )

exp

(
−(lnσ∗−µ∗

lnσ2
)2

2σ2∗
lnσ2

)
exp

(
−(lnσ2

i−µ∗lnσ2 )2

2σ2∗
lnσ2

)
, (4.28)

where µ∗lnσ2 and σ∗2lnσ2 are the conditional mean and the conditional variance of
lnσ2

i given the other item parameters of item i.

Step 4: For each person p sample person ability parameter from:

p(θp | . . . ) ∝ p(θp |ΣP , τp)f(Xp | θp, . . . ) (4.29)

To sample from this distribution the single variable exchange algorithm (Marsman
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et al., 2015) is used. First, sample a candidate value from

θ∗ ∼ N
(
ρθτ
στ

, 1− ρ2
θτ

)
; (4.30)

then using this value simulate a response vector x∗:

x∗i ∼ Bernoulli
(

exp(α0iα
zpi
1i θ
∗ + β0i + β1izpi)

1 + exp(α0iα
zpi
1i θ
∗ + β0i + β1izpi)

)
,∀i ∈ [1 : n]. (4.31)

The probability of accepting θ∗ as a new value of θp is:

Pr(θp → θ∗)=min

(
1, exp

(
(θ∗ − θp)

(∑
i

α0iα
zpi
1i xpi−

∑
i

α0iα
zpi
1i x

∗
i

)))
. (4.32)

Step 5: For each item i sample item parameters {α0i,α1i,β0i,β1i} from

p(α0i, α1i, β0i, β1i | . . . ) ∝ p(α0i, α1i, β0i, β1i |µI ,ΣI , ξi, σ2
i )

f(Xi |α0i, α1i, β0i, β1i, . . . ). (4.33)

Metropolis-Hastings algorithm is used with a multivariate normal distribution with
a mean vector equal to the current values of the parameters, all variances equal
to 0.01 and all correlations equal to 0 as a proposal density.

Step 6: Sample the covariance matrix of person parameters from

p(ΣP |θ, τ ) ∝ p(θ, τ |ΣP)p(ΣP). (4.34)

This is the conditional posterior of the covariance matrix of a multivariate normal
distribution, which given the Inverse-Wishart prior is known to be an inverse-
Wishart distribution (see for example, Hoff (2009)):

(ΣP |θ, τ ) ∼ Inv-Wishart

(
4 +N, I2 +

∑
p

(θp, τp)(θp, τp)
T

)
. (4.35)

Step 7: Sample the mean vector of the item parameters from

p(µI | . . . ) ∝ p(ξ,σ2,α0,α1,β0,β1 |µI ,ΣI)p(µI). (4.36)

With a multivariate normal prior for µI , this conditional posterior is also a mul-
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tivariate normal with a mean vector equal to(
(100I6)−1+nΣ−1

I
)−1×Σ−1

I

(∑
i

ξi,
∑
i

lnσ2
i ,
∑
i

lnα0i,
∑
i

lnα1i,
∑
i

β0i,
∑
i

β1i

)T, (4.37)

and the covariance matrix equal to
(
(100I6)−1 + nΣ−1

I
)−1.

Step 8: Sample the covariance matrix of the item parameters from:

p(ΣI | . . . ) ∝ p(ξ,σ2,α0,α1,β0,β1 |µI ,ΣI)|ΣI |−
ν+12

2 ×
6∏

k=1

(
ν (ΣI)kk +

1

A2

)− ν+6
2

. (4.38)

A Metropolis-Hastings algorithm is used to sample from this conditional posterior
with the candidate value Σ∗ sampled from the Inverse-Wishart distribution with
n degrees of freedom and the scale matrix equal to∑
i

(
(ξi,lnσ

2
i,lnα0i,lnα1i,β0i,β1i)

T−µI
)(

(ξi,lnσ
2
i,lnα0i,lnα1i,β0i,β1i)

T−µI
)
T, (4.39)

such that the acceptance probability is equal to:

Pr(ΣI → Σ∗) = min

1,
|Σ∗|−

ν+5
2
∏6
k=1

(
ν (Σ∗)kk + 1

A2

)− ν+6
2

|ΣI |−
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2
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(
ν (ΣI)kk + 1

A2
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2

 . (4.40)

Step 9: Re-scale model parameters to equate the variance of ability to 1:

θp → θp
σθ
, ∀p ∈ [1 : N ];

α0i → α0iσθ, ∀i ∈ [1 : n];
µlnα0 → µlnα0 + lnσθ;

ΣP →
[

1 ρθτ
ρθτ σ2

τ

]
.

(4.41)
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Unmixing Rasch scales:
How to score an educational test

1 Abstract.One of the important questions in the practice of educational testing
is how a particular test should be scored. In this paper we consider what an ap-
propriate simple scoring rule should be for the Dutch as a second language test
consisting of listening and reading items. As in many other applications, here the
Rasch model which allows to score the test with a simple sumscore is too restric-
tive to adequately represent the data. In this study we propose an exploratory
algorithm which clusters the items into subscales each fitting a Rasch model and
thus provides a scoring rule based on observed data. The scoring rule produces
either a weighted sumscore based on equal weights within each subscale, or a set
of sumscores (one for each of the subscales). An MCMC algorithm which enables
to determine the number of Rasch scales constituting the test and unmix these
scales is introduced and evaluated in simulations. Using the results of unmixing
we conclude that the Dutch language test can be scored with a weighted sumscore
with three different weights.
Keywords: educational testing, Markov chain Monte Carlo,
mixture model, multidimensional IRT, One Parameter Logistic model,
Rasch model, scoring rule.

5.1 Introduction

Consider a test measuring language ability. One of the important practical ques-
tions when using this test is how it should be scored. This includes the following

1This chapter has been accepted for publication in Annals of Applied Statistics as Bolsinova,
M., Maris, G. & Hoijtink, H. Unmixing Rasch scales: How to score an educational test. Author
contributions: B.M., M.G. and H.H. designed the research, B.M. performed the research, B.M.
wrote the paper, M.G. and H.H. provided feedback on the manuscript
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subquestions: Should the results be summarised in a single score or in multiple
scores? Should all items have the same weight or different weights when computing
the score or the subscores? If subscores are used, how to determine which items
belong to which subscale? If different weights are used, how to restrict the num-
ber of possible weights such that not every response pattern results in a unique
weighted score? And how to determine which items should have the same weight?
In this paper, we argue for an empirical approach for choosing a scoring rule. We
want the data to tell us what is an appropriate score to use for grading this lan-
guage test: the sumscore (the number of correct responses to all the items), two
sumscores (the number of correct responses to the listening items and the number
of correct responses to the reading items), a set of multiple sumscores with an
alternative division of the items into subscales, a weighted sumscore, or a set of
weighted sumscores. The most appropriate choice will often require a thorough
investigation of the structure of the test data.

The aim of this article is to choose a simple scoring rule for the state exam of
Dutch as foreign language (Staatsexamen NT2). By passing this test non-native
speakers show sufficient mastery of the Dutch language to work and study in the
Netherlands. We consider the multiple-choice part of the test consisting of reading
and listening items. The reading and the listening subtests consist of multiple texts
or audio fragments followed by multiple choice questions.

Having a measurement model providing an explicit scoring rule is very impor-
tant and convenient in the context of educational measurement. A scoring rule
based on a sufficient statistic is favourable because no information about the abil-
ity is lost by summarising a vector of responses in one or more scores. One of
the simplest IRT models - the Rasch model [RM] (Rasch, 1960) - has the number
of correct responses as a sufficient statistic for ability (Andersen, 1977; Fischer,
1995). However, the RM very often does not fit the empirical data due to the strict
assumptions of unidimensionality and equal discrimination of the items. It is not
uncommon that an educational test measures more than one ability. Moreover,
some of the test items are more closely related to the latent trait than others (i.e.,
have a steeper item characteristic curve) and should have a bigger weight in the
estimation of a person’s ability. In our case of the Dutch as foreign language test,
it is unlikely that a diverse pool of items (with both reading and listening items)
would constitute a single Rasch scale. In this study we propose a new model which
relaxes the assumptions of the Rasch model, but still gives an explicit scoring rule
for the test summarising all the information about the student’s ability (or abili-
ties). This scoring rule can be more complicated than simply summing the number
of correct responses, but should still result in one or more scores that are easy to
use and interpret, for example, a set of sumscores or a weighted sumscore with a
limited number of different weights.

The paper is organised as follows. First, in Section 5.2 the state examination of
Dutch as second language is introduced in more detail and the problem of choosing
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a scoring rule for it is discussed. In the following four sections we introduce our
solution to the problem. In Section 5.3, we discuss how the assumptions of the
RM can be relaxed without losing the important property of sufficiency of the
sumscores. This results in the multi-scale RM which is a mixture of Rasch scales.
Note, that throughout the paper when we use the term ’mixture of scales’, we
are referring to a mixture of item clusters, each with different properties, and not
to the more common type of mixture models with different groups of persons,
such as present in the mixture Rasch model (Rost, 1990). In Section 5.4, the
presented model is discussed in more detail in relation to the problem of choosing
the scoring rule for the Dutch language test. In Section 5.5, the estimation of
the model is discussed. In Section 5.6, we evaluate the estimation procedure in a
simulation study. After introducing the methodology and showing its usability in
simulations, in Section 5.7 we return to the application and address the practical
questions raised in the beginning of this section concerning the NT2 exam. The
paper is concluded with a discussion.

5.2 State examination of Dutch as a second language

We consider the version of the NT2 exam called Program II which is meant for
those who have gained higher education in their home country and wish to con-
tinue their education in Dutch or work at the level of university education in the
Netherlands. This version of the NT2 exam corresponds to the B2 language level
within the Common European Framework of Reference for languages (Council
of Europe, 2011). The exam is taken in a computerised form. Test-takers are
given 100 minutes to complete the reading part of the exam and the listening part
takes about two hours. A short article from a newspaper or scientific journal, or
an information brochure can be examples of reading texts. In some reading items
participants are asked about some particular detail from a certain part of the text,
while other items require understanding the text as a whole. A common example
of an audio fragment in the listening part is a radio interview.

Test scores which are easy to understand and interpret need to be communi-
cated to test-takers and policy makers. The easiest way to score the test would be
with the number of correct responses, such that all persons with the same number
of correct responses receives the same score and it does not matter which items
are answered correctly. This scoring rule implies the Rasch model for the data.
The RM models the probability of answering an item correctly using only two
parameters (one for the item and one for the person):

Pr(Xpi = 1 | δi, θp) =
exp (θp − δi)

1 + exp (θp − δi)
, (5.1)

where Xpi is the item response which can be scored 1 if it is correct or 0 if it is
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incorrect, δi is the difficulty parameter of item i ∈ [1 : n] and θp is the ability
parameter of person p ∈ [1 : N ]. However, the RM being rather restrictive rarely
fits the data. To evaluate whether a simple sumscore is appropriate as the score for
the NT2 exam, we tested the fit of the RM to the data set from this examination
- responses of 2398 persons to 74 items (40 reading and 34 listening).

The fit of the RM to the data was tested using Anderson’s Likelihood-ratio
[LR] test (Andersen, 1973). The idea of the test is the following: The sample is
split intoH groups based on the number of correct responses. If the RM holds then
there are no differences between the estimates of the item parameters obtained in
separate groups. The likelihood ratio is computed using the likelihood based on
the estimates of the item parameters in each group and the likelihood based on
the overall estimates of the item parameters. The logarithm of this ratio follows
the χ2-distribution with (n− 1)(H − 1) degrees of freedom under the RM, where
n is the number of items.

For the data set from NT2 exam the LR-statistic for a median-split (H = 2)
was equal to 1165.54 (df = 73), p < 0.0005. Hence, the RM does not fit the
data of the NT2 exam. An alternative to using one sumscore, could be using two
scores: the number of correct responses to the reading items and the number of
correct responses to the listening items. To evaluate whether this scoring rule
is appropriate for the NT2 exam, we tested the fit of the RM separately to the
reading items and to the listening items. The LR-statistics for the reading and
the listening subscales were equal to 551.93 (df = 39, p < 0.0005) and 473.54
(df = 33, p < 0.0005), respectively. Hence, the RM does not hold in the two parts
of the test taken separately. Therefore, a different scoring rule has to be chosen.
We argue for a data-driven exploratory approach which identifies scales fitting the
RM within the full set of items, such that the test can be scored with a set of
sumscore in this subscales, or with a weighted sumscore with equal weights within
each scale, which is easy to interpret and to communicate to the test-takers.

In this study we do not consider the two-parameter logistic model (2PL; Lord
& Novick, 1968) which includes for each item not only a difficulty parameter, but
also a discrimination parameter, usually denoted by αi, such that the probability
of a correct response depends on αi(θp−δi) instead of the simple difference between
ability and difficulty. The reason for not fitting this model to the data is that in
the 2PL each item has a unique weight and each response pattern corresponds to
a unique score which makes interpretation and communication of the results more
difficult and less transparent. Another reason for not considering models like the
2PL or the three-parameter logistic model (Birnbaum, 1968) is that these models
do not allow for multidimensionality in the data, while we are aiming at relaxing
not only the assumption of the equal discriminations but also the unidimensionality
assumption of the RM.
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5.3 Relaxing the assumptions of the RM

Simple Rasch model

As we mentioned in the previous section, the main advantage of the RM is that
it has a sufficient statistic for person parameters (the number of items correct)
and a sufficient statistic for item parameters (the number of correct responses to
the item). This is important both for the estimation of the parameters, because
it makes the RM an exponential family model, and for the interpretation of test
results, because all persons answering the same number of items correctly have
the same estimate of the ability parameter. From a student’s perspective, it is
desirable that students who answer the same number of items correctly get the
same grade. Although the RM has these important advantages, a disadvantage is
that it makes restrictive assumptions, often resulting in misfit to empirical data.

General multidimensional IRT model

Let us consider how some of the assumptions of the RM can be relaxed. If we
relax the assumptions of unidimensionality and equal discriminations, a general
model allowing for multidimensionality and different discriminations of items can
be obtained (Reckase, 2008):

Pr(Xpi = 1 | δi,αi,θp·) =

exp(
M∑
k=1

αikθpk − δi)

1 + exp(
M∑
k=1

αikθpk − δi)
, (5.2)

where M is the number of scales, δi is the difficulty parameter of item i and
αi = {αi1, αi2, . . . , αiM} are the discrimination parameters of item i corresponding
to the dimensions {1, 2, . . .M}, and θp· = {θp1, θp2, . . . , θpM} is the vector of
abilities of person p. This is a very flexible model, but its flexibility comes with
some statistical and interpretational problems. For example, with respect to the
model in (5.2) only

∑
k αikθpk is identifiable, but not the individual parameters.

Like in factor analysis, the problem of rotation has to be addressed to obtain
estimates of α and θ. Moreover, the model does not have sufficient statistics. We
will restrict the model in such a way that it retains some of its flexibility while
also regaining some of the important properties of the RM.

Simple structure multidimensional model

If α is restricted to have a simple structure, that is each vector αi (see Equa-
tion 5.2) has only one non-zero element, then the model becomes a mixture of
unidimensional scales, each fitting the 2PL. The simple structure of α clarifies the

97



Chapter 5

interpretation of the abilities θ·k = {θ1k, θ2k, . . . , θNk}, since each item measures
only one ability. However, since the 2PL is not an exponential family model, per-
sons having the same number of correct responses to the items measuring ability
θ·k but different response patterns do not have the same estimates of the ability,
and hence the sumscore on that scale is not a sufficient statistic.

Multi-scale Rasch model

If we further restrict the non-zero element of αi to be equal to one, then the
model is a mixture of Rasch scales and

∑
i αikXpi contains all information about

ability θpk. This gives a rather convenient scoring rule where all information about
student’s abilities is summarised in a vector of subscores{∑

i

αi1Xpi,
∑
i

αi2Xpi, . . . ,
∑
i

αiMXpi

}
. (5.3)

We call the mixture of Rasch scales a multi-scale Rasch model. It assumes that a
test consists of a number of Rasch homogeneous subscales which have to be un-
mixed. The model has the same form as in Equation 5.2, but with the constraints
αik ∈ {0, 1} and

∑
k αik = 1. Thus, αi = {αi1, ..., αiM} is a vector of item scale

memberships specifying to which scale item i belongs: αik = 1 if item i belongs
to dimension k and 0 otherwise.

One-parameter logistic model as a multi-scale RM

It might seem that with a multi-scale RM we are still restricted to items with
the same discrimination. However, we will now show that in such a model we
can allow items referring to the same ability to have different discriminations. To
do that we present the one-parameter logistic model (OPLM; Verhelst & Glas,
1995) as a special case of a mixture of Rasch scales. The usual way of considering
the OPLM is as a special case of the 2PL in which items have known integer-
valued discrimination indices ai instead of the discrimination parameters that are
estimated freely. We propose an alternative perspective. We consider it as a
special case of the multi-scale RM in which the scales differ only in the item
discriminations.

Since in the OPLM the discrimination indices are constrained to be integer-
valued, there will be a limited number of possible values for the discrimination
indices in a test, denoted by σ1, σ2, . . . , σM . Instead of having one person param-
eter θp per person, we introduce several person parameters θpk = σkθp, one for
each group of items with a common discrimination index equal to σk - referred to
as item set discrimination by Humphry (2012). Furthermore, let us denote by α a
simple structure matrix where αik = 1 if ai = σk and αik = 0 otherwise. Finally,
we re-parameterise the difficulty parameter as δ∗i = aiδi. Then, within each set of
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items {i | ai = σk} a RM with person parameter θ·k holds (Humphry, 2011), and
the whole test is modelled as a mixture of Rasch scales with a fixed matrix α and
person parameters in different scales k and l being proportional to each other:

θpk =
σk
σl
θpl. (5.4)

These scales measure the same latent variable but represent different frames of
reference and have different units of measurement (Humphry & Andrich, 2008).
Thus, we have shown that a multi-scale RM can allow items measuring the same
ability to have different discriminative power, if they belong to different scales
with perfectly correlated person parameters. In this case, not only a vector of
sumscores, but a weighted score

∑
i

∑
k αikσkXpi contains all information about

the original person parameter θp.

The problem of unmixing Rasch scales

The purpose of the present study is to develop a Bayesian algorithm for selecting
the best partitioning of items into scales each fitting a RM, that is to estimate
the item scale membership matrix α. This is done by sampling from the posterior
distribution of item scale memberships (parameters of interest) given the data:
p(α |X). All other parameters of the multi-scale RM are nuisance parameters
which are also sampled to simplify the computations. The item scale memberships
are identified, because for each pair of items it can be determined from the data
whether they belong to the same Rasch scale or to different scales (see Appendix
A). Since the parameters are identified, they can also be consistently estimated.

The multi-scale RM is related to the between-item multidimensional Rasch
model (Adams, Wilson, & Wang, 1997), which also assumes a RM for subsets of
items in the test. However, while in the between-item multidimensional RM and
in the OPLM the subscales or the groups of items with the same discrimination
indices, respectively, have to be pre-specified, in the new model the item member-
ships are parameters which can be estimated. Therefore, our method provides an
objective statistical tool that researchers can use to select an optimal partition-
ing of items into Rasch scales, instead of having to specify the scales or the item
discrimination indices in advance using only background information.

There have been other attempts to solve the problem of selecting groups of
items fitting the RM. Hardouin and Mesbah (2004) proposed a method that is
based on the AIC. Debelak and Arendasy (2012) identified item clusters fitting
the RM using hierarchical clustering. Both approaches are not model-based and
instead provide heuristics for building scales bottom-up. Simulation results from
both studies show that the procedures do not work very well when the person
parameters are highly correlated, when the sample sizes are small and when the
item pools are large. Moreover, the procedures are not at all suited for deter-
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mining scales differing only in the discriminative power of the items, due to the
perfect correlation of the person parameters. A simulation study comparing the
performance of our model-based approach algorithm with that of the hierarchical
clustering algorithm can be found in the Appendix C.

5.4 Model specification

5.4.1 Mixture of Rasch scales

As we stated in the introduction, the purpose of the algorithm which we developed
is to obtain estimates of the item memberships in the multi-scale RM by sampling
from their posterior distribution.

We consider a marginal model, in which individual person parameters are
treated as random-effects with a multivariate normal distribution with a zero mean
vector and covariance matrix Σ. Constraining the mean vector of ability to zero
ensures the identification of the model.

Let us by Xp· denote a random vector of responses to n items from person p
randomly sampled from the population, and its realisation by x with xi = 1 if a
response to item i is correct and xi = 0 otherwise. The probability of Xp· being
equal to x is the following:

Pr(Xp· = x | δ,α,Σ) =

∫
R

n∏
i=1

(
exp

(∑M
k=1 αikθk − δi

))xi
1 + exp

(∑M
k=1 αikθk − δi

) p(θ |Σ)dθ, (5.5)

where δ = {δ1, δ2, . . . , δn} is a vector of item difficulties, α is an n×M matrix of
item membership parameters, and p(θ |Σ) denotes the population distribution. In
the multi-scale RM the probability of observing a correct response to item i given
the vector of ability parameters is the same as in the general multidimensional IRT
model in Equation 5.2, but the vector αi is constrained to have one element equal
to one and all other elements equal to zero. As can be seen from Equation 5.5,
the multi-scale RM assumes local independence, meaning that the item responses
are independent given the vector of ability parameters.

In Section 5.3, using the OPLM as an example, we have shown that multiple
Rasch scales might not only represent different abilities as in the most general
multidimensional model in (5.2), but may also differ in the discriminative power
of the items. We will now elaborate more on the different types of scenarios in
which the Rasch scales could be unmixed:

Type 1. The test measures several substantively different abilities, and each
of the Rasch scales refers to a separate ability. For example, in an arithmetic
test the items can group into substantively different scales: addition, subtraction,
division and multiplication. Within each of the subscales the discriminations of
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the items are equal and each of the abilities can be summarised in a subscore. For
a model with four item clusters the covariance matrix has the from:

Σ =


σ2

1 σ1,2 σ1,3 σ1,4

σ1,2 σ2
2 σ2,3 σ2,4

σ1,3 σ2,3 σ2
3 σ3,4

σ1,4 σ2,4 σ3,4 σ2
4

 (5.6)

with all covariances σk,l being free parameters. In the NT2 exam, the items might
cluster in subsets measuring reading ability and listening ability with items within
a dimension having equal discriminations. In that case the appropriate scoring
rule would be to use a set of two subscores: {

∑
i αi1Xpi,

∑
i αi2Xpi}.

Type 2. The test measures several abilities, but not each scale represent a
separate ability. Some of the abilities are represented by one or more scales with
different discriminations. Such scales can occur, for example, due to different
response formats of the items, or because some of the items are more relevant for
the measured ability and, therefore, should have a bigger weight. For a model
with four item clusters the covariance matrix can have the form:

Σ =


σ2

1 σ1σ2 ρσ1σ3 ρσ1σ4

σ1σ2 σ2
2 ρσ2σ3 ρσ2σ4

ρσ1σ3 ρσ2σ3 σ2
3 σ3σ4

ρσ1σ4 ρσ2σ4 σ3σ4 σ2
4

 , (5.7)

that is the correlations between θ1 and θ2, and between θ3 and θ4 are constrained
to one, and there is only one correlation parameter to be freely estimated. This
model is equivalent to a two-dimensional IRT model with[

θ1

θ2

]
∼ MVN

([
0
0

]
,

[
1 ρ
ρ 1

])
(5.8)

and four item clusters with discrimination parameters equal to σ1 and σ2 in the
first dimension and equal to σ3 and σ4 in the second dimension. In the case of the
NT2 exam, it might the two distinct abilities (reading and listening) each measured
by several scales with different discrimination parameters. Then the appropriate
scoring rule would be to use a set of two weighted scores, one for the reading ability
and one for the listening ability. {

∑
i(αi1σ1 + αi2σ2)Xpi,

∑
i(αi3σ3 + αi4σ4)Xpi}.

Type 3. The test measures a single ability, but the different Rasch scales
represent groups of items with different discriminations between the groups. For
example, a model with four item clusters the covariance matrix could have the
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form:

Σ =


σ2

1 σ1σ2 σ1σ3 σ1σ4

σ1σ2 σ2
2 σ2σ3 σ2σ4

σ1σ3 σ2σ3 σ2
3 σ3σ4

σ1σ4 σ2σ4 σ3σ4 σ2
4

 , (5.9)

that is all correlation parameters are constrained to one, This variant of the model
would be equivalent to a unidimensional IRT model with θ ∼ N (0, 1) and four item
clusters with discrimination parameters equal to σ1, σ2, σ3, and σ4, respectively. In
our case of the NT2 exam, it might turn out that the reading and listening items
together measure the same passive language ability, but some of them turn out to
have higher discriminations than others, for example depending on the length of
the reading passage or the audio fragment to which it refers. Then the appropriate
scoring rule for the test would be to use a weighted sumscore:

∑
i

∑
k αikσkXpi.

Our algorithm makes it possible to identify the scales within which the items would
have the same weight and estimate these weights.

The algorithm presented in this paper is exploratory, therefore, it need not be
pre-specified which of the scenarios we expect, and the covariance matrix is freely
estimated. Once the unmixing results for the Dutch language test are obtained,
we can formulate hypotheses about the nature and the interrelations of the scales.
If the estimate of the correlation between the scales is close to one, then through
cross-validation we would test a hypothesis that these scales measure, in fact, the
same ability, which would lead to the conclusion that for the scoring rule we could
not only use a set of subscores, but also a weighted sumscore. Hypotheses like this
can be evaluated by comparing the fit of models of Type 1, Type 2 (if only some
of the scales are perfectly correlated) and Type 3 (if all the scales are perfectly
correlated) in cross-validation.

The number of scales also does not need to be pre-specified beforehand, but
can be decided upon based on the estimation results (see Section 5.5.2). This is an
important feature of our procedure, because while the researcher can have some
idea about how many substantively different abilities are measured, it can hardly
be known based only on the theoretical insight how many different weights are
needed for the items measuring each of these abilities. Moreover, the expectation
about the number of substantively different abilities could be wrong.

5.4.2 Density of the data, prior and posterior distributions

The density of the data is:

f(X | δ,α,Σ) =
N∏
p=1

Pr(Xp· = x | δ,α,Σ), (5.10)
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where X is an N × n matrix of persons with each row Xp· representing responses
of person p ∈ [1 : N ].

A priori the parameters of the model are assumed to be independent:

p(δ,α,Σ) =
n∏
i=1

p(δi)
n∏
i=1

p(αi)p(Σ). (5.11)

We use non-informative priors here, because prior knowledge is not needed to
make the model estimable. For the item difficulties a uniform prior distribution
U(−∞,+∞) is used. This is an improper prior, but the resulting posterior is
proper if for every item there is at least one person giving a correct response and
at least one person giving an incorrect response (Ghosh, Ghosh, Chen, & Agresti,
2000). For the item memberships a multinomial prior is used:

Pr(αik = 1, αil = 0,∀l 6= k) =
1

M
, ∀k ∈ [1 : M ],∀i ∈ [1 : n], (5.12)

where the choice of 1
M implies that a priori all item scale memberships are con-

sidered equally likely. We choose a semi-conjugate prior for the covariance matrix
which is an inverse-Wishart distribution with degrees of freedom ν0 = M + 2 and
a scale parameter Λ0 = IM (i.e., an M -dimensional identity matrix). With this
choice of ν0 the results are not sensitive to the choice of Λ0 because in the posterior
distribution the data dominates the prior when N � (M + 2) (Hoff, 2009, p.110).

In order to unmix Rasch scales we need to obtain samples from the joint
posterior distribution:

p(δ,α,Σ |X) ∝ f(X | δ,α,Σ)p(δ)p(α)p(Σ). (5.13)

In the next section we discuss how these samples can be obtained using a data
augmented MCMC algorithm.

5.5 Estimation

5.5.1 Algorithm for unmixing Rasch scales

In this subsection we discuss how Rasch scales can be unmixed using a Markov
chain Monte Carlo algorithm (Gamerman & Lopes, 2006) when the number of
scales is pre-specified. This algorithm makes it possible to obtain samples from
the posterior distribution in Equation 5.13. In the next section a procedure to
determine the number of scales is described.

To start the MCMC algorithm, initial values for the model parameters are
specified: samples from U(−2, 2) for the item difficulties, samples from a multino-
mial distribution with a probability 1

M for every scale for the item memberships,
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and IM for Σ. After initialisation, in every iteration of the MCMC algorithm the
parameters are subsequently sampled from their full conditional posterior distri-
butions given the current values of all other parameters (Geman & Geman, 1984;
Casella & George, 1992). Data augmentation is implemented (Tanner & Wong,
1987; Zeger & Karim, 1991). That is, every iteration starts with sampling from
the posterior distribution of individual person parameters, which results in a set of
conditional posterior distributions that are relatively easy to sample from. Each
iteration of the algorithm consists of four steps, described below:

Step 1. For every scale k ∈ [1 : M ] for every person p ∈ [1 : N ], sample from
the full conditional posterior distribution of θpk:

p(θpk |X, δ,α,θp(k),θ(p)·,Σ) = p(θpk |Xp·, δ,α,θp(k),Σ), (5.14)

where θ(p)· are person parameters of all persons except p, and θp(k) are person
parameters of person p in all scales except k. This conditional posterior depends
on the data only through the value Xp+k - the number of correct responses of
person p to the set of items {i |αik = 1}, because the RM holds in each scale:

p(θpk|Xp·, δ,α,θp(k),Σ)=p(θpk|Xp+k, δ,α,θp(k),Σ) ∝
f(Xp+k|δ,α,θpk)p(θpk|θp(k),Σ). (5.15)

The conditional composition algorithm (Marsman et al., 2015) is used to sample
from this distribution:

a. Sample a candidate value θ∗ ∼ p(θpk | θp(k),Σ), which is a conditional distri-
bution of a multivariate normal distribution, thus itself a normal distribution
with known parameters (see for example, Gelman et al. (1995)).

b. Simulate a vector of responses X∗k to the set of item {i |αik = 1} according to
the RM.

c. Compute X+∗
k =

∑
iX
∗
i . If X

+∗
k = X+

pk then θ∗ is taken as a new sample from
(5.14). Otherwise, Steps a, b, and c are repeated.

Step 2. Sample from the full conditional posterior distribution of Σ which
depends only on the person parameters θ:

p(Σ |X, δ,α,θ) = p(Σ|θ) ∝ p(θ|Σ)p(Σ) = IW

ν0+N,Λ0+

N∑
p=1

θp·θ
T
p·

,
(5.16)

which is an inverse-Wishart distribution with the posterior degrees of freedom
equal to the sum of the prior degrees of freedom and the sample size, and the
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posterior scale parameter equal to the prior scale parameter plus the sum of squares
of the person parameters (Hoff, 2009, p.111).

Step 3. For every item i ∈ [1 : n], sample item difficulty δi from its full
conditional posterior distribution:

p(δi|X, δ(i),α,θ,Σ) = p(δi |X·i,αi,θ) ∝
∏
p

exp(Xpi(
M∑
k=1

αikθpk − δi))

1 + exp(
M∑
k=1

αikθpk − δi)
, (5.17)

where δ(i) denotes a vector of item difficulties of all items except item i and X·i is
a vector of responses of all persons to item i. For this distribution the normalising
constant is very difficult to compute, therefore a Metropolis step within the Gibbs
sampler is used to sample from the posterior (Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953). A normal distribution with the mean equal to the current
value of the parameter and the variance τ2 (equal to 0.25 for the first 500 iterations
and 0.01 for the remaining iterations) is used as the proposal distribution.

Step 4. For every item i ∈ [1 : n], sample item scale membership αi from the
full conditional posterior distribution:

p(αi |X, δ,α(i),θ,Σ) = p(αi |X·i, δi,θ) ∝
∏
p

exp(Xpi(
M∑
k=1

αikθpk − δi))

1 + exp(
M∑
k=1

αikθpk − δi)
, (5.18)

where α(i) are item scale memberships of all items except i. This amounts to
sampling from a Multinomial (1, {pi1, . . . , piM}), with parameters

pik = Pr(αik = 1, αil = 0,∀l 6= k) =

∏
p

exp(Xpi(θpk−δi))
1+exp(θpk−δi)

M∑
j=1

∏
p

exp(Xpi(θpj−δi))
1+exp(θpj−δi)

. (5.19)

As is the case with most finite mixture models, the posterior distribution of
the parameters of the multi-scale RM has a complex structure (Diebolt & Robert,
1994; Frühwirth-Schnatter, 2006). It has multiple modes corresponding to every
partition of items into scales. Among the modes there are M ! modes of equal
height representing the same partition of items into scales due to the possible
permutations of the scale labels. However, the problem of label switching usually
does not occur within one chain, because it is not likely for the chain to leave the
mode corresponding to a particular set of labels once it has been reached.

In practice it is impossible for the Markov chain to visit all the modes in
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a reasonable number of iterations (Celeux, Hurn, & Robert, 2000). It is more
likely that the chain will stay in the neighbourhood of one of the strongest modes.
Consequently, the initial values influence to which mode the sampler is directed.
Multiple chains from random initial values are, therefore, used to explore whether
there are many strong modes representing different partitions of items into scales
and what the relative likelihood of these modes is. The procedure goes as follows:

a) Run ten independent chains from random starting values for a chosen number
of iterations and discard the first half of the iterations in each chain (burn-in)
to remove the influence of the initial values. The number of iterations depends
on: a) the number of items, b) the number of scales, c) the correlation between
the scales, d) the ratio of the variances of the person parameters in different
scales. Simulations have shown, that for 20 items in two scales with a moderate
correlation between them 2000 iterations per chain are usually enough.

b) Order the chains based on:

L̄c =
1

G

G∑
g=1

n∑
i=1

N∑
p=1

ln


(

exp
(∑M

k=1 α
gc
ikθ

gc
pk − δ

gc
i

))Xpi
1 + exp

(∑M
k=1 α

gc
ikθ

gc
pk − δ

gc
i

)
 , (5.20)

where G denotes the number of iterations after the burn-in and superscripts g
and c denote the value of a parameter at the g-th iteration in the c-th chain.

c) Select the best chain with the highest value of L̄c. This quantity is used to
select the best chain because it allows one to choose the chain corresponding
to the strongest mode among the chains.

d) Try to re-label the scales in the second best chain in such a way that the scales
become almost the same as in the best chain. By “almost the same” we mean
the following: in each scale the number of mismatching items (i.e., items which
are assigned to this scale in the best chain, but to a different chain in the scale
under consideration) cannot exceed 20% of the number of items in this scale.
Continue with all other chains, until you arrive at a chain in which the scales
cannot be re-labelled in such a way that the item partition into scales is almost
the same as in the best chain. The results from the selected and re-labelled
chains can be combined. For each item i and each scale k compute the posterior
probability of this item to belong to this scale:

π̂ik =

∑
c∈C

∑
g α

g,c
ik

|C|G
, (5.21)

where {C} denotes a set of selected chains. If for item i for neither of the scales
π̂ik is larger than 0.65, one can conclude that this item does not fit well in any
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of the Rasch scales.

e) If there are no chains with the same partition of items into scales as in the
best chain, then more chains with more iterations should be used. If consistent
results are not obtained after running more chains, then either the algorithm
can not handle this combination of parameters (N , n, M , Σ), or it is a sign of
model misfit: the test cannot be well modelled as a mixture ofM Rasch scales.
Note, that if an (M − 1)-scale RM is a true model, then if M scales are used,
it will be hardly possible to have a consistent partition of items into M scales.

5.5.2 Determining the number of scales

The MCMC algorithm described in the previous section requires the number of
scales in the item set to be known. However, the value ofM is generally not known
and has to be chosen. Choosing the appropriate number of mixture components
or the number of clusters (scales) is a complicated problem that is not yet fully
solved (Frühwirth-Schnatter, 2006; McLachlan & Peel, 2000). In this article, we
use two information criteria for choosing the model with an appropriate number
of dimensions.

Once unmixing withM scales is finished, the item scale memberships are fixed
to be equal to their posterior mode, denoted by α̂. Given α̂ the item difficul-
ties and the covariance matrix are re-estimated using a data augmented Gibbs
Sampler: First, initial values for the item difficulties (samples from U(−2, 2)) and
the covariance matrix (identity matrix) are specified. Second, for G iterations
the individual person parameters, the covariance matrix and the item difficulties
are subsequently sampled from their full conditional posterior distributions (see
Steps 1-3 in Section 5.5.1). Since the item memberships are fixed, the posterior
distribution is not multimodal and using one chain with a large number of dimen-
sions is sufficient. Third, after discarding the first half of the iterations (burn-in),
compute the expected a posteriori [EAP] estimates of the item difficulties and the
covariance matrix:

Σ̂ =
1

G/2

G∑
g=G/2+1

Σg, (5.22)

δ̂i =
1

G/2

G∑
g=G/2+1

δgi , ∀i ∈ [1 : n]. (5.23)

The modified AIC (Akaike, 1974), and the BIC (Schwarz, 1978) are computed
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as follows2:

AIC = −2 ln f(X | δ̂, α̂, Σ̂) + 2

(
M(M + 1)

2
+ n+ (M − 1)n

)
, and (5.24)

BIC = −2 ln f(X | δ̂, α̂, Σ̂) + lnN

(
M(M + 1)

2
+ n+ (M − 1)n

)
. (5.25)

The estimates Σ̂ and δ̂ are used instead of the estimates based on the posterior in
Equation 5.13, since if throughout the iterations the items move frequently across
the scales, the EAP estimates based on the draws from Equation 5.13 would be less
optimal and give a lower likelihood than δ̂ and Σ̂. In the expression for the number
of parameters, the first element is the number of freely estimated elements of Σ,
the second is the number of difficulty parameters and the third one is the number
of freely estimated elements of α. With each extra scale there are an extra n
elements to estimate for the items, since for each item it has to be decided whether
it should be re-assigned to a new scale or not. The evaluation of the log-likelihood
in Equations 5.24 and 5.25 involves integration over multidimensional space, which
is done here through numerical integration with Gauss-Hermite quadrature (for
details see Appendix B).

When choosing the number of scales, one should not only follow the above
described procedure, but also consider the possible interpretations of the scales.
Once a number of scales M̂ is chosen using the information criteria, one should
evaluate the solutions with M̂ −1, M̂ and M̂ +1 scales from the substantive point
of view. For example, given the context of the test, it might be reasonable to
choose a smaller number of scales if it improves the interpretability of the scales,
or choose a larger number of scales if they contain substantially different items.

5.6 Evaluation of the MCMC algorithm

In this section by means of a simulation study we show how well Rasch homoge-
neous subscales can be reconstructed using the MCMC algorithm and evaluate the
performance of the modified AIC and BIC for selecting the appropriate number
of scales3. The scales are correctly reconstructed, if for every item the posterior

2These are modifications because the original AIC and BIC are based on the maximum
likelihood estimates. However, in our case the EAP estimates are very close to the maximum
likelihood estimates since vague priors are used.

3In Appendix C three more simulation studies are presented, in which the performance
of the MCMC algorithm is evaluated in more detail. The first simulation study deals with
unmixing the scales representing substantively different abilities (multi-scale RM of Type 1). We
also compare the performance of the MCMC algorithm with the method of hierarchical cluster
analysis (Debelak & Arendasy, 2012), which also aims at constructing a set of scales that each
fitting a RM. The second study illustrates how the algorithm performs when the scales measure
the same ability and differ only in the discrimination of the items (multi-scale RM of Type 3).
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Table 5.1: Results of choosing the number of scales: % of data sets in which the
number of scales was chosen correctly (M̂ = M), was overestimated (M̂ = M+1),
and underestimated (M̂ = M−1); % of data sets in which all items were classified
correctly (α̂ = α) given that M̂ = M .

Method Condition
1 2a 2b 3 4 5

AIC M̂ = M 98 100 100 100 100 100
M̂ = M + 1 2 0 0 0 0 0
M̂ = M − 1 - 0 0 0 0 0

BIC M̂ = M 100 100 100 100 52 0
M̂ = M + 1 0 0 0 0 0 0
M̂ = M − 1 - 0 0 0 48 100

α̂ = α - 99 100 99 100 100

mode of its item membership is equal to the true item membership.
Data were simulated under a 1-, 2-, 3-, 4- and 5-scale RM. For the 2-scale RM,

we considered two cases: one with different abilities measured (multi-scale RM
of Type 1) and another with the two scales only differing in the discrimination
parameter (multi-scale RM of Type 3). WhenM > 2, the simulated tests consisted
both of scales differing only in the discriminative power, and of scales representing
different abilities with a moderate correlation between them (multi-scale RM of
Type 2). For every M , responses of 1000 persons to 10×M items (10 per scale)
were simulated. Item difficulties were sampled from U(−2

∑
k αikσk, 2

∑
k αikσk).

The specification of each condition was the following:
1) M = 1 : σ1 = 1;
2a) M = 2 : σ1 =σ2 =1, ρ1,2 =0.5;
2b) M = 2 : σ1 =1,θ·2 = 2θ·1(implying that σ2 =2 and ρ1,2 =1);
3) M = 3 : σ1 =σ2 =1, ρ1,2 =0.5,θ·3 =2θ·1;
4) M = 4 : σ1 = σ2 = 1, ρ1,2 = 0.5,θ·3 =2θ·1,θ·4 =2θ·2;
5) M = 5 : σ1 =σ2 =σ3 =1, ρ1,2 = ρ1,3 =ρ2,3 =0.5,θ·4 =2θ·1,θ·5 =2θ·2;

In each condition, the MCMC algorithm was applied to 100 simulated data
sets. The number of iterations per chain depended on the number of scales that
were fitted and was equal to M × 500, ∀M ∈ [2 : 6]. The modified AIC and the
modified BIC (see Equations 5.24 and 5.25)were used for choosing the model with
an appropriate number of scales out of the (M − 1)-, M - and (M + 1)-scale RM.

The results are presented in Table 5.1. The AIC showed very good perfor-
mance, choosing the true number of scales in almost all data sets. The BIC
underestimated the number of scales, when the tests were long (40 and 50 items)

The third study evaluates the autocorrelations in the Markov chain.
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and the true number of scales was large (4 and 5). Therefore, we use the AIC in
determining the number of scales in the NT2 exam. When the procedure selected
the correct number of scales, then those scales were correctly reconstructed in
more than 95% of the cases as can be seen from the last line of Table 5.1.

5.7 Choosing a scoring rule for the NT2 exam

5.7.1 Data

Data from the state exam of Dutch as a second language collected in July 2006
was used. The reading and listening parts of the NT2 exam consisted of 40 items
each. However, six of the items were not taken for analysis because they were too
easy (with proportions of correct responses larger than 0.85). The test was taken
by 2425 persons. Responses of persons having more than 20% missing responses
in one of the subtests were discarded (27 persons in total). The remaining missing
values were considered as incorrect responses. The resulting sample size was N =
2398 and the test length was n = 74 (40 reading items and 34 listening items).
The average proportion of correct responses to the items was equal to 0.67. The
distribution of the number of correct responses had a mean of 49.74, a standard
deviation of 12.24, a maximum of 74 and a minimum of 17.

The data set was randomly divided into two parts: a training set (N = 1500)
on which the exploratory unmixing using the MCMC algorithm was carried out
as was discussed in Section 5.5, and a testing set (N = 898) which was used for
testing whether the scales identified in exploratory part are indeed Rasch scales,
and testing hypotheses about the relations between the unmixed scales.

5.7.2 Unmixing Rasch scales

Three multi-scale RMs were fitted to the data: with two, three, and four scales,
respectively. In each case, ten chains with M × 2000 iterations each were used.
The results of the unmixing are summarised in Table 5.2. While for the 2-scale
and the 3-scale RMs all chains converged to the same partition of items into scales,
in the case of the 4-scale RM only four chains converged to the same solution. The
3-scale RM had the lowest AIC value, therefore it was chosen as the best model.

In the three-scale RM 24 items were assigned to scale 1, 34 items were assigned
to Scale 2, 13 items were assigned to Scale 3, and three items were not assigned
to any scale, because for none of the scales the posterior probability of belonging
to this scale (π̂ik) was above 0.65. All three scales included both reading and
listening items: in Scale 1 there were 10 reading and 14 listening items, in Scale
2 there were 22 reading items and 12 listening items, and in Scale 3 there were 6
reading and 7 listening items.
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Table 5.2: Results of unmixing Rasch scales in the Dutch as a foreign language test:
the scales are ordered based on the value of σ̂2

k from the largest to the smallest,
the last number shows the number of items which did not belong to any of the
scales (π̂ik < 0.65,∀k)

Model # items per scale AIC ∆AIC from the best model
2-scale RM 39/33/2 122494.2 41.5
3-scale RM 24/34/13/3 122452.7 0
4-scale RM 22/9/34/7/2 122608.7 156.0

The estimated covariance matrix was

Σ̂ =

 1.67[1.48, 1.88] 1.13[1.01, 1.25] 0.71[0.63, 0.80]
0.96 [0.95,0.97] 0.83[0.74, 0.93] 0.49[0.44, 0.55]
0.92 [0.88,0.95] 0.90 [0.86,0.94] 0.36[0.31, 0.42]

 , (5.26)

where the elements below the diagonal (italicised) are the correlation coefficients,
and the elements above the diagonal are the covariances, the 95% credible intervals
for the estimates are given between brackets. The estimates of the correlations
between the person parameters in the three scales were very high, therefore, a
hypothesis about the relationship between the scales was formulated, namely that
the three scales, in fact, measure the same ability, and the test can be scored with
a weighted sumscore instead of a set of subscores. This hypothesis was tested on
the second part of the data by selecting the best model out of the Type 1 model
and the Type 3 model. Since three items did not belong to any of the three scales,
in the following analysis only 71 items were used.

5.7.3 Cross-validation of the unmixed scales

Does the RM fit in the unmixed scales?

Identification of the three scales provided a hypothesis that we tested on the
remaining part of the data, namely that the three scales are Rasch scales (without
yet specifying whether these scale measure a single ability). We also tested a
different hypothesis, which was formulated based on the background information:
“the reading and the listening parts of the test form Rasch scales”. Both hypotheses
were tested by testing the fit of the RM in the subscales: 1) in the three subscales
which resulted from the unmixing; 2) in the reading and the listening subscales.
The fit of the RM model was tested using the LR-statistic. The RM was fitted
to the three identified scales and to the listening and the reading scales using R
package eRm (Mair & Hatzinger, 2007).

We did not expect a perfect fit of the RM to the complete scales (see lines 1,
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Table 5.3: Fit of the RM in the three unmixed scales (before and after removing
misfitting items), and in the reading and listening scales (in these two scales re-
moving less than 10 items did not result in a reasonable fit) in the testing data
set: LR-statistic

Scale LR df p-value
Scale 1 (full scale: 24 items) 57.43 23 <0.005
Scale 1 (misfitting items removed: 21 items) 32.29 20 0.04
Scale 2 (full scale: 34 items) 49.59 33 0.03
Scale 2 (misfitting items removed: 32 items) 44.77 31 0.05
Scale 3 (full scale: 13 items) 39.91 12 <0.005
Scale 3 (misfitting item removed: 11 items) 14.54 10 0.15
Reading scale (38 items) 200.42 37 <0.005
Listening scale (33 items) 181.67 32 <0.005

3, and 5 of Table 5.3), because if there were some misfitting items among the 74
items used in the exploratory unmixing they would have been assigned to one of
the scales, where they fit relatively better, but still badly in absolute terms. That
is why, for example, we go from 24 to 21 items in scale 1. The analysis presented
in Table 5.3 helped to identify these misfitting items. If one would discard three
misfitting items in the first scale, two in the second and two in the third, the RM
would have a reasonable fit in all three scales. However, when the reading and the
listening scales were considered, discarding of a small number (less than ten) of
misfitting items would not result in a reasonable fit of the RM.

Three different abilities or one?

In cross-validation, we tested whether a multi-scale RM of Type 1 or of Type
3 fitted the test consisting of 71 items best. First, the two models with fixed
scales were fitted to the training data with 71 items. For the model of Type
1, the estimates of the item difficulties and the covariance matrix were obtained
(denoted by δ̂type1 and Σ̂type1). As has been mentioned in Section 5.4.1, the
model of Type 3 is equivalent to a unidimensional model with a standard normal
distribution of ability and three item clusters with discriminations equal to σ1, σ2,
and σ3. Therefore, this unidimensional model with fixed scales has been fitted
to the data (see Appendix D) and estimates of the item difficulties and the three
discrimination parameters were obtained (denoted by δ̂type3 and σ̂type3).

Second, the fit of the models of Type 1 and Type 3 to the testing data set
(denoted by Xtest) with the parameters fixed at the estimates obtained in the
training data was evaluated. Log-likelihood of both models was computed (see
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Table 5.4: Two scoring rules (based on two unweighted subscores and based on
one weighted sumscore) for six persons

p
∑

i∈{R}
Xpi

∑
i∈{L}

Xpi Decision
∑

i

∑
k αikσkXpi Decision

1 27 27 pass 53.42 pass
2 31 29 pass 59.40 pass
3 16 24 fail 38.66 fail
4 20 9 fail 27.95 fail
5 23 27 fail 50.04 pass
6 25 20 pass 42.85 fail

Appendix B):

ln
(
f
(
Xtest | δ̂type1, α̂, Σ̂type1

))
= −34776.93 (5.27)

ln
(
f
(
Xtest | δ̂type3, α̂, σ̂type3

))
= −34767.83 (5.28)

The Type 3 model had better fit, which suggested that all three scales measure
the same dimension and that a weighted sumscore is the best scoring rule for this
particular Dutch language ability test. The estimated weights were equal to 1.30,
0.89, and 0.56 in the three scales, respectively.

Does it make a difference?

Finally, we investigated whether using the chosen scoring rule∑
i

(1.30αi1 + 0.89αi2 + 0.56αi3)Xpi (5.29)

leads to different decisions about the persons passing or failing the test compared
to the decision based on unweighted sumscores on the set of reading items, denoted
by {R}, and on the set of listening items, denotes by {L}.

Suppose, the original pass-fail criterion is that a person passes the test if he/she
has at least 25 correct responses on the reading test and at least 20 correct re-
sponses on the listening test. This decision criterion results in 412 persons from
the testing set passing the test. A cut-off value for the weighted sumscore leading
to the same number of students passing the test is 48.21. Table 5.4 shows the
application of the two scoring rules to six persons from the testing set. It can be
seen that for some persons the decisions based on two scoring rule match each
other, while for others they do not. In we consider a two-by-two classification
table for the pass/fail decision according to the original rule and the pass/fail
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decision according to the new scoring rule, then we discover that 31 persons who
fail the test according to the original rule would pass it according to the new rule
and vice versa. Hence, we have shown that a scoring rule chosen based on the
empirical data and therefore representing the data structure better leads to a dif-
ferent pass/fail decision for 62 persons (7% of the testing data set) compared to
non-compensatory scoring rule based on the two unweighted subscores.

5.8 Discussion

In this article we presented a novel solution to the problem of choosing a scoring
rule for the test. Using the exploratory unmixing algorithm in the state exami-
nation of Dutch as a foreign language three Rasch scales were identified. Each of
these scales consisted both of reading and listening items. Further analysis showed
that the scale represent the same substantive dimension and the scales differ only
in the discriminative power of the items. That is the test can be scored with a
weighted score with three different weights. The fact that the reading and the
listening items were not classified in separate scales is not surprising if the kind
of tasks that these items represent are considered: Both the reading and the lis-
tening items require understanding of information that is communicated through
language (i.e., passive language skills).

The scoring rule that has been chosen for the NT2 exam is not a conjunction
of reading and listening but a compensatory rule based on a longer test which
makes the score more reliable. Hence, the confirmatory part of our method can
be used to evaluate whether using weighted sumscore instead of the set of scores
does not threaten the validity of the measurement while improving the reliability
of the scores. In the NT2 exam application it turned out that using the weighted
sumscore as the scoring rule better represents the structure in the data than the
set of unweighted sumscores for the reading and the listening parts, and it makes
a difference for 7% of the sample.

Identification of scales with different levels of discrimination can give start to
further studying of the item characteristics that make them discriminate worse,
and might lead to item revisions. In this way, out method may serve as a diagnostic
instrument for detecting poorly performing items and improving them.

As has been observed in our example of the NT2 exam, in practice some of
the items might not be assigned to any of the scales, because they are assigned
to different scales in different chains, as we have seen in the example. This means
that for these items the model does not fit very well. This can be caused by
within-item multidimensionality of these items, that is, when αi of the item does
not have a simple structure. It is possible to test this hypothesis by comparing the
constrained multi-scale RM with the multidimensional model (see Equation 5.2)
in which some of the αi are freely estimated. Thus, considering the model as
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a constrained version of a general multidimensional model makes it possible to
further investigate in which ways the model can be improved by allowing some
items to load on more than one dimension.

Theoretically, OPLM is an elegant and attractive model. From a practical
point of view, however, the assumption that researchers can cluster items together
on the basis of their discriminatory power is quite often unrealistic, as is the
assumption that clusters of items only differ with respect to discriminatory power.
The new model retains the theoretical elegance of the OPLM model, but provides
substantive researchers with a tool for the automatic clustering of items. At the
same time, with the new model we can relax the stringent assumption in the
OPLM model that item clusters only differ with respect to their discriminatory
power. The new model provides the researcher with important information that
can be used to uncover in what respect Rasch homogeneous scales differ from one
another.

5.9 Appendices

Appendix A: Identification of the multi-scale RM

The main question about the identification of the multi-scale RM is whether the
partition of the items into scales (α) is unique if the model holds and the set
of items indeed consists of a number of Rasch scales. The trivial different item
membership matrix α∗ giving the same distribution of the data p(X) as α can
be achieved by label switching. This can be easily recognised and should not be
treated as a different solution. Therefore, to prove that the model is identifies one
should prove that there is no set of parameters α∗, such that there exist at least
two items i and j, such that αi = αj and α∗i 6= α∗j .

For simplicity, let us consider a model with only two scales. Let αi = αj =

α∗i = {1, 0} andα∗j = {0, 1}. Consider the ratio of probabilities: p(Xi=1,Xj=0,X(i,j))

p(Xi=0,Xj=1,X(i,j))
,

where X(i,j) is a vector of responses to all items except i and j. According to the
multi-scale RM:

p(Xi=1, Xj =0,X(i,j))

p(Xi=0, Xj =1,X(i,j))

=

∫ exp(θ1−δi)
(1+exp(θ1−δi))(1+exp(θ1−δj))p(X

(i,j)|θ)f(θ)dθ∫ exp(θ1−δj)
(1+exp(θ1−δi))(1+exp(θ1−δj))p(X

(i,j)|θ)f(θ)dθ
= exp(δj − δi), (5.30)

that is, it is constant across all response vectors X(i,j). Now we will consider
whether this ratio can be constant if the items i and j do not belong to the same
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scale:

p(Xi = 1, Xj = 0,X(i,j))

p(Xi = 0, Xj = 1,X(i,j))
=

∫
p(Xi = 1, Xj = 0,X(i,j) |θ∗)
p(Xi = 0, Xj = 1,X(i,j))

f(θ∗) dθ∗ =

=

∫
p(Xi = 1, Xj = 0,X(i,j) |θ∗)
p(Xi = 0, Xj = 1,X(i,j) |θ∗)

f(θ∗ |Xi = 0, Xj = 1,X(i,j)) dθ∗ =

=

∫
exp(θ∗1 − δ∗i )
exp(θ∗2 − δ∗j )

f(θ∗ |Xi = 0, Xj = 1,X(i,j)) dθ∗ =

= exp(δ∗j − δ∗i )
∫

(exp(θ∗1 − θ∗2)f(θ∗ |Xi = 0, Xj = 1,X(i,j)) dθ∗ =

= exp(δ∗j − δ∗i )E
(

exp(Θ∗1 −Θ∗2) |Xi = 0, Xj = 1,X(i,j)
)
. (5.31)

The conditional expectation of exp(θ∗1 − θ∗2) has to take the same values for dif-
ferent X(i,j). Let us consider two response vectors with

∑
k 6=i,j

α∗k1Xk = m1 and∑
k 6=i,j

α∗k1Xk = m1 + 1, both vectors have
∑
k 6=i,j

α∗k2Xk = m2. Since, a vector of

subscores {
∑

i α
∗
i1Xi,

∑
i α
∗
i2Xi} is a sufficient statistic, the posterior distributions

of θ∗ are stochastically ordered (Migrom, 1981):

f(θ∗ |Xi = 0, Xj = 1,
∑
k 6=i,j

α∗k1Xk = m1,
∑
k 6=i,j

α∗k2 = m2) <st

f(θ∗ |Xi = 0, Xj = 1,
∑
k 6=i,j

α∗k1Xk = m1 + 1,
∑
k 6=i,j

α∗k2 = m2). (5.32)

The function exp(θ∗1 − θ∗2) is a non-decreasing function in θ∗1. If this function is
also finite, then

E

exp(Θ∗1 −Θ∗2) |Xi = 0, Xj = 0,
∑
k 6=i,j

α∗k1Xk = m1,
∑
k 6=i,j

α∗k2 = m2

<
E

exp(Θ∗1 −Θ∗2) |Xi = 0, Xj =1,
∑
k 6=i,j

α∗k1Xk=m1 + 1,
∑
k 6=i,j

α∗k2 =m2

. (5.33)

Therefore, the ratio of probabilities in (5.30) can not be constant across different
X(i,j), when items i and j do not belong to the same scales. Hence, α is the only
possible set of item memberships, meaning that the partition of items into Rasch
scales can be identified from the data. Note, that with infinite data the ratios of
probabilities in (5.30) can be directly observed. For every pair of items it is then
possible to say whether they belong to the same scale, if the ratios are constant

116



Chapter 5

across X(i,j), or not, which gives a unique partition of items into scales.
If the item memberships are identified, then the item difficulties and the vari-

ances of abilities can identified (San Martin & Rolin, 2013), as you can treat each
Rasch scale as a separate marginal RM, and consequently the covariances between
the abilities are also identified.

Appendix B: Approximating the likelihood of the multi-scale RM

To compute the likelihood of the multi-scale RM we decompose it in the following
way:

f(X | δ,α,Σ) =
∏
p

f(Xp | δ,α,Σ) =

∏
p

∫ ∏
i∈{i |αi1=1}

f(xpi | δi, θ1)p(θ1 |Σ)× · · ·×

∫ ∏
i∈{i |αik=1}

f(xpi | δi, θk)p(θk |Σ, θ1, . . . , θk−1)× · · ·×

∫ ∏
i∈{i |αiM=1}

f(xpi | δi, θM )p(θM |Σ, θ1, . . . , θM−1)dθM . . . dθk . . . dθ1. (5.34)

The conditional distributions of person parameters in scales k > 1 are normal
distributions with the mean µ∗k and the variance σ∗2k . The likelihood is approxi-
mately equal to

f(Xp|δ,α,Σ)≈(π)−
M
2

M∏
k=1

Jk∑
jk=1

wjk
∏

i∈{i |αik=1}

f(xpi|δi, θk=
√

2σ∗kyjk + µ∗k), (5.35)

where µ∗1 = 0, σ∗1 = σ1; y and w are the Gauss-Hermite nodes and weights, and
the number of weights per scale is determined by the variance of the conditional
distribution: Jk = b20σ∗kc.

Appendix C: Additional simulation studies

Simulation study 1

In the first simulation study we compare the performance of the new algorithm
with the method of hierarchical cluster analysis (Debelak & Arendasy, 2012),
which also aims at constructing a set of scales that each fitting a RM. Here,
we briefly describe their method. At the initial step, all combinations of three
items O3 from the item set O are considered. The fit of the model to each set is
evaluated using the R1c statistic (Glas, 1988), and the item set that fits the RM
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best is selected. The R1c is based on the discrepancy between the observed and
expected probabilities of a correct response to the items within groups of persons
separated based on the number of correct responses.

After that, the selected set is expanded. At every step, if Am is the set of
already selected items, from all combinations of m + 1 items, such that Am ⊂
Om+1, the best fitting set Am+1 is selected. The procedure continues until none
of the possible sets would fit the RM or until there are no items left. It is then
repeated for the items that have not been selected in the first scale to construct
the second scale, and so on.

In order to obtain a direct comparison of the two methods, we applied our
algorithm to data sets with the same parameters as those that were used in the
study of Debelak and Arendasy. Their data sets consisted of two equal sized
subscales each fitting a RM. Item difficulties were sampled from N(0, τ2

1 ) in scale
1 and N(0, τ2

2 ) in scale 2, and person parameters were sampled from a multivariate
normal distribution with a zero mean vector and a covariance matrix Σ. From the
total of 180 conditions used by Debelak and Arendasy we chose only the conditions
with extreme values for the varied parameters, since that should be sufficient for a
comprehensive comparison of the two methods. We included only the conditions
with non-zero correlation between the person parameters (ρ = .5), since if it is
highly unlikely for an educational test to measure uncorrelated abilities. The
selected extreme values were: 1) test length: short (n = 10) or long (n = 50), 2)
sample size: small (N = 250) or large (N = 1000), 3) standard deviations of the
person parameters and the item parameters: small in both scales: σ1 = σ2 = 1
and τ1 = τ2 = 0.5 (condition AA), large in both scales: σ1 = σ2 = 2.5 and
τ1 = τ2 = 1.5 (condition DD), or small in one dimension and large in the other:
σ=1 and σ2 = 2.5, τ1 = 0.5 and τ2 = 1.5 (condition AD).

For each of the 12 conditions, the algorithm with 10 chains of 2000 iterations
each (including 1000 iterations of the burn-in) was applied to 100 simulated data
sets. In Table 5.5, the percentage of correct reconstructions of the scales by the
MCMC algorithm and the hierarchical clustering algorithm are shown. The results
of the hierarchical cluster analysis are taken from the original publication.

The new MCMC algorithm performs better in all 12 conditions, with the dif-
ference being dramatic in many of the cells. 100% correct results are obtained in
10 conditions. The percentage of correct results is the lowest when the sample size
is small, and the variances of the person parameters are equal and low (77% for the
short scales and 92% for the long scales). The results for these conditions did not
improve after increasing the number of iterations. Thus, for optimal performance
of the algorithm the scales should not be too short and/or the sample size should
not be too small.
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Table 5.5: Comparison of results of the MCMC algorithm and the partial hier-
archical clustering algorithm (HCA): percentage of correct scale reconstructions;
the results for the HCA are cited from Debelak and Arendasy (2012)

HCA MCMC
N n AA AD DD AA AD DD
250 10 0.42 10.0 65.34 77 100 100

50 0.02 9.56 87.01 87 100 100
1000 10 29.17 10.15 92.26 100 100 100

50 10.84 10.15 82.99 100 100 100

Simulation study 2

In the Introduction we described the OPLM as a special case of the multi-scale
RM. If the item memberships are not pre-specified, then our approach enables the
identification of scales fitting the RM, that differ only in the discriminative power
of the items in them. In the second simulation study, we show the effectiveness of
the algorithm for unmixing Rasch scales when the scales are perfectly correlated
(ρ = 1) and the relations between standard deviations of person parameters are the
same as in the OPLM. The following parameters were varied in the simulations:

1. Sample size: N = 500, 1000, 2000, 5000;

2. Test length: n = 2× 5, 2× 10;

3. Ratio between standard deviations of person parameters:

• σ1
σ2

= 1
2 corresponding to a1 = 1, a2 = 2 in the OPLM;

• σ1
σ2

= 2
3 corresponding to a1 = 2, a2 = 3 in the OPLM;

• σ1
σ2

= 3
4 corresponding to a1 = 3, a2 = 4 in the OPLM.

In all conditions σ1 = 1. Item parameters were sampled from a uniform dis-
tribution: U(−2σ1, 2σ1) for items in scale 1 and U(−2σ2, 2σ2) for items in scale
2. Person parameters were sampled from a multivariate normal distribution. For
every condition the algorithm was applied to 100 simulated data sets.

One can expect that the closer to 1 the ratio between σ1 and σ2 becomes, the
more difficult it is to separate the scales and the more iterations per chain are
needed. With this in mind, the following numbers of iterations were chosen for
the simulation conditions: 2000 iterations (including 1000 iterations burn-in) for
the data sets with σ1

σ2
= 1

2 , 3000 iterations (including 1500 iterations burn-in) for
the data sets with σ1

σ2
= 2

3 and 4000 iterations (including 2000 iterations burn-in)
for the data sets with σ1

σ2
= 3

4 .
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Table 5.6: Results of unmixing the scales which are perfectly correlated

n = 2× 5 n = 2× 10

N σ1
σ2

= 1
2

σ1
σ2

= 2
3

σ1
σ2

= 3
4

σ1
σ2

= 1
2

σ1
σ2

= 2
3

σ1
σ2

= 3
4

Percentage of correct scale reconstruction
500 80 36 23 84 26 16
1000 96 40 29 98 54 19
2000 98 70 41 99 94 50
5000 90 56 40 99 99 72

Percentage of correctly classified items
500 96.50 76.00 64.50 97.15 83.35 64.75
1000 99.60 80.60 66.80 99.90 91.50 74.35
2000 99.30 91.40 76.70 99.95 98.75 91.55
5000 96.60 85.80 68.80 99.95 99.95 96.50

The results, both on the scale level (percentage of correct scale reconstruction)
and the item level (percentage of correctly classified items in all data sets), are
presented in Table 5.6.

As expected, for every sample size and test length the larger the difference
between variances of person parameters, the more correct results are obtained. For
the short scales, increasing the sample size at first improves scale reconstruction
and then makes it worse because of slow mixing of the Markov chain. If both
scales consisted of 10 items, then good results (more than 80% of correct scale
reconstruction and more than 95% of correctly classified items) were obtained for
all sample sizes when the ratio between standard deviations was equal to 1/2,
and for large sample sizes (N = 2000, 5000) when the ratio between standard
deviations was equal to 2/3. The algorithm performs worse when the scales are
short: good results were obtained only for the condition with σ1/σ2 = 1/2.

If the scales are perfectly correlated, the algorithm performs optimally, if the
scales are not too short (about 10 items), and the variances of person parameters
are not too close to each other (σ1σ2 ∈ [2

3 : 1
2 ]).

Operational characteristics of the algorithm

We did a small simulation to evaluate the autocorrelation of the Markov chain.
We examined how operational characteristics change

1. for a fixed test length (n = 20) and the number of scales (M = 2) if the
sample size changes (N = 250, 500, 1000, 2000, 4000),

2. for a fixed sample size (N = 1000) and number of scales (M = 2) if the
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Table 5.7: Autocorrelation of the Markov chain at lag 1 and 20 for different sample
sizes (N), number of items (n), and number of scales (M) averaged for item
difficulties (δ) and elements of the covariance matrix (Σ)

N n M δ Σ
lag 1 lag 20 lag 1 lag 20

250 20 2 .90 .23 .68 .06
500 20 2 .83 .09 .65 .01
2000 20 2 .70 .02 .66 .04
4000 20 2 .69 .04 .68 .07
1000 10 2 .78 .03 .84 .06
1000 20 2 .77 .05 .67 -.10
1000 40 2 .75 .05 .47 .02
1000 60 2 .75 .05 .33 -.03
1000 60 3 .75 .03 .42 .00
1000 60 4 .75 .02 .47 .00
1000 60 5 .75 .03 .57 -.01

number of items per scale and therefore the total test length changes (n =
10, 20, 40, 60),

3. for a fixed sample size (N = 1000) and test length (n = 60) if the number of
scales and, therefore, the number of items per scale changes (M = 2, 3, 4, 5).

These conditions are summarised in Table 5.7. For illustrative purposes, one data
set was simulated and analysed in each condition. The person parameters were
sampled from a multivariate normal distribution with a zero mean vector, all
variances were equal to 1 and all covariances were equal to 0.5. Item difficulties of
items in each scale were equally distanced between −2 and 2. One chain withM×
1000 iterations was used. Autocorrelation was computed for each parameter after
first half of the iterations was discarded and it was averaged for item difficulties
and elements of the covariance matrix. In Table 5.7 autocorrelations at lag 1 and
20 are presented.

Autocorrelation of the variance and covariance parameters decreases if the test
length increases and if the number of items per scale increases. For obtaining stable
estimates of the covariance matrix very long chains are needed. For example, when
for a short test (n = 10) with 2 scales and medium sample size (N = 1000), an
independent sample can be obtained only at lag 50, therefore 10 chains with 5000
iterations each are needed to obtain an independent sample of size 1000. For all
other conditions the length of the chains that is needed is roughly twice shorter,
because autocorrelation is almost zero at lag 20.
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Autocorrelation of the item difficulty parameters decreases when the sample
size increases. If test length is fixed but the number of scales is varied or if the
number of items in the test increases, autocorrelation of item difficulties hardly
changes. At lag 1 the autocorrelation is always high (> .70), but it is usually
satisfactory (< .1) after lag 20.

The larger the sample size, the higher is the global mode of the posterior
distribution relative to all other local modes and the higher is the probability
of an item to belong to the correct scale than to an incorrect one. Therefore,
increasing the sample size until some point helps to recover item membership
parameters. But at the same time each mode becomes more peaked which makes
mixing of the Markov chain slower, because the probability of an item to ever
leave the scale to which it was assigned in one of the iterations after all other
parameters were optimised for this partition of items into scales is close to zero.
Therefore, for very large samples (N > 5000) unmixing becomes hardly possible in
a reasonable number of iterations. This effect is present more, when the variances
of person parameters in two scales are almost the same. Therefore, applications
of the algorithm have to restricted to be moderate sample sizes.

Appendix D: Estimation of the model with fixed correlation pa-
rameters

Here we describe in detail the estimation of the multi-scale RM of Type 2 and
Type 3 with fixed item scale memberships. We will discuss the estimation of the
multi-scale RM of Type 2 on the example a model withM > 2 scales two of which
are perfectly correlated. The algorithm can be extended to cases when there are
more perfectly correlated scales.

As has been mentioned in Section 5.4.1. the multi-scale RM with M scales
two of which are perfectly correlated with the covariance matrix

Σ =


σ2

1 σ1σ2 σ1ρ3σ3 . . . σ1ρMσM
σ1σ2 σ2

2 σ2ρ3σ3 . . . σ2ρMσM
σ1ρ3σ3 σ2ρ3σ3 σ2

3 . . . σ3M
...

...
...

. . .
...

σ1ρMσM σ2ρMσM σ3M . . . σ2
M

 (5.36)

is equivalent to a (M − 1)-dimensional model with the covariance matrix:

Σ∗ =


σ2

1 σ1ρ3σ3 . . . σ1ρMσM
σ1ρ3σ3 σ2

3 . . . σ3M
...

...
. . .

...
σ1ρMσM σ3M . . . σ2

M

 . (5.37)
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In the latter model Rasch scales are in M − 2 dimensions and one dimension has
two item clusters with different discriminations, equal to 1 in the first cluster and
to σ∗2 = σ2

σ1
in the second cluster. Below we describe how to sample from the

posterior distribution of the parameters of the collapsed model:

p(δ,Σ∗, σ∗2 |X, α̂). (5.38)

The same as in the original algorithm described in Section 5.5.1 at the begin-
ning of each iteration the individual person parameters are sampled to simplify
the full conditional posteriors of other parameters. The inverse-Wishart prior with
M + 1 degrees of freedom and a scale parameter IM−1. Improper priors are used
for the difficulty parameters p(δi) ∝ 1; and for the discrimination in the second
cluster of dimension 1: p(σ∗2) ∝ 1

σ∗2
. Initial values are specified in the same way as

in the original algorithm.
Step 1. For each person p sample θp3, . . . , θpM from their full conditional

posterior distributions, which is done in the same way as in the original algorithm.
Step 2. For each person p sample θp1 from

p(θp1 |X, δ, α̂, σ∗2,Σ∗, θp3, . . . , θpM ). (5.39)

Similarly to sampling the parameters in the other dimensions we draw a candidate
value from:

θ∗ = p(θp1 |Σ∗, θp3, . . . , θpM ), (5.40)

generate responses to the items in dimension 1 using:

Pr(X∗i = 1) =

{
exp(θ∗−δi)

1+exp(θ∗−δi) , if α̂i1 = 1,
exp(σ∗2θ

∗−δi)
1+exp(σ∗2θ

∗−δi) , if α̂i2 = 1,
(5.41)

and compute the sumscore X∗+ =
∑

i(α̂i1 + α̂i2σ
∗
2)X∗i ; but unlike the original

algorithm values are not sampled until the simulated sumscore is equal to the
observed sumscore, because the number of possible values of the weighted sumscore
increases dramatically when different weights are used. Instead, exchange variable
algorithm is used (Marsman et al. 2015), that is the candidate value if accepted
with a probability:

Pr(θp1 → θ∗)=min

(
1, exp

(
(θ∗ − θp1)

(∑
i

(α̂i1 + α̂i2σ
∗
2)Xpi −X∗+

)))
, (5.42)

otherwise the current value is retained.
Step 3. Sample the covariance matrix Σ∗ given the person parameters in all

dimensions, which is done in the same way as in the original algorithm.
Step 4. For each item i sample δi from its full conditional posterior, which is
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done analogously to the Step 3 in the original algorithm.
Step 5. Sample σ∗2 from

p(σ∗2 |X, δ, α̂,θ,Σ∗) ∝
1

σ∗2

∏
p

∏
i∈{i:αi2=1}

exp(σ∗2θp1 − δi)
1 + exp(σ∗2θp1 − δi)

, (5.43)

which is done using a Metropolis-Hastings algorithm (Metropolis et al., 1953) with
a log-normal distribution with the logarithm of the current value as the mean and
the standard deviation equal to 0.01.

In cases when there are more perfectly correlated scales than two, the covari-
ance matrix of the collapsed model has less dimensions than M − 1 and there
are more discrimination parameters (like σ∗2) to be sampled. In the case of the
model of Type 3, it collapses to a unidimensional model with a standard normal
distribution for the person parameters and discriminations σ1, σ2, . . . , σM . The
sampling scheme is then the following:

Step 1: For each person p sample θp from p(θp |Xp, δ, α̂, σ1, . . . , σM ): Sample
a candidate value from N(0, 1) and generate a response vector using

Pr(X∗i = 1) =
exp

(∑M
k=1 α̂ikσkθ

∗ − δi
)

1 + exp
(∑M

k=1 α̂ikσkθ
∗ − δi

) . (5.44)

The candidate value is accepted with the probability:

Pr(θp → θ∗) = min

(
1, exp

(
(θ∗ − θp)

(∑
i

∑
k

αikσk(Xpi −X∗i )

)))
. (5.45)

Step 2: For each item i sample item difficulty δi from its full conditional
posterior distribution using Metropolis-Hastings algorithm.

Step 3: For each scale k sample the item discrimination σk from its full
conditional posterior, analogously to sampling σ∗2 in Equation 5.43.
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Using expert knowledge for test
linking

1 Abstract. Linking and equating procedures are used to make the results of
different test forms comparable. In the cases where no assumption of random
equivalent groups can be made some form of linking design is used. In practice the
amount of data available to link the two tests is often very limited due to logistic
and security reasons, which affects the precision of linking procedures. This study
proposes to enhance the quality of linking procedures based on sparse data by
using Bayesian methods which combine the information in the linking data with
background information captured in informative prior distributions. We propose
two methods for the elicitation of prior knowledge about the difference in difficulty
of two tests from subject-matter experts and explain how these results can be used
in the specification of priors. To illustrate the proposed methods and evaluate the
quality of linking with and without informative priors, an empirical example of
linking primary school mathematics tests is presented. The results suggest that
informative priors can increase the precision of linking without decreasing the
accuracy.

Keywords: elicitation, expert knowledge, informative priors, test equating, test
linking.

1This chapter is under review with Psychological Methods as Bolsinova, M., Hoijtink, H.,
Vermeulen, J.A., & Béguin, A. Using expert knowledge for test linking. Author contributions:
B.M., B.A., and H.H. designed the research, B.M performed the research, B.M. and V.J.A.
collected expert data, B.M. wrote the paper, H.H., B.A. and V.J.A. provided feedback on the
manuscript.
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6.1 Introduction

If different test forms of an educational test measuring the same ability are ad-
ministered to different populations of students (e.g., from different years), their
results are not directly comparable because of the differences in the difficulty of
the tests and the differences in the ability in the populations. Linking and equat-
ing techniques are ways to make the scores on the tests comparable. For linking a
new test form to scores of the reference test form different linking designs can be
used (Angoff, 1971; Wright & Stone, 1979; Lord, 1980; Petersen, Kolen, & Hoover,
1989; Kolen & Brennan, 2004).

In high-stakes testing (e.g., examinations) different test forms often do not
have items in common due to security reasons. If the forms are administered under
the assumption of non-equivalent groups it is necessary to collect additional data
to link the different test forms (Mittelhaëuser, Béguin, & Sijtsma, 2015). Most
commonly a type of anchor test is used, but the administration of anchor tests
under appropriate conditions is challenging and expensive (Keizer-Mittelhaëuser,
2014). In this article we consider a situation in which two test forms can be
connected through the so called linking groups in a pre-test non-equivalent group
design (Béguin, 2000), because that is common for high-stakes examinations in
the Netherlands, but the methodology developed in this paper can be also used
with different linking designs.

When item response theory (IRT) is used for linking, item parameters of
the items in the current and the reference tests have to be placed on the same
scale (Kolen & Brennan, 2004; von Davier, 2011). This can be done either by esti-
mating the IRT parameters in the two tests separately and then placing them on
the same scale using scale transformation methods (Marco, 1977; Loyd & Hoover,
1980; Haebara, 1980; Stocking & Lord, 1983), or by estimating the parameters of
the two test forms together in concurrent calibration (Wingersky & Lord, 1984).
Once the item parameters are put on the same scale, the predicted score distribu-
tion of the reference population on the current test can be estimated. A cut-score
(i.e., a minimum number of correct responses needed to pass the test) for the cur-
rent test can be determined using IRT observed score equating using equipercentile
linking (Lord & Wingersky, 1984).

Unlike examination data, which usually consist of responses of thousands of
students to test items, the linking data are often not sufficiently large, such that
the uncertainty about the difference between the difficulties of the two tests and,
hence, about the new cut-score is rather large. These data are often collected in
non-examination conditions (with different levels of stress and motivation) and
not from the populations of interest. Thus, the linking data often do not provide a
high enough quality of linking (in terms of uncertainty and bias of the cut-scores).

From the Bayesian perspective, the data are not the only source of information
about the item parameters. A second source is the background information which
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can be captured in the prior distributions. It has been advocated that using
informative priors is useful in practical applications (Goldstein, 2006; Vanpaemel,
2011). The purpose of this study is to develop methods to improve the quality of
linking by combining the information from the linking data and the informative
priors. We explore different ways of eliciting the prior distributions about the
difference in difficulty of the two tests from subject-matter experts and using
them to link the two tests.

There have been studies with a focus on specification of informative priors for
the parameters of IRT models. Item features (e.g., operations involved in solving
the item, number of response alternatives, or use of negation in the formulation
of the item) can be used to predict the item parameters (Fisher, 1973; Tatsuoka,
1987), which can be included as prior knowledge for Bayesian estimation of the
item parameters (Mislevy, 1988). This source of prior information has been also
used in the context of test equating and linking (Mislevy, Sheehan, & Wingersky,
1993). However, information about item features that are good predictors of the
difficulty is not always available. Other authors include judgemental information
from subject-matter experts in the estimation of the item parameters (Bejar, 1983;
Swaminathan, Hambleton, Sireci, Xing, & Rivazi, 2003; Ozaki & Toyoda, 2006;
Wauters, Desmet, & van der Noordgate, 2012). The latter has not been done in
the context of test linking, and the expert judgements were only used to improve
the estimation of the individual item parameters. Judgemental information about
the items difficulties is also collected in the context of standard setting (Shepard,
1980; Geisinger, 1991; Cizek & Bunch, 2007). In that case, the cut-score for the
test is selected based on the results of standard setting procedures and not by
including the information from the experts in the form of the prior distributions
and combining it with data in a Bayesian estimation procedure.

Experts’ judgements of individual items are often not very accurate and re-
liable, however when combined on the test level they can provide valuable in-
formation about the relations between two tests. Therefore, we argue that the
expert knowledge about the item difficulties is especially useful for test equating
and linking. Another reason for a special interest in using experts’ judgements in
the context of test linking is that from the examination data we can estimate the
differences between the item difficulties within the reference test and within the
current test with high precision and the only thing that is missing is the informa-
tion about the relations between the tests. Therefore, the information available
from the examination data can be used to help in obtaining more valid and reliable
judgements with respect to the relations between the two tests.

This paper is structured as follows. First, the measurement model and the
equating design used throughout the paper are discussed. Then, in Section 6.3
we propose two methods for elicitation of the prior knowledge about the test dif-
ficulty from experts. The first one is an adaptation of the Angoff standard setting
procedure (Angoff, 1971). The second method was designed by us for more direct
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elicitation of the experts’ knowledge about the differences between the difficulties
of the two tests. In Section 6.4, the two elicitation methods are compared in terms
of the quality of linking with the elicited priors using an empirical example based
on the primary school mathematics test "Entreetoets Groep 7". The paper is
concluded with a discussion.

6.2 Measurement model and equating design

In this study the marginal Rasch model (Rasch, 1960) is used assuming a normal
distribution for proficiency. It models the probability of a correct response to an
item in a population:

Pr(Xi = 1) =

∫
R

exp(θ − δi)
1 + exp(θ − δi)

N (θ;µ, σ2)dθ, (6.1)

where Xi denotes a binary coded response (1 for correct and 0 for incorrect) to
item i with difficulty δi of a person randomly sampled from the population with
the mean and the variance of proficiency θ equal to µ and σ2. The Rasch model
was chosen because it has a clear interpretation of the item difficulty. If δi > δj ,
then both the conditional (i.e., given a particular value of θ) and the marginal
probability (6.1) of a correct response to item i is smaller than to item j. This
is important when translating experts’ judgements of the type "Item i is more
difficult than item j" into statements about the model parameters (δi > δj). This
is not possible if an item discrimination parameter is added to the model, like
is done in the two parameter logistic model (Lord & Novick, 1968). We assume
that all the items, both in the current and in the reference test, have the same
discriminative power. Although the Rasch model is a rather restrictive model, it
has been shown that equating results using the Rasch model are rather robust to
model violations (Béguin, 2000).

We consider a pre-test non-equivalent group equating design with G linking
groups. This design is visualised in Figure 6.1, where rows represent persons and
columns represent items. We denote the data matrix of the reference exam by
X, the data of the current exam by Y and the data of the G linking groups
by Z1,Z2, . . . ,ZG. By X∗ we denote the unobserved responses of the reference
population to the current test.

When concurrent Bayesian calibration is used for linking the two tests, samples
from the joint posterior of the model parameters need to be obtained:

p(δr, δc, µr, σ
2
r , µc, σ

2
c , µ1, σ

2
1, . . . , µG, σ

2
G |X,Y,Z1, . . . ,ZG), (6.2)

where δr and δc are the vectors of item difficulties of the items in the reference
and the current tests, respectively; µr and µc are the means of proficiency of the
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reference and the current populations respectively, σ2
r and σ2

c are the corresponding
population variances, and µ1, σ

2
1, . . . , µG, σ

2
G are the population parameters in the

linking groups. A zero point for the IRT scale is fixed by setting the average
difficulty of the items in the reference test equal to zero: δ̄r = 0. Using samples
from the posterior in (6.2) the score distribution of the reference population on
the current test (score distribution in X∗) is estimated and the new cut-score is
determined using equipercentile equating (see Appendix A).

' ' '-

-

-
-
-
-
-

. ..... . ..

Figure 6.1: Equating design with G linking groups: rows represent persons,
columns represent items.

The linking data are the only data that provide information about the dif-
ference between the average difficulty of the items in the current test and the
average difficulty of the items in the reference test, denoted by τ = δ̄c − δ̄r. Since
the linking data are sparse, the largest part of the uncertainty about what the new
cut-score should be is coming from the uncertainty about τ . We aim to increase
the precision of the estimate of the new cut-score by including prior information
about τ in the estimation. The following re-parametrisation is used throughout
the paper (see Figure 6.2):

δ∗c = δc − δ̄c = δc − τ (6.3)
µ∗c = µc − δ̄c = µc − τ, (6.4)

The rest of the paper is focused on the specification of the prior distribution of τ .
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δr δcδ1 δ2 δ3µc

µc
*

−δ1
*

−δ2
*

δ3
*

τ

ability/difficulty

Figure 6.2: Re-parametrisation of the model parameters.

6.3 Elicitation of prior knowledge about the difference
between the difficulty of two tests

Information about the difference between the average difficulty of the items in the
current test and the average difficulty of the items in the reference test can be
collected from subject-matter experts who can judge the difficulty of the items
in the two tests. In this section we describe the two methods developed for the
elicitation of the prior knowledge about τ . In the following section we compare
the performance of these methods in two empirical elicitation studies.

Both methods use item difficulties estimated from the examination data. Since
we also used the data to calibrate the two test forms on the same scale, we need to
divide the examination data (both from the reference and from the current exams)
into two halves: the first half which is used to facilitate the elicitation of experts’
knowledge about the mutual order of the items and to construct priors for the item
and the population parameters, here called the training data, and the second half
which is used for the estimation of the new cut-score, here called the estimation
data. See Appendix A for technical details.

6.3.1 Adaptation of the Angoff method for elicitation of the prior
knowledge about τ

The first method that we developed is an adapted version of the Angoff method of
standard setting (Angoff, 1971). Unlike the regular use of the Angoff method and
other standard setting procedures we use the experts’ judgements not to set the
cut-scores directly but use these judgements for the specification of the informative
prior for τ . In this way the cut-scores can be estimated based on both the experts’
knowledge and the linking data.
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Traditionally in the Angoff method, each expert e ∈ {1 : E} from a panel
of E experts is asked for each test item to give the probability that a minimally
competent (borderline) candidate will answer this item correctly:

pie = Pr(Xpi = 1 | θp = θ∗), (6.5)

where θ∗ is proficiency of a borderline candidate. These probabilities are then
added over items to obtain the expected score of a borderline candidate which
is chosen as a cut-score. In our study, we use the experts’ evaluations of the
probabilities pie differently. If each expert evaluates all items, then based on the
Rasch model her/his estimate of the difference between the average difficulties of
the items in the current and the reference test denoted by τe can be computed as

τe =

∑
i∈{c} ln

(
1−pie
pie

)
|c|

−

∑
j∈{r} ln

(
1−pje
pje

)
|r|

, (6.6)

where {r} and {c} are the sets of items in the reference and the current tests,
respectively. It ca be seen that τe does not depend on the level of the proficiency
of the borderline candidate.

Letting each expert evaluate all items is very time consuming and can lead to
experts’ judgements being less valid and reliable due to fatigue and loss of moti-
vation. In our adapted procedure only a subset of items {r∗} from the reference
test and a subset of items {c∗} from the current test are used. Then, for each
expert we compute the difference between the average difficulties of the items in
the subsets {c∗} and {r∗}, denoted by τ∗e :

τ∗e =

∑
i∈{c∗} ln

(
1−pie
pie

)
|c∗|

−

∑
j∈{r∗} ln

(
1−pje
pje

)
|r∗|

. (6.7)

τ∗e is not equal to τe since the items in the subsets are not fully representative of
the full tests:

τe = (d̂r − d̂c)− τ∗e , (6.8)

where d̂r is the difference between the average difficulty in the subset {r∗} and
the average difficulty in the set {r}, and d̂c is the difference between the average
difficulty in the subset {c∗} and the average difficulty in the set {c}. These two
quantities can be estimated from the training data.

The prior distribution of τ is chosen to be a normal distribution

p1(τ) = N
(

(d̂r − d̂c)− µw, σ2
w

)
(6.9)

where µw =
∑
e weτ

∗
e∑

e we
is the weighted mean of τ∗e across the experts and σ2

w =
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∑
e we(τ

∗
e−µw)2

1−
∑
e w

2
e

is the weighted variance. The weights are determined by how well
the estimated pie from each expert correlate with the observed proportions of
correct responses to the items within each test in the training data:

we =
1

2
(Cor(pre,pr) + Cor(pce,pc))ICor(pre,pr)>0ICor(pce,pc)>0, (6.10)

where pre and pce are the vectors of probabilities of length |r∗| and |c∗|, respec-
tively, evaluated by expert e, and pc and pr are the observed proportions of correct
responses to the items in the training data. If one of these correlations is negative
for a particular expert then this expert gets a weight of zero.

6.3.2 Rulers method for direct elicitation of the prior knowledge
about τ

One could imagine two rulers on which the positions of the items within each test
are indicated, see Figure 6.3. As the arrows show, the rulers can be arbitrarily
shifted to the left or to the right relative to each other, since the examination
data do not tell us anything about the relative position of these two rulers. Prior
knowledge about how these rulers should be positioned relative to each other
can be elicited from experts. The most direct way would be to give an expert
the rulers with the empirical item positions within each test and ask her/him
to determine the proper mutual position of the two rulers. But comparing two
complete tests with a large number of items is a very complicated task which is
practically impossible to complete. For that reason, we developed a procedure in
which experts are asked to compare smaller sets of items which have to be carefully
selected. Our method is different from just asking the experts to specify the mutual
order of the items in the two tests, because the empirical within-test items orders
and the distances between the item difficulties within each test make many of the
orders impossible, for example in Figure 6.3 the order δ1 < δ∗1 < δ∗2 < δ∗3 < δ2

is not possible since the distance between δ∗3 and δ∗1 is larger than the distance
between δ2 and δ1.

When developing the elicitation procedure, we carried out a pilot study with
one expert to figure out what problems experts might experience when comparing
sets of items. First, we observed that it was much easier for the expert to compare
items of similar content. Another observation was that sometimes the expert did
not agree with the empirical order of the item difficulties within a test which made
specifying the mutual order of the items in the two sets senseless. Based on these
observations, we developed the elicitation procedure consisting of several steps. In
the first step, items are selected from the reference and the current test so that
they are similar to each other in content and differ from each other in difficulty.
In the second step, each expert e ∈ {1 : E} orders the item difficulties within each
test and only those items for which the expert’s order and the order observed in
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Reference test

Current test

(n items)

(m items)

δ1 δ2 δ3 ... δn-1 δn

δ1
* δ2

* δ3
* ... δm-1

* δm
*

Figure 6.3: Two rulers with item difficulties estimated within each test: the arrows
indicate that relative position of the rulers needs to be determined by experts.

the training data match are retained. In the third step, each expert aligns the
remaining items from the reference test to the items from the current test. In this
way, we make sure that the problems observed in the pilot study will not occur.
Below we describe the three steps of the procedure in detail.

1. Preliminary item selection.

(a) Divide the items within each test into homogenous groups based on
the content, for example in a language test items may be divided in
spelling, grammar, and punctuation subgroups. Often tests consist
of clearly defined subdomains. If that is not the case, then experts
can be asked to help divide the items in homogeneous subgroups. The
subgroups should not be made too small, 6-8 items per subgroup should
be sufficient.

(b) Estimate the item difficulties separately for the items in the reference
test and in the current test given the training data.

(c) Select the largest subset of items from each homogenous group, such
that the posterior probability of each pair of items within the subset to
have a certain order of item difficulties is larger than 95%2. If multiple
subsets can be constructed, then select one of them at random. The
elicitation procedure cannot be used if these subsets cannot be con-
structed, that is if either there is not enough variation in item difficulty
or if there are not enough data to be certain about the order of the
item difficulties.

2This posterior probability can be approximated by the proportion of samples from the
posterior distribution (given in Equations 6.22 and 6.23 in Appendix A) in which a certain order
holds for the sampled values of the item difficulties.
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2. Final item selection (performed separately for each expert e).

(a) An expert orders the items within each homogeneous group based on
their difficulty, for the two tests separately.

(b) A subset of items from a set is retained if the expert’s order of this
set does not contradict the order observed in the training data. For
example, if the observed order is:

δ̂1 < δ̂2 < δ̂3 < δ̂4, (6.11)

and the expert’s order is:

δ1e < δ3e < δ2e < δ4e, (6.12)

then the expert’s order within the subsets {1, 2, 4} and {1, 3, 4} do
not contradict the empirical order. Both subsets can be used in the
procedure. To make the selection of items automatic, one of these
subsets is chosen randomly.

(c) If for one of the content groups of items, in one of the tests there is
no pair of items to be retained, then this group is discarded from the
both tests. Therefore, after the final selection of items different experts
might have different number of item groups to compare.

(d) The quality of the judgements of expert e is quantified by the average
proportion of items for which the expert’s order and the empirical or-
der were the same, denoted by pe. In the case of empirical and expert
orders in (6.11) and (6.12) this proportion is equal to .75. pe used to
weigh the expert’s judgements, such that the effect of the prior distribu-
tion elicited from an expert on the combined prior decreases if her/his
judgements rarely match the observed data. The weight of expert e is
equal to

we =
pe − p0∑
e (pe − p0)

, (6.13)

where p0 is the expected average proportion of items which would be
obtained if the order produced by a hypothetical expert is random.

3. Shifting two rulers. This stage is done for all content groups j ∈ [1 : Je],
where Je is the number of the content groups retained for expert e and
consequently the number of judgements about the parameter τ which are
elicited from her/him. Starting from Step 3 the rulers method is illustrated
in Figure 6.4.

(a) The expert is presented with a set of items from the reference test
from one of the content groups ordered from the easiest to the most
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difficult one, and with an ordered set of the items from the current test
(from the same content group). The items are positioned according to
the distances between the item difficulties estimated from the training
data. The expert can shift these two sets of items relative to each other
to the right or to the left, but cannot change the positions of the items
within a test, since they are fixed at the estimated difficulties.

(b) The expert places the two sets together on the common scale according
to her/his best guess. In each of the content groups we obtain the
mutual order of the items and the estimate of the mode of the prior
distribution, denoted by τ̂ej . See "Best guess" in Figure 6.4.

(c) To evaluate the expert’s uncertainty about the estimate, she/he is asked
to place the item sets in the two most extreme positions which the
expert still considers plausible: first in which the set of items from the
current test has the rightmost position on the scale (resulting in an
upper bound τmax

ej ) and second in which it has the leftmost position
in the scale (resulting in a lower bound τmin

ej ). See "Extreme 1" and
"Extreme 2" in Figure 6.4.

The above described procedure of experts’ judgements collection for each ex-
pert e results in multiple sets {τ̂ej , τmin

ej , τmax
ej }, ∀j ∈ [1 : Je]. Next, we describe

how this information can be translated into the prior distribution of τ .
Each pair of sets of items to be ordered presents the expert with an opportunity

to express her/his beliefs about the relative difficulties of the items in the two sets
and her/his uncertainty about the assessment of these relative difficulties. Through
our method, each pair of sets produces an estimate of the mode of the expert’s
prior, as well as an estimate of the lower and the upper bound of the region that
that expert still considers to be credible. This credible range was operationalised
as the 90% credible interval for that expert’s prior, and hence the lower and the
upper bound that were specified by the expert are used as an estimate of her/his
5% and 95% percentiles, respectively. Since the extreme positions do not have
to be symmetric around the mode, to approximate the prior knowledge elicited
from expert e in judgement j we need a distribution which allows for skewness. A
skew-normal distribution (Azzalini, 2005) is used:

pej(τ) = Skew-normal(ξej , ωej , αej), (6.14)

where ξej specifies the location, ωej specifies the spread and αej specifies the degree
of skewness of the distribution (see Figure 6.4). The skew-normal distribution
includes a normal distribution as its special case when αej = 0. The parameters
of the distribution are chosen in such a way that τmin

ej and τmax
ej are the 5-th and

the 95-th quantiles and τ̂ej is the mode (see Appendix B for the details).
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Each judgement of expert e adds extra information about which values of τ
are plausible according to this expert. Separate judgements of the same expert
are assumed to be independent, therefore to combine the information from several
judgements, we use a product of the distributions pej(τ):

pe(τ) =

∏
j pej(τ)

∞∫
−∞

∏
j pej(τ)dτ

, (6.15)

where the normalising constant in the denominator ensures that pe(τ) is a proper
distribution. This integral does not have a closed form solution and is therefore
approximated here by numerical integration with Gauss-Hermite quadrature (see
Equation 6.57 in Appendix B). The motivation for the independence assumption
is that each judgement refers to a different set of items with a unique combination
of item features influencing the item difficulty, which an expert takes into account.

When combining the information from the different experts, we use linear
opinion pooling (Stone, 1961; O’Hagan et al., 2006):

p2(τ) =
∑
e

wep(e)(τ), (6.16)

where the weights we computed using (6.13) make sure that the results of the
experts with higher quality judgements have a larger influence on the prior p2(τ).
We prefer linear opinion pooling over logarithmic opinion pool because the latter
being a geometric mean of individual distributions leads to unrealistically strong
aggregated believes. Moreover, linear opinion pool does not rule out the low or
the high values of the parameter that are supported by a minority of the experts
(O’Hagan et al., 2006, p.184).

6.4 Empirical example

6.4.1 Data

For illustrating and comparing the methods of test linking using prior knowledge,
we used the data from the test of mathematics for primary school "Entreetoets
Group 7" taken by students in the Netherlands at the end of the 5th grade. The
same test consisting of 120 items was administered in 2008 and 2009. The test was
divided into 10 groups based on content: 1) mental arithmetics, 2) mental arith-
metics - estimation, 3) arithmetic operations, 4) number relations, 5) geometry,
6) measurement of length and surface, 7) measurement of weight and volume, 8)
percentages, fractions and ratios, 9) time, 10) money; and then each subgroup was
randomly divided into two parts. We treated the first part as the reference test

137



Chapter 6

and the second part as the current test. The populations of 2008 and 2009 were
treated as the reference and the current population respectively. Hence, an equat-
ing problem was artificially created for the data set in which the responses of the
persons from what we labelled as "reference population" to the items from what
we labelled "current test" were actually observed (see Figure 6.5). This makes it
possible not only to illustrate the procedures introduced in Section 6.3 but also to
evaluate them by comparing the estimate of the new cut-score obtained with the
different priors based on the predicted responses of the reference population to the
current test (see Figure 6.5b denoted by "?") with the cut-score, derived from the
observed responses of the reference population to the current test in the complete
data (see Figure 6.5a). Hence, the latter is used as a proxy of the true cut-score.

N=2000

M=2000

N > 100000

M > 100000

120 items Reference test
n=60

Current test
m=60

Reference
population

Linking
groups

Current
population

2008

2009

Nl

?

Figure 6.5: Creating an equating problem from a complete design. The completely
dashed areas indicate data that were not used in the analysis.

The data set of each year consisted of responses of more than 100,000 students.
Since the linking procedures developed in this study are meant for tests adminis-
tered to smaller samples, responses of 2000 persons from each year were randomly
selected as examination data. The data for three linking groups with responses
to randomly selected 8 items from the reference test and 8 items from the current
test were selected from the data of 2008. Although they were sampled from the
same population as the examination data, this fact was ignored in the estimation,
assigning separate parameters for the mean and the variance of proficiency in each
linking group.

Since based on this particular arithmetics test students are assigned to one of
five levels of proficiency (from A to E), four cut-scores need to be estimated. The
cut-scores between the levels in the reference test (denoted by sref ) were 49, 42,
35 and 24 correct responses. The corresponding cut-scores for the current test
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maintaining the same standard need to be estimated. From the complete data
(see Figure 6.5a) the true cut-scores in the current test (denoted by spass,true)
were determined to be equal to 50, 43, 36 and 26 correct responses.

6.4.2 Method

To evaluate the linking results based on different priors we analysed how the
estimated cut-scores for the current test (spass) changes depending on the prior
specification.

For each cut-score in the reference test we estimated a cut-score in the current
test using different priors and compared it to the true cut-score spass,true. To take
into account the sampling variability, we re-sampled the data (both the persons
and the items) for the linking groups 100 times to examine the distribution of the
estimated cut-scores across these re-sampled data sets, to evaluate how often each
of the cut-scores is correctly estimated:

ktrue =
100∑
k=1

I(spass,k = spass,true) (6.17)

and how large the mean squared error (MSE) is:

MSE =
1

100

100∑
k=1

(spass,k − spass,true)2, (6.18)

where spass,k is the estimated cut-score from the k-th re-sampled data set.

We also used the average number of misclassified students across the re-sampled
data sets to compare the quality of linking based on different priors. In each re-
sampled data set the number of persons from the current population who were
assigned to an incorrect level of proficiency due over- or underestimation of the
cut-scores was counted. If the estimates of the cut-scores are centred around the
true values and do not vary a lot then this number would be small.

To analyse how the influence of the prior distribution changes depending on
the size of the linking data, we varied the number of persons per linking group:
Nl = 100, 200, 300, and 500.

In addition to p1(τ) defined in Equation 6.9 and p2(τ) defined in Equation 6.16,
we also used a vague prior:

p0(τ) = N (0, 100) (6.19)

to show the added value of using prior knowledge.
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6.4.3 Expert elicitation. Study 1

Participants

Nine experts participated in the study (4 females and 5 males). The age of the
experts ranged from 25 to 66 with a mean of 51. These experts were members of
the construction groups, who develop items for mathematical tests at the Dutch
National Institute for educational measurement. The number of years of experi-
ence as an item constructor ranged from less than a year to 30 years. Most of
the experts also had experience with teaching primary school mathematics and/or
teaching at the programmes for primary school teachers.

Preliminary selection of items

From the 10 content groups only 7 groups were selected for the expert elicitation,
because the other three groups were too small (number relations, geometry, and
money). The items within each test were ordered based on the observed propor-
tions of correct responses in the training data. Within each of the seven content
groups a subset was selected such that for each pair of items i and j within this
subset the posterior probability of them having a certain order of item difficulties
was larger than .95. In total 62 items were selected which were used both for the
Angoff and for the rulers methods.

The item difficulties within each test, which were used for specifying the loca-
tions of the items in the elicitation procedure, were estimated from the training
data.

Procedure

The group of nine experts was randomly divided into two groups: one which started
with the Angoff method (four experts) and continued with the rulers method, and
the other which had the reverse order of the elicitation methods (five experts).
Due to technical problems one of the experts from the second group had to start
with the Angoff method. All the assignments were performed by the experts
individually.

The rulers method was implemented in a computer application developed for
this study. The application had two parts corresponding to Step 2 and Step
3 of the elicitation procedure described in Section 6.3.2. Each expert got a pre-
recorded audio-instruction accompanied by a power-point presentation illustrating
the procedures.

In the first part of the procedure, experts were presented with sets of 3, 4, 5,
or 6 items from each content group and each test (see Figure 6.6). The content
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Figure 6.6: Illustration of the first part of the computerised procedure for the
rulers method: six items have to be ordered based on their difficulty (translated
from Dutch).

groups were presented in the same order to everyone, but the order of the item
sets within a content group was randomly chosen for each expert (either reference
test - current test, or current test - reference test). Within each set items were
presented in a random order. For each set experts had to fill in the order of the
items based on their difficulty starting from the easiest item.

After the first part, experts received the instruction for the second part. In
the second part of the procedure experts were presented with two sets of items:
one at the top and one at the bottom. The items were located according to
their estimated item difficulties based on the training data. Each set contained at
most four items. If after the first part there were more than four items in a set
for which the expert’s order matched the empirical order, then four items were
randomly selected to be retained. It was not possible for the experts to move the
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items within a set, but only sets as a whole relative to each other using two sliders,
one at the top and one at the bottom. First, the experts had to place the sets in
the most plausible position (see Figure 6.7). Second, they had to specify the first
extreme position by moving either the top set to the right or the bottom set to the
left away from the most likely position (in Figure 6.7 "Best guess" was substituted
by "Extreme 1: top to the right or bottom to the left"). Third, they had to choose
the second extreme position by moving the sets away from the most likely position
in the opposite direction (in Figure 6.7 "Best guess" was substituted by "Extreme
2: top to the left or bottom to the right").

Figure 6.7: Illustration of the second part of the computerised procedure for the
rulers method: Best guess (translated from Dutch). The red blocks indicate the
item positions on the difficulty scale. Two sliders (at the top and at the bottom)
can be used to change the position of the item sets.

Due to an error in coding3, the item difficulty of one of the items was estimated
incorrectly at the initial phase of the study. This was a problem only for one set
of items and did not influence the estimates of the difficulties of all other items.

3Note that we did not make this error in Study 2.
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However, the item position in which this item was presented in the second part
of the procedure was incorrect, therefore the experts’ judgements from the pair of
sets containing this item (mental arithmetics content group) were discarded. The
estimation of the cut-scores was based on the corrected difficulty of that one item.

In the Angoff procedure the same 62 items as used in the rulers method were
given to each expert in a random order. The experts filled in their responses to a
question "Imagine a group of students from the 5th grade with an average level of
proficiency (B/C or level 3 of the student monitoring system). How many of these
students will answer this item correctly?" in a booklet with one item per page (see
Figure 6.8). Three extra items were included in the beginning of the booklet to
familiarise the experts with the procedure, such that the total number of items
was 65 but only the results of the 62 items were taken into account.

Results

The Angoff method resulted in a prior

p1(τ) = N (µ = 0.097, σ2 = 0.005), (6.20)

which is shown in Figure 6.9b.
With respect to the rulers method, whenever the estimated τ̂ej did not lie

within the two extreme estimates τmin
ej and τmin

ej , the judgement was excluded,
since it meant that the instruction was not followed properly. This was the case
for half of the experts’ judgements4. All judgements of Expert 8 were excluded
because only once his response was consistent with the instructions. One of the
judgements of Expert 7 was considered to be an outlier. The lower bound in this
judgement was 1.48, whereas the upper bound in the other three judgements were
-0.09, -0.05 and -0.02. Therefore, this judgement was discarded.

Figure 6.9a shows the priors elicited from individual experts in the comput-
erised procedure. In Figure 6.9b the combined prior p2(τ) and the prior elicited
with the Angoff method p1(τ) are shown. Figure 6.9 also includes τ̄ which was
estimated from the observed responses of almost 20,000 persons from both 2008
and 2009 to all 120 mathematics items (see Figure 6.5a). A RM was fitted to the
complete data set and the difference between the average estimates of the difficul-
ties of the items in the current and the reference test was computed. We used it
as a proxy for the true value of τ to evaluate how close to the truth the expert’s
judgements were. Two of the priors elicited from the individual experts are located
close to the proxy of the true values τ̄ . Consequently, one of the local modes of

4Please note that in Study 2 this problem did not occur.

143



Chapter 6

Figure 6.8: Illustration of the Angoff procedure: one item per page is presented
(translated from Dutch).

p2(τ) is also close to τ̄ . On the contrary, the Angoff prior assigned extremely low
density to τ̄ .

Figure 6.10 shows the distribution of the estimates of the cut-scores across the
re-sampled data sets, and Table 6.1 shows how often each of the four cut-scores was
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Figure 6.9: Prior distributions elicited from individual experts using the rulers
method in the Elicitation Study 1 (a) and combined prior distributions (b).

correctly estimated with different priors. From Figure 6.10 one may see that with
the vague prior there was a lot of variation in the estimated cut-scores, especially
when Nl = 100. With the informative priors, the estimates of the cut-scores across
the re-sampled data sets were less spread around the mode. But the Angoff prior
gave biased results in most conditions, since the mode of the distribution of the
estimated cut-scores was lower than the true cut-score, in some conditions even
by two score points. For the prior based on the rulers method only the mode of
the distribution of the cut-score B/C was not equal to the true cut-score for one of
the sample sizes. In all other conditions ktrue using the rulers method was either
larger than or roughly the same as ktrue using the vague prior. Moreover, the
mean squared error of the estimates based on the rulers method were also either
smaller or approximately equal to those based on the vague prior. The MSEs of
the estimates based on the Angoff prior were in all conditions larger than those
based on the vague prior.

To illustrate the consequences of incorrectly estimating the cut-scores more
concretely, we looked at the average number of persons misclassified when different
priors were used (see Table 6.2). The worst results were obtained with the Angoff
prior. With the smallest sample size (Nl = 100), the vague prior resulted in the
smallest average number of misclassified persons. With larger sample sizes, the
results were better for p2(τ). However, the differences between p2(τ) and the
vague prior decreased with sample size, such that the difference between the two
methods is negligible when Nl = 500.
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Figure 6.10: Distributions of the estimates of the cut-scores across the re-sampled
data sets using different priors: p0(τ) - vague prior, p1(τ) - Angoff prior, p2(τ) -
rulers prior Study 1, p′2(τ) - ruler prior Study 2. The true cut-scores are marked
with a circle.
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Table 6.1: Numbers of data sets in which the estimated cut-score was equal to the
true cut-score and mean squared error of the estimates of the cut-scores

cut-score Prior Nl = 100 Nl = 200 Nl = 300 Nl = 500
ktrue MSE ktrue MSE ktrue MSE ktrue MSE

D/E p0(τ) 35∗ 1.21 59∗ 0.47 63∗ 0.40 66∗ 0.34
p1(τ) 1 3.63 6 1.68 12 1.24 23 0.83
p2(τ) 57∗ 1.74 72∗ 0.39 70∗ 0.33 77∗ 0.23
p′2(τ) 91∗ 0.39 96∗ 0.10 91∗ 0.12 90∗ 0.10

C/D p0(τ) 36∗ 1.31 53∗ 0.59 48∗ 0.61 46∗ 0.57
p1(τ) 0 4.68 0 2.48 1 1.89 6 1.27
p2(τ) 56∗ 1.80 76∗ 0.40 67∗ 0.41 59∗ 0.44
p′2(τ) 91∗ 0.42 93∗ 0.13 84∗ 0.22 84∗ 0.19

B/C p0(τ) 39∗ 0.99 56∗ 0.44 64∗ 0.36 74∗ 0.26
p1(τ) 7 1.80 31 0.75 50∗ 0.53 69∗ 0.31
p2(τ) 34 1.14 49∗ 0.57 59∗ 0.44 71∗ 0.29
p′2(τ) 78∗ 0.34 81∗ 0.22 78∗ 0.22 85∗ 0.15

A/B p0(τ) 57∗ 0.46 77∗ 0.23 83∗ 0.17 96∗ 0.04
p1(τ) 9 1.09 50∗ 0.50 57∗ 0.43 82∗ 0.18
p2(τ) 62∗ 0.80 82∗ 0.18 86∗ 0.14 92∗ 0.08
p′2(τ) 93∗ 0.16 98∗ 0.02 98∗ 0.02 99∗ 0.01

Note. ∗ - the most frequent estimate of the cut-score is equal to the true cut-score.

Table 6.2: Average number of misclassified persons across 100 re-sampled data sets
Prior Nl = 100 Nl = 200 Nl = 300 Nl = 500

p0(τ) 144.52 82.57 72.13 54.24
p1(τ) 296.12 184.4 152.96 103.32
p2(τ) 148.30 68.60 62.02 51.39
p′2(τ) 37.10 19.63 26.56 21.34
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Discussion

Generally, the results of the first study showed that including experts’ knowledge
in the form of informative priors in test linking is promising. However, the two
elicitation methods differed in their utility. The prior based on the rulers method
p2(τ) is a mixture of experts’ opinions, whereas the Angoff prior is simply an
average of experts’ results. Therefore, p2(τ) can better capture the diversity of
experts’ opinions, and if there are experts in the panel whose judgements are
close to the truth then the posterior would get closer to the truth as well. On the
contrary with the Angoff method the prior of τ is dominated by the judgements’ of
the majority of the experts and does not reflect the variation of expert opinions.
Another drawback of the Angoff method is that it does not allow to take the
uncertainty of the individual experts into account.

Because the prior distribution p2(τ) was multimodal and only one of the local
modes was close to the truth (see Figure 6.9), we looked into the characteristics
of the experts whose opinions were further away or closer to τ̄ . From the panel
of eight experts, the worst results were obtained from an expert with the short-
est experience as an item writer (less than a year) and from teachers with very
large experience of teaching mathematics at primary schools. Better results were
obtained from those experts who did not necessarily have experience with teach-
ing but had more theoretical knowledge about primary school mathematics and
educational measurement.

Our hypothesis is that for teachers having experience with concrete students
in class it is very difficult to make judgements about the difficulty of the items in
general in the population. On the contrary, researchers are more used to thinking
in more abstract terms. Moreover, the idea of the putting items along a single
difficulty dimension might be rather difficult for those without theoretical back-
ground in educational measurement. To test this hypothesis, we carried out a
second study in which we involved primary school mathematics researchers from
universities and employees of a testing organisation specialised in testing primary
school mathematics.

6.4.4 Expert elicitation. Study 2

Participants

Seven experts (four females and three males) participated in the second elicitation
study. These were four primary schools mathematics researchers from two Dutch
universities and three employees of the Dutch National Institute for educational
measurement working with primary school mathematics tests.
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Figure 6.11: Prior distributions elicited from individual experts in the Elicitation
Study 2 (a) and combined prior distribution based on experts’ judgements (b).

Procedure

In the second elicitation study only the rulers method was used, because it had
better results than the Angoff method in the first study.

As has been mentioned when presenting the results of Study 1, instructions
were not always properly followed, resulting in the mode τ̂ej being outside of
the credible interval [τmin

ej ; τmax
ej ]. To avoid this problem the second part of the

computerised procedure was modified. Instead of having two sliders to change
the mutual position of the two item sets there was only one slider at the top.
Moreover, the instruction was clearly stating that after the most likely position,
the top item set had to be first moved to the right and then to the left. The rest
of the procedure remained the same. The same 62 items as in the first study were
used. There were no problems anymore with τ̂ej not being within the credible
interval.

Results

Figure 6.11a shows the priors elicited from the individual experts. Four of the
distributions p′e(τ) are concentrated around the proxy of the true value τ̄ . One of
the experts provided a distribution with a mode far away from the judgements of
other experts. This was the expert with the lowest quality of the judgement and
the smallest weight we = .04 (for comparison, we = .14 would be the weight of
each expert if equal weights were assigned). In Figure 6.11b the combined prior
p′2(τ) is shown. The largest mode of this distribution is very close to τ̄ .
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For all sample sizes and all cut-scores the informative prior p′2(τ) resulted in
correctly estimated cut-scores in more re-sampled data sets than the vague prior
(see Table 6.1). The variance of the estimated cut-scores was reduced, while they
were still concentrated around the same mode as the estimates based on the vague
prior (see Figure 6.10). In all conditions and for all levels of proficiency, the most
frequent estimate of the cut-score was equal to the true cut-score. The MSEs of
the estimated cut-scores were also smaller for p′2(τ) than for the vague prior (see
Table 6.1). Finally, on average less students were misclassified when p′2(τ) was
used compared to p0(τ), see Table 6.2.

6.5 Conclusions

In this paper we introduced different procedures for elicitation of prior knowl-
edge for test linking from subject-matter experts. The empirical elicitation studies
showed promising results for the rulers method of elicitation of the experts’ knowl-
edge about the difference in test difficulty. However, there are some challenges and
limitations of the presented approaches. The crucial part of the elicitation pro-
cedures is the selection of experts. One should be very careful when including
someone in the study as an expert. In our study we have noticed that experts
with different characteristics provide judgements of different quality. Based on
the results, we presume that it is more useful to have experts with more theo-
retical knowledge about testing particular abilities (in our case primary school
mathematics) and experience with analysing test results on a large scale, rather
than those with a lot of practical teaching experience.

Evaluating item difficulties is a very difficult task for experts and even in a
panel of carefully selected experts the results obtained from different experts might
disagree with each other. In our proposed approach, the results of individual
experts are combined in a mixture prior, which reflects the differences in the
experts’ opinions. When a mixture prior is combined with the data, then if there
are one or two experts whose judgements disagree with the rest of the experts and
do not match the evidence from the linking data, then the results of these outlying
experts will hardly influence the posterior.

When using informative priors based on subject-matter experts’ judgements
in real practice it is important to compare the obtained results with the results
based on the vague priors. The latter reflects the information contained in the
data only. If the estimated cut-scores obtained with and without taking the ex-
pert judgements into account differ dramatically then one should decide whether
to trust the linking data or the experts more. An important feature of the pro-
posed elicitation methods is that it provides methods for evaluating the quality of
experts judgements, by comparing the experts’ judgements about the item diffi-
culties within the reference and the current tests with the observed examination
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data (see expert weights defined by Equation 6.10 for the Angoff method and by
Equation 6.13 for the rulers method).

The results of the empirical study suggest that using informative priors can
improve linking results. Expert judgements collected using the rulers method and
included in the Bayesian estimation can increase the precision of linking without
introducing a lot of bias.

6.6 Appendices

Appendix A: Gibbs Sampler for estimating the cut-score spass

Here we provide details about how to estimate the cut-score for the current test
spass. To estimate spass we need to estimate the score distribution of the reference
population on the current test (see X∗ in Figure 6.1) for which samples from the
joint posterior distribution

p(δ∗c , µr, σ
2
r , τ |X,Y,Z1, . . . ,ZG) (6.21)

need to be obtained. To obtain samples from this multivariate distribution we use
a Gibbs Sampler algorithm in which at each iteration each parameter of interest is
sampled from its conditional posterior distribution given the current values of all
other parameters. To simplify the conditional posterior distributions, not only the
parameters µr, σ2

r , δ
∗
c and τ are sampled but also the item parameters of the items

in the reference test, the population parameters of the current population and the
linking groups and the individual ability parameters of all the persons in the
reference population (denoted by the vector θr), the current population (denoted
by the vector θ∗c) and the linking groups (denoted by the vectors θ1, . . . ,θG).

The examination data sets X and Y (see Figure 6.1) are both split in two
parts: one for constructing prior distributions, denoted by X(1) and Y(1), and
another for the estimation of spass, denoted by X(2) and Y(2). The subsets of
persons from the reference population whose responses are in X(1) and X(2) are
denoted by {R(1)} and {R(2)}, respectively. The subsets of persons from the
current population whose responses are in Y(1) and Y(2) are denoted by {C(1)}
and {C(2)}, respectively. N (1), N (2),M (1), andM (2) denote the number of persons
in {R(1)}, {R(2)}, {C(1)}. and {C(2)}, respectively.

In the following subsections we will first describe how the training data X(1)

and Y(1) are used for constructing priors, second we will describe how using these
priors, the estimation data X(2) and Y(2) and the data of the linking groups
Z1, . . . ,ZG, samples from the posterior distribution needed to determine the cut-
score spass can be obtained, and finally we will show how to obtain the posterior
distribution of spass and its estimate.
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Using training data to construct priors

When constructing priors, we need to obtain samples from the posterior distribu-
tions:

p(θr, µr, σ
2
r , δr |X(1)) ∝

∏
p∈{R(1)}

∏
i∈{r}

exp(xpi(θp − δi))
1 + exp(θp − δi)

×

×N (µr; 0, 100)Inv-G(σ2
r ; .001, .001)

∏
i∈{r}

N(δi; 0, 100)
∏

p∈{R(1)}

N (θp;µr, σ
2
r ) (6.22)

and

p(θ∗c , µ
∗
c , σ

2
c , δ
∗
c |Y(1)) ∝

∏
p∈{C(1)}

∏
i∈{c}

exp(ypi(θ
∗
p − δ∗i ))

1 + exp(θ∗p − δ∗i )
×

×N (µ∗c ; 0, 100)Inv-G(σ2
c ; .001, .001)

∏
i∈{c}

N (δ∗i ; 0, 100)
∏

p∈{C(1)}

N (θ∗p;µ
∗
c , σ

2
c ). (6.23)

The normal priors for the means and the inverse-gamma priors for the variance
are chosen because of the mathematical convenience of conjugacy.

The initial values, denoted by a superscript (0), for all the parameters have
to be chosen: µ

(0)
r = 0;σ

2(0)
r = 1;µ

∗(0)
c = 0, σ

2(0)
c = 1; δ

(0)
i ∼ U(−2, 2),∀i ∈

{r}; δ∗(0)
i ∼ U(−2, 2),∀i ∈ {c}, τ (0) = 0. It is not needed to choose the initial

values for the individual person parameters since they are sampled in the first
step of the algorithm.

Below we describe how to sample from the posterior distribution in (6.22).
Sampling from the posterior distribution in (6.23) is analogous to sampling from
(6.22). The algorithm has 5 steps.

Step 1. θp ∼ p(θp | . . . ) = p(θp |Xp+, µr, σ
2
r , δr), ∀p ∈ {R(1)} : (6.24)

which depends on the data only through the sumscore Xp+ =
∑

iXpi, since the
RM holds. Sampling from this distribution can be done using the conditional
composition algorithm (Marsman et al., 2015):

a. Sample a candidate value from the population distribution θ ∼ N (θp;µr, σ
2
r )

b. Simulate a vector of responses X to the items in the reference test

Pr(Xi = 1 | δi, θ) =
exp (θ − δi)

1 + exp (θ − δi)
. (6.25)

c. Compute X+ =
∑

iXi. If X+ = Xp+ then θ is accepted as a sample
from (6.24). Otherwise, Steps a, b, and c are repeated.
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Step 2. µr ∼ p(µr |θr, σ2
r )=N

µr;
∑
p∈{R(1)}

θp

σ2r

1
100

+N(1)

σ2r

, 1
1

100
+N(1)

σ2r

; (6.26)

Step 3. σ2
r∼p(σ2

r |θr, µr)= Inv-G

σ2
r ;.001+N(1)

2 ,.001+

∑
p∈{R(1)}

(θp−µr)2

2

;(6.27)

Step 4. ∀i ∈ {r} : δi ∼ p(δi | . . . )∝N (δi; 0, 100)
∏

p∈{R(1)}

exp(xpi(θp−δi))
1+exp(θp−δi) .(6.28)

The normalising constant for the distribution in Equation 6.28 does not have
a closed form solution, therefore we use Metropolis algorithm (Metropolis et al.,
1953) to sample from this conditional posterior with a normal proposal density
centred around the current value of the parameter.
Step 5. At the end of each iteration, the parameters have to be re-scaled to
keep the chosen identification of the scale, namely δ̄r = 0: µr = µr − δ̄r, and
δi = δi − δ̄r, ∀i ∈ {r}. The individual person parameters do not have to be re-
scaled since their values at the end of iteration t do not influence the values of the
parameters in iteration t+ 1.

By repeatedly going through these five steps, samples from the posterior in
(6.22) and analogously in (6.23) are obtained. The priors for the parameters used
in the next step - estimation of the cut-score spass - are the following:

p(µr,σ
2
r ,δr,µ

∗
c ,σ

2
c , δ
∗
c)=N (µr;µr0,σ

2
r0)Inv-G(σ2

r ;αr0,βr0)
∏
i∈{r}

N (δi;µδi , σ
2
δi

)

N (µ∗c ;µ
∗
c0, σ

2
c0)Inv-G(σ2

c ;αc0, βc0)
∏
i∈{c}

N (δ∗i ;µδ∗i , σ
2
δ∗i

) (6.29)

where the prior means and the prior variances of the population means and the
item difficulties are equal to the average values of these parameters across the
samples from (6.22) and (6.23) and to the variances of the sampled values of these
parameters, respectively. The hyper parameters of the inverse-gamma distribu-
tions of σ2

r and σ2
c are also chosen based on the averages and the variances of the

sampled values of these parameters. Since the mean and the variance of a random
variable with the inverse-gamma distribution with parameters α and β are equal
to β

α−1 and β2

(α−1)2(α−2)
, respectively, we choose the following values for the hyper

parameters:

αr0 = (σ̄2
r)2

V ar(σ2
r)

+ 2 (6.30)

βr0 = (σ̄2
r )
(

(σ̄2
r)2

V ar(σ2
r)

+ 1
)

(6.31)
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where σ̄2
r and V ar

(
σ2
r

)
are the average and the variance of the sampled values of

σ2
r . The hyper parameters for the distribution of σ2

c are chosen analogously.
The average sampled values of the item difficulties are used to facilitate the

collection of expert judgements. In the Angoff method they are used to compute
δ̂c and δ̂r (see Equation 6.8). In the rulers method they are used to select the
items and to determine their position on the rulers which experts move in the
third stage of the procedure.

Sampling from the posterior distribution needed to determine the cut-
score

To estimate the cut-score spass we need to sample from the posterior:

p(θr,µr,σ
2
r ,θ
∗
c ,µ
∗
c ,σ

2
c ,θ1, µ1, σ

2
1, . . . ,θG, µG, σ

2
G, δr, δ

∗
c , τ |X,Y,Z1, . . . ,ZG) (6.32)

which is proportional to the product of the density of the data:

f(X(2),Y(2),Z1, . . . ,ZG)=
∏

p∈{R(2)}

∏
i∈{r}

exp(xpi(θp−δi))
1+exp(θp−δi)

∏
p∈{C(2)}

∏
i∈{c}

exp
(
ypi(θ

∗
p−δ∗i )

)
1+exp(θ∗p−δ∗i )

×

×
G∏
g=1

∏
p∈{Eg}

∏
i∈{eg∩r}

exp (zgpi(θp − δi))
1 + exp(θp − δi)

∏
i∈{eg∩c}

exp (zgpi(θp−δ∗i −τ))

1+exp(θp−δ∗i −τ)
, (6.33)

where {Eg} denotes the set of persons in linking group G and {eg} denotes the
set of items answered by linking group G; and the joint prior distribution

p(θr, µr, σ
2
r ,θ
∗
c , µ
∗
c , σ

2
c ,θ1, µ1, σ

2
1, . . . ,θG, µG, σ

2
G, δr, δ

∗
c , τ) =

= p(τ)p(µr, σ
2
r , δr, µ

∗
c , σ

2
c , δ
∗
c)

∏
p∈{R(2)}

N (θp;µr, σ
2
r )

∏
p∈{C(2)}

N (θ∗p;µ
∗
c , σ

2
c ))×

×
∏
g

N (µg; 0, 100)Inv-G(σ2
g ; .001, .001)

∏
p∈{Eg}

N (θp;µg, σ
2
g)

 , (6.34)

where the priors of the population means and variances of the reference and the
current population, and the item difficulties are estimated from the training data,
see Equation 6.29.

The initial values, denoted by a superscript (0), for all the parameters are
chosen in the same way as when sampling from (6.22) and (6.23) with the following
initial values for the additional parameters µ(0)

g = 0, σ
2(0)
g = 1,∀g ∈ [1 : G]

Sampling from the conditional posteriors of the parameters in (6.32) is similar
to sampling from the conditional posteriors of θr, µr, σ2

r , and δr in (6.22). The
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following steps are involved:

Step 1a. ∀p ∈ {R(2)} :

θp ∼ p(θp | . . . ) ∝ N (θp;µr, σ
2
r )
∏
i∈{r}

exp(xpi(θp − δi))
1 + exp(θp − δi)

; (6.35)

Step 1b. ∀p ∈ {C(2)} :

θ∗p ∼ p(θ∗p | . . . ) ∝ N (θ∗p;µ
∗
c , σ

2
c )
∏
i∈{c}

exp(ypi(θ
∗
p − δ∗i ))

1 + exp(θ∗p − δ∗i )
; (6.36)

Step 1c. ∀g ∈ [1 : G], ∀p ∈ {Eg}

θp∼p(θp| . . . )∝N (θp;µg, σ
2
g)
∏

i∈{r∩eg}

exp(zgpi(θp−δi))
1+exp(θp−δi)

∏
i∈{c∩eg}

exp(zgpi(θp−δ∗i −τ))

1 + exp(θp−δ∗i −τ)
;

(6.37)
Step 2a.

µr ∼ p(µr | . . . ) = N

µr; µr0σ2
r0

+

∑
p∈{R(2)} θp

σ2
r

1
σ2
r0

+ N(2)

σ2
r

,
1

1
σ2
r0

+ N(2)

σ2
r

 ; (6.38)

Step 2b.

µ∗c ∼ p(µ∗c , | . . . ) = N

µ∗c ; µ
∗
c0

σ2
c0

+

∑
p∈{C(2)} θ

∗
p

σ2
c

1
σ2
c0

+ M(2)

σ2
c

,
1

1
σ2
c0

+ M(2)

σ2
c

 ; (6.39)

Step 2c. ∀g ∈ [1 : G] :

µg ∼ p(µg, | . . . ) = N

µg;
∑
p∈{Eg} θp

σ2
g

1
100 + Ne

σ2
g

,
1

1
100 + Ne

σ2
g

 ; (6.40)

Step 3a. σ2
r ∼ p(σ2

r | . . . ) = Inv-G

(
σ2
r ;αr0 +

N (2)

2
, βr0 +

∑
p∈{R(2)}(θp − µr)2

2

)
;

(6.41)

Step 3b. σ2
c ∼ p(σ2

c | . . . ) = Inv-G

(
σ2
c ;αc0 +

M (2)

2
, βc0 +

∑
p∈{C(2)}(θ

∗
p − µ∗c)2

2

)
;

(6.42)
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Step 3c. ∀g ∈ [1 : G] :

σ2
g ∼ p(σ2

g | . . . ) = Inv-G

(
σ2
g ; .001 +

Ne

2
, .001 +

∑
p∈{Eg}(θp − µg)

2

2

)
; (6.43)

Step 4a. ∀i ∈ {r/{e1 ∩ · · · ∩ eG}} :

δi ∼ p(δi | . . . ) ∝ N (δi;µδi , σ
2
δi

)
∏

p∈{R(2)}

exp(xpi(θp − δi))
1 + exp(θp − δi)

; (6.44)

Step 4b. ∀i ∈ {c/{e1 ∩ · · · ∩ eG}} :

δ∗i ∼ p(δi | . . . ) ∝ N (δ∗i ;µδ∗i , σ
2
δ∗i

)
∏

p∈{C(2)}

exp(ypi(θ
∗
p − δ∗i ))

1 + exp(θ∗p − δ∗i )
; (6.45)

Step 4c. ∀g ∈ [1 : G], ∀i ∈ {r ∩ eg} :

δi ∼ p(δi | . . . ) ∝ N (δi;µδi , σ
2
δi

)
∏

p∈{R(2)}

exp(xpi(θp − δi))
1 + exp(θp − δi)

∏
p∈{Eg}

exp(zgpi(θp − δi))
1 + exp(θp − δi)

;

(6.46)
Step 4d. ∀g ∈ [1 : G],∀i ∈ {c ∩ eg} :

δ∗i ∼p(δ∗i | . . . )∝N (δ∗i ;µδ∗i , σ
2
δ∗i

)
∏

p∈{C(2)}

exp(xpi(θ
∗
p−δ∗i ))

1 + exp(θ∗p−δ∗i )
∏

p∈{Eg}

exp(zgpi(θp−δ∗i −τ))

1 + exp(θp−δ∗i −τ)
.

(6.47)

Step 5. τ ∼ p(τ | . . . ) ∝ p(τ)
G∏
g=1

∏
p∈Eg

∏
i∈{c∩eg}

exp(zgpi(θp − δ∗i − τ))

1 + exp(θp − δ∗i − τ)
, (6.48)

Step 6. The parameters are re-scaled to make sure that δ̄r = 0 and δ̄∗c = 0:
µr = µr − δ̄r, µg = µg − δ̄r,∀g ∈ [1 : G], δi = δi − δ̄r, ∀i ∈ {r}, µ∗c = µ∗c − δ̄∗c , and
δ∗i = δ∗i − δ̄∗c , ∀i ∈ {c}.

Sampling from the conditional posteriors in Steps 1a, 1b, and 1c is analogous to
sampling from (6.24). Sampling from the conditional posteriors in Steps 4a, 4b,
4c and 4d is analogous to sampling from (6.28). Sampling from the conditional
posterior in Step 5 is similar to sampling from the conditional posterior distribu-
tions of the item difficulties, the Metropolis algorithm is used to sample from this
distribution.
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Estimating the cut-score spass

After the burn-in, at each iteration t the unobserved responses of the persons from
the reference population to the current exam (X∗) are simulated according to the
Rasch model using the values of the model parameters at iteration t sampled from
(6.32) using the Gibbs Sampler described in the previous subsection:

x
∗(t)
pi ∼Bernoulli

 exp
(
θ

(t)
p −(δ

∗(t)
i +τ (t))

)
1+exp

(
θ

(t)
p −(δ

∗(t)
i +τ (t))

)
, ∀p ∈ {R(2)}, ∀i ∈ {c}. (6.49)

A sample from the posterior distribution of the cut-score, denoted by s(t)
pass, is such

a score that the number of students from the reference population with observed
scores on the reference test below sref is as close as possible to the number of
students from the reference population with simulated scores on the current test
at iteration t below this score:

s(t)
pass=argmins

 ∑
p∈{R(2)}

I
∑
i∈{r}

xpi<sref

−I
∑
i∈{c}

x
∗(t)
pi <s

2

. (6.50)

Using a large number of sampled values from the posterior in (6.32), a sequence
of values {s(1)

pass, s
(2)
pass, . . . , s

(T )
pass} is obtained, which is a sample from the posterior

distribution of the cut-score is obtained. The maximum a posteriori estimate of
spass is the mode of this sample. The posterior variance of spass is the variance in
this sample.

Appendix B: Approximating experts’ judgements with a
skew-normal distribution

In this section we describe how to choose the parameters of the skew-normal
distribution pej(τ), such that its mode, 5-th percentile and 95-th percentile would
match the values of τ̂ej , τmin

ej and τmax
ej , respectively. The skew-normal distribution

with parameters α, ξ, ω is given by:

f(x) =
2√
2πω

exp

(
−(x− ξ)2

2ω2

) αx−ξ
ω∫

−∞

1√
2π

exp

(
− t

2

2

)
dt (6.51)

First, we determine the value of the skewness parameter α. Let us by qp(α, ξ, ω)
denote the p-th percentile of the skew-normal distribution with parameters α, ξ
and ω and by m(α, ξ, ω) the mode of this distribution. The larger the skewness

157



Chapter 6

is, the further away from 1 the ratio below is:

r(α, ξ, ω) =
q95(α, ξ, ω)−m(α, ξ, ω)

m(α, ξ, ω)− q5(α, ξ, ω)
(6.52)

The values of the parameters ξ and ω do not influence the value of this ratio. For
all values of α ranging from -4 to 4, with equal interval steps of .001, we estimated
the mode m(α, 0, 1) (with the precision up to .0001, which is sufficient for the
application at hand) and computed the ratio r(α, 0, 1), using the ’sn’ R-package.
And then for each judgement of each expert we chose:

αej = arg min
α

∣∣∣τmax
ej − τ̂ej
τ̂ej − τmin

ej

− r(α, 0, 1)
∣∣∣. (6.53)

Second, we choose the value of the parameter ω which determines the spread of
the distribution:

ωej =
τmax
ej − τmin

ej

q95(αej , 0, 1)− q5(αej , 0, 1)
. (6.54)

And finally, we choose the value of the parameter ξ which determines the location
of the distribution:

ξej = τmax
ej − q95(αej , 0, 1)ωej . (6.55)

Next, we show how to approximate the expert-specific normalising constant,
denoted by Ze, for the product of skew-normal distributions in Equation 6.19:

Ze =

+∞∫
−∞

 Je∏
j=1

2

ωej
φ

(
τ − ξej
ωej

)
Φ

(
αej

τ − ξej
ωej

) dτ, (6.56)

where φ(x) denotes the standard normal density and Φ(x) denotes the standard
normal cumulative distribution function. This integral can be approximated using
the Gauss-Hermite the weights w = {w1, . . . , wK} and the nodes y = {y1, . . . , yK}:

Ze≈
2√
π

K∑
i=1

wiΦ
(√

2αe1yi

)
×

Je∏
j=2

2

ωej
φ

(√
2ωe1yi+ξe1−ξej

ωej

)
Φ

(
αej

√
2ωe1yi+ξe1−ξej

ωej

)
.

(6.57)
This integral has to be computed only once for each expert, therefore we can use a
very large number of nodes to obtain an accurate approximation. In the empirical
example we used K = 20, 000.
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Can IRT solve the missing data
problem in test equating?

1 Abstract. In this paper test equating is considered as a missing data problem.
The unobserved responses of the reference population to the new test must be
imputed to specify a new cutscore. The proportion of students from the refer-
ence population that would have failed the new exam and those having failed the
reference exam are made approximately the same. We investigate whether item
response theory (IRT) makes it possible to identify the distribution of these miss-
ing responses and the distribution of test scores from the observed data without
parametric assumptions for the ability distribution. We show that while the score
distribution is not fully identifiable, the uncertainty about the score distribution
on the new test due to non-identifiability is very small. Moreover, ignoring the
non-identifiability issue and assuming a normal distribution for ability may lead to
bias in test equating, which we illustrate in simulated and empirical data examples.
Keywords: item response theory, incomplete design, marginal Rasch model, miss-
ing data, non-identifiability, test equating.

7.1 Introduction

One of the advantages of item response theory (IRT) over classical test theory
is its ability to handle incomplete designs. Among the important applications in
which data are missing by design is test equating, where results of different test
forms must be made comparable by accounting for the two key facts. The first
is that the reference and the new tests need not be of the same difficulty, and

1This chapter has been published as Bolsinova, M. & Maris, G. (2016). Can IRT solve the
missing data problem in test equating? Frontiers in Psychology, 6 : 1956. doi: 10.3389/fp-
syg.2015.01956. Author contributions: B.M. and M.G. designed the research, B.M. performed
the research, B.M. wrote the paper, M.G. provided feedback on the manuscript.
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the second is that the reference and the new populations need not have the same
ability distribution (Kolen & Brennan, 2004; von Davier, 2011).

Suppose, that the same students respond both to the reference and to the new
test. Assume, for the sake of the argument, that both tests are scored with a
number correct score. It is clear that, if both tests represent the same underlying
construct, both scores are automatically equated. The need for equating scores
derives from the fact that for every student we only observe the response to either
the reference or the new test. That is, it derives from the fact that there is a
missing data problem.

Equating procedures are methods to overcome the missing data problem. There
are many different methods for score equating with some methods based on IRT
and other on classical test theory. These methods are covered in detail by, for
example, Kolen and Brennan (2004), von Davier (2011), von Davier, Holland and
Thayer (2004), Holland and Dorans (2006), Livingston(2004). Most all equating
procedures are such that all students with the same score on the reference test get
the same equated score on the new test. This in contrast to both the complete
data case we considered above, and more modern (multiple) imputation based
techniques (Rubin, 1987).

The central question we consider in this paper is whether the distribution of
the missing data (marginal or conditionally on the observed data) is in principle
identifiable from the observed data. If the marginal distribution is not identifiable,
neither is the conditional distribution needed to impute the missing data. Regard-
less of the preferred equating method, if the distribution of the missing data is not
identifiable, the missing data problem can not be solved.

Suppose we take the most modest form of equating: translating the scores
on the new test to a pass/fail decision (i.e. selecting a cut-score below which a
student fails) consistently with the pass/fail criterion on the reference test, i.e.
such the passing percentage in the reference population would be the same on the
new test as it is on the reference test. To specify a new cutscore, it is sufficient to
estimate the distribution of the scores of the persons from the reference population
to the new test, denoted by p(X+mis)

2 . As we will show in the paper, this is not
possible using an IRT model given the observed data only. Hence, solving more
complicated problems of equating (obtaining a full correspondences between the
scores on the two tests) is also not possible.

When IRT is used for test equating, the joint distribution of the observed data
(responses of the reference population on the reference test, denoted by p(Xobs))
and the missing data (responses of the reference population on new test, denoted
by p(Xmis)) is modelled by a marginal IRT model that consists of a conditional
distribution of the data given a latent variable θ and a population distribution

2For simplicity, we considered a situation in which the new and the reference test do not
have any common items. In the general case, the missing data are responses to the items that
belong to the new test but not the reference test
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f(θ). Two elements are required to estimate the distribution of missing responses
p(Xmis). First, the parameters of the items from the new test and from the
reference test must be placed on the common scale. Second, the ability distribution
of the reference population given the observed data f(θ |Xobs) must be estimated.
In this paper, we have assumed that the tests are well connected through a linking
design3 and the IRT model is correctly specified and, therefore, the first element
of equating is fully satisfied. We have focused on the second element, which is
usually ignored in test equating practice. The problem is that the full distribution
of ability f(θ) is not identifiable, as has been shown by Cressie and Holland (1983).
Consequently, as we show in this paper, the distribution p(X+mis) is also not
identified from the observed data only. This issue is usually ignored in test equating
practice, and instead a parametric distribution, usually a normal distribution, is
assumed for f(θ). This assumption is not guaranteed to hold in practice, therefore
it is important to consider to what extent the problem of inferring the distribution
of missing responses can be solved without extra distributional assumptions.

We will discuss the problem of non-identifiability of p(X+mis) using the marginal
Rasch model (RM) for dichotomous data, which has only one parameter in the
conditional model, as an example. The RM is chosen here for convenience; the
identifiability issues are present at the level of the marginal model and are therefore
not affected by the choice of a particular parametric conditional model.

In this study we investigate the extent to which the unavoidable uncertainty
about the score distribution p(X+mis) that comes from non-identifiability is prob-
lematic in practice. The main purpose of this study is not to introduce a new
method for test equating, but to highlight a fundamental property of marginal IRT
models. This property is that in IRT equating the score distribution p(X+mis) can
not be identified without making extra assumptions about the parametric shape of
the ability distribution, and the practical consequences of ignoring this property.

7.2 Why IRT cannot solve the missing data problem

In this section we describe a simple model for test equating that tries (unsuc-
cessfully) to predict missing responses from the observed data without additional
distributional assumptions. The marginal RM is:

p(Xobs = x) =

∫
R

∏
i

exp(xi(θ − δi))
1 + exp(θ − δi)

f(θ) dθ, (7.1)

where x is a vector of dichotomous responses with xi = 1 if item i is answered
correctly and 0 otherwise; δi is the difficulty parameter of item i. There is assumed

3For a review of different linking designs see, for example, Angoff (1971), Wright and Stone
(1979), Lord (1980), Petersen, Kolen and Hoover (1989), Kolen and Brennan (2004). Some of
these linking designs are presented in Appendix D.
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to be a population distribution f(θ); however, its parametric shape is not known.

Following Cressie and Holland (1988), the marginal RM in (7.1) can be re-
written as

p(Xobs = x) =
∏
i

(exp(−δi))xi
∫
R

(exp(θ))x+
∏
i

1

1 + exp(θ − δi)
f(θ) dθ, (7.2)

where x+ is the number of items answered correctly. It can be seen that

f(θ |Xobs = 0) ∝
∏
i

1

1 + exp(θ − δi)
f(θ), (7.3)

which is the posterior distribution of ability given that the responses to all items
are incorrect. Therefore,

p(Xobs = x) ∝
∏
i

(exp(−δi))xiE((exp(Θ))x+ |Xobs = 0). (7.4)

To make p(Xobs = x) a proper density, a normalising constant should be added. A
convenient parameterisation of the marginal RM (Maris, Bechger, & San Martin,
2015) is:

p(Xobs = x) =

∏
i b
xi
i λx+∑n

s=0 γs(b)λs
, (7.5)

where b = {b1, b2, . . . , bn} is a vector of item parameters that are transformations
of difficulty parameters: bi = exp(−δi); λ = {λ0, λ1, . . . , λn} is a vector of popula-
tion parameters, and γt(b) denotes a t-th order elementary symmetric polynomial
(Verhelst, Glas, & van der Sluis, 1984). The denominator ensures that the distri-
bution integrates to 1. The model in (7.5) is a marginal Rasch model if and only
if λ is a sequence of moments of a distribution. This imposes a set of inequality
constraints on the parameters (Shohat & Tamarkin, 1943):

det


λ0 λ1 . . . λm
λ1 λ2 . . . λm+1
...

...
. . .

...
λm λm+1 . . . λ2m

 ≥ 0,m = 0, 1, 2, . . . (7.6)

and

det


λ1 λ2 . . . λm+1

λ2 λ3 . . . λm+2
...

...
. . .

...
λm+1 λm+2 . . . λ2m+1

 ≥ 0,m = 0, 1, 2, . . . (7.7)

The extended Rasch model [ERM] (Cressie & Holland, 1983; Tjur, 1982; Maris et
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al., 2015) does not have these restrictions.
We now apply the ERM to test equating. Let us consider the joint density of

the response vectors Xobs and Xmis:

p(Xobs = x,Xmis = x∗) =

∏n
i=1 b

xi
i

∏m
j=1 d

x∗j
j ηx++x∗+∑n+m

t=0 γt(b,d)ηt
, (7.8)

where d = {d1, . . . , dm} are the parameters of the items in the new test (analogous
to b) and η = {η0, η1, . . . , ηn+m} is a vector of (n+m+ 1) population parameters
corresponding to a combined test consisting of the items from both the reference
and the new exams. It can be derived that the marginal distribution of the scores
of the reference population on the new test is (see Appendix A for details):

Pr(X+mis ≤ T ) =

T∑
t=0

p(X+mis = t) =

T∑
t=0

γt(d)
n∑
s=0

γs(b)ηs+t∑n+m
u=0 γt(b,d)ηu

. (7.9)

The expression for this distribution contains parameters η, whereas the density of
the observed data contains parameters λ. The parameters η and λ are related to
each other as follows (see Appendix A for details):

λs =

m∑
t=0

γt(d)ηt+s, ∀s ∈ [0, n]. (7.10)

The parameters λ are identified from the data (up to a multiplicative constant),
whereas parameters η are not; this is because in this system of (n+ 1) equations
(4) there are (n+m+ 1) unknowns. Therefore, having observed only data Xobs,
we cannot make direct inferences about the distribution of X+mis. Hence, IRT
cannot solve the missing data problem.

7.3 What IRT allows us to infer about the distribution
of missing responses

The conclusion at the end of the previous section does not mean that we do not
know anything about the parameters η or the score distribution. The relations
between λ and η impose restrictions on the values that η can take, and therefore,
on the score distribution. Before considering what is and is not known about the
score distribution p(X+mis), we should discussed some additional constraints for
parameters η.

Along with the restriction given by the relations with the identified param-
eters (7.10), there are other restrictions that the parameters η must satisfy in

163



Chapter 7

order to be parameters of the ERM. First, they must be positive to ensure that
all probabilities in (7.9) are positive. To derive a second constraint, consider the
probability of answering item i correctly given the rest score on the test:

Pr(Xi = 1 |X(i)
+obs +X+mis = s) =

Pr(Xi = 1, X
(i)
+obs +X+mis = s)

Pr(X
(i)
+obs +X+mis = s)

=

=
biγs(b

(i),d)ηs+1

biγs(b(i),d)ηs+1 + γs(b(i))ηs
=

bi
ηs+1

ηs

1 + bi
ηs+1

ηs

, (7.11)

where b(i) denotes a vector of item parameters of all items in the reference test
except item i, and X(i)

+obs is the sum score on these items; that is, the rest score.
From the measurement perspective, this probability should increase when s in-
creases (Junker, 1993; Junker & Sijtsma, 2000). This ensures that all item-rest
correlations are positive, so that it makes sense to score the particular set of items
together as one test. For this to be true, the ratios ηs+1

ηs
must form a monotonically

increasing sequence. The inequality constraint

η1

η0
≤ η2

η1
≤ η3

η2
≤ · · · ≤ ηn+m

ηn+m−1
(7.12)

can be specifies as a part of in the prior distribution of the population parameters
(see Appendix E for details).

An alternative motivation for using the constraints in Equation 7.12 is that
they follow from an important feature of the marginal RM, namely that

ηs+2

ηs
−
(
ηs+1

ηs

)2

(7.13)

is the (posterior) variance of exp(θ) of a person with a score of s (Maris et al.,
2015). The monotonicity constraints in Equation 7.12 follow from non-negativity
of variance. Therefore, the constraints in (7.12) are necessary but not sufficient
for the parameters to satisfy the moment constraints of the marginal RM. Hence,
the model we are using for equating is an ERM with the monotonicity constraints.
As will be shown in the next subsection this restriction enables to reduce the
uncertainty about the score distribution on the new test.

7.3.1 A simple case: m = 1

In this subsection we derive the uncertainty about the marginal probability of
answering a new item correctly, given the observed responses to n items. Let us
consider the simplest case in which the number of items in the new test is equal
to one (m = 1). Because we are ignoring the effect of sampling variability on the
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uncertainty, we consider all identifiable parameters (b and λ) known.
Let λ = {λ0, λ1, . . . , λn} denote the set of identifiable population parameters;

η = {η0, η1, η2, . . . , ηn+1} the set parameters for the combined test; and d the item
parameter of the new item. The relations between λ and η form a system of linear
equations: 

λ0

λ1
...
λn

 =


1 d . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 d




η0

η1
...
ηn
ηn+1

 . (7.14)

This system of n+1 equations does not have a unique solution because the number
of unknowns (n+ 2) is larger than the number of equations. The general solution
is: 

η0

η1
...

ηn+1

 =


k

λ0
d −

k
d

...∑n
t=0

(−1)n−tλt
dn+1−t + (−1)n+1 k

dn+1

 , (7.15)

where k is a parameter that captures all uncertainty about η, such that the unique
solution to the system of equations can be computed when k is known. This
parameter is not completely free because η must satisfy the set of inequalities:{

ηs > 0, ∀s ∈ [0 : (n+ 1)],
ηs+1

ηs
≥ ηs

ηs−1
,∀s ∈ [1 : n].

(7.16)

We are interested in the probability of answering the new item correctly, which
can be written as a function of k:

Pr(Xmis = 1) = π+(k) =
d
∑n

t=0 γt(b)ηt+1

d
∑n

t=0 γt(b)ηt+1 +
∑n

t=0 γt(b)ηt
. (7.17)

Using the solutions of the system of equations, one can derive (for details, see
Appendix B):

π+(k) = 1−
k
∑n

t=0
(−1)t−1γt(b)

dt∑n
t=0 γt(b)λt

+

∑n
t=1

∑t−1
s=0

(−1)t−sγt(b)λt
dt−s∑n

t=0 γt(b)λt
. (7.18)

This expression is linear in k. Therefore, the uncertainty about the probability of
answering the new item correctly depends on the difference between the maximum
and the minimum of k. The upper and the lower bounds for k can be derived from
the inequalities for η in (7.16).

From the non-negativity of the parameters η (the first set of inequalities
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Table 7.1: Item and population parameters used in the illustrative example
n b λ

3 {1.00, 0.58, 0.41} {1.00, 0.80, 1.16, 3.25}
4 {8.90, 1.00, 0.58, 0.41} {1.00, 0.52, 0.45, 0.68, 1.99}
5 {8.91, 1.12, 1.00, 0.58, 0.41} {1.00, 0.42, 0.29, 0.32, 0.60, 2.01}
6 {8.86, 1.12, 1.00, 0.85, 0.58, 0.41} {1.00, 0.36, 0.22, 0.19, 0.27, 0.63, 2.43}

in (7.16)), we have (see Appendix B for details):

max(0,
bn+1

2
c

max
u=1

2u−1∑
t=0

(−1)tλtd
t) < k <

bn
2
c

min
u=0

2u∑
t=0

(−1)tλtd
t. (7.19)

Moreover, the second set of inequalities in (7.16) leads to (see Appendix B):

bn−1
2
c

max
u=0

(
λ2

2ud
2u

λ2u+1d+λ2u
+

2u−1∑
t=0

(−1)tλtd
t

)
≤k≤

bn
2
c

min
u=1

(
2u−2∑
t=0

(−1)tλtd
t−

λ2
2u−1d

2u−1

λ2ud+λ2u−1

)
. (7.20)

Equations 7.19 and 7.20 together provide the lower and the upper bounds for k.
Next, we present a small example to show how the bounds on k change and

what the uncertainty about the marginal probability of a correct response to the
new item under the ERM is for different values of n. The item parameter d of
this item varied from exp(−2) to exp(2), corresponding to the difficulty param-
eter varying from 2 to -2. We show how large the uncertainty is when only the
non-negativity constraints are used, and when both the non-negativity and mono-
tonicity constraints are used.

A data set with responses of persons sampled from a population with an ability
distribution N (0, 1) to a test of six items with difficulties sampled from ln(bi) ∼
N (0, 1) was simulated. First, only three items were taken into account, then
four items, five items and, finally, all six items. We considered the identifiable
parameters b and λ known in order to evaluate the uncertainty about π+ coming
only from the non-identifiability of η. The identifiable parameters were fixed at
their EAP-estimates obtained with a Gibbs sampler for the ERM (Maris et al.,
2015), see Table 7.1.

The possible range of values for the free parameter k, and therefore for the
probability of interest π+ (given the fixed values of b and λ) was evaluated for
different values of the difficulty of the new item. Figure 7.1 shows the possible
ranges of values for the probability of answering the new item correctly when only
the constraints in (7.19) were used (in grey) and when the constraints in (7.19)
and (7.20) were used (in black).

The uncertainty about π+ decreases when n increases. For n = 3, the difference
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between the maximum and the minimum of π+ is for some d larger than .15 when
only the constraints in (7.19) were used and larger than .05 when all the constraints
were used; however, when n = 6, the maximum discrepancy is .03 and .006 when
only non-negativity constraints and all the constraints were used, respectively.
Moreover, the uncertainty about π+ for the items with the difficulty parameter
close to the items that have been answered is already very small if n = 3. In
general, the uncertainty is larger for items with extreme difficulty.4
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Figure 7.1: Uncertainty about the marginal probability of answering a new item
correctly (grey - without monotonicity constraints, black - with monotonicity con-
straints) given the difficulty of the new item (on the x-axis)

We have used this small example to explicitly show that it is not possible to
4The graphs are not symmetric because the difficulties of the items in the reference test

(− lnb) were also not symmetric around zero.
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compute the marginal probability of answering the new item correctly. However,
there uncertainty about this probability is not large.

It is difficult to extend the analytic solution described in this section to realistic
settings, with n and m being usual test lengths, because of the accumulation of
error while computing the bounds for k. Therefore, below we present a simulation-
based approach to the problem. Appendix C presents a proof of the fact that a
simulation based approach is justifiable.

7.3.2 Simulated examples

This subsection provides two simulated examples to illustrate the following:

1. the size of the uncertainty about the score distribution and which part of it
is due to the non-identifiability of the parameters;

2. the practical consequences of ignoring the issue of non-identifiability of f(θ)
when the true ability distribution is not normal.

In the first example, the data were simulated according to the non-equivalent
group design with three linking groups. Each group consisted of 500 persons who
gave responses to 15 items from the new test and 15 items from the reference
test. The relevant equating designs are described in the Appendix D. The fol-
lowing parameters were used: n = m = 60, N = M = 5, 000. Responses were
simulated according to the simple RM, with person parameters sampled from
N (0, 1) for the reference population, N (0.5, 0.82) for the new population and
N (−0.5, 22), N (−0.2, 22), N (−0.1, 22) for the three linking groups5. The item
difficulties (− ln bi) were sampled from a standard normal distribution.

First, the data augmented Gibbs sampler was used to estimate the total un-
certainty about the score distribution. Second, to eliminate the uncertainty com-
ing from the sampling variability, the new data were simulated with the same
parameters but larger sample sizes (N = M = 1, 000, 000) and the algorithm
was used with all the item parameters fixed at their true values. The posterior
variance of the score distribution that remained was almost entirely due to the
non-identifiability of the population parameters. Figure 7.2 presents the widths
of the 95% credibility intervals of Pr(X+mis ≤ T ), ∀T ∈ [0 : m] based on 50,000
draws from the posterior distribution after 10,000 iterations of burn-in. With a
large N and fixed item parameters, the uncertainty about the score distribution
becomes very small, not exceeding .002 on the probability scale.

In the second example, we compared the results of test equating using a
marginal RM assuming a normal distribution of ability in the population with
the results of test equating using the ERM without the normality assumption.

5These values could be seen as matching empirical practice in the sense that the persons in
the linking groups perform worse than in the examination conditions and are more heterogeneous.
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Figure 7.2: Uncertainty about the score distribution of the reference population
on the new test

The data with different distributions of ability in the reference population were
simulated. To show what happens if normality is violated, we used skew-normal
distribution for ability (Azzalini, 2005). The parameters of the skew-normal dis-
tribution were chosen such that the mean was equal to 0, variance was equal to 1,
and skewness was varied γ = −0.25,−0.5,−0.75. These distributions can be seen
in Figure 7.3 (dotted lines) next to the standard normal distribution (solid line).

For each of the three degrees of skewness, we simulated the data of 5,000
persons from both the reference and the new populations taking the tests, which
consisted of 40 items each, connected through three linking groups consisting of
500 persons responding to 20 items (10 from the reference test and 10 from the
new test). For the new population and the three linking groups, person parameters
were sampled from a normal distribution (N (0.5, 0.92), N (−0.5, 22), N (−0.2, 22),
N (−0.1, 22), respectively). Item difficulties were sampled from N (0, 1). The data
were simulated according to a RM.

The score distribution Pr(X+mis ≤ T ) was estimated with marginal maximum
likelihood (MML) assuming a normal distribution and with the Gibbs Sampler for
the ERM. The ERM score distribution together with the 95% credibility intervals
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Figure 7.3: Specification of the skewed ability distributions

of Pr(X+mis ≤ T ) based on 50000 draws from the posterior distribution (after
10000 iterations of burn-in) are presented in Figures 7.4, together with the MML-
estimate of the score distribution. The more skewed the ability distribution is, the
greater the difference between equating results for the MML and ERM approaches.
When γ = −0.25, the MML-estimate does not fall outside of the 95% credibility
interval obtained with the ERM. When γ = −0.5, the estimate based on the
normality assumption is outside the credible interval for low and high scores, but
within the interval for the middle range of the scores. Finally, when γ = −0.75,
the MML-estimate is also outside the credible bound in the middle range of test
scores. This is the range of scores within which the cut-score is usually placed,
which means that different score distributions are likely to result in different cut-
scores. This has consequences for the pass/fail decision for hundreds of students.

7.4 Empirical example

Using an empirical example we show the consequences of ignoring the problem
of non-identifiability of f(θ) and assuming a normal distribution. We do this
by comparing the estimated score distributions with and without the normality
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b) γ = −0.5
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Figure 7.4: Estimated score distributions with MML and ERM when the ability
distribution in the reference population is skewed
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assumption.

7.4.1 Method and data

We analysed data from the paper-and-pencil French language test for preparatory
middle-level applied secondary education from examinations in 2011 and 2012.
The sample sizes were 5518 for the reference exam and 5606 for the new exam.
Both tests consisted of 41 items, but only dichotomous items were selected for
analysis (35 and 34 in the reference and the new exams, respectively). The tests
were linked through seven linking groups (with sample sizes ranging from 337 to
460) that responded to some items from either the reference test or the new test
and some external anchor items (14 per group). The equating design is shown in
Figure 7.5. There were 30 items from the reference test and 25 items from the
new test answered by the linking groups. The items taken by the linking groups
had been also answered by students in 2008.

Reference
population

New
population

Population
2008

Linking
groups

Exam 2011 Exam 2012 Exam 2008

Figure 7.5: Equating design

First, the parameters of the ERM were estimated using the data augmented
Gibbs sampler (see Appendix E). The algorithm was run for 60,000 iterations,
of which the first 10,000 were discarded as a burn-in. The score distribution of
the reference population on the new test was calculated at every iteration of the
algorithm. Second, the marginal Rasch model with the normal distribution was
fitted to the data and the MML-estimate of the score distribution was obtained.
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7.4.2 Results

Figure 7.6 shows the posterior mean of the score distribution estimated with the
ERM (together with the 95% credible interval) and the MML-estimate of the the
score distribution. The estimated score distributions differ and the MML-estimate
is outside of the credible interval at the lower and the higher scores. The posterior
mean is also different from the MML-estimate in the middle range of scores, which
could have consequences for establishing the new cut-score tnew. For example, if
the desired proportion of persons from the reference population failing the new
test was 55%, then the MML procedure would result in a cut-score of 17, whereas
the ERM procedure would result in a cut-score of 18 as illustrated in Figure 7.6.
The consequence of this would be that 476 students would have passed the test if
a normal distribution were assumed, but would have failed if the ERM were used.
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Figure 7.6: Score distribution of the reference population on the new test: posterior
mean for the ERM (dashed line) and the MML-estimate based on the assumption
of the normal distribution (solid line)

7.5 Discussion

Using a simple case, we have shown that, without the assumption of a parametric
distribution, the score distribution on the new test is not identified. Knowing the
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difficulty parameter of the new item is not enough to predict the proportion of
correct responses to this item in the population, after observing the responses to a
finite set of items. When the number of items observed increases, the uncertainty
about the score distribution decreases. This uncertainty tends to zero with n go-
ing to infinity, but is always there. Hence, IRT cannot, strictly speaking, solve
the missing data problem, since it does not allow us to impute the unobserved
responses of the reference population on the new test. We have investigated the
degree of uncertainty about the score distribution in realistic applications. With
realistic test lengths, the uncertainty coming from non-identifiability of population
parameters is small enough to be ignored for practical purposes. Therefore, test
equating can be done effectively without the not-fully-testable assumption of a par-
ticular parametric shape of the ability distribution, despite the non-identifiability
issue.

The theoretical importance of this paper is that it has shown what one can
and cannot do with respect to test equating using IRT based only on the observed
data without the assumption of a parametric shape of the distribution. Although
we have used the marginal RM for illustration, the issue of non-identifiability that
is discussed holds in more general marginal IRT models, since the problem of the
ability distribution not being identified will not go away if more parameters are
added to the conditional model.

7.6 Appendices

Appendix A

From (7.8), we can derive the joint distribution of the scores on the reference test
and the new test:

p(X+obs=x+, X+mis=x∗+)=
p(Xobs = x,Xmis = x∗)

p(Xobs=x,Xmis=x∗ |X+obs=x+, X+mis=x∗+)
=

p(Xobs = x,Xmis = x∗)
/ ∏n

i=1 b
xi
i

∏m
j=1 d

x∗j
j

γx+(b)γx∗+(d)
=
γx+(b)γx∗+(d)ηx++x∗+∑n+m

t=0 γt(b,d)ηt
. (7.21)

The marginal probability of obtaining a particular score on the new exam is then:

p(X+mis = x∗+)=
n∑
s=0

p(X+obs = s,X+mis = x∗+)=

γx∗+(d)
n∑
s=0

γs(b)ηs+x∗+∑n+m
u=0 γu(b,d)ηu

. (7.22)

To derive the relations between the parameters λ and η, let us consider the
probability of observing a particular response vector Xobs. On the one hand, it is
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given in (7.5). On the other hand, it can be presented as follows:

p(Xobs = x) =
m∑
t=0

p(Xobs = x, X+mis = t) =

=

m∑
t=0

n∏
i=1

bxii γt(d)ηx++t

n+m∑
u=0

γt(b,d)ηu

=

n∏
i=1

bxii
m∑
t=0

γt(d)ηx++t

n∑
s=0

γs(b)

(
m∑
t=0

γt(d)ηs+t

) . (7.23)

Hence,

λs =

m∑
t=0

γt(d)ηt+s, ∀s ∈ [0, n]. (7.24)

Appendix B

The probability of answering the new item correctly is:

Pr(Xmis = 1) =
∑
x

Pr(Xmis = 1,Xobs = x) =
d
∑n

t=0 γt(b)ηt+1

d
∑n

t=0 γt(b)ηt+1 +
∑n

t=0 γt(b)ηt

(7.25)

Using the general solution of the system of equations in (7.14), the two sums
in this expression can be re-written as:

d

n∑
t=0

γt(b)ηt+1 = d

n∑
t=0

(
γt(b)

t∑
s=0

(−1)t−sλs
dt+1−s + (−1)t

k

dt+1

)
=

=

n∑
t=0

γt(b)

t∑
s=0

(−1)t−sλs
dt−s

+ k

n∑
t=0

γt(b)
(−1)t

dt
=

=

n∑
t=0

γt(b)

t−1∑
s=0

(−1)t−sλs
dt−s

+

n∑
t=0

γt(b)λt + k

n∑
t=0

γt(b)
(−1)t

dt
(7.26)

and

n∑
t=0

γt(b)ηt =
n∑
t=0

(
γt(b)

t−1∑
s=0

(−1)t−1−sλs
dt−s

+ (−1)t−1 k

dt

)
=

= −
n∑
t=0

γt(b)
t−1∑
s=0

(−1)t−sλs
dt−s

− k
n∑
t=0

γt(b)
(−1)t

dt
. (7.27)
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Hence,

Pr(Xmis = 1) =

n∑
t=0

γt(b)
t−1∑
s=0

(−1)t−sλs
dt−s +

n∑
t=0

γt(b)λt+k
n∑
t=0

γt(b) (−1)t

dt∑n
t=0 γt(b)λt

=

= 1−
k
∑n

t=0
(−1)t−1γt(b)

dt∑n
t=0 γt(b)λt

+

∑n
t=1

∑t−1
s=0

(−1)t−sγt(b)λt
dt−s∑n

t=0 γt(b)λt
. (7.28)

First, we will consider the constraints on k, following from the parameters η
being positive:{

k = η0 > 0,∑s−1
t=0

(−1)s−t+1λt
ds−t + (−1)s kds > 0,∀s ∈ [1 : (n+ 1)].

(7.29)

For even indices s = 2u, u = 1, 2, . . . , bn+1
2 c, we have:

k

d2u+1
>

2u∑
t=0

(−1)tλt
d2u+1−t ⇔ k >

2u∑
t=0

(−1)tλtd
t. (7.30)

For odd indices s = 2u+ 1, u = 0, 1, . . . , bn2 c, we have:

k

d2u
<

2u−1∑
t=0

(−1)tλt
d2u−t ⇔ k <

2u−1∑
t=0

(−1)tλtd
t. (7.31)

Second, we consider the monotonicity constraints (7.12): ηs+1ηs−1 > η2
s , ∀s ∈

[1 : n]. Using the the general solution of the system of equations in (7.10), we have:(
s∑
t=0

(−1)s−tλt
ds+1−t +(−1)s+1 k

ds+1

)(
s−2∑
t=0

(−1)s−t−2λt
ds−1−t +(−1)s−1 k

ds−1

)
>

>

(
s−1∑
t=0

(−1)s−t−1λt
ds−t

+ (−1)s
k

ds

)2

. (7.32)

If we multiply both sides by d2s and denote S =
s−2∑
t=0

(−1)s−tλtd
t, then we get

(
S+λsd

s−λs−1d
s−1−(−1)sk

)
(S−(−1)sk) >

(
−S+λs−1d

s−1+(−1)sk
)2
.

(7.33)
When multiplying the elements on the left side and taking a square on the right
side, most of the element on the both sides are the same, hence they cancel out,
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and the remaining inequality is:

(S − (−1)sk)λsd
s > −(S − (−1)sk)λs−1d

s−1 + (λs−1d
s−1)2 ⇔

S − (−1)sk >
λ2
s−1d

s−1

λsd+ λs−1
. (7.34)

For even indices s = 2u, u = 1, 2, . . . , bn2 c, we have:

k <

2u−2∑
t=0

(−1)tλtd
t −

λ2
2u−1d

2u−1

λ2ud+ λ2u−1
. (7.35)

For odd indices s = 2u+ 1, u = 0, 1, . . . , bn−1
2 c, we have:

k >
λ2

2ud
2u

λ2u+1d+ λ2u
+

2u−1∑
t=0

(−1)tλtd
t. (7.36)

Appendix C

For a simulation approach (such as a Gibbs Sampler) to be applicable, we have to
show that the solutions of the system of equations (7.10) and inequalities (7.16)
constitute a convex and bounded set, which ensures that the sampler can easily
cover the full subspace of possible values of the non-identified parameters. All
coefficients in the system of equations are positive, so are the parameters λ, and
therefore each of the parameters ηs is bounded:

0 < ηs <
min(s,n)

min
t=max(0,s−m)

λt
γs−t(b)

, ∀s ∈ [0 : (n+m)]. (7.37)

For every s ∈ [1 : (n+m− 1)] the solutions of the following set of inequalities:
ηs+1

ηs
≥ ηs

ηs−1

ηs−1 > 0

ηs > 0

ηs+1 > 0

(7.38)

form a convex set. The interaction of convex sets from each s is itself a convex
set. The intersection of the set formed by solutions of all inequalities and the set
formed by the system of linear equations (which is always a convex set) is also
a convex set. Therefore, all possible values of η constitute a convex set, and for
each individual parameter there is only one range of possible values. Although the
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parameters are not identified, it is still possible to sample from their joint posterior
distribution. The data augmented Gibbs Sampler for test equating with the ERM
which is an extension of the algorithm of Maris et al. (2015) was developed for
this. The details of our algorithm can be found in the Appendix E.

Appendix D

Non-equivalent group equating designs

The most simple non-equivalent group design one is the anchor-item design, in
which both the reference and the new tests include a common set of items. The
second design is a post-equating design, in which the link between the two tests is
established through the data collected in the so called linking groups, answering
some items from the reference test together with some items from the new test.
The third design is a variation of the post-equating design, in which persons from
some of the linking groups answer the items from the reference test and some other
items from the item bank, while persons from the other linking groups answer the
items from the new test and the same items from the item bank. The items that
do not belong to either the reference test or the new test might also be taken by
students from some historic population in one of the previous years. The simplest
forms of these designs are visualised in Figure 7.7.

Reference
population

New
population

Anchor

Anchor

a) Design 1

Reference
population

New
population
Linking group

b) Design 2

Reference
population

New
population
Linking
groups

c) Design 3

Figure 7.7: Three non-equivalent group equating designs

Let us by Y denote the M × m data matrix with responses of a sample of
persons from the new population to the new test, by κ denote the m + 1 identi-
fied population parameters of the new population, by {r} the set of items in the
reference test and by {c} the set of items in the new test. If the design includes
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linking groups, then Z is the data coming from the equating groups with K(g)

and k(g) being the number of persons in the g-th linking group and the number
of items answered by them; {e(g)} denotes the set of items answered by the g-th
linking group and τ (g) are the population parameters of this linking group. Then
the density of the observed data is:

f(Xobs,Y,Z)=

∏
i b
ui
i

n∏
s=0

(
|c/r|∑
t=0
γt(bc/r)ηt+s

)
Ns

m∏
s=0

κMs
s(

|r∪c|∑
t=0

γt(br∪c)ηt

)N(
m∑
t=0

γt(bc)κt

)M ∏
g

k(g)∏
s=0

(
τ

(g)
s

)K(g)
s

(
k(g)∑
t=0

γt (be(g)) τ
(g)
t

)
K(g)

,

(7.39)
where ui is the total number of correct responses to item i by all students which
answered this item, Ns,Ms and K

(g)
s are the number of persons from the reference

population, new population and the g-th linking group, respectively, that gave
exactly s correct responses to the items in the corresponding tests.

The score distribution of the reference population on the new test depends on
the population parameters η and the item parameters b:

p(X+mis ≤ T ) =

T∑
t=0

γt(bc/r)(
∑n

s=0 γs(br/c)ηs+y)

|r∪c|∑
u=0

γu(b)ηu

(7.40)

To make inferences about this distribution we obtain samples from the posterior
distribution p(η,b | . . . ). This is done using a data augmented Gibbs sampler.

Appendix E

We describe here how the samples from the joint posterior distribution

p(η,b | . . . ) (7.41)

can be obtained using a Markov chain Monte Carlo algorithm. We describe it for
the post-equating non-equivalent groups design (see Figure 7.7b) with G linking
groups. The density of the data given this equating design is given in Equation 7.39
in Appendix D. The algorithm can be easily altered for the different kinds of non-
equivalent group designs.

Data augmented Gibbs sampler.

For computational convenience, instead of parameters η, we use a different para-
metrization with the ratios of the consecutive parameters ηs+1

ηs
. To place the
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parameters on the scale common in IRT we consider logarithms of these ratios:

ps = ln

(
ηs+1

ηs

)
, ∀s ∈ [0 : n+m− 1]. (7.42)

We use a prior which in addition to the monotonicity constraint (7.12) has a
lower and an upper bound for the parameters:

p(p) ∝
n+m−1∏
s=0

I[ps−1,ps+1](ps), (7.43)

where p−1 = −100 and pn+m = 100. This is a reasonable constraint, since it
follows from the Dutch identity (Holland, 1990) that

ps = ln (E(exp(Θ) |X+obs +X+mis = s)) . (7.44)

A priori, item and population parameters are independent. For item parameters
we choose a uniform prior for difficulty parameters − ln(bi), which is p(bi) ∝ 1

bi
.

After the re-parametrization, the density of the observed data is:

f(Xobs,Y,Z(1), . . . ,Z(G)) =

=

G∏
g=1

∏
i∈{r∩eg}

b
x+i+z

(g)
+i

i

∏
i∈{c∩eg}

b
y+i+z

(g)
+i

i

k(g)−1∏
s=1

exp(r
(g)
s )

∑
j>s

K
(g)
j

(1 +
∑k(g)

t=1 γt(beg)
∏
j<t

exp(r
(g)
j ))K

(g)
×

∏
i∈{r/e}

b
x+i
i

∏
i∈{c/e}

b
y+i
i

n∏
s=0

(1 +
m∑
t=1

γt(bc)
∏
j<t

exp(pj))
Ns

m−1∏
s=0

exp(qs)

∑
j>s

Mj

(1 +
n+m∑
t=1

γt(b)
∏
j<t exp(pj))N (1 +

m∑
t=1

γt(bc)
∏
j<t exp(qj))M

, (7.45)

where p,q, r(1), . . . , r(G) are the population parameters of the reference population,
the new population and G linking groups respectively.

Although, we are interested only in the parameters bc and p, the other param-
eters (br,q, r(1), . . . , r(G)) are also sampled as nuisance parameters. Moreover, to
make the full conditional posterior distribution of ps tractable, at every iteration
we will sample augmented data x∗: responses of persons from the reference group
to the items of the new test (Tanner & Wong, 1987; Zeger & Karim, 1991). This
amounts to sampling from the joint posterior:

p(p,q, r(1), . . . , r(G),b,x∗ |Xobs,Y,Z(1), . . . ,Z(G)). (7.46)
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A Gibbs sampler is used, i.e., all parameters are subsequently sampled from their
full conditional distributions given the new values of all other parameters (Geman
& Geman, 1984; Casella & George, 1992). After starting from the initial values
(1 for all item parameters, and the population parameters equally distanced from
-3 to 3), the algorithm goes through the following steps:

Step 1. Sample the augmented data x∗.
For every person j ∈ [1 : N ], sample a vector of responses x∗j from its full

conditional posterior p(x∗j | . . . ), which is factored in the following way:

p(x∗j | . . . ) = p(x∗j+|xj+,bc,p)p(x∗j |x∗j+,bc) = p(x∗j+ |xj+,bc,p)×
p(x∗j,1|x∗j+,bc)p(x∗j,2 |xj,1, x∗j+,bc) . . . p(x∗j,m|x∗j,1, . . . , x∗j,m−1, x

∗
j+,bc), (7.47)

where xj+ is the sumscore of person j. First, sample x∗j+ from the categorical
distribution with probabilities

Pr(x∗j+ = s |xj+,p,bc) =
γs(bc)

∏
u<(xj++s) exp(pu)

1 +
∑m

t=1 γt(bc)
∏
u<(xp++t) exp(pu)

. (7.48)

And then for every item i ∈ [1 : m] sample x∗j,i from a Bernoulli distribution with
probability:

Pr(x∗j,i = 1 |x∗j+,x∗j,s<i,bc) =
biγx∗j+−

∑i−1
s=0 x

∗
j,s−1(bi+1, . . . , bm)

γx∗j+−
∑i−1
s=0 x

∗
j,s

(bi, bi+1 . . . , bm)
(7.49)

Step 2. Sample from the full conditional posterior of the distribution of the
item parameters.

For every i ∈ {r/e}, sample bi from its full conditional posterior:

p(bi | . . . ) ∝
b
x+i−1
i

(1 + cbi)N
, (7.50)

where c =
∑n+m
t=1 γs−1(b(i))

∏
j<t exp(pj)∑n+m−1

t=0 γs(b(i))
∏
j<t exp(pj)

. This is an scaled beta-prime distribution, to

sample from which first sample y = cbi
1+cbi

from B(x+i, N−x+i), and then transform
it: bi = 1

c
y

1−y .
For every g ∈ [1 : G], for every i ∈ {r ∩ eg}, sample bi from its full conditional

posterior:

p(bi | . . . ) ∝
b
x+i+z

(g)
+i −1

i

(1 + c1bi)N (1 + c2bi)K
(g)
, (7.51)

where c1 =
∑n+m
t=1 γs−1(b(i))

∏
j<t exp(pj)∑n+m−1

t=0 γs(b(i))
∏
j<t exp(pj)

and c2 =
∑kg

t=1 γs−1(b
(i)
eg )

∏
j<t exp(r

(g)
j )∑k(g)−1

t=0 γs(b
(i)
eg )

∏
j<t exp(r

(g)
j )

. Unlike
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the full conditional of the item parameters of the items taken by persons from only
one population, this distribution is not easy to sample from directly. It is more
convenient to sample from the distribution of βi = − ln(bi) using a Metropolis-
Hasting algorithm (Metropolis et al., 1953). We use N (− ln(bi), τ

2 = 0.01) as a
proposal density with bi being the current value of the parameter.

For every i ∈ {c/e}, sample bi from its full conditional posterior analogously
to sampling bi, i ∈ {r ∩ eg}, because these items are not only taken by the new
population, but responses to these items by the reference population are imputed.

For every g ∈ [1 : G], for every i ∈ {c ∩ eg} sample bi from its full conditional
posterior:

p(bi | . . . ) ∝
b
y+i+z

(g)
+i +x∗+i−1

i

(1 + c1bi)N (1 + c2bi)K
(g)

(1 + c3bi)M
, (7.52)

where c3 =
∑m
t=1 γs−1(b

(i)
c )

∏
j<t exp(qj)∑m−1

t=0 γs(b
(i)
c )

∏
j<t exp(qj)

. Use the same Metropolis-Hastings algorithm

as for the items, taken by two populations. If the equating design specifies more
than 3 populations taking some of the items, then the full conditional posteriors
of those items can be extended accordingly.

Step 3. Sample the population parameters.
For every s ∈ [0 : (n+m− 1)], sample ps from its full conditional posterior:

p(ps | . . . ) ∝
exp(ps)

∑
j>sN

∗
s

(1 + c exp(ps))N
I[ps−1,ps+1](ps), (7.53)

where c =

n∑
t=s+1

γt(b)
∏t−1
j 6=s,j=0 exp(pj)

1+
s∑
t=1

γt(b)
t−1∏
j=0

exp(pj)

. To sample from this distribution, we first sam-

ple y = c exp(ps)
1+c exp(ps)

from the truncated beta distribution

f(y) ∝ y
∑
j>sN

∗
s−1(1− y)N−

∑
j>sN

∗
s−1I[a1,a2](y), (7.54)

where a1 = c exp(ps−1)
1+c exp(ps−1) and a2 = c exp(ps+1)

1+c exp(ps+1) , using rejection sampling with
U(a1, a2) as a proposal distribution, and then transform it: ps = ln(1

c
y

1−y ).
For every s ∈ [0 : (m − 1)], sample qs from its full conditional posterior

analogously to sampling ps. For every g ∈ [1 : G], for every s ∈ [0 : k(g) − 1],
sample r(g)

s form its full conditional posterior analogously to sampling ps.

At every iteration of the Gibbs sampler, we compute the expected score dis-
tribution for the reference population on the new exam Pr(X+mis ≤ T ).
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Epilogue

The first part of the dissertation dealt with conditional independence and condi-
tional dependence between response time and accuracy. Conditional independence
- as formulated by most joint models for response times and accuracy applied in
the context of educational measurement - means that given the latent variables of
speed and ability the response accuracy and the response time of the same item
are independent. Conditional dependence, on the other hand, means that the re-
lationship between the response time and accuracy cannot be fully explained by
the higher-level relationship between the persons’ latent variables, or between the
item characteristics related to time and accuracy. The first two chapters of Part I
developed tools that help to answer the question of whether relatively simple re-
sponse time and accuracy models assuming conditional independence adequately
represent the complex relationships between time and accuracy in the data. The
last chapter of Part I proposed to give up some of the model simplicity in or-
der to explain the complex structure in the data and gain more insight into the
substantively interesting response processes.

The Kolmogorov-Smirnov tests proposed in Chapter 2 proved their usability for
detecting different types of violations of conditional independence. Even when an
exponential family model for response accuracy is only an approximation (for ex-
ample, if a Rasch model is used when the true model is the two-parameter-logistic
model) the procedure performs reasonably well. Moreover, the semi-parametric
nature of the procedure (i.e., neither the distribution of the response times nor
the type of violation against which the assumption is tested need to be specified)
makes it very general. However, due to the fact that separate tests are performed
within each subgroup of persons with the same level of the sufficient statistic, the
sample size needed to achieve high power is rather large (N = 5000, 10000).

Because the Kolmogorov-Smirnov tests put a strong demand on the required
sample size, a second procedure for testing the assumption of conditional inde-
pendence was developed in Chapter 3 which is more powerful but still relatively
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flexible with the respect to the type of violations that can be detected. However,
unlike the Kolmogorov-Smirnov tests this procedure does require one to specify
the full model for the response time and accuracy, and requires one to consider
specific consequences of conditional dependence, rather than testing conditional
dependence against its general alternative. These restrictions that are imposed by
the posterior predictive checks method do however greatly help in gaining more
power to detect the violations of conditional independence for which it has been
designed. The posterior predictive checks showed very good results in the simula-
tion studies with adequate specificity and high sensitivity already with relatively
small samples (compared to the sample sizes needed for the Kolmogorov-Smirnov
tests). Furthermore, the issue of having to specify the full model and the concrete
consequences of conditional dependence is partly compensated by the facts that
the framework itself is rather general (i.e., different models can be used and dif-
ferent discrepancy measures can be used), and that the procedure is rather robust
to misspecifications of the model. The three discrepancy measures that were used
provided good results. However, further research might be needed to investigate
whether differently formulated measures are more sensitive to residual dependen-
cies, heteroscedasticity of response times, and interaction effect of response times
and ability on response accuracy. Additionally, it is interesting to consider how
other sources of conditional dependence which have not been addressed by the
proposed measures can be tested within the framework of posterior predictive
checks.

While a violation of conditional independence strictly speaking invalidates a
model which assumes conditional independence, this model might still be useful
(Box & Draper, 1987, p.424). An important direction of research that has not
been the focus of this dissertation involves the robustness of the response time
and accuracy models to violations of conditional independence. It is important to
investigate to which extent the inferences based on, for example, the hierarchical
model are influenced by the presence of the violations of conditional independence
of different size and different type. In some situations a rather simple conditional
independence model may still adequately capture the most important aspects of
the data, even if not all of the complex data structure is represented (i.e, if con-
ditional independence is rejected by a formal test). In other cases violations of
conditional independence might be too severe or lead to an important misrep-
resentation of the response process, in which case alternate models need to be
considered.

In Chapter 4 we proposed a way of dealing with conditional dependence when
it is present in the empirical data. In our extension of the hierarchical model the
effects of a response being relatively fast or slow on the item response function were
explicitly modeled. This allows one to learn more about the relationship between
response time and accuracy than can be captured in a single correlation between
the speed and ability of the persons, and a single correlation between the difficulty
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and time intensity of the items. Rather than considering conditional dependence
as a source of misfit and a threat to the measurement properties of the model these
dependencies can be considered as an opportunity to gain more insight into the
response processes. In the proposed model the effects of residual response time are
item dependent and in the presented empirical example part of the variation of
the effects across items was explained by their difficulty. Alternatively, one could
consider a model with the effect of residual response time being person-dependent
or both item- and person-dependent. Moreover, the effect might depend on the
difference between the person’s ability and the item’s difficulty.

The second part of the dissertation dealt with three different research questions,
all answered using a Bayesian approach. In Chapter 5 the multi-scale Rasch model
consisting of Rasch homogenous scales was proposed and a tool for unmixing Rasch
scales was provided. The choice of the model was directly motivated by the idea of
optimally balancing the simplicity of the model with the complexity of the data: It
keeps an important measurement property of the simple Rasch model - sufficiency
of the sumscore within each scale for the corresponding person parameter - but
relaxes other assumptions of the Rasch model (equality of discriminations of all
items in the test and unidimensionality) which often do not match the complexity
of the educational data.

In Chapter 6 the use of informative priors to improve the quality of test linking
was considered. The results suggested that this approach can improve the quality
of linking: increase the precision of the linking results without introducing bias.
The linking procedures that were used were based on the simple Rasch model.
Although this strict model probably does not have a perfect fit to the data it is
a very intuitive model with clear interpretations that are easy to communicate
to the experts. Using this model also makes it possible to directly translate the
expert judgements like “item i is more difficult than item j” to statements about
the model parameters (δi > δj) which is crucial for prior elicitation. Hence, in this
project the simplicity of the model was given relatively high priority over model
fit, in order to be able to include expert knowledge and improve the quality of
linking.

Within informative Bayesian analysis, there are different directions for further
research, especially in the context of test linking and equating. In the proposed
methodology the judgements of individual experts collected with the rulers method
are combined in a mixture distribution. An alternative to the mathematical ag-
gregation of the experts’ opinions is the so called behavioural aggregation or group
interaction methods. These procedures mean that the experts can discuss their
individual judgements and come up with a consensus decision. For example, the
Delphi technique and its variants (Pill, 1971) can be used. From a statistical
perspective, the ways of taking the possible dependencies between the experts’
judgements into account could be investigated. Furthermore, it is important to
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investigate which item features experts use in judging their difficulty and which
characteristics of experts are good predictors of high quality judgements.

In Chapter 7 we investigated if it is necessary to make an assumption about
the parametric shape of the ability distribution to be able to make the results
of two tests comparable. Using a simple example it was demonstrated that the
distribution of the scores of the reference population on the new test is not identi-
fied without a parametric assumption for ability. However, it was also shown that
the uncertainty about the score distribution stemming from its non-identifiability
is very small and can be ignored for all practical purposes. In this chapter two
approaches were compared: using a simpler model with a parametric distribution
of ability (in the case of the normal distribution it has only two population param-
eters) or not including parametric assumptions and using a more complex model
with a non-parametric ability distribution (the number of identified parameters
being equal to the number of items plus one). On the one hand, a simple and
more restrictive model does not have a problem of non-identifiability of the score
distribution, but on the other hand, using it may lead to bias in estimating the cut-
scores if the distribution of ability is not specified correctly, as was demonstrated
both in the simulated and the empirical examples.
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Nederlandse Samenvatting

Bij het onderwijskundig meten worden data verzameld voor zowel praktische en
wetenschappelijke doeleinden, bijvoorbeeld voor het beoordelen van individuen
of om de effecten van verschillende onderwijsmethodes te bestuderen. Hoewel
deze data vaak een zeer complexe structuur hebben, proberen wij de belangrijkste
aspecten ervan te beschrijven aan de hand van relatief simpele statistische mod-
ellen, die er bijvoorbeeld vanuit gaan dat er één onderliggende vaardigheid is die
verklaart waarom sommige vragen goed en andere vragen fout gemaakt worden.
Het gebruik van deze relatief simpele modellen is nodig om conclusies te trekken
over de niet-waarneembare constructies die van belang zijn (bijvoorbeeld lees- of
rekenenvaardigheid) op basis van de geobserveerde toetsdata. Een algemeen en
veelgebruikte kader voor het modelleren van toetsdata is de item respons theorie
[IRT].

IRT richt zich op de geobserveerde item responsen en gebruikt relatief sim-
pele modellen om item responsen te voorspellen aan de hand van item- en per-
soonskenmerken en hun interacties. Er is een verscheidenheid aan parametrische
IRT-modellen, die door middel van de zogenaamde item response functies de re-
latie tussen de geobserveerde respons en de latente variabele (meestal vaardigheid
in het kader van educatieve meting denoemd) beschrijven. Hierdoor kan men het
niveau van het vaardigheid schatten aan de hand van de responsdata. In dit proef-
schrift worden IRT modellen voor dichotome data (dat wil zeggen, elk antwoord
is ofwel juist of onjuist) beschouwd. De lezer wordt verwezen naar Lord en Novick
(1968), Lord (1980), Hambleton en Swaminathan (1985) en van der Linden en
Hambleton (1997) voor een uitgebreid overzicht van de IRT.

Dit proefschrift presenteert verschillende bijdragen aan IRT in het onderwi-
jskundige meten die op de een of andere manier zoeken naar een optimale balans
tussen het gebruiken van simpele modellen en de complexiteit van de werkelijkheid
die deze modellen proberen te beschrijven. Het proefschrift bestaat uit twee de-
len: Deel I presenteert bijdragen aan het simultaan modelleren van responstijd en
responsaccuraatheid, en Deel II presenteert Bayesiaanse bijdragen aan de IRT.

Educatieve toetsen wordt in toenemende mate uitgevoerd in een geautoma-
tiseerde vorm, in plaats van de traditionele pen-en-papier toetsen. Dit maakt het
mogelijk om niet alleen de antwoorden te registreren, maar ook hoe lang het duurt
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voordat deze antwoorden geleverd worden. Een groot deel van de IRT literatuur is
bezig met het ontwikkelen van manieren voor het opnemen van data over respon-
stijden in de meetmodellen. Als de reactietijden en de respons accuraatheid geza-
menlijk gemodelleerd worden neemt men vaak aan dat deze gemodelleerd kunnen
worden aan de hand van een beperkt aantal latente vaiabelen, meestal de persoon-
seigenschappen vaardigheid en snelheid. Bovendien wordt vaak aangenomen dat er
sprake is van conditionele onafhankelijkheid tussen de responstijd en accuraatheid,
gegeven snelheid en vaardigheid van de persoon. Dit houdt in dat, hoewel juiste
antwoorden misschien gemiddeld langzamer of sneller dan onjuiste responsen, wan-
neer men rekening houdt met de latente variabelen er geen verschillen tussen de
verdelingen van de responsietijden van juiste en onjuiste responsen meer zijn.

De aanname van conditionele onafhankelijkheid is belangrijk, zowel vanuit
statistische als inhoudelijke oogpunt, maar het is een aanname die in de prak-
tijk geschonden kan zijn, en het evaluaren van deze aanname is een belangrijke
stap in het gezamenlijk modelleren responstijd en accuraatheid. De hoofdstukken
2 en 3 van dit proefschrift bieden twee methoden voor het testen van deze aan-
name. In hoofdstuk 2 stellen we voor om conditionele onafhankelijkheid met be-
hulp van Kolmogorov-Smirnov tests (Kolmogorov, 1933) te testen. De gelijkheid
van de reactietijd-verdelingen gegeven een juiste of onjuiste respons wordt getest in
elke subgroep van personen met dezelfde waarde van de sufficiente statistiek voor
vaardigheid. In simulatiestudies bleek dat de procedure bruikbaar is voor het de-
tecteren van verschillende soorten schendingen van conditionele onafhankelijkheid.
Vanwege het feit dat de steekproef bij deze methode onderverdeeld wordt in ver-
schillende subgroepen geldt wel dat deze methode een relatief grote steekproefg-
rootte nodig heeft voor het bereiken van voldoende hoog onderscheidingsvermogen.

Omdat de Kolmogorov-Smirnov test hoge eisen stelt wat betreft de vereiste
steekproefgrotte is in hoofdstuk 3 een tweede procedure voor het testen van de aan-
name van conditionele onafhankelijkheid ontwikkeld. Posterior predictieve checks
voor conditionele onafhankelijkheid zijn voorgesteld die gericht zijn op het on-
derzoeken van verschillende mogelijke gevolgen van conditionele afhankelijkheid:
residuele correlaties tussen responstijd en accuraatheid gegeven de vaardigheid en
de snelheid, het verschil tussen de varianties van de responstijden van juiste en
onjuiste responsen, en het verschil tussen de item-rest correlaties van langzame en
snelle responsen. Deze posterior predictieve checks bleken in simulatiestudies al
bij relatief kleine steekproeven tot voldoende specificiteit en een hoge gevoeligheid
te leiden.

In de praktijk van onderwijskundig meten kunnen er resterende afhankelijkhe-
den tussen responstijden en respons accuraatheid voorkomen die niet kunnen wor-
den verklaard door de latente variabelen. In hoofdstuk 4 richten we ons op een
applicatie waarin dergelijke conditionele afhankelijkheid voorkomt en stellen wij
een uitbreiding van het hierarchische model voor de responstijd en accuraatheid
(van der Linden, 2007) voor, die met de conditionele afhankelijkheden rekening
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houdt. De effecten van de relatieve snelheid van de respons in vergelijking met
wat voor deze persoon op dit item verwacht werd op zowel de moelijkheid als het
onderscheidend vermogen van het item worden hierbij opgenomen in het model.
In de empirische toepassing bleek de moeilijkheidsgraad in het algemeen hoger te
liggen voor tragere responses dan voor snelle responsen, terwijl het onderscheidend
vermogen hoger is voor relatief snelle responsen.

De hoofdstukken in het tweede deel van het proefschrift zijn met elkaar verbon-
den door het statistische kader dat ze gemeen hebben, namelijk Bayesian statistis-
che methodologie. Twee belangrijke eigenschappen van de Bayesiaanse statistiek
die het zeer nuttig maken in de context van de IRT zijn dat deze methodes het mo-
gelijk maken om zeer complexe modellen te schatten via op simulatie gebaseerde
technieken en dat dergelijke methodes het mogelijk maken om relevante achter-
grondinformatie voorbij de geobserveerde data in de analyses mee te nemen.

Hoofdstuk 5 laat het nut van de Bayesiaanse aanpak voor het schatten van
complexe multidimensionale modellen zien. In dit onderzoek bieden wij een oploss-
ing voor het probleem van het kiezen van een scoringsregel voor onderwijskundige
toetsen. We pleiten voor het gebruik van scoringsregels die eenvoudig en gemakke-
lijk te interpreteren zijn, maar die toch alle informatie over het vaardigheid van
de persoon bevatten. De eenvoudigste scoringsregel die hier aan voldoet is het
gebruik van de somscore (dat wil zeggen, het aantal juiste antwoorden), die volgt
uit het Rasch model (Rasch, 1960). Echter, dit model is vaak te beperkt om goed
op echte toetsdata te passen. Daarom stellen wij in hoofdstuk 5 een nieuwe uit-
breiding van het Rasch model voor die ervan uitgaat dat de test bestaat uit een
reeks van schalen waarvoor elk een Rasch model opgaat, maar waarbij de schaal-
lidmaatschappen van de items a priori niet bekend zijn en moeten worden geschat.
Zodra de schalen worden geïdentificeerd, kan de test worden gescoord aan de hand
van een aantal somscores voor elk van de schalen.

In hoofdstuk 6 tonen we een tweede belangrijke voordeel van het Bayesiaanse
statistische kader, namelijk de mogelijkheid om prior kennis mee te nemen in de
analyse. Het inhoudelijke probleem waar we ons op richten is het vergelijkbaar
maken van de resultaten van verschillende versies van een test met behulp van
zogenaamde linking en equating procedures (voor een uitgebreid overzicht van
linking en equating, zie Kolen en Brennan, 2004). We stellen twee methoden voor
voor het eliciteren van prior kennis van vakexperts over het mogelijke verschil in
moeilijkheidsgraad van de twee tests. Deze voorkennis wordt meegenomen bij het
linken aan de hand van prior verdelingen, om daarmee het resultaat te verbeteren.
De resultaten van onze twee empirische elicitatie studies voor de Entreetoets van
groep 7 suggereren dat deze aanpak de kwaliteit van het linken kunnen verbeteren:
de precisie van de resultatent verbeterd zonder dat er sprake is van vertekening.

In hoofdstuk 7 komt een derde aantrekkelijke eigenschap van het gebruik va
Bayesiaanse schattingsmethodes aan bod: Het maakt het mogelijk om met ver-
schillende bronnen van onzekerheid over de modelparameters rekening te houden.
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Als sommige modelparameters niet volledig zijn geïdentificeerd is nog steeds mo-
gelijk om trekkingen uit hun posteriori verdeling te halen, en hun variantie omvat
zowel de onzekerheid ten gevolge van steekproefvariantie als de onzekerheid als
gevolg van het feit dat het model niet volledig is geïdentificeerd. Met behulp
van een simulatie benadering kan men proberen deze twee soorten onzekerheid te
scheiden en daarmee het effect dat de niet-identificeerbaarheid heeft op de model
inferenties onderzoeken. In dit hoofdstuk wordt dit onderzocht in de context van
de verdeling van de ontbrekende data bij eenincomplete testopzet. We laten zien
dat, terwijl de verdeling van de niet-waargenomen scores van de referentiepop-
ulatie op de nieuwe test niet volledig geïdentificeerd is, de onzekerheid over de
scoreverdeling zeer klein is en in de praktijk kan worden genegeerd. Verder laten
we aan de hand van zowel voorbeelden bestaande uit gesimuleerde als echte toet-
sresultaten zien dat het negeren van het identificatieprobleem onder de aanname
van een normale verdeling van de vaardigheid kan leiden tot een vertekening bij
test equating.
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