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Abstract 
When the number of observations per item is moderate ( < 3000) the number of item 
parameters in the Nominal Response Model of Bock (1972) is too large, especially with 
polytomous items, for accurate and sometimes even unique estimates to be expected. 
A solution is suggested by creating a link between this model and three simpler IRT 
models by estimating integer category scores, and possibly also integer discrimination 
parameters. Given the integer parameters as constants the remaining parameters can be 
estimated with a Restricted Maximum Likelihood procedure. In a simulation study four 
procedures to estimate integer category scores are investigated. 

Key words: item response theory, polytomous items, category scores, integer 
estimation, optimal scores, multiple correspondence analysis. 
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Introduction 
The Generalized Partial Credit Model (GPCM, Muraki, 1992), the One Parameter 
Logistic Model (OPLM, Verhelst, & Glas, 1995, Verhelst, a.o., 1995), and the PCM 
(Masters, 1982) can be viewed as progressive specializations of the Nominal Response 
Model (NRM) of Bock ( 1972). All these models are used to describe responses to items 
with two or more response categories. However, the NRM contains at least twice as 
much to be estimated item parameters as the other three models. Especially with 
moderately size data sets the NRM-parameters may be inaccurately estimated or even 
be undetermined, while the simpler models are more likely to yield unique estimates 
with acceptable accuracy. Moreover, the OPLM, and PCM offer a sufficient statistic 
for the person parameter, and, therefore, the opportunity to consistently estimate the 
item parameters by Conditional Maximum Likelihood (CML). A disadvantage is, of 
course, that the simpler models require appreciably stronger assumptions. 

The approach suggested here can be viewed as a compromise, that almost keeps the 
advantages of the NRM, also with smaller data sets, while at the same time avoiding 
the assumptions of the (G)PCM and OPLM. Moreover, this approach may reduce the 
number of parameters even further. Some characteristics of the proposed procedure are 
investigated with a simulation study. 

The Nominal Response Model and Three Specializations 
Let x = (x 1 , ... ,x,) be a response pattern with xi = j the response on item i 
(i = l , ... ,/) , U = 0, ... ,J) , and let 

( 1 )  

where o ij is the score parameter and su the propensity parameter for category j of item 
i. () v denotes the ability of subject v (v = l , ... , V) . In the NRM the probability for 
subject v to score in category j of item i is given by 

z .. (0) 
f/0) = f(x ij \ 0) = -

1
-, 

11--

L Z;/0) 
h=O 

(2) 
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It is easily checked that the elements of the vector o; are determined by (2) up to an 
additive constant. Therefore, a linear restriction on o; must be imposed, for instance 
o ;o = 0. For the same reason an arbitrary linear restriction has to be imposed on the 
elements of the vector 5;, often f'w = 0 is chosen. Moreover, the zero and scale of the 
ability distribution are also arbitrary and are usually fixed by assuming a standard 
normal ability distribution. 
The 'sufficient statistic' for 0 is denoted as 

rs = I: 0 ix, 
i=! ' 

which, in the NRM is not a statistic, because it depends on the itemparameters. 
In the GPCM and OPLM the category scores o i are restricted to be a product of a 

discrimination parameter a; and the index j of category j : o ;; = j ai . In the GPCM the 
discrimination parameter ai is estimated, whereas in OPLM it is considered a known 
constant. In the PCM (Masters, 1982) it is even assumed that all ai are equal. In 
OPLM and PCM the scale of the ability distribution is fixed by the selected vector a. 

The OPLM and PCM, in contradistinction to the NRM and GPCM, have the 
advantage that rs is really a statistic, independent of item parameters, and enables 
consistent CML estimation of the item parameters riJ . When the parameters are 
estimated by CML the origin of the item parameter scale has to be fixed by a linear 
restriction on 5. It is an obvious disadvantage of OPLM that the user has to acquire his 
prior knowledge about ai from other sources. To compensate this disadvantage OPLM 
supplies the so called M-statistics (see Table 1) that indicate whether the discrimination 
was well chosen, or inform about the direction and size of a desired change. 

However, experience shows that the assumption to identify the score of a category 
with its index (o il = Ja) easily leads to erroneous results (see the korfball example 
below). The alternative is to drop the assumption that the category score of category 
j equals the index j, and instead to estimate an integer category score s 11. With the 
OPLM also an integer discrimination parameter ai has to be estimated. If 

(3) 

is substituted in (2) one obtains an extended version of the GPCM or the OPLM, 
without the discussed assumptions. The propensity parameters s can, given the 
estimated integer parameters, be estimated by a restricted CML or MML procedure. 
The extended version may deviate from the original in two respects. 
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1 Different categories may share the same score. These categories are called 
'collapsed'. 

2 The difference between two adjacent category scores may be larger than one. The 
integer scores in between the two are called 'skipped' . 

Suppose that two categories j and j' of an item share the same score, then with respect 
to the estimation of the ability 0 these two categories can be considered identical. 
Consider the ratio of the two likelihoods as a function of 0 given that a subject scores 
in category j , and given that the subject scores in category j' . It is easily checked that 
this ratio is a constant, independent of 0 . This means that responding in either of the 
two categories j or j' gives the same information about 0. Therefore, unless there is 
some interest in estimating the separate category parameters, the two categories j and 
j' can be considered as one collapsed category j'' with parameter 

Jansen and Roskam (1986) discuss the case of collapsing categories and show that the 
PCM cannot fit both the collapsed and noncollapsed categories. If the data have enough 
power to distinguish between both cases for a pair of categories j and j' of item i, this 
can be considered a simple example of the estimation of s iJ and s iJ' . 

Although in the original formulation of the PCM skipped category scores were not 
allowed, a note by Glas (1992) and, Wilson and Masters ( 1993) show that skipped 
scores can be handled in CML estimation by a simple adaptation of the combinatorial 
functions. The adaptation amounts to omitting all the response patterns that contain a 
skipped score from the collection of response patterns that yield the sufficient statistic 
r s. The same procedure applies to OPLM. The GPCM does not allow for a CML 
procedure, but its parameters can be estimated by an MML procedure (Muraki, 1992), 
where skipped scores do not pose an estimation problem. 

An item from a seven item test that measures proficiency in a korfball game can 
serve as an example. First some results of an OPLM-analysis with the category indices 
as s,.:ores are shown in Tables 1 and 2. Later the results with estimated integer scores 
will be presented. The S-test is a x2 [ df] distributed statistic that measures overall 
model fit. The M-tests embody three variations on a statistic that asymptotically follows 
the standard normal distribution. They measure model fit with special sensitivity to 
discrimination. The S- and M-tests of the category indices as scores are shown in 
Table 1 .  
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Table 1 
S- and M-Tests of Item 7 in a Korfball Game from an OPLM-Analysis 

with the Original Item Scores 

Item S-test df p M M2 M3 

7 APass 7.751 5 .171 1.235 .913 -.984 

[:2] 5.083 6 .533 1.649 1.441 .589 

[:3] 13.546 7 .060 2.277 2.631 1.485 

[:4] 10.499 7 .162 1.914 2.180 .892 

[:5] 9.186 7 .240 -.047 1.113 .116 

[:6] 5.592 7 .588 .055 .489 -.893 

[:7] 13.101 6 .041 .071 -.800 -1.716 

[:8] 11.535 6 .073 -.366 -.616 -1.367 

[:9] 12.287 4 .015 99.999 -1.060 -1.743 

The entries [ :}] in the first column indicate that the expected conditional probability 
given 0 of scoring in categories j, . .. , J, is compared with the conditional observed 

proportion of scoring in these categories, where J = 9 for this item. In the first row 

[: 1] is omitted. The entry 99.999 in the last row indicates that the M-test could not be 

calculated for lack of enough observations. 
Table 1 shows a tendency for the scores of categories 3 and 4 to be valued too high (3 
and 4 are too high scores), and of categories 7 through 9 too low. The overall picture 

of the M-statistics does not necessitate a change in the 'known' integer discrimination 
parameter. The general test of model fit Rl c (asymptotically distributed as x2 [ d.fl) and 

the distribution of p-values of the S-tests for all items are shown in Table 2. 

Table 2 
Some Overall Results of an OPLM-Analysis of the Original Korfball Data 

Distribution of p-values for S-tests. 

0. ----/-----/-----. 1-------. 2-------. 3-------.4-------. 5-------. 6-------. 7 -------. 8-------. 9-------1 . 

9/ 5/ 11 7 3 0 3 4 2 3 4 3 

Rlc = 219.426; df = 158; p = .0007 
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Table 2 shows that the p-value distribution, which under the assumption of independent 
tests is uniform, is shifted toward zero. In actual fact, the S-tests are not independent 
under the model, certainly not within one item. The dependence of S-tests across items, 
however, is weak enough to judge the quality of an OPLM-analysis on the extent to 
which the p-values are 'uniformly' distributed. Moreover, the Rl c test indicates that 
the data significantly deviate from the model. In the sequel it is shown that estimated 
integer category scores, and discrimination parameters, improve the model fit. 

General Approach 

Assume that the data set X can be described by the GPCM or OPLM for some set of 
integer category scores (OPLM and PCM are identical in this approach). The problem 
of estimating integer category scores siJ will be solved in two steps. The first step is 
to find a vector valued statistic ti that is about linear in si per item, that is 

(4) 

In the second step integer score vectors si are sought with an optimal linear relationship 
with t i , optimal in a sense to be made more precise below. 

First the second step is treated. It is assumed that a statistic t is available. 
The following lines apply to each item separately, therefore, the item index is omitted. 
Loosely speaking the element s from a set S of integer category score vectors 
s = (s0, . .. , s 1) is to be found that gives the best linear prediction of t . More precisely 
this can be formulated as follows. Let W be a positive definite symmetric matrix of 
order J + 1 , and 1' Wl = 1 , with 1 = (1, .. . , 1) . For the moment the reader may 
assume W = 1 1  (J + 1 )  I, with I the identity matrix. Let x = l' Wx, and 
Cov(x,y) = x' Wy - x y. Define a set S of all integer category score vectors 
s (s = s0 , ... , s 1) to be considered (see below). Given an element s E S let v = v (s, t) 

be a vector with elements v
1 

= cs1 + d - t
1 

U = 0, ... ,1). Then the optimum integer 
score vector is found by minimizing over S the GLS loss function 

L(s;t) = v' Wv, 

where the values c and d are the GLS regression coefficients 

Cov(s t) - -c = ' , and d = t - cs . 
Cov(s, s) 
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Formula (5) shows that if s minimizes L then so does -s. This indeterminacy can be 
removed by restricting S to contain only elements s with Cov (s, t) > 0 . 

The following equivalent geometrical formulation facilitates some further 
developments. Let < x , y > be a bilinear form on �1 • 1 x �1 • 1 , defined by 
<x ,y > = x' Wy. Let P be the projection on the orthocomplement of 1 E �1•1 

(subtracting the mean): P(x) = x - < 1, x > 1 (recall that < 1, 1 > - 1 ). Further 
let N normalize the length of a vector to 1 : N(x) = x I I x I , with I x I < x, x > 'h . 

Using the linearity properties of <.,. > it is easily derived that 

L(s;t) = I Pt 1
2 (1 - <NPs,NPt > 2 ). 

It follows that minimization over S of L (s; t) is equivalent with maximization over S 
of <NPs, NPt > = WCos(Ps,Pt), the generalized cosine in the W-metric of the 
vectors P s and Pt. Note that < NP s, NP t > equals the ordinary inner product 
(NPs, WNPt). 

The Set S 
The loss function L is to be minimized over S, the set of all integer category score 
vectors s to be considered. In principle the set S contains all vectors of integer scores 
with J + 1 elements and at least one element equal to 0, further called 0-vectors . Now 
recall that models with integer scores were preferred over Back's model, because they 
contain less parameters. This advantage tends to be more lost the more the set S is 
unrestricted. Indeed, with no restriction on S, the extended GPCM and OPLM can 
approximate the NRM indefinitely close, and the rationale for the current approach 
vanishes. An obvious way to restrict S is to bound the differences between successive 
scores, ordered from small to large. Some experience shows that this bound should be 
chosen as low as 1, 2 or 3. Consider s an ordered member of S, then this bound means 
that s1 - s1_ 1 :;:;; 1, 2 or 3 for j = 1 ,  . . .  ,J. In the sequel we call these bounds B1, B2, 
B3, etc. Although the bounds B2 or B3 seem very low, and are a severe restriction on 
S, nevertheless very close linear relationships with any instance of a statistic t can be 
achieved with integer vectors thus restricted (for B2 a mean W-Cosine of about O. 995, 
see Table 3). However, for items with J > 6, this still leaves a set S too large for 
exhaustive search (for B2 see Table 3 under #Evaluations). Therefore, it would be of 
great help if the set S could be reduced further, without excluding the optimal vector 
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v. The following lemma yields enough reduction of the size of S to enable exhaustive 
search up to J = 9 ,  even under B3. Unfortunately, the lemma is restricted to a very 
limited class of matrices W, which is expressed in the following property. 
A matrix Wis called permutation-invariant, if Q' WQ = W for any permutation-matrix 
Q. 

Lemma: For permutation-invariant WS needs to contain only vectors s such that s and 
WNPt have the same weak order (s is called Wt-ordered). Because if s is not Wt
ordered there is a Wt-ordered s' with L(s';t) <L(s;t). 
For example, let W = kl, for some constant k, and let 

t = 0.12 0.33 0.30 then 
s = 

s' 0 

0 

1 

1 is not Wt-ordered and can be kept out of S 

1 is Wt-ordered and is a member of S 

Proof: Recall that the geometrical reformulation shows that the optimal s maximizes 
the ordinary inner product (NPs, WNPt) over S. Further note that NP does not alter 
the order of the elements of a vector. Therefore NP s has the same order as s. Let 
u = NPs and w = WNPt. Now, suppose that the optimal s is not Wt-ordered, then 
there exist two components u,, and u1 of u with u1 > u,, while w, < w,, that contribute 
x = u;,wh + u

1
w

1 
to the inner product. By exchanging the elements u, and u,, in u to 

obtain the vector denoted by u' their contribution to the ordinary inner product 
becomes x' = u,,w1 + u1 wh . Simple algebra shows that x' > x.  Denote the integer 
vector that is obtained from s by exchanging elements l and h with s' . Unfortunately, 
NPs' will not, in general, be equal to u'. A sufficient condition for NPs' = u' to 
hold is permutation-invariance of W. Therefore, if W is permutation-invariant then the 
Wt-ordered s' results in a larger inner product and so in a smaller L. This contradicts 
the assumption that s is optimal for a permutation invariant W. ■ 

I did not succeed in finding a similar reduction of S for a broader class of matrices 
than the permutation-invariant matrices. This is unfortunate. In practice off-diagonal 
cells of W will generally be set to zero. Consequently, permutation-invariant W reduce 
to W = kl. If one prefers another weight matrix than kl, one could, in principle, find 
the minimum loss over the set S of all relevant permutations of the set of rank ordered 
vectors conforming to B 1, B2, or B3. However, already from the moderate value of 

9 



J = 7 the size of S becomes prohibitively large (see Table 3 under #Evaluations E). 
To circumvent this problem, some investigations show that one of the following two 
heuristic procedures Hl  or H2 quickly finds either the optimal 0-vector s ,  or a 0-vector 
s' with 1 - e < <NPs,NPs' > � l ,  with e > 0  and small (Table 3: at most 
e :::::: 0. 03 for Hl  and e :::::: 0. 01 for H2). 

The basic idea of Hl  is to start from the integer 0-vector s = 0 ,  add a one to its first 
component to obtain s0 , and calculate <NPs0 , NPt > . Next add a 1 to the second 
component of s to obtain s1 , and calculate <NPs1 , NPt > . Repeat this for each of 
the components of s to find out which one has the largest W-Cosine with t. Set s equal 
to this optimum, and repeat the procedure with the new s for all its descendents s i E S, 
until the highest possible category score is encountered. Thus traversing a small subset 
of S 'close ih W-direction' to t, keep the 0-vector s that showed the maximum W
Cosine during this process. In this way, while enlarging the length of s, the angle with 
t is kept almost as small as possible. The basic idea for H2 is similar to Hl , but now 
at a certain s not only all points are checked that can be viewed from s along one of the 
axes in one step from 0, but now all points are checked that can be viewed from s as 
corners of the smallest integer hypercube of which s is the corner nearest to O. The 
procedures are outlined in more detail in Appendix B. To compare Hl  and H2 with 
exhaustive search a small simulation study was performed for items with J = 2 , .. . , 6 .  
For J = 7,  . . .  , 9 only Hl and H2 were executed. S contains all 0-vectors under the 
restriction B2. The extrapolation of the number of evaluated 0-vectors per item (Table 
3, #Evaluations) shows that exhaustive search defeats commonly available computing 
capabilities already for moderate values of J. For each J 100 times a random diagonal 
matrix W was drawn and a random vector t. Some results are shown in Table 3 .  The 
maximum difference between HI-optimal and optimal W-Cosines (Max) does not show 
an increase with J. The mean of these differences does show some positive relation, but 
this is due to an increase in the percentage of suboptimal solutions. As a matter of fact, 
the mean deviation restricted to suboptimal solutions, declines for J = 2 to 6 from 
0. 0083 to 0. 0037. The agreement of H2 with E is too close to warrant a conclusion 
with respect to a trend of means or maximum differences . Because H2 clearly 
outperforms Hl and comes very close to E, it is the heuristic of choice. The increased 
computing time stays within reasonable bounds even for items with J = 9 . 
In some practical applications there are items, where one is certain about the order of 
the elements of s. For instance, if one discerns J categories in the amount of time it 
takes a person to run 100 meters, one wants to consider only s with a nonincreasing 
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relation to the registered time . In such a case S contains only elements s that conform 
to the indicated order, which reduces S to a size that enables exhaustive search. 

Table 3 
Comparison (100 samples) of Exhaustive Search and two Heuristics 

to Find an s E S (under B2) in as Much the Same Direction as t 

Heuristic H l  

Mean W-Cos Differences W-Cos E-H l #Evaluations 

J %Optimal H 1  E Max Mean St. Dev . H1  E 

2 100 0.99679 0.99679 0.00000 0.00000 0.00000 1 2  27 

3 97 0.99472 0.99497 0.02159  0.00025 0 .002 17  3 1  324 

4 88 0 .9945 1 0.99576 0.03 1 10 0.00 1 1 5  0.0043 1 65 4455 

5 70 0.994 1 1  0 .99520 0 .0 17 14  0 .00109 0 .00272 1 1 8 7 1 358 

6 6 1  0.99402 0 .99550 0.02035 0.00 144 0 .00334 1 96 1 3 1 5545 

7 0 .99465 295 28 106 

8 0 .99483 428 680 106 

9 0 .99489 595 20000 106 

Heuristic H2 

Mean W-Cos Differences W-Cos E-H2 #Evaluations 

J %Optimal H2 E Max Mean St. Dev . H2 

2 100 0 .99679 0.99679 0.00000 0.00000 0.00000 14  

3 100 0.99497 0.99497 0.00000 0.00000 0.00000 46 

4 98 0.99563 0.99576 0 .01096 0.000 1 3  0.00 1 10 127 

5 93 0.995 16  0.99520 0.00078 0.00004 0.000 15  329 

6 93 0.99529 0 .99549 0.01249 0.00020 0.00 1 34 793 

7 0.99623 1 8 1 6  

8 0.99665 3986 

9 0.99663 8738 

Statistics Approximately Linear in s 

To execute the minimization procedure over S outlined above, a category statistic is 
needed that can be expected to be approximately linear in the true category scores of an 
item. Below a simulation study to evaluate the procedure is described where four 
category statistics are investigated: 
1 the mean raw score per category, 
2 the mean optimal score per category, 
3 category weights 'Y from multiple correspondence analysis (MCA), 
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4 category score parameters o from the NRM. 
The sequence of these statistics is with increasing accuracy of the linearity property. In 
the next sections the (approximate) linearity of the statistics in the score vector s i s  
discussed. 

The Mean Raw Score r u per Category 

Let B be a test, then the raw score on B can be denoted as 

When the used category scores of the items in B are more or less equal to the true 
category scores, and the item scores in a population of test takers correlate positively, 
it can be stated for a polytomous item k that 

If, for example, the assigned category scores are in reverse order of the true category 
scores for half of the items in the test, the statement does not apply. In many practical 
applications the assumption that the majority of the category indices are about 
appropriate as category scores seems reasonable. Moreover, whatever the relation 
between assigned category scores and their true values, the mean test scores for two 
response categories with the same true scores are equal : 
If j ;c }' and sj = sp then -½(0) /-½, (0) = c ,  with c a constant, and 

l 1; 

g'(r I xk = }) = g'(r I xk = }' ) = J ��  hf;h (0) g (0 I xk = J) d0 ,  

where g (0 I x
k 

= }) denotes the posterior density given that x
k 

= j .  The posterior density 

g ( .  I .) only depends on skj ' because the likelihood h_
j 

does. It follows that the mean 
score per category ( 1  / Nkj E (r u I xk = }) ) is expected to be successful at least in detecting 
categories that share the same score. 

The idea that the mean raw score per category conveys information on the category 
scores was already put forward in Muraki ( 1 992). 
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The Mean Optimal Score r 
O 

per Category 

The optimal score 

yields the largest reliability coefficient a among weighted scores. Note that the optimal 
weights are associated with items, not with individual categories within items. It is not 
difficult to derive that optimal weights are obtained by taking the dominant eigenvector 
v of the correlation matrix of the item scores, and dividing element v; by the standard 
deviation of the scores of item i: 

The optimal score is included because it is expected to yield better estimates of s than 
the raw score. If an item i has a large discrimination a; , it will tend to have a large 
optimal weight O; . Therefore, r O is expected to show a higher correlation with the true 
category scores than r u .  

Multiple Correspondence Weights 'Y 
The vector 'Y of category weights associated with the largest eigenvalue obtained from 
Multiple Correspondence Analysis (Greenacre ( 1984), Israels ( 1 987), Gifi ( 1 990)), has 
the following property. Let 

1 rMc(x) = -� y , and 
1 L.J IX; 

I 

with Nii 
the number of persons that scored in category .i of item i, then 

"l;J = � ciJ (i = 1 ,  . . .  , /) ,  U = l , . . .  , J; ) , for minimum � > 1 .  As explained in Gifi ( 1 990, 
pp. 1 20- 123)  one could substitute the category-weights 'Y obtained from Multiple 
Correspondence Analysis for the category indices in the data-matrix X to obtain a new 
data matrix Y. The correlation matrix Ry of Y can subsequently be analyzed by a 
Principle Components Analysis. The scores on the first component from this analysis are 
proportional to r MC' Moreover, the first eigenvalue of Ry is maximal over all possible 
category weights substituted for the category indices. With the categories represented by 
'Y the rank one correlation matrix obtained from the implied one-dimensional linear 
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model approximates best in a least squares sense the correlation matrix R Y over all 
possible weighings of the categories. 

The NRM also achieves the best one-dimensional representation, although with a non
linear model. However, in practical applications, the regression of the expected score on 
0 ,  is often strikingly well approximated in the relevant 0 -range by only the linear 
component in its Taylor expansion. Let 

1; 

sJO) = L f/O) l\, 
j= I 

be the one-dimensional nonlinear NRM equivalent of the one-dimensional linear model 
of the MCA approach, then 

for some well-chosen 0
0

. 

To the extent that the NRM can be linearized, the expected o -score in the NRM is 
approximately linear in the underlying ability like the expected -y -score in the MCA
approach. The ability dimension in the linear 'NRM' and in the MCA both achieve a 
best rank 1 approximation to the correlation matrix of the data, either with -y - or with 
o -category scores. Therefore, both ability dimensions must be approximately the same. 
Because the -y -parameters are determined up to an arbitrary linear transformation, like 
the o ' s, -y; should be approximately linear in o; · Moreover, if the NRM is assumed to 
specialize to the extended GPCM or OPLM, 'Y; is approximately linear in s; . 

The Nominal Item Response Model 

Because o . .  = a.s . .  by assumption o .  is linear in s .  for each i. Therefore, by estimating 
I} I I} I I 

the vector o in the NRM one obtains a direct continuous estimate of s. The relevance 
of the NRM for obtaining category scores was noted by Veldhuijzen ( 1 995) .  In the 
mentioned report a quick estimation procedure for the estimation of o is introduced. 
This procedure is flawed because it yields estimates with an appreciable positive bias for 
the item with the largest o -parameter. Therefore, the procedure is adapted such that this 
bias can be avoided, and, moreover, can be used with missing data or incomplete designs 
without extra complications. The estimation procedure is described in Appendix A. 

With o as category statistics integer discrimination parameters are easily estimated. 
The NRM equivalent of equation (4) is o; ::::: C; S; + d; l · Because o is determined up 
to a constant, one may arbitrarily set the minimum of o ; equal to zero. The category k 
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associated with the minimum of oi , will, according to equation ( 4) be associated with 
category score sk = 0 .  Therefore, d equals zero, and it follows that ci oc ai (see 
Formulas (6) and (3)). Because a is a scale parameter it has to be centered by its 
geometric mean. Let 

Because in OPLM the scale is arbitrary the geometric mean µ has to be supplied by the 
user. Let bi be a continuous approximation to ai . Then using Formulas ( 1 ) ,  and (5) and 
(6) it is easily verified that 

b . = µ c. ,  I - I 

is the discrimination parameter with the required geometric mean. Because in OPLM ai 

has to be an integer, the elements of a have to be rounded to the nearest integer in a 
geometrical sense. This is defined as follows. Let t (a) be the largest integer 
< a ( = trunc (a)) , and let g m(i) = (i x (i + 1)) 'h (the geometric mean of i and i + l ) . 

Define the function g i(x) , the g-nearest integer of a as t (a) if a < gm (t(a)) and as 
t (a) + l otherwise. Then a; = g i(µ I -:Y 'Y) is an integer estimate of a; . 

It may happen with a certain data set that the NRM-parameter estimates diverge for 
a particular item, for instance because unique estimates do not exist. In that case the 
procedure has to be restarted without the trouble causing item. The integer estimates for 
this item can subsequently be obtained by one of the previous three statistics. The 
simpler models are less likely to suffer the same problem with such a data set. 

The Korfball Exam pie Revisited 

Returning to the previous example from the korfball game, first the data set was 
analyzed with the NRM. Next for all items the optimal integer category scores were 
estimated, with exhaustive search and diagonal weight matrix cN, with diagonal element 
n . . . .  equal to the number of observations in category J of item i. The optimal category 

lj , l} 

scores for item 7 were 0 1 2 1233444, with the next best candidate 0 1 2223344. So for item 
7 instead of category scores 0 ,  . . .  , 9 only 0 ,  . . .  , 4 are kept, in a slightly different rank 
order. 
The results are presented in Tables 4 and 5 .  
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Table 4 

S- and M-Tests of Item 7 in a Korfball Game from an OPLM-Analysis 
with the Optimal Integer Category Scores 

Item S-test df p M M2 M3 

7 APass 2 4.37 1  4 .358 .758 .222 - .033 

[ :2] 1 .25 1 6 .974 .300 - .382 - .356 

[:3] 4.007 7 .779 .2 14 -.466 .676 

[:4] 1 1 .8 1 3  7 . 1 07 .6 1 7  .07 1 - .907 

Table 5 

Some Overall Results of an OPLM-Analysis of the Optimal Kortball Data 

Distribution of p-values for S-tests. 

0 . ----/-----/----- . 1 ------- .2-------. 3-------.4------- .5------- . 6------- . 7------- . 8------- . 9------- 1 . 

2/ 3/ 1 1 4 4 3 2 4 0 3 

Total: 28 
p-values out of range 

Rlc = 83 .286; df = 83;  p = .4705 

With the optimal integer scores , not only do the M-tests show a better fit, also the 
result of the OPLM-analysis as a whole shows better compliance with the model as 
shown by a more uniform distribution of the p-values for the S-tests, and a 
nonsignificant Rl c test . 

A Simulation Study 

The aim of the simulation study is to evaluate the quality of the estimation of integer 
category scores on the basis of the four statistics . All data are generated under the 
OPLM model for a test with 15 items, each with observed categories O ,  . . . , 3 . For all 
items the rank order of s and the category indices is kept equal . Let ai r,i = ri and 
(3 . .  = ri . . - ri . .  1 . Parameter ri .0 is set equal to O. The simulations are conducted with 

IJ lj lJ - l 

a large and a small spread of item parameters. Therefore, let k take the values 1 or 3. 
The parameter of category 1 ri 1 is distributed as N( -0. 25 I k , (0. 25 I k )2 ) . The 
difference (31 + 1 - {31 U > 1) has been given the same variance as ri 1 , but with mean 
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0.25 I k .  Two categories with the same score share the same parameter. For instance 
for an item with s; = 0113, r, 1 = r, 2 . The discrimination indices of the items are all 
integer and uniformly distributed on { 1 , . . . , 5} . The person parameters 0 are distributed 
as N(0 , 0.32) .  This would compare to about N(0 , 1) in the Rasch model , which is often 
approximately found in practice. The cells of the simulation study vary on four 
dimensions: 
1 small or large spread of item parameters, 
2 the number of records 500 and 2500, 
3 three levels of the amount of categories with the same score ( called a collapse), 
4 three levels of the amount of skipped scores . 
The amount of collapsing and skipping was implemented as follows. Call the size of a 
collapse the number of categories that share their score with a preceding category. For 
instance with s; = 0011 or 0111, the collapse size equals two. The size of skipping is 
the number of extra skipped categories. It is immaterial whether for instance two extra 
skipped categories are consecutive like in 0345, or separate, like in 0245. In both cases 
the size of skipping equals two. For collapsing and skipping as well a maximum size 
of two is allowed. The level of, for instance the amount of collapsing, is quantified by 
the number of randomly collapsed categories in the total set of 15  items. Therefore, a 
random item is drawn and if its collapse size is less than the maximum, randomly two 
neighboring category classes ( one or more categories that share the same score) are 
given the score of the lower class, and the higher scores are decreased by 1 .  The same 
procedure applies to the random application of skipping. The three levels of collapsing 
and skipping were 1, 7, and 22. That is, at level 1 only 1 i tern was drawn and 
randomly collapsed, at level 2 items were drawn and randomly collapsed if possible 
until 7 times categories could be randomly collapsed, etc. The same procedure applies 
to the three levels of skipping. 

Because the four conditions were crossed they yield 2 x 2 x 3 x 3 = 36 cells. For 
each of these 36 cells 400 times 
1 a set of item parameters was drawn, 
2 a data set was generated, 
3 the four statistics were calculated, and, 
4 per item for each of the four statistics the optimal vector of integer category scores 

was found. The NRM category statistics o were estimated by the procedure outlined 
in Appendix A. 
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Table 6 
100 x Mean W-Cosines of Integer Estimates with True Category Scores CSType 

Indices Indicate the 3 Levels of resptively Collapse and Skip of the Item 
#Records 500; Small spread 
CSType ScorU ScorO MCA NRM Marg Index #Items 
00 99.53 99.50 99.34 99.34 99.43 100.00 14623 
0 1  99 . 6 1  99.60 99.54 99.5 1  99.56 98.96 7053 
02 99 . 6 1  99. 6 1  99.53 99.54 99.57 98.78 6407 
10  99. 2 1  99. 17 99.06 98 .98 99. 1 1  96.42 687 1 
1 1  99.45 99.44 99.49 99.43 99.45 95.28 34 15  
1 2  99.57 99.56 99. 5 1  99.50 99.53 95 .38  3 148 
20 97.65 97.63 97 .73 97.54 97.63 87. 39  65 12 
2 1  99.09 99. 1 7  99.4 1 99. 1 9  99.22 87.47 3 120 
22 99. 6 1  99.65 99.78 99. 6 1  99.66 87.5 1 285 1 
Marg 99.26 99.25 99.20 99. 14  99.2 1  95.79 54000 

#Records 2500; Small spread 
CSType ScorU ScorO MCA NRM Marg Index #Items 
00 99.89 99.87 99.80 99.89 99.86 100.00 1457 1  
0 1  99. 84 99. 84 99.87 99.95 99 .88 98 .97 698 1 
02 99 . 8 1  99.80 99.79 99.86 99 . 8 1  98 .82 65 12 
10 99.73 99.76 99.82 99.83 99.79 96.43 70 19  
1 1  99.82 99.86 99.94 99.95 99.89 95 .36 3348 
1 2  99. 8 1  99.82 99 . 8 1  99.83 99 .82 95 .42 3 105 
20 98 .61  99 .34 99 .61  99.60 99.29 87.34 6460 
2 1  99.63 99 . 85 99.95 99.94 99. 84 87 .49 3 1 7 1  
22 99.93 99.98 100.00 100 .00 99.98 87.52 2833 
Marg 99.68 99.78 99 . 82 99.86 99.78 95 . 8 1  54000 

#Records 500; Large spread 
CSType ScorU ScorO MCA NRM Marg Index #Items 
00 99.36 99.33 99.07 98 . 89 99 . 1 6 100.00 14508 
0 1  99.3 1 99.29 99 . 15 99 .2 1 99.24 98 .66 7086 
02 99.30 99.29 99. 1 3  99.32 99.26 98.49 6439 
10 99.02 98 .96 98.8 1 98.65 98.86 95 .79 707 1 
1 1  99.24 99 .2 1  99.25 99.24 99.24 94.72 3340 
12  99.42 99.40 99.34 99.42 99.40 94 .97 3 1 23 
20 97. 1 8  97 .43 97.57 97.37 97 .39 86 .09 648 1 
2 1  98 .92 99.07 99.36 99 .23 99. 14 86.82 3054 
22 99.53 99.60 99.78 99.67 99. 65 87 .2 1 2898 
Marg 99.02 99.04 98.96 98.88 98.98 95 .38  54000 

#Records 2500; Large spread 
CSType ScorU ScorO MCA NRM Marg Index #Items 
00 99.69 99.68 99 .5 1  99.79 99.67 100 .00 14620 
0 1  99 . 5 1  99.52 99.49 99 .9 1  99.61 98 .65 692 1 
02 99.50 99.49 99.39 99 .82 99.55 98.50 649 1  
10 99.55 99.60 99.63 99.79 99.64 95.78 7012 
1 1  99.60 99.65 99.78 99.93 99.74 94 .69 3438 
12 99.66 99.67 99.62 99. 8 1  99 .69 94.87 3086 
20 98 . 12 99. 1 6  99.57 99.54 99 . 10 85 .83 6474 
2 1  99. 5 1  99.78 99 .96 99.93 99.79 86.85 3029 
22 99.88 99.95 100.00 100 .00 99.95 86.96 2929 
Marg 99.43 99.58 99.59 99. 8 1  99.60 95.32 54000 

To evaluate the performance of the four statistics the W -Cosines of the optimal 
vectors and the index-vector with the true score vectors and the percentage of items 
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with correct estimates of s were recorded. The presented results are achieved with WLS 
(W = cN), with N a diagonal matrix with the number of responses in each category. 
Using the inverse of the covariance matrix of the t-vector as the W-matrix is 
problematical because it is of deficient rank. For Bock's NRM the information matrix 
of o was tried with a somewhat inflated diagonal. However, the results did not improve 
with respect to those obtained with the diagonal matrix. Both exhaustive search and the 
heuristic Hl were applied under restriction B2. The results of Exhaustive search and 
Hl proved to be 99.8 %  identical. 

The results on the W-Cosines are shown in Table 6 and Figure 1, the percentages 
correct in Table 7 and Figure 2. CSType refers to the sizes of Collapsing and Skipping 
within a single item. For instance CSType 12 means that the item has one pair of 
categories collapsed and two categories extra skipped. Two examples of items of 
CSType 12 are 0224, and 0034. 
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The percentages correct (Table 7, Figure 2) with 500 records may look a little 
disappointing. However, one has to consider that an incorrect! y estimated score vector, 
in general, is not way out of target as can be verified by their Mean W-Cosines as 
shown in Table 6 and Figure 1. Closer inspection of the estimates shows that almost 
invariably one skip too much causes the estimate to deviate from its original value . 

Table 7 
Percentage of items with correctly estimated category scores 

#Records 500; Small spread 
CSType ScorU ScorO MCA NRM Marg #Items 
00 5 1 .25 50.70 40.29 42.7 1  46 .24 14623 
0 1  62.24 62. 1 0  62 . 8 1  60.60 6 1 .94 7053 
02 38 . 1 1  38.22 36 .09 37 . 1 3  37.39 6407 
10  52.93 52.28 5 1 .54 50.4 1 5 1 .79 6871 
1 1  67.38 67 .53 73 .50 69.72 69.53 34 15  
12  33 . 89 33 .29 32.37 34 .88 33 . 6 1  3 148 
20 47.76 5 1 .97 59.24 55 .04 53 .50 65 1 2  
2 1  52.44 53 .56 57.56 54.04 54 .40 3 1 20 
22 59 .21  59 .91  62.26 59.00 60.09 285 1 
Marg 5 1 .42 5 1 .76 50.24 49.62 50.76 54000 

#Records 2500; Small spread 
CSType ScorU ScorO MCA NRM Marg #Items 
00 85.90 84.44 76.02 87 .58 83 .49 1457 1 
0 1  82 . 19 8 1 .99 86.06 94 .83 86.27 698 1 
02 55.36 54 . 8 1  54.91 63.53 57 . 15 65 12 
10 79.23 8 1 .99 87.33 88.83 84.35 70 1 9  
1 1  87.37 89 .0 1 94.89 96.92 92.05 3348 
12 44 .28 44 .83 45.06 47.54 45.43 3 105 
20 64.02 8 1 .67 89.7 1 89.33 8 1 . 1 8 6460 
2 1  6 1 .27 65 .00 66.92 66.57 64 .94 3 1 7 1  
22 67.67 68.5 1 68.90 68 .80 68 .47 2833 
Marg 73 .55 75.93 76.36 82.05 76.97 54000 

#Records 500; Large spread 
CSType ScorU ScorO MCA NRM Marg #Items 
00 44.29 43 .48 32.85 33 .26 38 .47 14508 
0 1  53 .20 53 .39 5 1 .69 55 .38 53 .42 7086 
02 30.33 30. 1 1  26 .9 1  35.33 30.67 6439 
10 46.83 45.96 44.08 43 . 80 45 . 1 7  707 1 
1 1  59. 1 9  58.35 64 . 1 9  64.28 6 1 . 50 3340 
12  30 .68 30.36 28.24 34.36 30. 9 1  3 1 23 
20 43.37 49. 1 3  55 .49 52.86 50.2 1  648 1 
2 1  50.46 52.98 57 .43 54.49 53 .84 3054 
22 59.32 60.63 63 .35 60 .59 60.97 2898 
Marg 45 .3 1 45 . 8 1  43.50 44 .79 44 .85 54000 

#Records 2500; Large spread 
CSType ScorU ScorO MCA NRM Marg #Items 
00 68 . 1 3  66.65 55 . 1 8  78.68 67 . 1 6 14620 
0 1  66. 1 6  66.49 67 .79 92 .07 73 . 1 3 692 1 
02 40 .41  40 .27 38 .5 1 62 .36 45 .39 649 1 
1 0  68 .41  72 .08 75.36 86.08 75 .48 7012 
1 1  73 .68 76.35 84.82 95.72 82.64 3438 
12 37 .46 37 .46 34.96 48 .48 39.59 3086 
20 55 .50 76.32 88.25 87.44 76.88 6474 
2 1  58 .77 63 .45 66 . 1 9  65.70 63 .53 3029 
22 65.28 66 . 1 7  66.75 66.75 66.23 2929 
Marg 60.99 64 .07 63.36 78 .43 66.7 1 54000 
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The 'performance' of the index is included in Table 6 to translate the deviance from 
the index vector of the different item CSTypes to the W-Cosine scale. If the order of 
the true category scores would have been independent of the index vector, the W
Cosines of the index with the true scores would have been around zero. It is not 
relevant to include the 'performance' of the index with the percentage correct data. 
They are 100% correct for the items with CSType = 00, and 0% otherwise. 

Because the estimation of the discrimination index is to a large extent dependent on 
the estimates of the category scores, and the user supplied geometric mean, it is not a 
simple matter to evaluate its accuracy in a simulation study of this kind. However, 
practical application of the NRM-procedure in connection with OPLM, generally shows 
excellent model fit with respect to the discrimination parameters. 
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Conclusion 

Inspection of Tables 6 and 7 and Figures 1 and 2 shows that the four statistics perform 
very similarly with the 500 record data sets, although with the larger spread of item 
parameters a slightly larger differentiation can be perceived. With 2500 record data sets 
the NRM estimation clearly outperforms the other statistics, certainly with the larger 
item parameter spread. The effect of small versus large spread of item parameters can 
be summarized as follows. All statistics perform worse under the large spread 
condition. However, with 2500 record data sets NRM clearly shows the smallest drop 
in performance ( ± 3. 5 % ) . The other statistics loose about 12 % . MCA shows the 
largest difference between the small and large spread conditions with 2500 records 
(13 % ), probably because the linear approximation is less accurate with larger spread 
of item parameters . Looking at the Raw scores (ScorU) it is especially striking that 
ScorU performs worst on CSType 20, because in the section on the raw score it was 
deduced that this statistic would at least correctly identify category collapses. 
Comparing the W-Cosines with the percentages correct plots, it is noteworthy that, for 
the 500 record data sets, and less conspicuous for the 2500, the W-Cosines show a dip 
at CSType 20, and the percentages correct do not. The reverse holds for CSType 12. 
I have no explanation for these reversals. It is also remarkable that the more 
sophisticated statistics MCA and NRM do not perform as well as the simpler statistics 
ScorU and ScorO with the 500 record data. 

Assuming that data were generated that can be considered representative or at least 
relevant for real psychometric data sets the simulation study shows that the true integer 
category scores can be estimated with a high degree of accuracy . Of course , the size 
of the data set is decisive in this respect. The mean W-Cosines with 500 records are 
about 0.991 and with 2500 records 0.997, which must be considered highly accurate. 
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Appendix A 

A Quick Algorithm for Parameter Estimation in the NRM 

The following procedure is partly adopted from Veldhuijzen (1995) with weights from 
Verhelst (1996), but adapted in such a way that dominance by the item with the largest 
o -parameter cannot occur, moreover, it can be used with missing data or incomplete 
designs without extra effort . Assume that the abilities of all persons can be grouped into 
h = 1 , . . . , H homogeneous ability groups. Let 0 h be the ability of the members of 
group h . Denote the number of persons in ability group h that scores in category j of 
item i with Nh iJ , and let 

Nhij + 0. 5 . _ _ _ Ph l.1. = ------ (1 - 1 ,  .. .  , 1. ) ,  A . . - o . . - o .. 1 , and Z. - r:, .  - >-
1
•1. _ 1 . 

N + N + l , I} lj lj - I} I} � .  

ltij // lj - 1  

Then equations (1) and (2) show that 

(7) 

Formula (7) shows that a least squares estimate of the item parameters is obtained by 
minimizing the following loss function 

F = L whi1 (011 Au - Z;1 - logitp11u )2 , 
hi} 

with wh iJ an appropriate weight. Verhelst (1996) derives that 

Nh . .  Nh " 1 whiJ = 11 11 - is an adequate choice. Nhij + Nhij - 1  
Formula (8) is minimized by iteratively solving the following estimation equations 

L wh ij 0h (rij + lhij )  
Ai} = _h ______ _ 

L whije! 
h 

L Wh;; (0h AiJ - lh iJ ) 
rij = _h ______ _ 

L wh iJ 
h 
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In Veldhuijzen (1995) formula (9) also entails estimation equations for Oh . Because the 
estimation of Oh and calculation of Nh iJ are approached differently here, these are 
absent. For the calculation of the numbers NhiJ we need for each person v and for each 
item i an estimate of the group membership of v independent of his score on i. 

Let g (0) = N(O, 1) be the apriori ability density. Define H + 2 ability groups by 
selecting H + 1 edges fh (h = 1 , . . .  , H + 1) on the latent continuum. In the present 
algorithm the C-scale boundaries for the standard normal are used 
fh = -2.25 (0.50) 2.25 . Persons are classified for each item i separately into one of 
these ability groups on the basis of their EAP from their response pattern omitting their 
response xi on item i. EAP's outside the range [-2.25, 2.25] are neglected. The 
midpoint 011 = (fh + r,, . 1 ) / 2 of the interval [fh, f1i . 1] is taken as the common ability 
estimate for the members of class h. 

For each item i and each ability group h one obtains the number Nh iJ of respondents 
in group h that responded in category j of item i as follows. The a posteriori density 
of 0 given a response vector x is given by 

IJJ(x; I 0) g (0) 
g (0 I x ) = _;-_, 1 ___ _ 

f !Jf(x; I 0)g (0) d0 

The integral in the denominator is approximated with the Gauss-Hermite sum with Q 
points 

(10) 

where w are the Gauss-Hermite weights associated with the Q Gauss-Hermite values 
q 

0 . First calculate the Q summands 
q 

of (10), and denote the response vector x omitting the response from item i with x c,) . 
Then the a posteriori distribution of 0 at 0 q given the response pattern x omitting item 
i is given by 
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Suppose xvi = j, and rh � EAPvi < rh . 
1 

then v contributes 1 to Nhij . It is conceivable 
that for i '  -;t. i EAPvi ' is contained in another interval h '  -;t. h than EAPv;. In that case 
v contributes 1 to N

11
, i 'J', and not to Nhi 'J' . 

Now, the estimation procedure proceeds as follows. 
Select the category indices as initial score vector o (0> for the categories of items 1 , . . .  , /. 
Select as initial vector r(0> the vector 0, and initiate F at oo . 

1 Calculate NhiJ for all h ,  i, and }, and loss function F (Formula (8)). If F does not 
decrease with respect to its previous value then stop. 

2 Iteratively solve Formula (8) until convergence. 
3 If the results of 2 deviate more than a criterion from the parameters used in 1, then 

return to 1,  otherwise stop . 

The stop criterion given in 1 is included because the algorithm does not always 
converge in the sense of 3. This is due to the fact that after some iterations the ability 
grouping for some records tends to swap from one iteration to the next. However, the 
parameter estimates obtained from this procedure did not result in a worse performance 
of NRM in the simulation study , than estimates obtained when this least squares 
estimation was followed with 10. 
GEM estimation iterations (Verstralen, 1996). It is perhaps noteworthy that the 
percentages correct decreased by about 1. 5 % if only one EAP per record was estimated 
(the response to item i was not omitted in the calculation of N,, ;1 ). Moreover, the 
dominance of the item with the highest o -parameter could not be reproduced when this 
algorithm (one EAP per record) was tried on the example in Veldhuijzen ( 1995). The 
reason for this improvement is not entirely clear. 
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Appendix B 

Heuristics Hl and H2 for Finding a Near Optimal Integer Vector in S 

Hl 

Let e i be the binary vector (0, . . .  , 1 ,  . . .  , 0) with component e;; = 1,  (i = 0 ,  . . .  , 1) and 
the other components equal to zero. Let E denote the set { e ,. , i = 0 , . . .  , J} . Select a 
bound B b = B 1 , B 2 ,  or B2 (higher bounds are not recommended) . 
Start with s = 0 ,  i = 0, j = 0, C' = 0, C" = 0, k = bf . 

1 Let u = s + e i . 
If at least one component of u equals 0 
continue with 2, otherwise 
If i < J repeat 1 with i = i + 1 , otherwise 
Continue with 4. 

2. If u E B 
If the largest component of u equals k set j = 1 
Continue with 3, 
otherwise 
Continue with 1. 

3 Calculate C = < NP(s + e) , NP(t) > .  

If C � C' then let C' = C and s' 
= s + e ,.. 

Continue with 1. 
4 If C' > C' ' let C' ' = C' , and s' '  = s' , 

Let s = s' . 
If j = 1 stop, otherwise 
Set i = 0 , and proceed with 1. 
s" is the Hl-optimal integer score vector. 

H2 
H2 follows the same scheme as Hl, only i runs from 1 to 21 

+ 
1 - 2 ,  and e ,. is the 

binary vector with J + 1 components that reflects the binary representation of i. For 
instance if i = 5 and J = 3 e ,. = (0 , 1 , 0 ,  1 ) . 
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