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Abstract 

The present paper is about relations between Classical test theory (CTT) and item 

response theory (IRT). It is demonstrated that IRT can be used to provide CTT 

statistics in situations where CTT fails. 
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1. Introduction 

Notwithstanding the many developments in item response theory (IRT), classical 
test theory ( CTT) continues to be an important framework for test construction. It 
is therefore useful to have a clear idea about the relations between IRT and CTT. 
This should improve our appreciation of both theories and facilitate communication 
to researchers and item writers who are frequently more familiar with CTT than 
with IRT. In this paper we survey some of the relations between CTT and IRT, and 
discuss novel applications of CTT that are feasible using IRT. 

This paper is structured as follows: Section 2 provides a brief outline of CTT 
and its relation to IRT. In Section 3, the CTT concept of reliability is applied in an 
IRT context. We discuss reliability of estimated latent trait values, and reliability of 
classifications using a test score. In Section 4, five applications are discussed: (1) to 
illustrate that reliability can be determined from a single administration of a test; 
(2) to demonstrate how relations between test characteristics, the population of test 
takers, and test scores may be explored; (3) to demonstrate how the correlation 
between latent traits measured by different tests can be calculated; ( 4) discuss the 
selection of items from a pilot test when the pilot test could not be administered 
to the intended population; (5) to describe !RT-based test equating. The paper is 
concluded in Section 5. 

This paper is written in the spirit of work by Verstralen (1997a), Lord (1983), 
Nicewander (1993), Thissen (1990), Mellenbergh (1994; 1996), and Steyer and Eid 
(1993) and there is some overlap between these papers and this paper. Naturally, 
we shall often refer to the time-honoured work by Lord and Novick (1968), which 
will be abbreviated to L&N just like a friend is often known by a shortened name. 



2 

2. Classical Test Theory From an IRT Point of View 

2.1. General Introduction 

Let an "item" be a means to produce a measurement X. It is assumed that 

the respondent 's behavior is determined by his value on a vector variable 0 which 

represents what the item intends to measure. This variable may be continuous or 

discrete but is assumed to be some sort of ability. For ease of presentation, 0 is 

referred to as the subject's ability. The measurement X is defined as a discrete 

random variable that represents the credit assigned to each response. The function 

that defines X is called the scoring rule. Realizations of X are called "responses" in 

IRT and "scores" in CTT and we will use both names interchangeably. 

The true score of any person is defined as the expectation E[Xl0] of the distrib

ution of X over subjects with the same ability. The deviations X - E[XIB] represent 

random measurement error, that is, uncontrolled environmental variables that in

fluence the response (L&N, pp. 38-39). The distribution of the measurement errors 

has zero mean and variance Var (Xl0). While the measurement error varies across 

subjects with the same ability, the true score is a fixed parameter characterizing the 

combination of an ability and an item. 

Taking the expectation of E[Xl0] over the distribution of 0 in the population of 

interest gives us the expected response to item i. The reliability of X in the reference 

population, p]c, is defined as the proportion of true variation. Specifically, provided 

that Var(X) > 0, 

2 _ Var(E[Xl0]) Px = Var (X) 
t:[\I ar( ,, 10)] 

= 
1 - \/ar(.l'...'[XIOJ) + .l'...'[\lw·(-XIO)]' 

(1) 

(2) 



where Var(E[XJ0]) denotes the true score variance, and 
E[Var(XJ0)] - E(E[(X - E[XJ0])2J0]) = E[(X - E[XJ0])2] 

that is, the measurement error variance in the population. It is customary to denote 
the reliability as a square since p} equals the square of the correlation between the 
true score and the observed score (L&N, p. 57). A correlation is not invariant under 
non-linear transformations and reliability depends on the scoring rule; some scoring 
rules give higher reliability than others. Equation (1) also shows that item reliability 
depends on the ability distribution in the population. 

L&N consider the following experiment, albeit in different wording: Draw a 0 

from the population and generate two independent responses x and x* to the same 
item. The joint distribution of these responses is 

where 
Pr(X,X*) = f Pr(X = xJ0) Pr(X* = x*JO)g(O)dO , 

Pr(X = xJO) = Pr(X* = xJO) 

(3) 

Equation (3) states that the response variables are exchangeable and we shall hence
forth call them exchangeable replications to indicate that they are independent con
ditional upon 0, but not marginally. Item reliability equals the correlation between 
exchangeable replications. This can be seen using the covariance decomposition for

mula: 

Cov(X, X*) = Cov(E[Xj0], E[X*J0]) + E[Cov(X, X*J0)], (4) 
where E[Cov(X,X*J0)] = 0, and Cov(E[XJ0], E[X*J0]) = Var(E[XJ0]) by assump
tion. Dividing Cov(X,X*) by jVar(X)Var(X") = Var(X) gives (1). 

Now, consider a test consisting of 1 > 1 items. 1 It is customary to consider a 
1 The distinction between an item and a test is convenient but unnecessary for CTT. 
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linear combination Y = "E{= 1 wiXi of the item responses as a test score, where the 
Wi are constant weights. The true test score on the test E[YJ0] = "E{= 1 wiE[Xil0]; in 
IRT, this is known as the test characteristic curve. The reliability of the test score 
in the reference population is given by 

2 Var(E[Yl0]) 
PY = Var(E[Yl0]) + E[V ar(Yl0)] • (5) 

It follows from exchangeability that the measurement errors on different items are 
independent given 0, and the error variance of the test score is given by 

E[V ar(Yl0) ] = E[Var(Xl0) ] L wf 
i=l 

Test reliability is of interest because its square root, called "the index of reliability," 
provides an upper bound to the validity of the test score with respect to any criterion, 
that is, the correlation of the test score with any criterion (L&N, p. 72) . Furthermore, 
if measurement error is assumed to be normally distributed, Y ± l.96J E[Var(Yl0) ] 
provides an approximate 95% confidence interval for the observed test score. 

A nother important statistic in CTT is the item-total correlation (ITC); the 
correlation of the score on item i with the score on the test, including the item. By 
definition, the ITC is equal to 

lTCi = Cov(E[YJ0], E[Xil0]) + E[Cov(Y, Xil0) ] J ar(Y) Var(Xi) (6) 

where the numerator follows from the covariance decomposition formula ( 4) . In CT'l\ 
this correlation is interpreted as an item discrimination index because it indicates 
to what extent the item differentiates between subjects with high scores on the test 
and subjects with low scores on the test. We will comment upon the interpretation 
of the ITC shortly. 

Since the total score on the proposed test is calculated with the score on item 
i, the ITC is spuriously high. To correct the ITC, it is customary to calculate the 
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i tem rest correlati on (JRC), which is the correlation between the score on an item 
and the total score on the proposed test, excluding the item. Specifically, the IRC of 
item i equals the corresponding ITC with Wi fixed to zero. The following proposition 
provides an interpretation of the IRC. 

Proposition 1. Assume that the i tem responses are i ndependent gi ven 0. Let y_i 
denote the rest-score. The JRC of i tem i i s  equal to 

Proof. By definition: 
I RCi = Cov(Y-i, Xi) 

✓v ar(Y-i) ✓v ar(Xi) 
Cov(E[Y-il0], E[Xil0])  

✓v ar(E[Y-il0] )✓Var(Xi) 
V ar( E[Y-i 10]) 

Var(Y-i ) 
Var(E[Xil0]) Cov(E[Y-il0], E[Xil0] ) f:2 Var(Xi) ✓v ar(E[Y-il0])✓Var(E[Xil0]) Y PY_; 

= fl[corr (E [Y-il0], E[Xil0])  .;;c. 
□ 

It is seen that the IRC is positive and dependent upon the relation of the true 
rest score and the item true score, which will usually be non-linear. Under exchange-
ability, Corr (E [Y-i\0], E[Xil0]) = Corr ((1 - l)E[Xil0], E[Xil0]) = 1 and 

lim 2 = lim (I - l)2Var(E[Xl0]) 
I--+:x:, py_, I➔oo (1- l)2Var(E[Xl0]) + E[Var(Xl0)](1- l) 

. Var(E[Xl0]) 
= }� Var(E[Xl0]) + E[Var(Xl0)](1- 1)- 1 

=1 

(7) 

so that liml➔oo l RCi = /pf,. The same holds true for the IT'C which becomes equal 
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to the I RC when the number of items increases. 

2.2. IRT as an Extension of CTT 
In practice, it is assumed that the responses to different items are exchangeable 

so that item reliability can be estimated by their correlation. In CTT, such mea
sures are called "parallel. " This assumption is unrealistic, especially because different 
items will not frequently have the same conditional distribution. It is therefore op
portune to relax the assumption of exchangeability and require that responses to 
different items be independent conditional upon 0, but not necessarily identically 
distributed. In IRT, this is called conditional independence (CJ). For two items, CI 

is equivalent to 
(8) 

where Pix; ( 0) = Pr(Xi = xi/0) is called the item category response f unction (JCRF). 

Suppes and Zanotti ( 1981) show that there always ( i. e. , for every joint distribution) 
exists a scalar valued 0 such that CI holds. This means that CI by itself is not 
a restriction on the data and additional assumptions are needed on the ICRFs. 
Together with CI, these additional restrictions define an IRT model. 

Here, it is assumed that 0 is scalar valued and the item true score, E[Xil0] 
Lx; xiPix; (0) , is a monotone increasing function of ability so that the true score 
is a one-to-one transformation of the ability. Together with CI, these assumptions 
define the family of unidimensional monotone IRT models which encompasses most 
existing IRT models. 2 

2Note that given CI, E[Cov(Y, Xd0)] = w;E[V ar(X;j0)] and (6) reduces to a more manageable 

expression. 
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2 .3. 1 ' he C ase of Bi nary, E qui valent 2PL i tems 
In t his sect ion, we assu me t hat t he ite ms are exc hange able me asure s and intr o

duce an IRT mode l t hat i s  for mally e qu ivale nt t o  CTT. A ll ite ms are binar y wit h 
X; = l if t he answer is c orrect , and X; = 0 ot her wise .  Su bscr ipt i will be de lete d 
since all ite ms are e qu ivale nt . Wit hout loss in ge ner alit y, we assu me t hat t he ICRFs 
are mode lle d  by a t wo- par ameter log istic mode l  (2PL) ;  t hat is, 

Pi (0) = exp(a(O - <>) ) 
, 

1 + exp(a(0 - o) ) (9) 

where t he par ameter s a, o E lR are c onsi dere d known and 0 is a sc alar abilit y. T he 
popu lat ion distr ibut ion is u nre str icte d. The assu mpt ion t hat P1 ( 0) is mode lle d by 
t he 2PL i mplie s no loss in ge ner alit y  bec au se we c an always tr ansfor m 0 suc h  t hat t he 
ICRFs assu me any ot her fu nct ional for m. The value of t he a- par ameter g over ns t he 
sl ope of t he ICRFs an d is t here fore inter prete d as a disc ri mi nati on parameter, while 
t he c ateg or y  par ameter o is t he value of 0 where P1 ( 0) = 1 - Pi ( 0) = 0 .5 .  Whe n  t he 
discr iminat ion par ameter s are u nit y we obt ai n t he u biqu it ou s  R asc h mode l (R asc h, 
1960 ) .  For t he pur pose of illu str at ion we have dr awn t he ICRFs and t he true sc ore 
for a 2PL in Figure ( 1) .  

Wit h  bi nar y ite ms, t he ite m true sc ore e qu als t he pr obabil it y  of a c orrect re 
sponse , g ive n 0. T he c ondit ional me asure me nt err or vari ance of t he sc ore for eac h 
ite m i s  e qu al t o  Pi (0) (1- A (0) ) .  U sing t he for mul ae i n  t he pre viou s secti on w e  fi nd 
t hat 

V ar (X) = E[P1 ( 0) ] ( 1  - E[ P1 (0)] ) ,  ( 10 )  
where E[P1 (0o)] , t hat is, t he ex pecte d perce nt age c orrect , is known as t he difficult y 
of t he ite m. T he true -sc ore var iance for any ite m  i s  g ive n by 

(11 )  
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The upper figure shows ICRFs for a GPCM item with 8 = 1 ,  and a: =  2 .  The lower figure shows 

the true score as a function of theta. 

which equals V ar( Pi ( 0) ); the variance of the proportion correct in the reference 
population. Note that E[(Pi (0))2] = Pr(Xi = l , Xj = 1 )  when i and j index two 
equivalent binary items. The item reliability follows from substitution of (10) and 
(11) in (1). It is seen that under the present assumptions, item reliability equals 
Loevinger's (1948 ) H-coefficient which is used in Mokken scale analysis (Mokken, 
1971, p. 150 ). 

The expected unweighted sum score on a test with I equiv�lent items, given 0, 
equals 1 x Pi (0) .  The reliability of the test score is given by 

2 1 2 Var(P1 (0)) Pv = 1 [( 1  - l ) Var (Pi (0 ) )  + Var(X)] 

Ip} - __ ....;....;;..;__
_ 

( 1 - l)p} + l ° 

The equation is well-known as the Spearman-Brown (SB) formula. If 1 

( 12) 

1, for 
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instance, p} = Pi the reliability of a single item score. For 1 = J *  + Z, we obtain 

the reliability of a test with /* items when it is lengthened by adding Z equivalent 

items. The SB formula shows that the reliability of the test score goes to 1 if 1 

becomes large. 

(J 48 
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0 36 

0 34 
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ltl;'m d 1f1i,:.ulty 

FIGCRE 2 .  

Relation between item difficulty and the item test correlation assuming 10 equivalent GPCM items 

( a = 1 ) .  We assume that the distribution of 0 is standard normal. 

Remark 1 .  Let Y denote the unweighted sco re.  Assume that Var(E[Yl0]) 
12Var(Pi (0)) and Cov(X;, Xj ) = l (I - l )Var(Pi (0)) so that 

Var(Y) = L Var(Xi ) + L L Cov(X; , X1 ) = L Var(X;) + 1(1 - l ) Var(Pi (0))  
i i jfi i 
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Then, 

2 Var(E[YIB] )  
p -y - Var(Y) 

_ I2 Var(Pi(0)) 
- Var(Y) 
= [ I (I - l ) Var(Pi(0) ) ] _I_ 

Var(Y) I - l 

= [ Var(Y) - I::i Var(Xi ) ] _1_ 
Var(Y) 1 - l 

= [
l 
_ I::i Var(Xi ) ] _I _ _ 

Var(Y) I - l 

This equation is known as Cronbach's alpha (Cronbach1 1951) and it is widely used 

to estimate reliability. Let N denote the number of respondents and Pi the percentage 

of them that have answered correctly to item i .  In practice, Var(Xi )  is estimated by 

Npi (l - Pi) and Var(Y) by the observed variance of the sum-scores. It can be shown 

that Cronbach 's alpha provides an underestimate of reliability if the assumptions do 

not hold. Alternative estimates are surveyed by Verhelst (1998) .  

A bit of algebra shows that , under the present assumptions, Equation (6) sim
plifies to 

, ✓(1 - 1 )  2 1 
ITC; = 

l Px + l � 

1 TC21 - l  2 i 
Px = I - l 

(13) 

(14) 

As expected from Proposition (1) lTCi � �when the number of items is large. 
A plot of the }TC against the difficulty of any of the items in Figure (2) shows 

that the relation is quadratic. This reveals that, in the given circumstances, the ITC 
is not a well-defined measure of "item discrimination power" because it depends on 
the item difficulty, on the dispersion of 0 ,  as well as on the number of items in the 
test (see also Steyer and Eid, 1993, p. 137-138). This is also true under more general 
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circumstances when the items are not equivalent. One should therefore be careful to 

give general rules-of-thumb for the selection of items based on the I TC (e.g. , Ebel 

& Frisbie, 1986). 

3. Reliability in IRT 

3. 1 .  I tem and T es t  i nfor matio n 
Consider a poly( cho )tomous item i ,  with J; + 1 response categories indexed 

0, 1 ,  . . . , J; . The scoring rule is that X; takes the value of the index of the category 

that is chosen; i.e., X; = 2 if category 2 was chosen. This scoring rule makes sense 

if category j reveals more ability than category j + 1 .  The extension of the 2PL 

for polytomous items called the general iz ed par tial credit mo del (GPCM) (Muraki, 

1992). The GPCM implies that 

( 15 )  

where I:�=l ( 0- 0;p ) = 0 ,  O; = ( 0; 1 , . .  , O;J. ) ,  and D; is a constant that is added to make 

sure that I:::=o Pix; ( 0) = 1. The categor y parameters , O;p , are the values of 0 where 

the ICRFs of adjacent categories are equal. lt is assumed that 0;1 < 0;2 < · · · < OiJ; . 

For illustration purposes, we have drawn the lCR Fs of a GPCM item with four 

categories in Figure (3). Figure (3) also shows a plot of the true score as a function 

of 0 ,  and the information function of the item which will be defined shortly. 

Let L(0IX; = ,r i) = Pix; (0) denote the likelihood function of 0 given the observed 
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FIGURE 3 .  

ICRFs, true score and information for an GPCM item with four categories; '5; = (-3, 1 .67, 3) , and 

a; = 1 .  Note that the information function is not unimodal (cf. Akkermans, and Muraki, 1997) 

resp onse. The i tem (Fi sher) i nf ormati on f uncti on is defi ned as 
l n fx, (0 ) = E [ ( :

0 
l n  L (0 1Xi )) 2 1 0] ( 16) 

= P;o (0) ( :
0 

lnP;o(0)) 2 

+ · · · + PiJ/0) ( :
0 

lnP;J, (0)) 2 

= t [ ffe P;x;(0)] 2 

x,=O Pix; ( 0) 

This shows that, in general ,  the item information dep ends on the combined r ate of 
change in the ICRFs. T he item information fu nction of the GPCM is found to be 
equal to o}Var(X;l0) = Var(a;Xi + bil0 ) for some constant b; . Thus, in the GP CM 
the item infor mation equals the conditional measurement error variance of a;X; + bi 

and is consequently dependent up on the scoring rule. It is interesting therefore to 
investigate the effect of different scoring r ules on the information fu nction. 
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When the item respo nses are i ndependent given 0, the te st i nf orma ti on functi on 

i s  the sum o f  the item informatio n f unc tio ns, i . e. ,  T Inf(0) - E{=1 lnfxJ0), and 
E[T lnf(0)] = L E[Infx, (0)] . ( 17) 

i=l 

In the next paragraph, the expec ted test informatio n will be related to the reliability 
o f  esti mated abiliti es. 

3.2. Re liabi li ty of E sti ma ted Abi li tie s 
T he co rrelatio n  between Y and E[Yl0] is no t equal to the co rrelatio n  between 

Y and 0 unless the latter is a li near transformatio n o f  E[Y l0] as in the B ino mial 
mo del ( Ro st, 1996, pp. 1 13-1 19). In mo st applic atio ns, the relatio n between Y and 0 
is po stulated to be no n-l inear, ho wever. When estimates o f  0 are repo rted and used 
it is therefore appro pri ate to pro vide the reliability o f  the estimated ability values 0. 

To derive this reliab il ity we fi rst no te that 
( 18)  

where e = Bv - E[0 10 = 0v] c an be i nterpreted as "measurement erro r" , and E[0 l0 = 

0v] as a "true sco re." S ubsc ript v deno tes a generic subjec t. Reliabi li ty is defined as 
the pro po rtio n o f  true varianc e in the refe renc e po pulatio n and we find that 

pj == Var(E[0 l0] ) 
Var(0) 

_ 1 _ E[V ar(0 j0) ]  
- Var(E[Oj0] ) + E[Var(B l0) ] ' 

(19) 
(20) 

where Var(0 j0)  deno tes the varianc e o f  the estimated values given 0. I t  follo ws fro m 
the previo us disc ussio n that pj may be i nterpreted a measure o f  li near assoc iatio n 
betw een exc hangeable replic ates o f  0. Thi s  means that pj c hanges i f  0 i s  no n- linearly 
transformed and i ts val ue depends o n  the parameteriz atio n o f  the I RT mo del. 

If 0 i s  an unbi ased estim ato r, Var( £[0 j0] ) = Var(0 ) ,  and p� i s  eq ual to the sq uare 
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of c orrelati on bet ween 0 a nd 0 which wa s proposed by G ustafs son (1977 ) a s  a mea sure 
of "subject sepa ra bi lit y" .  Thi s  i s  a lso t rue when E [0/0] = a1 0 + a2 , (a 1 , a2 E lll )  
si nc e 0 i s  t hen a li nea r f uncti on of a n  esti mat or t hat i s  unbia sed a nd t he c orrelati on 
bet ween exc ha ngea ble replicat es i s  i nva ria nt und er li nea r  t ra nsformati ons. In genera l, 
t he c orrelati on bet ween 0 a nd 0 i s  eq ua l t o  

Corr(0, O) = Cov(0 ,  0 � Bias(0))  
Jv ar( 0) V ar(  0) 

Var(0) ---� + Corr(Bias(0) , 0)  
Var(0) 

Var( Bias(0) )  
Var(0) 

(21) 

where 0 d enot es a n  unbia sed esti mat or, a nd 0 a bia sed esti mat or. T he rati o 
Var(0)/ Var(0) i s  t he relia bi lit y of a n  unbia sed esti mat or. 

dashed li ne : variance of e is 1 

solid line :  variance ofe is 0.1 

O '---------L:---'----- ----...L.... -- .....L-------'-

-

---'-----' 
10  20 30 40 50 60 70 30 

num ber of equivalent items 

FIGl:RE 4 .  

Plot of pj against the number of equivalent items in a test. The curves differ in the expected 

information of each item and the dispersion of 0. 

When a ML or Wa rm est imat or (War m, 1989) is empl oyed, Var(0 / 0 )  is equa l t o  
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the inverse of the test information function, Ti  nJ- 1 ( 0 ) ,  when the number of  items 

becomes large. If E[Var(B/0)] = E[1'lnf(0)J - 1 is substituted in Equation (20) , and 

bias is ignored (i .e. , Var(E[B /0] )  = Var(0) ) ,  it follows that 

2 
E[Tlnf(0)] Var(0) 

Po � l + E[Tlnf(0)] Var(0) (22) 

(see Thissen, 1990; Mellenbergh, 1994, Equation 22; Samejima, 1994, Equation 21) .  

Given Var(0), the reliability depends exclusively on E[Tlnf(0)] . Thus, i f  one re

ports ability estimates, it is desirable to have high expected test information in the 

population of interest. An alternative approximation to p� is discussed by Verhelst, 

Glas and Verstralen (1995, p. 64) , and Rost (1996, pp. 353-354) . 

3.3. The Reliability of Classifications 

Suppose that a test-score is used to classify examinees in two mutually exclusive 

categories on the basis of a predetermined observed score cut point c, preferably 

derived using some sort of standard-setting scheme. The observed cut point may 

also be a score corresponding to a latent cut point. Furthermore, subjects with test 

scores less than c will fail the test and subjects with a score equal to c or over c will 

pass. Now let IP denote whether students pass. Then, assuming Cl, the conditional 

probability of passing is equal to: 

max(Y) 

Pr(Jp = l /0) = L Pr(Y = y /0) 
y=c 

(23) 

(24) 

The marginal probability of passing equals Pr(Jp = 1) = • E [Pr(Jp = 1 /8)] . The 

calculation of Pr(Y = y /8) is discussed in the Appendix. 

If we apply the definition of reliability, given in Equation (1 ) ,  to the variable lp 
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we obtain the reliability of classification; that is, 

2 Var (E[Ip J0]) Pctas = Var(E[lp J0]) + E[Var(Ip J0)] 
E[Pr(Ip = 1 J0)2] - E(Pr(I" = l j0)] 2 

- E[Pr(lp = l j0)] - E[Pr(Ip = l j0) ]2 • 

(25) 

It was demonstrated earlier that P�tas equals the correlation between classifications 
across two exchangeable administration of the test. It can also be shown that clas
sification reliability equals Cohen's kappa (Cohen, 1960) when it is computed using 
two exchangeable administrations of the same test. For later reference this is stated 
as a proposition: 

Proposition 2. Assum ing exchangeab il it y, cl assifi cat ion r el iab il it y  eq ual s  C ohen' s 
k appa (Cohen, 1960) . 

Pr oof .  Cohen ' s  k appa is eq ual t o  
(26) 

w her e P0 = E[P0 (0)] d enot es t he ob ser ved agr eem ent and Pc = Pr(I�1 ) = 1)  Pr(l?) = 

1)  + Pr(l�1 ) = 0) Pr(I�2) = 0) d enot es t he agr eem ent ob ser ved b y  change. S uper scr ipt 
( r) d enot es t hat t he r and om vari abl e is r eg ist er ed at t he rt h ad m inistr at ion. L et 1 ir ) 

d enot e passing on t he rt h ad m inistr at ion. U nd er exchangeab il it y, 

= E[Pr(l�1 ) = 1, 1�2) = l j0)] + E[Pr(1�1
) = 0, 1�2

) = 0j0) ] 
= E[Pr(I?) = l j0) Pr(!?) = l j0) ]  + E[Pr(I�1 ) = 0 j0) Pr(I�2) = 0J0) ]  

= E[Pr(lp = l j0)2 ] + E[(l - Pr(JP = l j0))2 ]. 

T he l ast equ al it y f oll ow s  since Pr(Ji 1 ) = l j0) = Pr(l?) = l j0) , by assu m pt ion. J n  
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the same way w e  fi nd that 

Pc = (E [Pr (Ip = 110 )] )2 + ( 1  - E [Pr (Ip = 110 ) ] )2 . 
If w e  expand P0 and Pc , and sub sti tute the resulti ng expressi ons i n  E quati on (26) 
w e  fi nd that: 

T hi s  ends the proof. 

2Var(Pr (JP = 110) ) 
K = -- --------,------2E [Pr(Jp = 1 [ 0))2 + 2e[.Pr( lv = 1 10)] 

Var(Pr(Ip = 110) ) E[Pr (Jp = 1 10 )] - E[Pr (Ip = 110)] 2 

Var(Pr (Jp = 1[0) ) Var(E[lpl0] ) Var(Ip ) Var(Jp ) 
□ 

W e  hav e seen occasi ons wher e  deci si on r eli abi lit y  could act uall y be calculat ed 
as C ohen' s kappa because t her e wer e t wo i ndependent r ati ngs of t he sam e subj ect s. 
A s  seen i n  Pr opositi on (2) , exchangeabilit y im pli es t hat kappa cannot be negativ e. 
If it i s  found t o  be negativ e, thi s i s  a si gn that exchangeabi lit y  i s  vi olat ed. 

Im agi ni ng two exchangeable admi ni str ati ons of t he sam e exami nati on, the pr ob
abili ty of consi st ent classificati on giv en 0 equals 

P0 (0) = Pr(!?) = 1, 1�2) = 1 10)] + Pr( l�l )  = 0, 1�2
) = 010 )  (27 ) 

[max(Y) ] 2 [c- 1  ] 2 
= � Pr(Y = y [0 )  + ?; Pr(Y = y [ 0 )  (28) 

T hi s  fu ncti on i s  call ed t he test characteri stic deci si on curve (TCDC) . T he pr obabi l
i ty of i nconsi stent classi ficati on i s, of cour se, 1- PO ( 0) .  When t he TCDC i s  i nt egr ated 
ov er the r efer ence popul ati on we obtai n t he pr obabili ty of consi st ent cl assifi cati on 
when the test i s  appli ed t o  t he r efer ence populati on usi ng y = c as a cutoff. T hi s  
quanti ty m ay pr ov e t o  be useful i n  vi ew of the curr ent tr end t o  dem and that testin g 
or ganiz ati ons publi sh pr oc edur es and pr ovi de form al justifi cat ion for the q uali ty of 
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their examinatio ns. 

In general, respo nd ents are classifi ed into C mu tu ally exclusiv e catego ries u s
i ng thei r test sco re. L et le (c = 1, . . .  , C )  d eno te a rando m v ariable that is 1 if a 
respo nd ent' s test sco re fa lls in the cth catego ry, and O o therwise. If C > 2 ,  T he 
weighted v ersio n  o f  Co hen' s kappa (Co hen, 1968) may be taken as a weighted index 

of reliability of classification. To be mo re specifi c: 

where 

and 

2 P0 - Pc 
Pctas,w = l _ Pc , 

Po = E [Po (0)] 
- E [t t, w;; Pr(!; - ! I D) Pr(/; - J IO)l , 

C C Pc = L L Wij Pr(J; = 1 )  Pr(Jj = 1 )  
i=l j=l 

C C 

= L L Wij E [Pr(I; = ll0)]E [Pr(lj = 1 10) ]. 
i=l j=l 

(29) 

(30) 

(31 )  

Expressio ns similar to (23) may be u sed to calcu late Pr(!; = 110) , i = 1, . .  , C.  T he 
weights, W;j , are cho sen o n  su bstantiv e grou nd s  to express the relativ e similarities 
amo ng the catego ries; Wij = 1 if i = j and O if i -/- j yield s  Co hen' s kappa. Fo llo wing 
Y ang en Chen (1978), we assu me that O :::; Wij :::; 1,  w;; = 1,  and W;j = Wji ,  for all 
i ,  j = 1, . . . , C .  T his is no t a serio us restrictio n o n  the weights. If test co nstru cto rs 
d ecid e that the nu mbers d;j (i , j  = 1 ,  . . .  , C )  express the d ifference between the 
catego ries, the weights can be calcu lated as 

Wij = 1 - ( . max ·  • d - -) l ,J t] 
(32 )  

A lternativ e ways to qu antif y and inv estigate the qu ality o f  classificatio ns are 
discu ssed by L ivingsto n  and L ewis (1995), V erstralen (19976), S luij ter (1998), and 
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Spray and Reckase (1994). Lee, Hanson and Brennan (2002) also consider Cohen's 
kappa as an index for the quality of classification. 

4. Applications 

In this section we discuss a number of applications involving the combined 
use of CTT and IRT. In the first paragraph, we illustrate that reliability can be 
determined from a single administration of a test using numerical integration. ln the 
second paragraph, we demonstrate how relations between test characteristics, the 
population of test takers, and test scores may be explored graphically. In the third 
paragraph, we demonstrate how the correlation between latent traits measured by 
different tests can be calculated. In the fourth paragraph, we discuss the selection 
of items from a pilot test when the pilot test could not be administered to the 
intended population. We describe how we assist item writers in the construction 
of an examination and also how we determine the reliability of classification of an 
existing examination. Finally, in the fifth paragraph we briefly describe !RT-based 
test equating. 

4 . 1 .  C alcul ating Rel iab il ity w ith a s ingl e Adminis tr ation of a T es t  
The easiest application is to use formulae in the first section to calculate reli

ability using a single test administration.3 To illustrate this possibility, we use the 
so-called "KFT data" that are listed on page 99 and 100 in the book by J iirgen Rost 
(1996).4 The data consist of responses to five items by 300 students. The items were 
found to conform to a theory-based restriction of the Rasch model called the linear 

3Some of this may be done with the OPTAL program (Verstralen , 1997a) which is part of the 

OPLM software. 
4The complete dataset with 15 variables comes with the WINMIRA software ( Davier, von , 

1994) . The present items are the first five items. 
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logisti c t est m odel (Fis cher,  19 95) . A r eport of t he lRT a na lysis ca n be fou nd i n  
(R ost, 19 96 , p. 248), or B echger, V erstra len a nd V er helst (2002, s ecti on 6). T his i l
lustrat es t hat a n  IRT a nal ysis ma y pr ovi de i nformati on a bout t he it ems t hat wou ld 
not be a vai la ble i f  one is confi ned t o  classi ca l  it em a na lysis .  Mar gi na l  maximum 
likeli hood estimati on was us ed t o  obtai n estimat es of popu lati on param et ers; t he 
popu lati on distri buti on was assum ed t o  be norma l a nd t he it em param et ers wer e 
r estri ct ed t o  sum t o  z er o  t o  a chi eve i denti ficati on of t he m odel. 

T he popu lati on m ea n  was estimat ed t o  be -0. 158 a nd t he sta ndar d deviati on 
1. 950. T he tra pez oi da l  ru le (Da vis a nd Ra bi nowitz , 1984, cha pt er 2, s ecti on 3 .4) was 
us ed t o  a ppr oximat e t he ex pectati ons a nd ca lculat e t he va lu es i n  t he followi ng ta bl e. 

2 Pxi E[Xi] IRCi 

it em 1 0.37 0.63 0.5 9 
it em 2 0.38 0.56 0.60 
it em 3 0.38 0.49  0.61 
it em 4 0.38 0.42 0.60 
it em 5 0.36 0.28 0.56 

P§ = 0.74 p} = 0.75 

It tur ns out t hat t he it ems ar e near ly para llel s o  t hat Cr onba ch's a lpha is, i n  t his 
cas e, onl y s li ght ly l ower t ha n  t he estimat ed t est r elia bi lit y. T he r elia bi lit y of t he 
u nwei ght ed t est s cor e equa ls t hat of t he estimat ed a bi liti es .  T his is t o  be ex pect ed 
si nce t he u nw ei ght ed s cor es carri es a ll t he i nformati on us ed t o  estimat e a bi liti es 
a nd t he r elati on bet ween u nwei ght ed s cor es a nd estimat ed a bi liti es is a ppr oximat ely 
li near. 
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4 - 2. i nves tigate Rel ations Betw een the JRT model, the Popul ation, and Prop er ties 
of the I tems and the Tes t  

Plot s ar e oft en i nstr ument al t o  il lustr at e  r elati ons betw een t est ch ar act er isti cs 
as det er mi ned by an IRT model, th e populati on of t est t aker s, and t est scor es, es
peci ally w hen such r elati ons can not be descr ibed analyti cally. For exampl e, L or d  
(1 953; L&N , fig. 16 . 14 . 1  thr ough 16 . 14 . 6) uses plot s of th e r elati on betw een abi lit y  
and tr ue scor e t o  illustr at e  h ow th e di stri buti on of th e tr ue scor e depends on th e dis
cr imi nati on pow er of t he t est . U si ng numer ical i nt egr ati on t o  calculat e expect ati ons, 
if necessar y, t he for mulae pr esent ed her e may be used t o  pr oduce such pl ot s. 
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Expected test information plotted against mean item difficulty for varying item category parame

ters. Mean difficulty increases row wise. The model used was a generalized partial credit model 

(Muraki , 1992) . 

T her e w er e  vari ous exampl es i n  t he pr evi ous sect ions, such as Fi gur e  (2 ) . lt 
1 s  i nt er esting t o  invest igate h ow a parti cu lar t est wi ll beh av e  wh en adm inist er ed 
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to differen t popul ation s. An ill ustr ation is pr ovi ded by F igure (5) whi ch sh ows th e 
rel ation between th e expected test in formation an d th e mean item diffi cul ty in a 
stan dard n ormal popul ation. Th e mean diffi cul ty was v aried by v aryin g  th e v al ue of 
th e mean of th e popul ation . Th e test con sists of 10 bin ary items. All discr imin ation 
par ameters were set to 1 but th e category parameters were systematicall y v aried 
ov er th e pl ots. Th e pl ot in th e upper l eft  corn er was pr oduced wi th all category 
par ameters equal to z ero. In th e en suin g  pl ots, i tems 1 to 4 were systematicall y 
made more easy wh il e  items 6 to 1 0  wer e graduall y made more diffi cul t. Th ese pl ots 
ill ustrate th at th e expected test in formation ( an d p�) is n ot n ecessar il y h igh wh en 
th e mean item diffi cul ty i s  cl ose to 0.50. Th e test prov ides l ittl e in formation about 
th e abil ities of th e respon den ts if it con sists of items th at are eith er v ery diffi cul t or 
v ery easy for th e popul ation of in terest ( see al so M uraki, 1993) . 

On e more ill ustration is prov ided by F igure (6) , wh ich sh ows th e effect of th e 
discr imin ation parameter on th e T CD C. I t  is seen th at th e T CD C  becomes more 
con cen tr ated wh en th e discr imin ation parameter in cr eases. Th is ill ustrate th at th e 
qual ity of a decision in creases wh en items discrimin ate better. 

4 -3. Calculating the Correlation Between Two Latent Traits 

L et Corr( 0, () den ote th e correl ation between th e estimates of 0 an d estimates 
of some oth er l aten t tr ait e. If both estimates are un biased, it can be sh own th at 

Corr(0, 0 = Corr(B , f) /�, (33) 
wh ere Corr(0, e) den otes th e correl ation between 0 an d e .  Suppose we h av e  two 
tests with on e test bein g a measure of a l aten t tr ait 0, an d th e oth er test a measure 
of a l aten t  tr ai t e. Equati on (33) sh ows th at Corr(0, f) may be much l ower th an 
Corr( 0,  0 if th e estimates ar e un rel iabl e. Th is is call ed "atten uation . "  

Whil e Corr(0 , t )  may be est imated fr om th e data, we n eed th e rel iabil it ies in 
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Plots illustrating the effect of the discrimination parameters on the TCDC. The TCDC are based 

upon the model used to draw Figure (8) . 

order to correct Corr(0, !) for attenuation and calculate Corr(0 , �)- There are at 

least three ways to calculate Corr(0, 0- First, when either the ML or the Warm 

estimator is used, approximate reliabilities can be obtained from Equation (22), 

using numerical integration, if necessary, to calculate the expected test information. 

A second procedure becomes feasible when the estimated 0 is a one-to-one function 

of the test score alone; i.e. , when Y is minimal sufficient for 0 as in the Rasch model. 

The IRT model gives the distribution of the test score Y given 0; g(Y = y l0) ,  where 

y are the values taken by Y.  Each value y results in an estimated ability 0(y) and 

g(Y = y l0) = g(0 = 0(y ) l0) is the distribut ion of the estimated abilities given 0. 
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The variance of 0 given () may now be calculated as 

and 

Var(0 l0) = E[02 j0] - E[B l0]2 (34) 

= � 02 (y )g(O = O(y ) 10) - ( � O(y )g(O = O(y ) 10) ) ' ,  

Var(E[0 l0]) = E[E[0 10] 2] - E[E[B l0]] 2 

(35) 

We then calculate the reliabilities via Equation (19) using numerical integration to 

approximate the expectations, if necessary. Note that the first procedure is based 

upon the assumption that there is no bias and E[0 l0] = 0. The second procedure 

is expected to be more robust against bias in the estimates. Finally, the correlation 

may be estimated using the method of maximum likelihood, considering the item and 

population parameters known. This procedure was described in detail by Verhelst 

and Veldhuijzen (2002) in an internal report. 

4.4- Constructing Examinations 

Selecting Items From a Pilot Test This application is discussed in the context of 

a real example. The state examination of Dutch as a second language is a large-scale 

examination of the ability to use the Dutch language in practical situations. There 

are separate examinations for listening, speaking, writing, and reading. A GPCM 

is used to scale the data and equate an examination to a reference examination to 

ensure that the ability required to pass the examination stays the same over years. 

Estimated abilities are transformed to scale scores that serve as examination marks. 

In this paragraph, we will briefly describe how we assist the item writers with the 

construction of new examinations for listening and reading. An alternative equating 

procedure is discussed in the next section. 

The construction of a new examination is preceded by a pilot study which entails 
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the administration of new items to a sample of candidates that participate in a 

language course. The purpose of the pilot study is to select the items for future 

examinations. After the data have been collected, they are added to a large data 

set which contains the data obtained from previous pilot studies and examinations. 

This data set is called the data bank. 

&ljed:s 
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Rdmnoa e<a111Ui.cn 

,-----'----. 

F!G CRE 7 .  

�m 
,----,,'----; 

Schematic representation of the data bank. 

Schematically, the data bank can be represented by a matrix where the rows are 

subjects and the columns are items. In Figure (7) , the shaded areas represent realized 

item responses, while the blank areas represent missing responses. The systematic 

pattern of missing and observed data arises naturally because items are administered 

in so-called "booklets" .  While an examination usually consists of a single booklet, 

the items are spread over various booklets in the pilot to lessen the burden for 

respondents and allow a large number of items to be tested. The reference test 

is a subset of the items in the data bank. This reference test was chosen by the 

examination committee considered a valid and reliable measure of the ability of 

interest. The reference population is the population of examinees who are generally 
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more able than the subjects that partici pate in the pi lot study . 
T he an aly sis of the pi lot d ata con sists of three stages. T he IRT mod el used i s  

the GP CM. We first establi sh a fi ttin g  GP CM usin g all relevan t parts of the d ata 
bank and recommend the item writers to di scard items that d o  n ot con form to the 
mod el, and/ or items with n egative or very low a -parameters. In the second stage, 
we give the item writers three add ition al pieces of in formation . Fi rst, we provid e 
the i tem diffi culti es in the refe ren ce populati on . T he examin ati on committee stri ves 
at diffi culties between 0.50 and 0. 70. Second, we supply expected item in formation 
and recommend that those items be in clud ed that have the hi ghest values. T hus, we 
in tend to maxi miz e  the expected test in formati on of the n ew examin ati on and the 
reli ability of the estimated abi li ti es. T hird ly, we pr ovid e  I RCis usin g the score on the 
refe ren ce examin ati on as a rest-score. T hese IRCs may be in terpreted as a measure 
of the fi t  of an item to the refe ren ce examin ati on . Wi th thi s in forma ti on, and und er 
strict survei llan ce by the examin ati on commi ttee, the item wri ters then compose 
a n ew examin ation. On ce an examin ation has been con structed, we estimate the 
reliabi lity of the esti mated abili ties. T hi s  i s  the third stage of the an aly sis. T he item 
wr iter s find i t  con ven ien t to use the common statistics from CTT .  

T he item d iffi culties have been repor ted to the item wri ter s for some y ears n ow 
and it appears that we have been quite successfu l in pred ictin g the item diffi culties in 
the actual examin ati on s. When, for in stan ce, we look at the last nin e examin ation s 
of listen in g, the realiz ed item diffi culties ran ged between 0.63 and 0.68 as in tend ed. 
We have n ot y et gain ed en ough exper ien ce wi th the expected in formation or the 
IRCs. 

The Reliability of Classifications The examin ation s di scussed in the pr ev10 us 
par agraph ar e high- stakes examin ation s. In ord er to gain in sight in the qual ity of 
t he d ecision mad e with the se t ests, we hav e dr awn 1 - P0 ( 0 )  in Fi gur e (8) for 
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A TCDC for  a test with 40 binary items. The GPCM was estimated with 2500 examinees using 

the method of marginal ML (Muraki, 1992).  

one of t he exami nati ons. A s  one mig ht expect ,  1 - P0 (0) i ncreases t o  0.5 when 0 

becomes closer t o  t he abi lit y  0c correspondi ng t o  t he cut off .It i s  found t hat 0.25 ::; 
1 - P0 (0) ::; 0.50 for about 16% of t he exami nees. T hi s  percent ag e i s  d epend ent 
upon t he post ul at ed populati on di st ri buti on. In t hi s  case, it can be arg ued t hat t he 
di st ri buti on i s  unlikely t o  be normal as t he exami nees constit ut e  a mi xt ure of of 
i mmig rant s from many di fferent count ri es. T he Ro t est , i ncorporat ed i n  t he OPLM 
soft ware (G las and V erhelst,  19 95) , and hi st og rams of esti mat ed abi liti es confirm t hi s  
arg ument. When we consid er t he di st ri buti on of esti mat ed abi liti es, t he menti oned 
percent ag e ri ses from 16 t o  35% . T hi s  percent ag e appears much t oo hig h  for a hig h
st akes exami nati on but ,  was t o  be expect ed . Fi rst ,  hig h  percent ag es of i nconsi st ent 
classi ficati ons have been found before usi ng a proced ure t hat assumes t hat t he score 
di st ri buti ons are bi vari at e normal wit h  correlati on py (V erhelst ,  2002 a) . Second, 
we look ed at d at a  fr om a n  exami nati on of the a bi lit y t o  speak . The exami nee ' s  
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per for mance is eval uated twice by independent judges so th at we ar e able to obser ve 
th e agr eement between two independent evaluations of th e exam inees and obtain 
an estimate of th e r eliability of classification. O ver examinations, this r eliability is 
found to be r em arkably stable at a value of about 0.46 .  

4 -s. Test Score Equating Using an !RT Model 

A djusting scor es on diff er ent test form s  so th at th ey can be compar ed and used 
inter ch angeably is called test equating. O nce an examination is constr ucted and ad
minister ed to examinees, it is desir able th at th e scor es be equated to th e scor es on 
th e r efer ence exam to ensur e  th at th e ach ievement of pr esent examinees be compa
r able to th at of pr evi ous exam inees. Th is aim could be achi eved by means of an !RT 

based score equating pr ocedur e  (Z eng and K olen, 19 95) . Th is pr ocedur e  consist s of 
thr ee steps. I n  th e fir st step, th e par amet er s of an IRT m odel ar e est im ated. I n  th e 
second step, th e t est scor e distr ibut ion of r espondents fr om th e r efer ence popul ation 
on th e new exam ination is determ ined based on th e estim at ed it em and population 
par ameter s obtained in th e fir st step. S pecificall y, for a scor e point y th e expected 
frequency can be calculated as: 

nref Pr(y) = nref � f Pr(xl0)9reJ (0)d0 (36 ) 
x:�i wixt =Y 

= n"'J I Ll::�a;ay I,I Pr{X; = Xi 1 0 )] g"'J ( 0)d0 (37) 

= nref f Pr(Y = Yl0)9reJ (0)d0 , (38) 

wh er e nref is th e number of r espondents in th e sam pl e fr om th e r efer ence population, 
x a r esponse vector on th e pr esent exam, and 9reJ (  0) th e ability density fu nct ion 
in th e r efer ence popul ation. Th e calculation of Pr(Y = yl0) i s  discussed in th e 
A ppendix. In th e thir d step, th e t est scor e distribution is used in th e deter mination 
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of equivalent scor es accor ding t o  any of t he available "obser ved-sc or e" t est equat ing 
met hods ( see K olen and Br ennan, 1995 for a sur vey of such met hods) . Equiper cent ile 
equat ing, for inst ance, is based upon t he ar gument t hat t he passing scor e should be 
chosen in such a way t hat t he perc ent age of ex aminees from t he r efer ence populat ion 
t hat pass should be equal on t he pr esent ex am and t he r efer ence ex am. 

5 .  G ener at ing Ex changeable Test A dministr at ions t o  O bt ain U nbiased E st imat es 
of St ati st ics of I nt er est and a L ower B ound for t heir Sampling V ar iabilit y 

A ll calculat ions t hat wer e pr oposed so far ar e pr edicat ed on knowledge of t he IRT 
model and t he distr ibut ion in t he populat ion of int er est . In pr act ice, t he par amet er s 
of t he IRT model and t he populat ion distr ibut ion ar e est imat ed and we need t o  
t ake t heir sampl ing err or int o account .  H er e  we descri be a M ont e C ar lo pr ocedur e 
t o  obt ain a number of ex changeable samples. T he gener at ed dat a can be used t o  
est imat e t he st at ist ic of int er est and t he var iance over gener at ed samples will pr ovide 
a consist ent est imat e of it s sampling var iance. 

L et >. denot e all par amet er s of t he l RT model and t he populat ion distr ibut ion. 
Her e, we t ake a B ayesian point of v iew and c onsider t he par amet er s r andom var iabl es 
wit h pr ior distr ibut ion Pr (0 ,  >.)  = Pr (0) Pr (>.) . F ir st ,  let y(i)  and y(2) denot e t wo 
exch angeable t est or it em scor es; i. e. , 

We assume t hat "nat ur e" has pr ov ided us wit h an ident ical and independent ly dis
tr ibut ed ( i. i. d. )  sample fr om Pr( Y( 1 ) ) .  N ow w e  wish t o  gener at e v al ues of y(2) suc h 
t hat th e gener at ed dat a  a nd th e observ ed dat a ar e r ealiz at ions fr om Pr(Y( 1 J ,  y(2 l ) . 
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Th e obser ved data ar e kept c onstant and we gener ate y(2) fr om Pr (Y(2) ly(l ) ) ,  wh er e 

P (y(l )  y(2) ) Pr(Y(2) 1 Y( l l ) =  r ' (40) Pr(Y(l l ) 
= j P (Y(2l lB .\ ) Pr(YC 1 l ! B .X) Pr(B) Pr(.-\) d(O ,,\ ) (4l ) r ' Pr(Y(1 ) )  ' 
= f Pr(Y(2) 1 0 ,  ,,\ )  Pr (0 , >. I Y( 1 ) ) d(0 , ,,\ )  (42 ) 

To  thi s  ai m, we employ th e meth od of c omposi ti on ( e. g. ,  T anner ,  1993 , sec
ti on 3 .3 .2 )  and gener ate an i . i. d. sampl e from Pr(Y(2) 10 ,  ,,\ )  Pr(0, .\ I Y( l l ) .  Fir st, 
we must dr aw ()"' and ,,\* fr om th e posteri or di stri buti on Pr (0 , .\ \ Y(l ) ) .  Th en, we 
must dr aw yi2

) fr om Pr(Y(2) l0* , ,,\* ) .  Th ese steps ar e r epeated N ti mes to yi eld 
th e desir ed sampl e; ( yP) , yi2

) ) ,  . . .  , ( y�) , y�) ) .  We  c an do so r epeatedly and gener ate 
( 

( l) (2) (B) ) ( (l )  (2) (B)) E h f h 1 • d" • 1 h Yi , Yi , . . .  , y1 , . . .  , YN , YN · · · , YN . ac o t e samp es 1 s  c on 1 ti ona upon t e 
obser ved data. Th e mai n pr obl em i s  to c onstr uc t an algori th m  to pr oduc e a sample 
from Pr(O , .\ I Y( l) ) ; th e nex t  step i s  easy; sampli ng data from Pr(Y(2) \0, ,,\ )  i s  si mply 
gener ati ng data fr om th e item r esponse model. Th e followi ng pic tur e sch ematic ally 
depic t th e pr oc edur e. 

y(1
) 

__ .,..,,,. 

).. // 
/./' 

---...__ ---�--

-�,. �-

FIGCRE 9 .  

C o  rr(0 1), Y1CZl-_l 

C o rr(0 1
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C o rr(0 1
), Y1CZl-_l 

A schematic display of the sampling procedure. 



By averaging the correlations we obtain E[ C orr(Y(l ), y(2) ) 1 Y(1 )] . Since 

the estimator is unbiased. However 

3 1  

and we have merely obtained a lower bound of the variance that we want. The reason 
is that y(i )  is fixed. 

Since Pr(0, .-\ /Y(1 l)  = Pr(0/ Y(ll; .-\) Pr(.X / YUl), we write 

Pr(Y(1 ) , y(2l) = j j Pr(Y(2l /0, .-\) Pr(Y(l l / 0, .-\) Pr(0) Pr(.-\)d0d.-\ 
= j [J Pr(Y(2l /0; .X )  Pr(0/ Y( 1) = y(ll; .-\ )dB] Pr(.-\ /Y( 1 ) = y(l l )d.-\ 

If we draw from the probability within brackets, we ignore uncertainty in the item 
parameters and consider the:µi given. 

The main practical problem is to construct an algorithm to produce a sample 
from Pr(0, >. /Y(ll). The next step entails generating responses from an IRT model 
which is quite easy. To produce samples from Pr(0, ,,\ jy(t) ) a Markov Chain Monte 
Carlo (MCMC) estimation algorithm for the urr model can be applied. A number of 
MCMC estimation algorithms are developed for a wide variety of IRT models includ
ing the two parameter logistic model (Patz and Junker, 1999a), the two-parameter 
normal ogive model (Albert, 1992; Baker, 1998),  and the Rasch model (Kim, 200 1 ;  
Maris and Maris, 2002). These algorithms have been generalized to models with 
multiple raters, multiple item types and missing data (Patz and Junker, 1999a,b ), 
models with a multi-level structure on the ability parameters (Fox and Glas, 2001), 
latent class models (Hoijtink and Molenaar, 1997), models with multidimensional 
latent abilities (Beguin and Glas, 200 1) ,  Bock's (1972) nominal response model, 
mixture item response models (Wollack. Bolt , Cohen and Lee, 2002) , the conjunc-
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tive Rasch model, the graded response model, the Parella model, and a hierarchical 
Rasch model (M aris and M aris, 2002 ) . A ll these estimation procedures have in com
mon that draws fr om the posterior distribution of the parameters, Pr( 0 ,  A I y(i) ) are 
generated during estimation. 

6 .  D iscussion 
O ur aim has been to clarif y relations between CTT and I RT ,  generaliz e concepts 

from CT T to I RT, and demonstrate that, when an appropriate IRT model is fo und, 
one is able to calculate and use classical indices for properties of items and test in 
situations where CT T could normally not be applied. We have described a number 
of applications taken fr om our daily work ranging fr om issues in test construction 
to analysis of examination data. O ther applications of this kind have been di scussed 
by M ellenbergh ( 1994, pp. 227-229) ,  who explains how an I RT model can be used 
to construct tests that are parallel in the CTT sense, or K olen, Zeng, and H anson 
( 1996) who use I RT to estimate the standard errors of scale scores. 

We have considered monotone, unidimensional I RT models but this is not es
sential. G eneral formulae have been presented here with the aim to fa cilitate the 
derivation of reliability, and other CTT concepts using any IRT model. Consider, 
as an example, a general latent class model where ability is a discrete variable and 
each value of the ability defines a latent class. With this model, and binary i tems, 
test reliability can be shown to be equal to 

2 Lg Pg (Li Pig )
2 

- (Lg 
pg Li Pig) 

2 

py = 2 ( ) 2 , L9 Ps (Li Pis ) - Lg Py Li Pig + Lg PY Li Pig ( l  - Pig ) (43 ) 
where Lg sums over latent classes, Li sums over items in the test, pg 

denotes the 
probability of being in class g, and Pig denotes the probability to answer the i -th 
item correct when one is a member of class g. It is not immediately clear to us 
what E quation ( 43 )  means bu t it appears to be related to the ability to discriminate 
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between the classes; that is, p} = 1 if there are one or more items that distinguish 

perfectly between the latent classes. Here we see an example where IRT offers more 

specialized indices to judge the quality of the items and the test ( e.g., Rost, 1 996, 

pp. 1 1 53-159) . 

It must be noted that all calculations are predicated on the validity of the IRT 

model ,  and the availability of good estimates of the distribution in the population 

of interest. Further, it is necessary that the model is sufficiently parameterized but 

at the same time simple enough to admit (approximate) calculation of moments in 

the population of interest. To asses IRT model fit, most software packages provide 

a myriad of goodness-of-fit indices and ways to test IRT models are continuously 

being developed. 

When an IRT model is found appropriate, we may get an impression of the 

sample variance involved in our calculations by varying the values of the parameters. 

For example, if the population distribution is assumed normal with mean µ and 

variance at an approximate 95% interval of uncertainty may be constructed by 

varying a-0 between a-�low) = a-0 - l.64SE and a-�high) = a-0 + l .64SE, where SE 

denotes the standard error of the standard deviation. For example, we calculate the 

expected test information in a population of interest with a-0 = a�low ) to get the lower 

end and then with a0 = a�high) to get the upper end of an approximate 95% interval 

around the expected information. We choose to vary a0 since it is estimated with 

much less precision than the mean and it is the main determinant of CTT indices. 

For example, in the analysis discussed in Section 4. 1 ,  SE = 0 . 149, which provides 

the interval : p} E [0 .70 - 0 . 78] . A more promising method is to use MCMC methods 

to generate exchangeable replications to obtain estimates of CTT statistics and ( a 

lower bound of) their sampling variance. 
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7. Appendix: Calculating Pr(Y = yl0) 

The term within brackets in (24) equals an elementary symmetric function of 
order y with arguments Pr(X1 = x 1 l0), . . .  , Pr(Xr = xrl0) and it can be calculated 
using any algorithm for the calculation of elementary symmetric functions (e.g., 
Fischer, 1 995, p. 136-1 37; Verhelst, Glas and Van der Sluis, 1 984). Alternatively, 
Pr(Y = yl0) can be calculated using a slight extension of the recursion formulae 
that are given by Lord and Wingersky (1984) which we discuss now. 

Consider first a number of dichotomous items. Let Y denote the number correct 
score, and Prr(Y = yl0) the probability of number correct score y over the first r 
items, given ability 0. A moment of thought will allow you to see that Pr2 (Y = yl0) 
is related to the item scores in the following way: 

Pr2(Y = yl0) = 
( 

1 Pr(X1 = 010) Pr(X2 = 010) if y = 0, 
� Pr(X1 = 1 10) Pr(X2 = 010) + Pr(X1 = 010) Pr(X2 = 1 10) if y = 1 
l Pr(X1 = ll0) Pr(X2 = 1 10) if y = 2 

( ! Pr1 (Y = y l0) Pr(X2 = 010) if y = 0, 
= { Pr1 (Y = yl0) Pr(X2 = 010) + Pr1 (Y = y - 1 10) Pr(X2 = 1 10) if y = 1 

I 

I l Pr1 (Y = y - 1 10) Pr(X2 = 110) if y = 2 

If we continue to r =  2, r = 3, etc . ,  we find that in general we may replace Pr2 (Y = 

yl0) by Prr (Y = yl0), Pr1 (Y = y l0) by Prr -1 (Y = yl0), y = 1 by 0 < y < r, and 
y = 2 by y = r. Thus we obtain the recursion formulae given by Lord and Wingersky 
(1 984). 

We may use to same line of reasoning to derive recursion formulae for polytomous 



items. The result is the following: For 1 < r � J, 
( 

! Prr- 1 (yj0) ( 1  - Ef:;,,1 Phr) if y = 0 
I 
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Prr (Y = Y IO) = � Prr- 1 (yl0) ( 1  - Ef:;,, 1 Phr ) + L�1 Prr-1 (Y - hl0)Phr if O < Y ::;; Ar- 1 
I ' 
l E�max(l ,y-Ar- i l  Prr- 1 (Y - h j0)Phr if Ar-1  < Y � Ar 

is the maximum score on item r. 
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