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Abstract

The present paper is about relations between Classical test theory (C'I'T") and item
response theory (IRT). It is demonstrated that IRT can be used to provide CT'1'

statistics in situations where CT'I" fails.






1. Introduction

Notwithstanding the many developments in item response theory (IRT), classical
test theory (CTT) continues to be an important framework for test construction. It
is therefore useful to have a clear idea about the relations between IRT and C'1'T.
This should improve our appreciation of both theories and facilitate communication
to researchers and item writers who are frequently more familiar with C'I'T than
with IRT. In this paper we survey some of the relations between C'I'l' and IRT, and
discuss novel applications of CTT that are feasible using IRT.

This paper is structured as follows: Section 2 provides a brief outline of C'I'T
and its relation to IRT. In Section 3, the CTT concept of reliability is applied in an
IRT context. We discuss reliability of estimated latent trait values, and reliability of
classifications using a test score. In Section 4, five applications are discussed: (1) to
illustrate that reliability can be determined from a single administration of a test;
(2) to demonstrate how relations between test characteristics, the population of test
takers, and test scores may be explored; (3) to demonstrate how the correlation
between latent traits measured by different tests can be calculated; (4) discuss the
selection of items from a pilot test when the pilot test could not be administered
to the intended population; (5) to describe IR1-based test equating. The paper is
concluded in Section 5.

This paper is written in the spirit of work by Verstralen (1997a), Lord (1983),
Nicewander (1993), Thissen (1990), Mellenbergh (1994; 1996), and Steyer and Eid
(1993) and there is some overlap between these papers and this paper. Naturally,
we shall often refer to the time-honoured work by Lord and Novick (1968), which

will be abbreviated to L&N just like a friend is often known by a shortened name.



2. Classical Test Theory From an IRT Point of View
2.1. General Introduction

Let an “item” be a means to produce a measurement X. It is assumed that
the respondent ’s behavior is determined by his value on a vector variable 6 which
represents what the item intends to measure. This variable may be continuous or
discrete but is assumed to be some sort of ability. For ease of presentation, 6 is
referred to as the subject’s ability. The measurement X is defined as a discrete
random variable that represents the credit assigned to each response. The function
that defines X is called the scoring rule. Realizations of X are called “responses” in
IRT and “scores” in CTT and we will use both names interchangeably.

The true score of any person is defined as the expectation £[X 0] of the distrib-
ution of X over subjects with the same ability. The deviations X — E[X|8] represent
random measurement error, that is, uncontrolled environmental variables that in-
fluence the response (L&N, pp. 38-39). The distribution of the measurement errors
has zero mean and variance Var(X|0). While the measurement error varies across
subjects with the same ability, the true score is a fixed parameter characterizing the
combination of an ability and an item.

Taking the expectation of £[X|6] over the distribution of 8 in the population of
interest gives us the expected response to item i. The reliability of X in the reference

population, p%, is defined as the proportion of true variation. Specifically, provided

that Var(X) >0,

p§zﬁ%%%@- (1)
EVar(X|0)]

T VarEIXI) + EVar (X)) (2)




where Var(E[X|6]) denotes the true score variance, and
E[Var(X|0)] = E(E[(X — £[X]6))|6]) = E[(X — E[X[6])’]

that is, the measurement error variance in the population. It is customary to denote
the reliability as a square since p% equals the square of the correlation between the
true score and the observed score (L&N, p. 57). A correlation is not invariant under
non-linear transformations and reliability depends on the scoring rule; some scoring
rules give higher reliability than others. Equation (1) also shows that item reliability
depends on the ability distribution in the population.

L&N consider the following experiment, albeit in different wording: Draw a 6
from the population and generate two independent responses z and z* to the same

item. The joint distribution of these responses is
Pr(X, X*) = /Pr(X = z|0) Pr(X™* = z*|0)g(0)d6 (3)
where
Pr(X = z|0) = Pr(X™ = z|0)

Equation (3) states that the response variables are exchangeable and we shall hence-
forth call them ezchangeable replications to indicate that they are independent con-
ditional upon 6, but not marginally. [tem reliability equals the correlation between
exchangeable replications. This can be seen using the covariance decomposition for-

mula:
Cov(X,X*) = Cov(E[X|6], E[X"6]) + E[Cov(X, X~|6)], (4)

where E[Cov(X, X*|0)] = 0, and Cov(E[X|6], £[X*|6]) = Var(£[X]0]) by assump-
tion. Dividing Cov(X, X*) by \/Var(X)Var(X*) = Var(X) gives (1).

Now, consider a test consisting of / > 1 items.! It is customary to consider a

1The distinction between an item and a test is convenient but unnecessary for CTT.



4

linear combination Y = S°/_, w; X; of the item responses as a test score, where the
w; are constant weights. The true test score on the test E[Y|0] = SO, w; E[X;|6]; in
IRT, this is known as the test characteristic curve. The reliability of the test score

in the reference population is given by

- Var(L£[Y|6])
PY = Var(E[Y10]) + E[Var(Y[0)] )

It follows from exchangeability that the measurement errors on different items are

independent given 6, and the error variance of the test score is given by
I
E[Var(Y|9)] = E[Var(X0)] Y w?

i=1
Test reliability is of interest because its square root, called “the index of reliability,”
provides an upper bound to the validity of the test score with respect to any criterion,
that is, the correlation of the test score with any criterion (L&N, p. 72). Furthermore,
if measurement error is assumed to be normally distributed, Y 4 1.96 \/E[VT(YIO)]
provides an approximate 95% confidence interval for the observed test score.
Another important statistic in CTT is the item-total correlation (ITC); the
correlation of the score on item ¢ with the score on the test, including the item. By
definition, the ITC is equal to

Cov(E[Y|0), E[X]6]) + E[Cov(Y, X;|0)]
VVar(Y)Var(X;)

ITC; = (6)

where the numerator follows from the covariance decomposition formula (4). In C'I"T,
this correlation is interpreted as an item discrimination index because it indicates
to what extent the item differentiates between subjects with high scores on the test
and subjects with low scores on the test. We will comment upon the interpretation
of the I'I'C shortly.

Since the total score on the proposed test is calculated with the score on item

¢, the I''C is spuriously high. lo correct the I'l'C, it is customary to calculate the
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item rest correlation (IRC), which is the correlation between the score on an item
and the total score on the proposed test, excluding the item. Specifically, the IRC of
item : equals the corresponding I'T'C with w; fixed to zero. The following proposition

provides an interpretation of the IRC.

Proposition 1. Assume that the item responses are independent given 0. Let Y_;

denote the rest-score. The IRC of item ¢ is equal to

Corr (BIY-:|6], EX:16)) /o%.p%..

Proof. By definition:
_ CO’U(Y_,’,Xi)
VVar(Y-;)/Var(X;)

_ _ Cov(B[Y_i(6), B[Xi6)) \/Var(E[Y_iw])
VVar(E[Y_;|6])\/Var(X;) Var(Y-;)

= \/m Cov( E[Y_;|6], E[X;|0]) \/,,2—
Var(X;) Var(E[Y=i|8))\/Var (E[X]6]) V"~

IRC;

= pi'icorr (E [Y_ZIB] ’ E[X'l‘a]) \/ p%’_."
O
It is seen that the IRC is positive and dependent upon the relation of the true

rest score and the item true score, which will usually be non-linear. Under exchange-

ability, Corr (E [Y_;|0], E[X;|0]) = Corr ((1 — 1) E[X;]0], E[X;|6]) = 1 and

lim 2 = lim (I —1)*Var(E[X]6])
Isoo " Y=0 7 [Hoo (1 — 1)2Var(E[X|6]) + E[Var(X|0)](I — 1)
L Var(E[X|0))
I-co Var(E[X|0])) + E[Var(X|0)](I —1)-!

(7)

=

so that lim;_, . / RC; = ,/pg(l. The same holds true for the I'T'C which becomes equal
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to the I RC when the number of items increases.

2.2. IRT as an Eztension of CTT

In practice, it is assumed that the responses to different items are exchangeable
so that item reliability can be estimated by their correlation. In CTT, such mea-
sures are called “parallel.” This assumption is unrealistic, especially because different
items will not frequently have the same conditional distribution. It is therefore op-
portune to relax the assumption of exchangeability and require that responses to
different items be independent conditional upon 6, but not necessarily identically
distributed. In IRT, this is called conditional independence (CI). For two items, CI

is equivalent to
Pr(Xe, X;) = [ Pisi(6)Piz, (6)g(6)do, (8)

where P;; (6) = Pr(X; = ;|0) is called the item category response function (ICRF).
Suppes and Zanotti (1981) show that there always (i.e., for every joint distribution)
exists a scalar valued 6 such that CI holds. This means that CI by itself is not
a restriction on the data and additional assumptions are needed on the ICRFs.
Together with CI, these additional restrictions define an IR1T model.

Here, it is assumed that 6 is scalar valued and the item true score, £[X;|6] =
>z z;Piz,(0), is a monotone increasing function of ability so that the true score
1s a one-to-one transformation of the ability. Together with CI, these assumptions
define the family of unidimensional monotone IRT models which encompasses most

existing IRT models.?

*Note that given CI, E[Cov(Y, X;|0)] = w; E[Var(X;|0)] and (6) reduces to a more manageable

expression.
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2.3. The Case of Binary, Equivalent 2PL Items

In this section, we assume that the items are exchangeable measures and intro-
duce an IRT model that is formally equivalent to CTT. All items are binary with
X; = 1 if the answer is correct, and X; = 0 otherwise. Subscript ¢ will be deleted
since all items are equivalent. Without loss in generality, we assume that the ICRF's

are modelled by a two-parameter logistic model (2PL); that is,

exp(a(0 — §))

hi(9) = 1 + exp(a(d — §))’

(9)

where the parameters a,6 € R are considered known and 6 is a scalar ability. The
population distribution is unrestricted. The assumption that P;(6) is modelled by
the 2PL implies no loss in generality because we can always transform 6 such that the
ICRFs assume any other functional form. The value of the a-parameter governs the
slope of the ICRFs and is therefore interpreted as a discrimination parameter, while
the category parameter § is the value of 6 where P;(6) =1 — P;(6) = 0.5. When the
discrimination parameters are unity we obtain the ubiquitous Rasch model (Rasch,
1960). For the purpose of illustration we have drawn the ICRFs and the true score
for a 2PL in Figure (1).

With binary items, the item true score equals the probability of a correct re-
sponse, given §. The conditional measurement error variance of the score for each
item is equal to P;(0)(1 — P1(6)). Using the formulae in the previous section we find

that
Var(X) = E[P(0)](1 — E[P(8)]), (10)

where E[P;(64)], that is, the expected percentage correct, is known as the difficulty

of the item. The true-score variance for any item is given by

Var(ELX10]) = E[(P(0))7] — E[P(O)P. (11)
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1971, p. 150).

The upper figure shows ICRFs for a GPCM item with § = 1, and @ = 2. The lower figure shows

which equals Var(P1(6)); the variance of the proportion correct in the reference
population. Note that E[(P;(6))?] = Pr(X; = 1,X; = 1) when ¢ and j index two
equivalent binary items. The item reliability follows from substitution of (10) and
(11) in (1). It is seen that under the present assumptions, item reliability equals

Loevinger’s (1948) H-coefficient which is used in Mokken scale analysis (Mokken,

The expected unweighted sum score on a test with / equivalent items, given 6,

equals / x P,(6). The reliability of the test score is given by

[*Var(P(6))

2
Py

__dex
(I =1)px +1°

L[({ = 1)Var(P(0)) + Var(X)]

(12)

The equation is well-known as the Spearman-Brown (SB) formula. If I = 1, for
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instance, p2 = p% the reliability of a single item score. For / = [* 4 Z, we obtain
the reliability of a test with /* items when it is lengthened by adding Z equivalent
items. The SB formula shows that the reliability of the test score goes to 1 if [

becomes large.
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Relation between item difficulty and the item test correlation assuming 10 equivalent GPCM items

(@ = 1). We assume that the distribution of # is standard normal.

Remark 1. Let Y denote the unweighted score. Assume that Var(E[Y|0]) =
1*Var(Py(8)) and Cov(X;, X;) = {(I —1)Var(Pi(9)) so that

Var(Y) =3 Var(X;) + .Y _ Cov(X;. X;) =Y _ Var(X;) + (! — 1)Var(F(9))
i i g i
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Then,
, _ Var([Yp)
N Var(Y)
_ _12Var(1)1(0))|
 Var(Y)
[([ —-1)Var(P

[1( 1
I Va,r(Y)
=

9))]

=
Var(Y) -3, Var(Xz)] 1
Var (Y) J1-1

_[I_ZiVar( 1)] [
- Var(Y) | I-1"

This equation is known as Cronbach’s alpha (Cronbach, 1951) and it is widely used
to estimate reliability. Let N denote the number of respondents and p; the percentage
of them that have answered correctly to item i. In practice, Var(X;) is estimated by
Np;(1—p;) and Var(Y) by the observed variance of the sun.-scores. [t can be shown
that Cronbach ’s alpha provides an underestimate of reliability if the assumptions do

not hold. Alternative estimates are surveyed by Verhelst (1998).

A bit of algebra shows that, under the present assumptions, Equation (6) sim-

plifies to

-1 1
ITC; = \/%pi + 1% (13)

, _1TCH -1

Px =" 71 (14)

As expected from Proposition (1) /7'C; = \/E when the number of items is large.

A plot of the IT'C against the difficulty of any of the items in Figure (2) shows
that the relation is quadratic. This reveals that, in the given circumstances, the [TC
is not a well-defined measure of “item discrimination power” because it depends on
the item difficulty, on the dispersion of 6, as well as on the number of items in the

test (see also Steyer and Eid, 1993, p. 137-138). This is also true under more general



11
circumstances when the items are not equivalent. One should therefore be careful to
give general rules-of-thumb for the selection of items based on the [T'C (e.g., Ebel

& Frisbie, 1986).

3. Reliability in IRT
3.1. Item and Test Information

Consider a poly(cho)tomous item i, with J; + 1 response categories indexed
0,1,...,J;. The scoring rule is that X; takes the value of the index of the category
that is chosen; i.e., X; = 2 if category 2 was chosen. This scoring rule makes sense
if category j reveals more ability than category j + 1. The extension of the 2PL
for polytomous items called the generalized partial credit model (GPCM) (Muraki,
1992). The GPCM implies that

Pl O] = DLZ exp(o; i(ﬂ —8ip))s (15)

where Zg=1(0—6ip) =0, é; = (di1,--,6:5,), and D; is a constant that is added to make
sure that Zij=0 P;z,(6) = 1. The category parameters, é;,, are the values of § where
the ICRF's of adjacent categories are equal. It is assumed that é;; < d;2 < -+ < &4y,
For illustration purposes, we have drawn the ICRFs of a GPCM item with four
categories in Figure (3). Figure (3) also shows a plot of the true score as a function

of 8, and the information function of the item which will be defined shortly.

Let L(8|X; = z;) = P.;;(8) denote the likelihood function of 8 given the observed
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FIGURE 3.
ICRFs, true score and information for an GPCM item with four categories; §; = (—3, 1.67, 3), and

a; = 1. Note that the information function is not unimodal (cf. Akkermans, and Muraki, 1997)

response. The item (Fisher) information function is defined as

Infx,(6) = £ [((% In L(0|X,-)>2 |0] (16)

= Pp(h) <69 In P,-o(())>2 + -+ Py (0) <50- In Pu.(t‘))>2

This shows that, in general, the item information depends on the combined rate of
change in the ICRFs. The item information function of the GPCM is found to be
equal to o?Var(X;|0) = Var(a;X; + b;|0) for some constant b;. Thus, in the GPCM
the item information equals the conditional measurement error variance of a; X; + b;
and is consequently dependent upon the scoring rule. It is interesting therefore to

investigate the effect of different scoring rules on the information function.
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When the item responses are independent given 8, the test information function

is the sum of the item information functions, i.e., TInf(8) = i_, Infx,(6), and

—

E[TInf(0)] =Z [Infx.( (17)

In the next paragraph, the expected test information will be related to the reliability

of estimated abilities.

3.2. Reliability of Estimated Abilities

The correlation between Y and E[Y|] is not equal to the correlation between
Y and 6 unless the latter is a linear transformation of E[Y'|0] as in the Binomial
model (Rost, 1996, pp. 113-119). In most applications, the relation between Y and 6
is postulated to be non-linear, however. When estimates of 6 are reported and used
it is therefore appropriate to provide the reliability of the estimated ability values 6.

To derive this reliability we first note that

~

b, = E[6]6 = 6,] +e, (18)

where e = 6§, — E[é|0 = 6,) can be interpreted as “measurement error”, and E[é|9 =
6,] as a “true score.” Subscript v denotes a generic subject. Reliability is defined as

the proportion of true variance in the reference population and we find that

; _, Var(£[16)
Po = Var(6) &
E[Var(4]6)]

- 5 A ) (20)
Var(£[010]) + E[Var(6]0)]

where Var((j'ﬂ) denotes the variance of the estimated values given §. It follows from
the previous discussion that p;‘; may be interpreted a measure of linear association
between exchangeable replicates of §. This means that pg changes if § is non-linearly
transformed and its value depends on the parameterization of the IRT model.

1f § is an unbiased estimator, Var( E[6|6])) = Var(6), and p% is equal to the square
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of correlation between 6 and 6 which was proposed by Gustafsson (1977) as a measure

of “subject separability”. This is also true when E[é]H] = a10 + a3, (a1, € R)

since @ is then a linear function of an estimator that is unbiased and the correlation

between exchangeable replicates is invariant under linear transformations. In general,

the correlation between 6 and 6 is equal to

Cov(6,0 + Bias(6))

Corr(6,6) =

VVar(@)Var(8)

(21)

Var()

J

Var(f)

|

Var(0) , Var(Bias(0))
Var(®) + Corr(Bias(6), G)S/W

1

where 6 denotes an unbiased estimator, and § a biased estimator. The ratio

Var(8)/Var(f) is the reliability of an unbiased estimator.
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FIGURE 4.

Plot of pz against the number of equivalent items in a test. The curves differ in the expected

information of each item and the dispersion of 6.

When a ML or Warm estimator (Warm, 1989) is employed, Var(6|6) is equal to
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the inverse of the test information function, 7'/nf~!(8), when the number of items
becomes large. If E[Var(6]0)] = E[TInf(8)]~" is substituted in Equation (20), and
bias is ignored (i.e., Var(E[0]6]) = Var()), it follows that

2 E[TInf(8)]Var(6)
P8 = 1T ¥ E[TInf(6)]Var(6)

(22)

(see Thissen, 1990; Mellenbergh, 1994, Equation 22; Samejima, 1994, Equation 21).
Given Var(0), the reliability depends exclusively on E[T'Inf(6)]. Thus, if one re-
ports ability estimates, it is desirable to have high expected test information in the

population of interest. An alternative approximation to pg is discussed by Verhelst,

Glas and Verstralen (1995, p. 64), and Rost (1996, pp. 353-354).

3.3. The Reliability of Classifications

Suppose that a test-score is used to classify examinees in two mutually exclusive
categories on the basis of a predetermined observed score cut point ¢, preferably
derived using some sort of standard-setting scheme. The observed cut point may
also be a score corresponding to a latent cut point. Furthermore, subjects with test
scores less than ¢ will fail the test and subjects with a score equal to ¢ or over ¢ will
pass. Now let [, denote whether students pass. Then, assuming CI, the conditional
probability of passing is equal to:

max(Y)

Pr(l, = 1|6) = Z Pr(Y =y|6) (23)

max(Y')

= >, IIPr(Xi==zl) (24)
y=c "’Z wizi=y *

The marginal probability of passing equals Pr(/, = 1) =" £ [Pr(/, = 1]8)]. The
calculation of Pr(Y = y|@) is discussed in the Appendix.

If we apply the definition of reliability, given in Equation (1), to the variable /,
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we obtain the reliability of classification; that is,

. Var(ElLl)
Pt = Yo (BTL,I0]) + ELVar(L,10) (2)
_ EPr(f, = 116)%] - E[Pr(L, = 1]6)]°
= E[Pr(l, = 18)] = E[Pr([, = 1|)]° "

It was demonstrated earlier that p%,,, equals the correlation between classifications
across two exchangeable administration of the test. It can also be shown that clas-
sification reliability equals Cohen’s kappa (Cohen, 1960) when it is computed using
two exchangeable administrations of the same test. For later reference this is stated

as a proposition:

Proposition 2. Assuming exchangeability, classification reliability equals Cohen’s

kappa (Cohen, 1960).

Proof. Cohen ’s kappa is equal to

(26)

where P, = E[P,(6)] denotes the observed agreement and P, = Pr(I{)) = 1) Pr(1{? =

1) +Pr(1,§1) = 0) Pr(/{? = 0) denotes the agreement observed by change. Superscript

(
p
(r) denotes that the random variable is registered at the rth administration. Let 115")
denote passing on the rth administration. Under exchangeability,
P, = E[P,(6)]
= E[Pr(1{V = 1,1 = 11)] + E[Pr(I{") =0, 1) = 0]6)]
= B[P/ = 116) Pr(I? = 1|9)] + E[Pr(L{Y = 0]6) Pr(L?) = 06)]

= E[Px(1, = 1/6)") + E[(1 - Pr(l, = 1]6))?]

The last equality follows since Pr(1{Y) = 1|) = Pr(/(? = 19), by assumption. In
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the same way we find that
P, = (B[Pe(L, = 118)])" + (1 - E[Pr(l, = 1/6)])".

If we ezpand P, and P,, and substitute the resulting ezpressions in Equation (26)

we find that:
B 2Var(Pr(l, = 1|6))
© T 9EPH(I, = 1|0)]2 + 2k[Pr(1, = 1]0)]
B Var(Pr(1, = 1/6))
~ E[Pr(1, = 1|6)] — E[Pr(I, = 1]9)]?
_ Var(Pr(l, =1|6)) Var(E[l,]6])
- Var(l,) - Var(l,)
This ends the proof. O

We have seen occasions where decision reliability could actually be calculated
as Cohen’s kappa because there were two independent ratings of the same subjects.
As seen in Proposition (2), exchangeability implies that kappa cannot be negative.
If it is found to be negative, this is a sign that exchangeability is violated.

Imagining two exchangeable administrations of the same examination, the prob-

ability of consistent classification given 6 equals

P,(6) = Pr(L{M = 1,1 = 119)] + Pr(1{V) = 0, I = 0|6) (27)

max(Y) Z 2
[Z Pr(Y :y|9:| [Zpr —yW}. (28)

This function is called the test characteristic decision curve (T'CDC). The probabil-
ity of inconsistent classification is, of course, 1 — P,(6). When the TCDC is integrated
over the reference population we obtain the probability of consistent classification
when the test is applied to the reference population using y = ¢ as a cutoff. This
quantity may prove to be useful in view of the current trend to demand that testing

organizations publish procedures and provide formal justification for the quality of
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their examinations.

In general, respondents are classified into C' mutually exclusive categories us-
ing their test score. Let /. (¢ = 1,...,C) denote a random variable that is 1 if a
respondent’s test score falls in the cth category, and 0 otherwise. If C > 2, The
weighted version of Cohen’s kappa (Cohen, 1968) may be taken as a weighted index

of reliability of classification. To be more specific:

P,—P
2 — o c 9
pC’la,s,w 1 — Pc ’ ( 9)
where
P, = B[P,(0) (30)
c C
= E |33 wij Pr(L; = 116) Pr(L; = 118) | ,
=1 j=1
and
c C
PC=ZZ’U),'J'PI'(1,'=1)PI‘([J'=1) (31)
i=1 j=1
cC C
=S5 wi E[Pr(1; = 1|10)] E[Pr(I; = 1]6)].
i=1j=1

Expressions similar to (23) may be used to calculate Pr(/; = 1|0),: = 1,..,C. The
weights, w;;, are chosen on substantive grounds to express the relative similarities
among the categories; w;; =1 if : = j and 0 if  # j yields Cohen’s kappa. Following
Yang en Chen (1978), we assume that 0 < w;; < 1, w; = 1, and w;; = w;;, for all
1,9 = 1,...,C. This is not a serious restriction on the weights. If test constructors
decide that the numbers d;; (3,7 = 1,...,C) express the difference between the

categories, the weights can be calculated as

d;J

max; ;(di;) (32)

wi; =1-—

Alternative ways to quantify and investigate the quality of classifications are

discussed by Livingston and Lewis (1995), Verstralen (1997b), Sluijter (1998), and
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Spray and Reckase (1994). Lee, Hanson and Brennan (2002) also consider Cohen’s

kappa as an index for the quality of classification.

4. Applications

In this section we discuss a number of applications involving the combined
use of C'I'l' and IRT. In the first paragraph, we illustrate that reliability can be
determined from a single administration of a test using numerical integration. In the
second paragraph, we demonstrate how relations between test characteristics, the
population of test takers, and test scores may be explored graphically. In the third
paragraph, we demonstrate how the correlation between latent traits measured by
different tests can be calculated. In the fourth paragraph, we discuss the selection
of items from a pilot test when the pilot test could not be administered to the
intended population. We describe how we assist item writers in the construction
of an examination and also how we determine the reliability of classification of an
existing examination. Finally, in the fifth paragraph we briefly describe 1RT-based

test equating.

4.1. Calculating Reliability with a single Administration of a Test

The easiest application is to use formulae in the first section to calculate reli-
ability using a single test administration.? "lo illustrate this possibility, we use the
so-called “KF'I' data” that are listed on page 99 and 100 in the book by Jiirgen Rost
(1996).* The data consist of responses to five items by 300 students. The items were

found to conform to a theory-based restriction of the Rasch model called the linear

3Some of this may be done with the OPTAL program (Verstralen, 1997a) which is part of the
OPLM software.
4The complete dataset with 15 variables comes with the WINMIRA software (Davier, von,

1994). The present items are the first five items.
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logistic test model (Fischer, 1995). A report of the IRT analysis can be found in
(Rost, 1996, p. 248), or Bechger, Verstralen and Verhelst (2002, section 6). This il-
lustrates that an IRT analysis may provide information about the items that would
not be available if one is confined to classical item analysis. Marginal maximum
likelihood estimation was used to obtain estimates of population parameters; the
population distribution was assumed to be normal and the item parameters were
restricted to sum to zero to achieve identification of the model.

The population mean was estimated to be —0.158 and the standard deviation
1.950. The trapezoidal rule (Davis and Rabinowitz, 1984, chapter 2, section 3.4) was

used to approximate the expectations and calculate the values in the following table.

Px. E[X;] IRC;
item 1 | 0.37 0.63 0.59
item 2 | 0.38 0.56 0.60
item 3 | 0.38 0.49 0.61
item 4 | 0.38 0.42 0.60
item 5 | 0.36 0.28 0.56

pi =074 p} =0.75

It turns out that the items are nearly parallel so that Cronbach’s alpha is, in this
case, only slightly lower than the estimated test reliability. The reliability of the
unweighted test score equals that of the estimated abilities. This is to be expected
since the unweighted scores carries all the information used to estimate abilities
and the relation between unweighted scores and estimated abilities is approximately

linear.
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4.2. Investigate Relations Between the IRT model, the Population, and Properties

of the Items and the Test

Plots are often instrumental to illustrate relations between test characteristics

as determined by an IRT model, the population of test takers, and test scores, es-

pecially when such relations can not be described analytically. For example, Lord

(1953; L&N, fig. 16.14.1 through 16.14.6) uses plots of the relation between ability

and true score to illustrate how the distribution of the true score depends on the dis-

crimination power of the test. Using numerical integration to calculate expectations,

if necessary, the formulae presented here may be used to produce such plots.
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Expected test information plotted against mean item difficulty for varying item category parame-

ters. Mean difficulty increases row wise. The model used was a generalized partial credit model

(Muraki, 1992).

There were various examples in the previous sections, such as Figure (2). It

is interesting to investigate how a particular test will behave when administered
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to different populations. An illustration is provided by Figure (5) which shows the
relation between the expected test information and the mean item difficulty in a
standard normal population. The mean difficulty was varied by varying the value of
the mean of the population. The test consists of 10 binary items. All discrimination
parameters were set to 1 but the category parameters were systematically varied
over the plots. The plot in the upper left corner was produced with all category
parameters equal to zero. In the ensuing plots, items 1 to 4 were systematically
made more easy while items 6 to 10 were gradually made more difficult. These plots
illustrate that the expected test information (and p2) is not necessarily high when
the mean item difficulty is close to 0.50. The test provides little information about
the abilities of the respondents if it consists of items that are either very difficult or
very easy for the population of interest (see also Muraki, 1993).

One more illustration is provided by Figure (6), which shows the effect of the
discrimination parameter on the TCDC. It is seen that the TCDC becomes more
concentrated when the discrimination parameter increases. This illustrate that the

quality of a decision increases when items discriminate better.

4.3. Calculating the Correlation Between T'wo Latent Traits

Let Corr(é, é) denote the correlation between the estimates of § and estimates

of some other latent trait £. If both estimates are unbiased, it can be shown that

Corr(6,€) = Corr(8,€)/\/20%, (33)

where Corr(6,£) denotes the correlation between 6 and €. Suppose we have two
tests with one test being a measure of a latent trait 6, and the other test a measure
of a latent trait & Equation (33) shows that Corr(é, é) may be much lower than
Corr(8,£) if the estimates are unreliable. This is called “attenuation.”

While Corr(é,é) may be estimated from the data, we need the reliabilities in
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23

Plots illustrating the effect of the discrimination parameters on the TCDC. The TCDC are based

order to correct Corr(f,€) for attenuation and calculate Corr(, €). There are at
least three ways to calculate Corr(6,£). First, when either the ML or the Warm
estimator is used, approximate reliabilities can be obtained from Equation (22),
using numerical integration, if necessary, to calculate the expected test information.
A second procedure becomes feasible when the estimated 6 is a one-to-one function
of the test score alone; i.e., when Y is minimal sufficient for 6 as in the Rasch model.
The IRT model gives the distribution of the test score Y given 6; g(Y = y|0), where
y are the values taken by Y. Each value y results in an estimated ability 9(y) and

glY = ylf) = g(9 = 9(y)|0) is the distribution of the estimated abilities given 6.
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The variance of § given § may now be calculated as

Var(8]0) = E[6%|6) — E[6]6)? (34)

and
Var(E[016]) = E[E[6]0)] — E[£[6]6])? (35)

We then calculate the reliabilities via Equation (19) using numerical integration to
approximate the expectations, if necessary. Note that the first procedure is based
upon the assumption that there is no bias and E[él&] = 0. The second procedure
is expected to be more robust against bias in the estimates. Finally, the correlation
may be estimated using the method of maximum/likelihood, considering the item and
population parameters known. This procedure was described in detail by Verhelst

and Veldhuijzen (2002) in an internal report.

4.4. Constructing Framinations

Selecting Items From a Pilot Test This application is discussed in the context of
a real example. The state examination of Dutch as a second language is a large-scale
examination of the ability to use the Dutch language in practical situations. There
are separate examinations for listening, speaking, writing, and reading. A GPCM
is used to scale the data and equate an examination to a reference examination to
ensure that the ability required to pass the examination stays the same over years.
Estimated abilities are transformed to scale scores that serve as examination marks.
In this paragraph, we will briefly describe how we assist the item writers with the
construction of new examinations for listening and reading. An alternative equating
procedure is discussed in the next section.

The construction of a new examination is preceded by a pilot study which entails
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the administration of new items to a sample of candidates that participate in a
language course. The purpose of the pilot study is to select the items for future
examinations. After the data have been collected, they are added to a large data
set which contains the data obtained from previous pilot studies and examinations.
This data set is called the data bank.
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FIGURE 7.

Schematic representation of the data bank.

Schematically, the data bank can be represented by a matrix where the rows are
subjects and the columns are items. In Figure (7), the shaded areas represent realized
item responses, while the blank areas represent missing responses. 'I'he systematic
pattern of missing and observed data arises naturally because items are administered
in so-called “booklets”. While an examination usually consists of a single booklet,
the items are spread over various booklets in the pilot to lessen the burden for
respondents and allow a large number of items to be tested. The reference test
is a subset of the items in the data bank. I'his reference test was chosen by the
examination committee considered a valid and reliable measure of the ability of

interest. The reference population is the population of examinees who are generally
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more able than the subjects that participate in the pilot study.

The analysis of the pilot data consists of three stages. The IRT model used is
the GPCM. We first establish a fitting GPCM using all relevant parts of the data
bank and recommend the item writers to discard items that do not conform to the
model, and/or items with negative or very low a-parameters. In the second stage,
we give the item writers three additional pieces of information. First, we provide
the item difficulties in the reference population. The examination committee strives
at difficulties between 0.50 and 0.70. Second, we supply expected item information
and recommend that those items be included that have the highest values. Thus, we
intend to maximize the expected test information of the new examination and the
reliability of the estimated abilities. Thirdly, we provide I RC';s using the score on the
reference examination as a rest-score. These IRCs may be interpreted as a measure
of the fit of an item to the reference examination. With this information, and under
strict surveillance by the examination committee, the item writers then compose
a new examination. Once an examination has been constructed, we estimate the
reliability of the estimated abilities. This is the third stage of the analysis. The item
writers find it convenient to use the common statistics from CTT.

The item difficulties have been reported to the item writers for some years now
and it appears that we have been quite successful in predicting the item difficulties in
the actual examinations. When, for instance, we look at the last nine examinations
of listening, the realized item difficulties ranged between 0.63 and 0.68 as intended.

We have not yet gained enough experience with the expected information or the

I RCs.

The Reliability of Classifications T'he examinations discussed in the previous
paragraph are high-stakes examinations. In order to gain insight in the quality of

the decision made with these tests, we have drawn 1 — F,(f) in Figure (8) for
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A TCDC for a test with 40 binary items. The GPCM was estimated with 2500 examinees using
the method of marginal ML (Muraki, 1992).

one of the examinations. As one might expect, 1 — P,(f) increases to 0.5 when 6
becomes closer to the ability 6. corresponding to the cutoff.lt is found that 0.25 <
1 — P,(6) < 0.50 for about 16% of the examinees. This percentage is dependent
upon the postulated population distribution. In this case, it can be argued that the
distribution is unlikely to be normal as the examinees constitute a mixture of of
immigrants from many different countries. The Rg test, incorporated in the OPLM
software (Glas and Verhelst, 1995), and histograms of estimated abilities confirm this
argument. When we consider the distribution of estimated abilities, the mentioned
percentage rises from 16 to 35%. This percentage appears much too high for a high-
stakes examination but, was to be expected. First, high percentages of inconsistent
classifications have been found before using a procedure that assumes that the score
distributions are bivariate normal with correlation py (Verhelst, 2002a). Second,

we looked at data from an examination of the ability to speak. T'he examinee s
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performance is evaluated twice by independent judges so that we are able to observe
the agreement between two independent evaluations of the examinees and obtain
an estimate of the reliability of classification. Over examinations, this reliability is

found to be remarkably stable at a value of about 0.46.

4.5. Test Score Equating Using an IRT Model

Adjusting scores on different test forms so that they can be compared and used
interchangeably is called test equating. Once an examination is constructed and ad-
ministered to examinees, it is desirable that the scores be equated to the scores on
the reference exam to ensure that the achievement of present examinees be compa-
rable to that of previous examinees. This aim could be achieved by means of an /RT
based score equating procedure (Zeng and Kolen, 1995). This procedure consists of
three steps. In the first step, the parameters of an IRT model are estimated. In the
second step, the test score distribution of respondents from the reference population
on the new examination is determined based on the estimated item and population
parameters obtained in the first step. Specifically, for a score point y the expected

frequency can be calculated as:

Pros Pr(y) = npey 3 / Pr(x|0)gres(6)d0 (36)
Xi) o, wiTi=y

= Tore / ZZ [T Pr(X = 2:16) | gres(6)d0 (37)

= ey [ Pr(Y = y[6)gres (6) 2o, (38)

where n,.s is the number of respondents in the sample from the reference population,
X a response vector on the present exam, and g,.;(6) the ability density function
in the reference population. The calculation of Pr(Y = y|f) is discussed in the

Appendix. In the third step, the test score distribution is used in the determination
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of equivalent scores according to any of the available “observed-score” test equating
methods (see Kolen and Brennan, 1995 for a survey of such methods). Equipercentile
equating, for instance, is based upon the argument that the passing score should be
chosen in such a way that the percentage of examinees from the reference population

that pass should be equal on the present exam and the reference exam.

5. Generating Exchangeable Test Administrations to Obtain Unbiased Estimates

of Statistics of Interest and a Lower Bound for their Sampling Variability

All calculations that were proposed so far are predicated on knowledge of the IRT
model and the distribution in the population of interest. In practice, the parameters
of the IRT model and the population distribution are estimated and we need to
take their sampling error into account. Here we describe a Monte Carlo procedure
to obtain a number of exchangeable samples. The generated data can be used to
estimate the statistic of interest and the variance over generated samples will provide
a consistent estimate of its sampling variance.

Let A denote all parameters of the IRT model and the population distribution.
Here, we take a Bayesian point of view and consider the parameters random variables
with prior distribution Pr(6,)) = Pr(6) Pr(A). First, let Y(!) and Y (? denote two

exchangeable test or item scores; i.e.,
Pr(y® Y@y = / Pr(Y |6, 1) Pr(Y V|9, ) Pr(6) Pr()\)d(6, \) (39)
We assume that “nature” has provided us with an identical and independently dis-

tributed (i.i.d.) sample from Pr(Y()). Now we wish to generate values of Y(?) such

that the generated data and the observed data are realizations from Pr(Y(), Y (®).
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"The observed data are kept constant and we generate Y () from Pr(Y ®|Y (), where

Pr(Y®,y(®
Pr(y@y) = i’r(Y(l)) ) (40)
Pr(Y(|9, A) Pr(6) Pr())
= @) ,\‘\ L 4
[ pr(y @i, 3 LT a6,%) (41
=/Pr(y@)w,A)Pr(e,A|Y(1>)d(9,A) (42)

To this aim, we employ the method of composition (e.g., Tanner, 1993, sec-
tion 3.3.2) and generate an i.i.d. sample from Pr(Y®|6,))Pr(8, Y (V). First,
we must draw 6 and A\* from the posterior distribution Pr(6, A\|Y (™). Then, we
must draw y{® from Pr(Y(®)|6*,)*). These steps are repeated N times to yield
the desired sample; (yil),y?)), - (y,(\}), yg)). We can do so repeatedly and generate
(yil),ygm, . y%B)), vens (y%),yg)...,yl(f)). Each of the samples is conditional upon the
observed data. The main problem is to construct an algorithm to produce a sample
from Pr(#, A\|Y()); the next step is easy; sampling data from Pr(Y |8, A)is simply
generating data from the item response model. The following picture schematically

depict the procedure.
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A schematic display of the sampling procedure.
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By averaging the correlations we obtain E[Corr(Y (1), Y®)|Y )], Since
E{E[Corr(YW,Y®)| Y]} = E[Corr(Y), Y @)
the estimator is unbiased. However
Var {E[Corr(Y®, Y@YW} < Var(Corr(Y (), Y?))

and we have merely obtained a lower bound of the variance that we want. The reason
is that Y is fixed.
Since Pr(8,A\|Y (M) = Pr(8]Y W; X) Pr(A|Y (")), we write

Pr(Y®, y®) = //Pr(Y@)\B,)\) Pr(Y]9, A) Pr(6) Pr())dddA
= _/ [/ Pr(Y(z)la; )\) Pr(GIY(l) = y(l); /\)dﬁ] PI‘(/\IY(I) — y(l))d,\

If we draw from the probability within brackets, we ignore uncertainty in the item
parameters and consider them given.

The main practical problem is to construct an algorithm to produce a sample
from Pr(6,A|Y()). The next step entails generating responses from an IR/' model
which is quite easy. To produce samples from Pr(8, A |Y(‘)) a Markov Chain Monte
Carlo (MCMC) estimation algorithm for the [RT' model can be applied. A number of
MCMC estimation algorithms are developed for a wide variety of IRT models includ-
ing the two parameter logistic model (Patz and Junker, 1999a), the two-parameter
normal ogive model (Albert, 1992; Baker, 1998), and the Rasch model (Kim, 2001;
Maris and Maris, 2002). These algorithms have been generalized to models with
multiple raters, multiple item types and missing data (Patz and Junker, 1999a,b),
models with a multi-level structure on the ability parameters (Fox and Glas, 2001),
latent class models (Hoijtink and Molenaar, 1997), models with multidimensional
latent abilities (Béguin and Glas, 2001), Bock’s (1972) nominal response model,

mixture item response models (Wollack. Bolt, Cohen and Lee, 2002), the conjunc-



32

tive Rasch model, the graded response model, the Parella model, and a hierarchical
Rasch model (Maris and Maris, 2002). All these estimation procedures have in com-
mon that draws from the posterior distribution of the parameters, Pr(§, A ’Y(l)) are

generated during estimation.

6. Discussion

Our aim has been to clarify relations between C'I'T and IRT, generalize concepts
from CT'l' to IRT, and demonstrate that, when an appropriate IRl model is found,
one is able to calculate and use classical indices for properties of items and test in
situations where CT'l' could normally not be applied. We have described a number
of applications taken from our daily work ranging from issues in test construction
to analysis of examination data. Other applications of this kind have been discussed
by Mellenbergh (1994, pp. 227-229), who explains how an IRT model can be used
to construct tests that are parallel in the CTT sense, or Kolen, Zeng, and Hanson
(1996) who use IRT to estimate the standard errors of scale scores.

We have considered monotone, unidimensional IRT models but this is not es-
sential. General formulae have been presented here with the aim to facilitate the
derivation of reliability, and other CTT concepts using any IRT model. Consider,
as an example, a general latent class model where ability is a discrete variable and
each value of the ability defines a latent class. With this model, and binary items,

test reliability can be shown to be equal to
2
ZoPo (ZiPig)” — (Z, po Zi Pio)
2 ’
Zg Pg (Zi Pt'g)2 . (Zg Pg 2 Pig) + Zg Pg 2 Piy(l = Pig)

where 3, sums over latent classes, 3°; sums over items in the test, p, denotes the

Py = (43)

probability of being in class g, and p;; denotes the probability to answer the i-th
item correct when one is a member of class g. It is not immediately clear to us

what Equation (43) means but it appears to be related to the ability to discriminate
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between the classes; that is, p% = 1 if there are one or more items that distinguish
perfectly between the latent classes. Here we see an example where IRl" offers more
specialized indices to judge the quality of the items and the test (e.g., Rost, 1996,
pp- 1153-159).

It must be noted that all calculations are predicated on the validity of the IRT
model, and the availability of good estimates of the distribution in the population
of interest. Further, it is necessary that the model is sufficiently parameterized but
at the same time simple enough to admit (approximate) calculation of moments in
the population of interest. To asses IRT model fit, most software packages provide
a myriad of goodness-of-fit indices and ways to test IRT models are continuously
being developed.

When an IRT model is found appropriate, we may get an impression of the
sample variance involved in our calculations by varying the values of the parameters.
For example, if the population distribution is assumed normal with mean g and
variance o2, an approximate 95% interval of uncertainty may be constructed by
varying oy between aébw) = o9 — 1.64S5E and o((,high) = 09 + 1.64SE, where Sk
denotes the standard error of the standard deviation. For example, we calculate the

(

expected test information in a population of interest with oy = aglow) to get the lower
end and then with o4 = aéhigh) to get the upper end of an approximate 95% interval
around the expected information. We choose to vary oy since it is estimated with
much less precision than the mean and it is the main determinant of C'1"I" indices.
For example, in the analysis discussed in Section 4.1, SE = 0.149, which provides
the interval: p3 € [0.70 —0.78]. A more promising method is to use MCMC methods

to generate exchangeable replications to obtain estimates of CTT statistics and (a

lower bound of) their sampling variance.
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7. Appendix: Calculating Pr(Y = y|6)

The term within brackets in (24) equals an elementary symmetric function of
order y with arguments Pr(X; = z,/0),...,Pr(X; = z/|6) and it can be calculated
using any algorithm for the calculation of elementary symmetric functions (e.g.,
Fischer, 1995, p. 136-137; Verhelst, Glas and Van der Sluis, 1984). Alternatively,
Pr(Y = y|f) can be calculated using a slight extension of the recursion formulae
that are given by Lord and Wingersky (1984) which we discuss now.

Consider first a number of dichotomous items. Let Y denote the number correct
score, and Pr.(Y = y|6) the probability of number correct score y over the first r
items, given ability §. A moment of thought will allow you to see that Pry(Y = y|0)

is related to the item scores in the following way:

Prao(Y = y[0) =

Pr(X, = 0[6) Pr(X, = 06) ify =0,
Pr(X; = 1|6) Pr(X, = 0[6) + Pr(X; = 0]6) Pr(X, = 1]§) ify =1

P Y I S S R

Pr(X; = 1) Pr(X, = 1) ify =2

(

| Pri(Y =y|6) Pr(X; = 06) ify =0,
= { Pri(Y = y|8) Pr(X; = 0]8) + Pry(Y =y — 1) Pr(X, = 1]0) ify =1

| Pri(Y =y —1/6) Pr(X, = 16) ify =2

If we continue to r = 2, r = 3, etc., we find that in general we may replace Pry(Y =
y|d) by Pr (Y = y|6), Pry(Y = yl6) by Pr,_1(Y = y|f),y =1 by 0 <y < r, and
y =2 by y = r. Thus we obtain the recursion formulae given by Lord and Wingersky
(1984).

We may use to same line of reasoning to derive recursion formulae for polytomous
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items. The result is the following: For 1 < r < I,

( .
Pro_ (yl0)(1 — T3y par) ify=0

Pr.(Y = y16) = { Pr,_, (y16)(1 = THe, pae) + S, Prooi(y — AlO)pr 0 <y < Ars

M max(iy—Ar_y) Prr-1(y = h|0)phr if A,y <y <A,

where M = min(J,,y), Ar—1 = Z;-;% Jiy Ar = 3501 Ji, par = Pr(X, = h|6), and J,

is the maximum score on item r.
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