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Abstract 

Computerized adaptive tests (CATS) have shown to be considerably more efficient than 

paper-and-pencil tests. This gain is realized by offering each candidate the most informative 

item from an available item bank on the basis of the results of items that have already been 

administered:-The item selection methods that are used to compose an _opti_nmm test for each 

individual do, however, have a number of drawbacks. Though a CAT generally presents each 

candidate with a different test, it often occurs that some items from the item bank are 

administered very frequently while others are never or hardly ever used. These two problems, 

i.e., overexposure and underexposure of items, can be eliminated by adding further restrictions 

to the item selection methods. However, this exposure control will affect the efficiency of the 

CAT. This paper presents a solution for both problems. The functioning of these methods 

will be illustrated with the results of simulation research that has been carried out to develop 

adaptive tests. 
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Introduction 

Computerized adaptive tests (CATS) can be used to assess a candidate's ger;ieral ability in a 

field or to make placement or pass-fail decisions. It has been shown that these tests are 

considerably more efficient than paper-and-pencil tests. The literature (see, for instance, 

Wainer, 2000 and Eggen & Straetmans, 2000) reports that it is possible to either double the 

accuracy of ability estimation with the same number of items or to halve the average number 

of items required to take a decision with the same degree of accuracy. This gain is realized by 

offering each candidate the most informative item from an available item bank on the basis of 

the results of items that have already been administered. 

The item selection methods that are used to compose an optimum test for each 

individual do, however, have a number of drawbacks. Though a CAT generally presents each 

candidate with a different test, it often occurs that some items from the item bank are 

administered very frequently while others are never or hardly ever used. These two problems, 

i.e., overexposure and underexposure of items, can be eliminated by adding further restrictions 

to the item selection methods. However, this exposure control will affect the efficiency of the 

CAT. 

After an introduction to adaptive testing, this paper presents a solution for both 

problems. How these methods work will be illustrated with the results of simulation research 

that has been carried out to develop these adaptive tests at CITO. 

Adaptive tests 

Computerized adaptive testing means that individual candidates are tested with the aid of the 

computer and that the test is constructed while it is being administered: on the basis of results 

obtained by a candidate, items are administered after they have been selected from an item 

bank that has been calibrated with the aid of item response theory (IRT). 

The item bank 

CATs presuppose the availability of an item bank. An item bank is a structured collection of 

items: besides the item itself, the item bank lists various characteristics of the item. The 
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characteristics of the items that have been filed in the bank may concern content classification, 

but the most important characteristics in adaptive testing are the items' psychometric features, 

the item parameters. The algorithms for adaptive tests operate on the basis of these item 

parameters that are established in calibration research. If this shows that the items meet the 

requirements of an IRT model and if the item parameters have been estimated with sufficient 

accuracy, this is called an !RT-calibrated item bank. The IRT model for the item bank that 

was used for the simulation studies reported on in this paper is the OPLM model (Verhelst & 

Glas, 1995). In this model, the probability of correctly performing task i, also called the item 

response function, is given by: 

p (0) = P(X. = 1 I 0) = 

exp(a/0 - /3;)) 
1 1 1 + exp(a; (0 - {3;)) 

Here, /3; is the location parameter of the item. This parameter is associated with the difficulty 

of the item. This is the point on the ability scale where there is a 50% chance of correctly 

answering the item. Parameter a; is the item's discrimination index. Estimates of the values of 

a; and /3; for each item have been filed in the item bank. 

This paper makes use of a mathematics item bank to illustrate the results and the 

simulation studies that have been carried out. This item bank consists of 680 items, divided 

into 4 subdomains: arithmetic (320), information (81), algebra (139), and geometry (140). In 

the WISCAT (Cito, 1999) test package, this item bank is used for various kinds of adaptive 

tests developed for vocational education. 

The algorithm for administering an adaptive test 

An algorithm for an adaptive test contains the regulations for starting, continuing, and 

terminating the test, and for reporting on a candidate's test performance. Figure 1 is a 

schematic representation of an adaptive test. 
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Figure 1. Schematic representation of an adaptive test 

As data on the candidate's ability are generally not available before the administration of the 

test, the test will start with one or more randomly selected items from the item bank. The 

second step is the item selection that takes place after the administration of each item. An item 

is selected from the item bank that matches answers given up to that point: the composition of 

the test is adapted to the candidate. In this way, an optimum test is constructed for each 

candidate. The criteria for item selection are dealt with in greater detail below� however, what 

they all have in common is the psychometric notion of information. The underlying idea is 

that the item that promises to give the most information for the candidate's proven ability up 

to that point will be administered next. Such optimum item selection is largely responsible for 

the major efficiency gains of CAT as against a fixed, linear paper-and-pencil test. Efficiency 

gains means that fewer items are required to assess candidates with the same degree of 

accuracy, or that they can be assessed much more accurately with the same number of items. 

Table 1 shows the results of a simulation study for a mathematics placement test. For further 

results and details, see Eggen & Straetmans (2000). 
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Table 1. CAT and a linear mathematics intake test 

Method Average number of items 

Paper-and-pencil 25 

CAT (maximum information) 14,2 

CAT (random selection) 20,2 

% correct decisions 

87,0 

88,3 

85,2 

It is clear that, compared to a paper-and-pencil test, a CAT where items are selected on the 

basis of maximum information can achieve the same accuracy with less than 60% of the 

items. If items are randomly selected, there is still an average gain of 20% of the items, but 

also a loss of accuracy. 

After an item has been selected, it is administered and scored. In the subsequent 

computation phase, the candidate's scores are processed: on the basis of the answer scores on 

the items, statistical procedures determine the candidate's ability and indicate its accuracy. 

After each administration of an item, it is decided whether a new item must be selected or 

whether the administration of the test can be terminated. The criterion for discontinuing the 

test is generally based on the accuracy with which the candidate's ability has been assessed. If 

this criterion has not been met, a new item is presented. If the test is discontinued, the 

administration terminates with a report of the results. 

Item selection in adaptive testing 

After each item that has been administered, the next item is selected from the item bank. 

Bearing in mind the objective of the test, an item is selected that best matches the ability 

demonstrated by the candidate up to that point. Many methods for item selection are available 

(see, for example, Van der Linden, 1998 and Eggen, 1999). In this paper, the focus is on the 

following item selection methods, which are also the most widely used in practice: random 

selection, maximum Fisher information at the current ability estimate and maximum Fisher 

information at the (nearest) cutting point. 
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Random selection 

If items are randomly selected, this means that, after each administration, each item that has 

not been used has an equal chance of being selected. However, with such a method of 

selecting items, the contents of the test are not matched to the ability of the candidate, and 

testing is not efficient. Simulation studies have shown that random selection eliminates out 

the possible gains of adaptive testing (see Table 1). 

Maximum Fisher information at the current ability estimate 

This method of selecting items is optimal if the objective of the adaptive test is to estimate the 

candidate's ability. In addition, this method also functions fairly well if people need to be 

assigned to one of two or three categories on the basis of the test. In the OPLM model, the 

Fisher item information is formally given by: 

/.(0) = a2 .(0)(1- .(0)) = 

a;
2 exp(a;(0 - /3)) 

, , P, P, (l + exp(a;(0 - /3; )))2 

This item information function expresses the contribution an item can make to the accuracy of 

the measurement of a person as a function of his or her ability. This becomes clear if we 

realize that the estimation error of the ability estimate can be expressed as a function of the 

sum of the item information of the items administered: se(0k
) = 1 / LI; (0k

) . 
i=l 

For dichotomous items, the Fisher item information is a single-peaked function of the ability. 

For example, in the OPLM it shows that, for each item, the information reaches its maximum 

at the value of the location parameter ( difficulty) of the item ( 0 = /3; ). In addition, it is clear 

that the discrimination parameter has a great influence on the information. The information is 

larger as a
i 

is larger. 

Items are selected with the information function as follows: after the ability estimate 0
k 

has been determined, the information for each item that has not yet been administered is 

computed at this point; the item whose information value is highest is then selected and 

administered. 

8 



Maximum Fisher information at the nearest cutting point 

With this method, items are ranked on their information at the value of the ability belonging to 

the (nearest) cutting point for a classi�ication. With classification problems with one cutting 

point, this method of item selection is better than selection based on maximum Fisher 

information at the current ability estimate. For problems with two cutting points, no 

improvement of this method can be expected (Eggen & Straetmans, 2000). One must bear in 

mind that with this item selection method and one cutting point, each person is presented with 

the same items in the same order. 

Utilization of the item bank 

If items are selected according to a psychometric criterion in adaptive tests, then each time the 

program selects the item that will yield maximum information for the ability demonstrated up 

to that point. The person's ability and the items' characteristics are optimally attuned. As 

indicated in Table 1, this yields major gains in measurement efficiency. However, the 

optimum selection method may have undesirable side effects in practice. This is illustrated in 

Figure 2, which shows the frequencies of item use from the item bank, also called exposure 

distribution, for various item selection methods for the placement test (The efficiency gains 

for each method were reported in Table 1). 
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Figure 2. Item utilization a CAT and a linear mathematics placement test 

The paper-and-pencil test uses only 25 items from the item bank. The CAT, selecting items on 

the basis of maximum information, also uses only about a hundred items out of a total of 250 

items. In addition, there are some items that are selected very frequently: they are included in 

the test in well over half the number of test administrations. 

Although, in CAT, the optimum item selection method makes sure that virtually each 

candidate gets a different test, it still happens that some items from the item bank are 

administered very frequently while others are never or hardly ever used. The major gains in 

efficiency go together with these two characteristics of the utilization of the item bank, which, 

in practice, result in the following problems: 

l. overexposure: some items are selected so frequently that confidentiality is very rapidly and 

directly compromised; 

2. underexposure: some items are so seldom used that one wonders how the expense of 

constructing them can be justified. 
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Figure 2 also shows that these problems do not occur with random item selection: with 

this selection method, all items are used in 15-20% of test administrations. However, with this 

method accuracy is lost, and there are few gains compared to the paper version of the test; 

hence it is unacceptable (see Table 1). 

By adding further restrictions to the optimum item selection methods, a solution to these 

problems can be found, as will be showil"below. Imposing preconditions on the algorithm that 

selects items for maximum information in adaptive testing is the way to meet demands or 

wishes with regard to the composition of the test. A much-applied restriction, which will not 

be discussed any further in this paper, is content control. In this case, a tester employs a 

desirable content specification for the test, establishing that certain components of the ability 

that is to be assessed occur in a given proportion in each test. For example, an adaptive 

arithmetic test should contain an equal number of items on percentages and on fractions: For 

further information on content control, see Kingsbury & Zara (1991) and Eggen & Straetmans 

(2000). 

For problems relating to unbalanced utilization of the item bank, exposure control can 

be applied. Such exposure control must offer a solution to the underexposure and 

overexposure of the bank. Imposing restrictions on the optimum test composition will always 

cause the adaptive test to lose efficiency. Below, exposure control will be discussed in greater 

detail and a solution presented to both overexposure and underexposure. The extent to which 

the application of exposure control affects measurement efficiency will also be dealt with. 

Exposure control against overexposure 

The aim of this kind of exposure control is to reduce the exposure rate of items. This rate is 

defined as the probability that some item i from the item bank will be administered. This 

probability can be calculated, after a large number of test administrations, by dividing the 

number of times the item is included in the test by the total number of test administrations. 

The effect of applying such exposure control should be that items that are administered (to) 

often without control will be administered less often. 

In practice, exposure control proceeds as follows: for each item from the item bank, 

there is an exposure control parameter (ECP), indicated by k;, which is a number between 0 
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and 1. The ECP determines the probability that an item that has been selected with a selection 

algorithm is actually being administered. There are various methods for determining the k; 's. 

In the present study the SR method was used, which was originally developed by Sympson & 

Retter (1985) and has proved to be very effective. To determine the k; 's by means of the SR 

method, large numbers of adaptive test administrations (some 1000 per run, for instance) must 

be simulated according to the desired specifications of the algorithm. These simulation runs 

must be repeated a number of times. 

The SH method 

The SR method starts by determining the maximum permissible exposure rate: r ,  for 

example 0.2. Then the k; 's are determined in a number of simulation runs. In each simulation 

run, the selection rate for each item is estimated: I'; (S) and the exposure rate I'; (A). Thus, 

the number of times an item is selected and the number of times the item is administered is 

being tracked. In the first simulation run, these rates are equivalent. Step by step, the 

simulations then proceed as follows: 

1. Set all k; 's for item i = 1, ... , I to 1. 

2. Carry out the simulation and determine I'; (S) and the maximum of I'; (A). 

3. Adjust the k; 's for item i = 1, ... , I : 

a. P;(S) > r ,  then k; = r/ P;(S), 

b. I'; (S) :5 r ,  then k; =1.0, 

c. make sure (by setting the highest to 1) that there are at least as many k; 's 

equal to 1.0 as the maximum test length. 

4. Repeat steps 2 and 3 until the maximum of I'; (A) is approximately equal tor .  

Some studies have recently been published in which exposure control methods are 

compared. The methods focusing on canceling out overexposure are generally variants or 

extensions of the SR method, such as a SR method with a test length dependency or a SR 
method that operates conditionally on the ability. On the whole, these methods are more 

complex, and the results they yielded in comparison with the common SR method did not 

prompt us to use them. 
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Exposure control against underexposure 

The method described above has proved to be effective against overexposure of the item bank. 

For underexposure, Revuelta & Ponsoda (1998) have recently proposed an effective method: 

the so-called progressive method for exposure control. An extension of their proposal is 

presented here. The basic idea is simple: item selection is based on a mixture of two criteria, 

viz . ,  chance (R) and maximum information at the current ability estimate (MI). At the start of 

a test administration, the weight of the R criterion is large and that of the MI criterion is small, 

but, as the test administration progresses, the weight of R decreases and that of MI increases. 

This method is briefly described below. Define: 

h: the number of items that have already been administered to a candidate, 

m: the maximum number of items a candidate will get, 

s=min(a.h/m,1) :  the relative position of an item in the test and 

I
i
h :  the information of item i at e

h 
(the ability estimate after h items). 

1 .  Determine the maximum of the information for all unused items after administration of 

h items and call this H := max I;h . 

2. Draw for each item i a random number R; from the uniform division on the interval 

(O,H). 

3. Determine for each unused item a weight, a linear combination of a random and an 

information component: W; = (1 - s) .R; + s.I;h . 

4. Select the item with maximum w; . 

It is easy to see that s is a number between O and 1 that increases as the length of the test 

increases. In addition, the definition of w; shows that the contribution of the random 

component is large at the start of the test and that item information carries more weight as the 

test progresses. A special case is chosen, a=l :  during the entire test, selection will then be 

based on a combination of chance and information. If a larger a (for instance 2) is chosen, 

chance plays less of a role in the item selection (only in the first half of the test, for example). 

Revuelta & Ponsoda (1998) report that this method with a= l guarantees that item exposure is 

spread more evenly over the bank with only a limited loss of accuracy. This presents a 

solution mainly to the underexposure problem. 
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The progressive method could be a good supplement to the Sympson-Retter method of 

exposure control, which presents a solution to the overexposure problem. The simultaneous 

application of both methods is expected to solve both the overexposure and the underexposure 

problems of the item bank. 

Simulation studies 

In this section, the functioning of the methods proposed for exposure control with the aid of 

simulation studies that have been carried out with the item bank used in the WISCAT (Cito, 

1999) will  be illustrated. Only results for one the so-called profile test wil l  be reported. This 

test decides whether candidates have sufficient mastery of a certain ability level (one cutting 

point) and concerns all subjects from the item bank (arithmetic, algebra, geometry, and 

information). As a rule, content control is carried out (an equal number of items for each 

subject) in the test's algorithm, because the test reports on partial subjects besides deciding on 

the mastery. As quality indicators of the adaptive tests, the average number of observations · 

required to take a decision (n) and the percentage of correct decisions (%) wil l  be reported. 

For the utilization of the item bank, the exposure distribution or the percentage of test 

administrations that include each item will be looked at. In their graphical representations, the 

items have been consistently ranked from high to low use. 

No exposure control 

If exposure control is not applied, Figure 3 shows that there are virtually no differences in the 

quality of the CATs in which items are selected having maximum information at the cutting 

point (cp) and at current ability estimate (mi). For the exposure division, we do see 

differences. If items are selected at the cutting point, both the overexposure and the 

underexposure problems are considerable: a number of items (22) are included in 100% of the 

adaptive tests, whereas 90% of the total number of 680 items are not used at all. Though in 

theory this selection method is better than selecting at the current ability estimate, the iatter is 

to be preferred for its item bank utilization alone. In this type of item selection, maximum 

item use is 68% and there are 19 items that occur in more than 40% of test administrations. 

The overexposure problem is presented here to. 
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In �ddition, it can be seen that only 226 items out of 680 are used. This means that 66% 

of the items are not used. This was to be expected for some 100 items, which are at too high a 

level, as the bank is also used to test KSB-3 mastery. Nevertheless, there is major 

underexposure here as well. 

1 .0 

0.8 

Q) 

� 0.6 
Q) 
Cl 

Q) 

a> 0.4 c. 

0.2 

0.0 

0 

cp (n=27.4 %=95.7) 
mi (n=27.6 %=95. 1 )  
r (n=33. 7 %=91 .0) 

• • • 
'·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-· .. . . . . . . . . . . . . . .  :7'. . . .  :,-, .. .,.... ________________ --=.;. 

200 400 600 
items 

Figure 3. Wiscat item bank utilization without exposure control 

Random item selection (r) has also been included in Figure 3. As before, this method does not 

cause any difficulties with overexposure or underexposure of the item bank. However, the 

consequences for the quality of the adaptive tests are disastrous. Compared to the other 

selection methods, both the average number of items needed and the percentage of correct 

decisions are significantly worse. It should be noted that, for the random sample sizes used in 

this study, a 0.6 difference in the average number of items is significant at the 99% level, 

whereas differences in the percentages of correct decisions of 3.3% are significant at this level 

(2.7% at the 95% level). 
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The effect of applying exposure control with the SH method 

Figure 4 presents the results of applying the SH method, in which the maximum exposure 

rates have been set at 0.45, 0.35, and 0.25, respectively. With respect to the quality of the 

tests, it can be seen that, as the maximum exposure rate is set lower, the number of items 

needed increases somewhat. At a set maximum of 0.25, there is a significant, albeit not very 

large, increase in the number of items needed compared to selection of items without exposure 

control. There are virtually no differences in the percentages of correct decisions. 

Q) 
II) 

0.6 

� 0.4 

Q) 
Q. 

0.2 

0.0 

0 200 

items 

400 

mi (n=27.6 %=95.1 )  
mish45 (n=27.6 %=95.2) 
mish35 (n=27.9 %=95.8) 
mish25 (n=28.4 %=94.6) 

600 

Figure 4: Wiscat item bank utilization applying the SH method for exposure control 

As can be seen, the methods are effective against overexposure: the set maxima are not 

exceeded. However, the SH method does not have much effect on the underexposure of items. 

For example, with a maximum exposure rate of 0.35, the number of items used has gone up 

from 222 to 245 compared to selection without exposure control, but 63% of the items from 

the item bank are still not being called upon. 
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The effect of applying exposure control with the progressive method 

Figure 5 shows the results of applying the progressive method with a=l ,  2, and 3, respectively. 

Item selection is based on a combinati�:m of information and chance during the entire adaptive 

test, only the first half, and only in the third part of the test, respectively. It can be seen that 

applying this kind of exposure control leads to hardly any quality differences in the adaptive 

tests. Only if the progressive method is applied during the entire test a slight increase.in the 

average number of items needed is observed. 
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Figure 5: Wiscat item bank utilization applying the progressive method for exposure control 

It is clearly observable that the progressive method is effective against the problem of 

underexposure: at a=l, 591 items are used; at a=2, a total of 530 items are used; and at a=3, 

510 items. So only between 15-25% of items remain unused. The progressive method is not 

effective against overexposure: at a=l ,  2, and 3, the maximum use of an item is 55.8%, 

60.2%, and 62.8% of administrations, respectively. 
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The effect of applying the SH method together with the progressive method 

Figure 6 presents the results of applying the SH method with a maximum exposure rate of 

0.35 in combination with the progressive method with a=l, 2, and 3. The 0.35 boundary was 

chosen because it was acceptable for intrinsic considerations and because no significant 
deterioration of quality has been observed compared to selection without exposure control 

(see Figure 4). When these two methods are combined, first the k; parameters of the SH 

method are established in advance, and subsequently, these parameters and the progressive 

method are applied during testing. A look at the results shows that applying this combination 

of methods leads to an average increase in the number of items needed of approximately 1. 
The percentages of correct decisions remain virtually the same. 
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Figure 6: Wiscat item bank utilization combining the progressive method and the SH method 

The effect on item bank utilization is favorable: the combination can cope with both the 

underexposure and the overexposure problems. With the SH method in combination with the 

18 



progressive method with a=l, 2, and 3, the numbers of items used are 604, 543, and 525, 

respectively. The maximum exposure rates are 0.28, 0.3 1, and 0.32, which is consistently 

below the set maximum of 0.35 .  Thus, the methods, jointly applied, are effective against the 

problems, but at the expense of an average of 1 item in test length. This difference is 

statistically significant compared to selection without exposure control, but, for practical 

purposes, this is an acceptable loss of measurement efficiency. 

On the basis of these results, exposure control in the definitive algorithm of this Wiscat 

adaptive test will take place combining the SH method with a maximum exposure rate of 0.35 

and the progressive method with a=2. 

Conclusion 

Computerized adaptive tests (CAT) can achieve considerable efficiency gains compared to 

traditional tests. These gains are realized by using item selection methods that put together an 

optimum test for each person. This paper showed that the optimum item selection methods 

also have some less desirable features in practice. Although, with CAT, each candidate gets a 

different test, it is frequently the case that some items from the item bank are selected very 

often while another part of the item bank is never or seldom used at all. Too frequent use may 

compromise the confidentiality of the items, which is a major practical problem in testing. If 

items are never or hardly ever used at all, this might be considered a waste of money and 

energy spent on item construction. 

This paper presented solutions for both the problem of overexposure and the problem of 

underexposure. The functioning of the methods and the consequences for testing efficiency 

were illustrated with the results of research carried out to develop these tests. This paper 

presented the results of only one test, but replication of the simulations for other tests with the 

same item bank and also with other item banks consistently yielded comparable results. 

It is concluded that the SH method presents an effective solution to the overexposure 

problem. The progressive method is effective against underexposure. Combined ·application 

addresses both problems. The restrictions imposed on item selection by exposure control can 
easily be included in the algorithms for adaptive tests. 
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