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Abstract 

 

The goal of the current study was to compare a linking procedure for two test forms using 

different types of common items. It was hypothesized that the test-taking condition of the 

common items influences the linking procedure. The results support the hypothesis. A mixed 

Rasch model was used to model some examinees as being more motivated than others to 

solve the items. Removal of aberrant item-score vectors or items displaying differential item 

functioning did not improve the linking procedure. 
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Comparing the Effectiveness of Different Linking Designs: the Internal Anchor versus the 

External Anchor and Pre-Test Data 

 Test forms may differ with respect to the difficulty of the test and, as a result, scores 

on different test forms are often not directly comparable. Several procedures such as linking, 

scaling and equating are available to develop a common metric (see e.g. Kolen & Brennan, 

2004). Different linking procedures are based on different assumptions and use different 

designs or data collection procedures. One design particularly useful in educational testing is 

the common-item non-equivalent groups design. In this design, two high-stakes test forms are 

administered in two different populations, for example, eighth-grade primary-school students 

in two successive years, and both test forms are linked by means of common items. The test 

forms to be linked by means of the common items are also called operational test forms. In an 

educational testing context, populations often are not equivalent and the proficiency level of 

examinees may change from year to year. The common-item non-equivalent groups design 

can accommodate these problems to produce a common scale. A popular choice for the 

common items is to let them represent a miniature version of the total test form. In an item 

response theory (IRT) context, this means that the items measure the same latent proficiency 

and that the same IRT model has to fit the common items and the total test form.   

 In this study, three types of common-item non-equivalent groups designs are 

discussed. The difference between the designs most relevant to this study concerns the issue 

whether common items are used for determining the total test score and thus whether they are 

administered under high-stakes conditions. Figure 1 shows symbolic representations of the 

designs. In this figure, rows correspond to examinee data and columns to item data. Boxes 

represent combinations of items and examinees for which data are available. The order of the 

items presented in the figures might not correspond to the order in the real test.  
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Figure 1a shows the internal anchor design. In this design, samples of both populations of 

examinees are administered a different test form, which in both cases includes a selection of 

items from the test form to be linked, also referred to as operational items, and additional 

common items, in this design also referred to as internal anchor items. The common items are 

the same across the different test forms and the different samples of examinees. Therefore, 

differences in difficulty between test forms can be estimated based on the relative  
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Figure 1. (a) The internal anchor design, (b) the external anchor design and (c) the pre-test 

design.                  
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performance of a sample on the common items. Both tests can be linked to the common 

items, and therefore indirectly to each other. In this design, all items including the common 

items contribute to an examinee’s total test score. Therefore, the administration conditions for 

both the items in the operational test and the common items are high-stakes. Test security 

might be threatened if every examinee in both tests is presented the common items. However, 

in the internal anchor design, only samples of both populations are presented the common 

items and the examinees in this sample are not aware that they are presented an alternative 

test form. Furthermore, the internal anchor items, the number of internal anchor items and the 

number of examinees who are presented the internal anchor items are not made public. It can 

thus be assumed that the threat to test security is minimal when using the internal anchor 

design. Therefore, the internal anchor design is especially useful in linking two high-stakes 

test forms. Placing the internal anchor items in the same position in the total test in both 

operational test forms can avoid undesirable order effects when the different operational test 

forms are compared.  

 The external anchor design (Figure 1b) is different from the internal anchor design in 

that the score on the common items does not contribute to the total test score and that the 

external anchor does not replace part of the test. Therefore, when using an external anchor 

design to link two test forms, the link between the tests is based on the additional common 

items, in this design also referred to as external anchor items. Usually, examinees know that 

the external anchor items do not contribute to their total test score and, as a result, these items 

are administered in a low-stakes condition whereas the operational items are administered in 

a high-stakes condition. Proficiency differences between external anchor items and 

operational items may be attributed to an administration effect.  

 The third method is the pre-test design (Figure 1c). Subsets of items intended for use 

in the operational tests may be pre-tested on different samples of examinees so as to examine 
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the statistical characteristics of items before including them in an operational test. Items with 

the most promising item characteristics are selected into the operational test. However, if 

items are pre-tested in two consecutive years, they can be used as an external link between 

two operational tests. Hence, similar to the anchor in the external anchor design, the pre-test 

is administered in a low-stakes condition.  

 Klein and Jarjoura (1985) concluded that it was important to use content-

representative common items. Therefore, a popular choice for the items is to let them 

represent a miniature version of the total test form. In an IRT context, this means that the 

items measure the same latent proficiency and that the same IRT model fits the common 

items and the total test form. However, Wise and DeMars (2005) found that if item 

performance does not contribute to the total score, examinees might not give their best effort. 

Consequently, the performance on the common items may differ from performance on the 

total test form due to different test taking conditions. This may result in unusual patterns of 

item scores or in relatively meagre performance, and the effect may be an increase in 

uncertainty in the linking procedure using an external anchor or pre-test items compared to 

using internal anchor items.  

 A mixed IRT model may be used to test if some of the item-score vectors (i.e., the 

vector of item scores an examinee has produced) have been affected differently by the low-

stakes condition compared to the high-stakes operational test. Mixed IRT models assume that 

the data are a mixture of different data sets from two or more latent populations (Rost, 1997; 

Von Davier & Yamamoto, 2004), also called latent classes. If this assumption is correct, a 

particular IRT model does not hold for the entire population, but different model parameters 

are valid for different subpopulations. Usually, the number of subpopulations and the size of 

the subpopulations are unknown. In linking different test forms, one can specify the mixed 

IRT model in such a way that one of the latent classes represents high-stakes response 
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behavior (represented by vectors of item scores unique to this latent class) while the other 

latent class represents low-stakes behavior (Béguin, 2005; Béguin & Maan, 2007). If only the 

data of the high-stakes class are used in the linking procedure, this is expected to improve the 

results of the linking procedure.  

 Let iX  denote the score on item i, with the total number of items represented by k. 

According to the mixed IRT model, the probability of passing item i ( 1iX ) depends on a 

class-specific person parameter jg , denoting the proficiency of examinee j if he/she belongs 

to latent class g. The techniques currently available for estimating a mixed IRT model focus 

on the Rasch model. The limitation to the Rasch model is partly due to the limited 

information in the data to estimate more-complex models. The mixed Rasch model defines 

the conditional response probability as: 

)exp(1
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 Instead of removing the latent class displaying low-stakes response behavior from the 

linking procedure, an alternative procedure to improve the link is to remove item-score 

vectors from the data, to which an IRT model does not fit. This can be done using a person-fit 

statistic, which attempts to assess the fit of the IRT model at the individual level (Embretson 

& Reise, 2000). A person-fit statistic developed to assess the likelihood of an item-score 

vector is the zl  statistic (Drasgow, Levine & Williams, 1985; Meijer, 2003). The zl statistic is 

given by 

)(

)(

lVar

lEl
l z  

where l denotes the unstandardized likelihood of the item-score vector, and )(lE and 

)(lVar denote the expected likelihood and the variance of the likelihood, respectively. These 

three quantities are given by 
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The zl  statistic is often assumed to be a standard normal deviate, with large negative values 

indicating misfit. Van Krimpen-Stoop and Meijer (1999) showed that the normal 

approximation to zl  is invalid, yielding a conservative test, in particular for detecting aberrant 

item-score vectors at the lower and higher ends of the scale and when applied to short scales. 

Fortunately, Snijders (2001) derived an asymptotic null distribution where the proficiency 

parameter is replaced by an estimate.  
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 We used data from a Dutch testing program to investigate if the link between two 

operational tests differs when using different types of common items. This was done by 

comparing the mean proficiency differences of the operational tests over the different types 

of common items. The differences in mean proficiency of the operational tests were assessed 

by means of confidence intervals constructed using a bootstrap procedure. Furthermore, it 

was evaluated if item-score vectors, which were influenced most by the low-stakes test-

taking conditions, could be identified. For this purpose, we used both the mixed Rasch model  

and the zl  person-fit statistic. Subsequently, Item-score vectors identified using the mixed 

Rasch model or the zl statistic were removed from the data to improve the link between the 

two operational tests forms. Furthermore, item-misfit was investigated in order to inspect if 

removing misfitting items would improve the link between the two operational test forms.  

Method 

Participants and Design 

 Data were used from the reading and mathematics scales of the ‘Eindtoets 

Basisonderwijs’ (End of Primary Education Test). This test is administered every year at the 

end of Dutch primary education, and the examinees’ results are used to give advice about the 

most appropriate type of secondary education. Test administration is high stakes and item 

secrecy is vital; hence, the test form is renewed each year. A link between different test forms 

can be established using an internal anchor, an external anchor and pre-test data. We 

developed a common metric for the mathematics and reading scales using two consecutive 

test forms, which are the operational test forms administered in 2009 and 2010.  

 Both operational test forms contained 30 reading items and 60 mathematics items. 

Samples contained 4,995 participants for 2009 and 5,123 participants for 2010. The internal 

anchor test consisted of 14 reading items and 20 mathematics items, which were administered 

to 2,989 and 2,421 participants in 2009 and 2010, respectively. The external anchor test 
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consisted of 15 reading items and 20 mathematics items, which were administered to 5,086 

and 4,575 participants in 2009 and 2010, respectively. In order to pre-test the reading items 

for the 2009 operational test, in 2008 16 reading pre-test booklets (ranging from 29 to 31 

items) and 19 mathematics pre-test booklets (ranging from 30 to 90 items) were administered. 

The number of participants who were administered the reading pre-test booklets ranged from 

185 to 310, and for the mathematics items from 183 to 313. Since the same pre-test items 

were administered in more than one pre-test booklet, the numbers of observations per item 

were larger and ranged from 440 to 607 for the reading items and from 219 to 1,685 for the 

mathematics items. The items for the 2010 operational test were pre-tested in 2009 using 17 

reading pre-test booklets containing reading items (ranging from 29 to 32 items) and 23 

mathematics pre-test booklets (ranging from 29 to 60 items). The number of participants who 

were administered these pre-test booklets ranges from 220 to 373 for the reading items and 

from 46 to 372 for the mathematics items. The number of observations per item ranged from 

457 to 995 for the reading items and 504 to 1,664 for the mathematics items.  

Analyses 

 To inspect differences in mean proficiency, the Rasch Model was fitted to the data 

(Rasch, 1960). According to the Rasch model, the probability of passing item i for individual 

j is a function of proficiency parameter j  and can be given by  

    
)]exp[(1

)]exp[(
)|1(

ij

ij

jijXP      

where i  is the difficulty parameter of item i . The fit of the Rasch model to the operational 

test items was investigated by means of Infit and Outfit statistics (Wright & Masters, 1982) 

available in the eRm package in R (Mair, Hatzinger & Maier, 2010). Items having a Mean 

Square Outfit statistic or Mean Square Infit statistic outside the range of 0.5 – 1.5 were 

iteratively removed from the analyses. The OPLM software was used to estimate the Rasch 
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model. The differences in mean proficiency of both operational tests were compared for each 

of the three linking designs. Student’s t-tests were used to determine whether the differences 

between the means of the operational tests of 2009 and 2010 were significant. Cohen’s d was 

used to assess effect size (Cohen, 1988).   

 The standard deviations of the proficiency distributions provided by OPLM may be 

used to evaluate the significance of the differences between the mean proficiencies of the 

operational tests of 2009 and 2010. However, instead of using the complete variance-

covariance matrix of the difficulty parameters, with larger data sets OPLM only uses the 

diagonal of the matrix (Verhelst, Glas & Verstralen, 1995), which might result in an 

underestimation of the standard deviations. Therefore, a bootstrap procedure (Efron & 

Tibshirani, 1993) was used to construct 95% confidence intervals for the differences between 

the mean proficiencies of the operational tests. The bootstrap procedure was done using the 

following steps: 

1. For the internal anchor, external anchor and pre-test data, 1000 bootstrap 

samples were drawn. The operational test data matrix was kept constant. 

Bootstrapping was done using the statistical program R (R Development Core 

Team, 2005).  

2. OPLM was used to estimate the mean proficiency of the examinees for each 

operational test. A batch file was used to repeat this sequence of analyses for each 

bootstrap sample.   

3. Steps 1 and 2 resulted in 1000 differences in mean proficiency between 

operational tests for each type of linking data. The Shapiro-Wilk test (Shapiro & 

Wilk, 1965) was used to test whether differences found for each type of linking 

data were normally distributed. A 95% confidence interval (CI) was constructed 

using the .025 and .975 percentiles under the normal distribution.  
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 Internal anchor items are administered in a high-stakes condition, and only item-score 

vectors of the external anchor items and pre-test data that were both administered in a low-

stakes condition, are expected to belong to either a latent class displaying low-stakes response 

behavior or a latent class displaying high-stakes response behavior. Therefore, the mixed 

Rasch model was only estimated for the external anchor design and the pre-test design. A 

dedicated version of the OPLM software (Béguin, 2008) estimated the mixed Rasch model. 

Two latent classes were specified in the mixed IRT model, the first representing response 

behavior expected under high-stakes conditions and the second allowing for response 

behavior typical of less motivated examinees. The item-score vectors of the operational tests 

were modelled as being exclusively part of the first latent class, which was done by setting 

00 and 11 in Equation 1 for all item-score vectors of the operational tests. The item-

score vectors of the external anchor data and the pre-test data could be either in the first or the 

second latent class. The mixed Rasch model was compared to the simple Rasch model to 

investigate if modelling subpopulations would improve the link between the operational tests. 

This was done by means of (1) comparing difficulty parameters estimated for both the Rasch 

model and the mixed Rasch model, (2) a test for model comparison, and (3) by comparing the 

differences in mean proficiency between the samples administered the two operational tests.    

 Next to the application of mixed IRT models, a data cleaning procedure was used to 

investigate how removing aberrant item-score vectors influences the external anchor link of 

the operational tests. These item-score vectors were removed as follows:  

1. First, the operational-test items were used to estimate the proficiency 

parameter θ for each examinee. 

2. Second,  estimated for the operational items was used to compute the zl  

statistic on the external anchor items for each examinee. The asymptotic null 

distribution developed by Snijders (2001) was used to correct for the 
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conservative nature of the zl statistic . This was done using program R (R 

Development Core Team, 2005). 

3. Finally, the item-score vectors corresponding to the lowest 1%, 5%, 10%, 25% 

and 50% zl statistics were removed from the data.  

After removing the aberrant item-score vectors, the Rasch model was fitted to the data and 

the mean proficiency differences of the samples administered the operational tests were 

compared.  

 Instead of removing examinees whose item-score vectors were affected by 

administering low-stakes common items, one could also remove items that function 

differently in different groups of examinees. Differential Item Functioning (DIF) indentifies 

items that display different statistical properties in different group settings after controlling 

for differences between the proficiencies of the groups (Holland & Wainer, 1993). Items 

displaying DIF between the high-stakes condition and the low-stakes condition are not suited 

for establishing a common metric between the two operational test forms. The OPLM 

software provides the contribution of each item to the cR1  statistic (Glas, 1989), which 

evaluates the difference between expected and observed proportions of item scores in 

homogeneous score groups. Items having a mean sum of squares in excess of 4 were selected 

for visual inspection of DIF. OPLM provided graphs displaying the Item Characteristic Curve 

(ICC) for different groups. After removing items displaying DIF, the Rasch model was again 

fitted to the data and the differences between mean proficiencies of the operational tests were 

compared when linked each type of common items.  

Results 

Rasch Analysis 

 One reading item of the operational test of 2009 was deleted from further analyses 

because the Outfit Mean Square value was 1.519. Furthermore, one pre-test reading item was 
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removed from the analyses after inspection of the ICC because of extreme misfit. Table 1 

shows the estimated latent proficiency means of the operational tests for reading and of the 

operational tests for mathematics. The mean of the 2010 operational reading test was higher 

than the mean of the 2009 operational reading test for each type of common items (p < .01). 

The mean of the 2010 operational mathematics test was significantly higher than the mean of 

the 2009 operational mathematics test for the internal anchor design (p < .05), the external 

anchor design (p < .01) and the pre-test design (p < .01). However, the effect sizes of the 

external anchor and pre-test design were considerably higher than those of the internal anchor 

design. Therefore, further inspection of the use of different types of linking data is desirable. 

Confidence Intervals   

 A bootstrap procedure was used to construct 95% confidence intervals for the 

differences between mean proficiencies of the operational test of 2009 and 2010; see Table 1, 

Column 6. The Shapiro-Wilk test (Shapiro & Wilk, 1965) indicated that the differences found 

for each type of linking data were normally distributed (p > .05). The mean proficiencies of 

the operational reading tests differed significantly with each type of linking data, which is 

consistent with the Rasch analysis. The confidence intervals constructed for the mathematics 

items differ for the different linking designs. For example, the confidence interval for the 

internal anchor design (0.014; 0.090) does not overlap with the confidence interval for the 

external anchor design (0.093; 0.156) or the pre-test design (0.091; 0.160). Even though the 

confidence intervals constructed for the reading items do overlap, the boundaries and widths 

of the confidence intervals for the different linking designs differ. Therefore, we have reason 

to conclude that the results of the linking procedure for the mathematics tests and the reading 

tests differ between the types of common items used.  

Mixed IRT 

   The difficulty parameters of both latent classes obtained under the mixed Rasch model 
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Table 1.  

Proficiency Distributions of Operational Tests Using Different Types of Linking Data  

Linking data Population M SD Cohen’s d/ Sign. 

Student’s t 

95% CI 

Reading items 

Internal anchor 2009 1.453 0.832 0.124 / ** (0.057;0.165) 

 2010 1.565 0.967   

External anchor 2009 1.610 0.825 0.194 / ** (0.132;0.217) 

 2010 1.784 0.965   

Pre-test 2009 1.539 0.824 0.155 / ** (0.095;0.204) 

 2010 1.677 0.955   

Mathematics items 

Internal anchor 2009 1.169 1.023 0.049 / * (0.014; 0.090) 

 2010 1.220 1.071   

External anchor 2009 1.118 1.021 0.120 / ** (0.093; 0.156) 

 2010 1.243 1.069   

Pre-test 2009 1.065 1.021 0.120 / ** (0.091; 0.160) 

 2010 1.190 1.064   

* p < .05. ** p < .01. 

 

were compared with the difficulty parameters of the Rasch model. The difficulty parameters 

of both models are comparable because the mean of the proficiency distribution of the 2010 

operational test is fixed at 0 in both models. Figure 2 shows for a pre-test design that the 

difficulty parameter estimates of the reading items in the motivated class were lower than in 

the unmotivated class. The difficulty parameters estimated in the motivated class were 
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approximately the same when estimated by the mixed Rasch model and the simple Rasch 

model. However, four item difficulties from the mixed Rasch model were lower than – 7 , 

which deviated from the general trend. These items were identified as items that were 

answered correctly by almost every examinee in the motivated condition. Figure 3 shows that 

the item difficulties were higher for the unmotivated class than the motivated class when the 

pre-test design was used to link the operational mathematics tests. This suggests that 

examinees in the unmotivated class find it more difficult to answer an item correct than 

examinees in the motivated class. Figure 4 (reading) and Figure 5 (mathematics) show that 

the item difficulties in the motivated class are smaller than in the unmotivated class when 

using an external anchor design.  

 The class-membership probabilities for the motivated class were estimated for the 

external anchor tests and the pre-tests. For the external anchor tests, the probabilities were 

approximately equal in 2009 and 2010. For example, for the external-anchor reading test the 

probability for 2009 was .78 and for 2010 it was .77. For the mathematics tests the 

probabilities were .62 (2009) and .63 (2010). The class-membership probabilities for the 

motivated class differed among the pre-test booklets. The mean probability of the 14 reading 

pre-test booklets
1
 to pre-test the items of 2009 was .58 (ranging from .18 to .83) whereas the 

mean probability of the 17 reading pre-test booklets to pre-test the items of 2010 was .58 

(ranging from .45 to .74). The mean probability of the 18 mathematics pre-test booklets
2 

to 

pre-test the items of 2009 was .58 (ranging from .40 to .79) whereas the mean probability of 

the 23 mathematics pre-test booklets to pre-test the items of 2010 was .66 (ranging from .30 

to .95).  

 

                                                 
1
 Two pre-test booklets were iteratively removed from the analysis because the probability to belong to the 

motivated class was .00000 and .00006 
2
 One pre-test booklet was removed from the analysis because the probability to belong to the motivated class 

was .00000 
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Figure 2. Item difficulty parameters of the Rasch model and the mixed Rasch model for the 

motivated class (a) and the unmotivated class (b) estimated in the pre-test design for the 

reading items. 
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Figure 3. Item difficulty parameters of the Rasch model and the mixed Rasch model for the 

motivated class (a) and the unmotivated class (b) estimated in the pre-test design for the 

mathematics items. 
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Figure 4. Item difficulty parameters of the Rasch model and the mixed Rasch model for the 

motivated class (a) and the unmotivated class (b) estimated in the external anchor design for 

the reading items. 
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Figure 5. Item difficulty parameters of the Rasch model and the mixed Rasch model for the 

motivated class (a) and the unmotivated class (b) estimated in the external anchor design for 

the mathematics items. 
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      Based on the log likelihoods, the mixed Rasch model provided a better fit to the data 

than the simple Rasch model. This was found when the pre-test design was used to link the 

reading tests ( 2 (368, N = 19,111) = 10,714.9, p < .001), and the mathematics test ( 2  

(647, N = 21,753) = 42,977.7, p < .001), and when the external anchor design was used to 

link the reading tests ( 2  (73, N = 19,779) = 7,270.8, p < .001) and the mathematics tests 

( 2  (138, N = 19,779) = 5,799.2, p < .001).     

 Since the results of the mixed IRT analysis indicated that the mixed Rasch model with 

two latent classes provided a better fit to the data than the simple Rasch model, we decided to 

investigate the effect of assuming two subpopulations to be present in the external anchor 

data and pre-test data on the mean proficiency of both operational tests. Table 2 shows that 

for the reading tests the differences between mean proficiencies of the operational tests 

increased slightly when the external anchor design was used. The differences between mean 

proficiencies of the mathematics tests linked with the external anchor items remained the 

same. However, the differences between mean proficiencies decreased compared to the 

simple Rasch model when the pre-test design was used. This was found for the reading tests 

(Cohen’s d was smaller by .123) and the mathematics tests (Cohen’s d was smaller by .119).  

Person-misfit 

 Five different datasets were constructed by consecutively removing examinees with the 

1% lowest zl statistics (first dataset), the 5% lowest zl statistics (second dataset), and then the 

10%, 25% and 50% lowest zl statistics (third, fourth and fifth datasets). The Rasch model was 

estimated in each dataset to inspect how removal of aberrant item-score vectors affected the 

differences in mean proficiency between the operational tests. Table 3 shows that the 

difference in mean proficiency between the operational reading tests increased slightly 

compared to not removing aberrant item-score vectors.  Removal of aberrant item-score 
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Table 2.  

Proficiency Distributions of Operational Tests Estimated with the Mixed Rasch Model. 

Model Linking data Population M SD Cohen’s d / Sign. 

Student’s t 

Reading items 

Mixed Rasch External Anchor 2009 

2010 

-0.183 

0.000 

0.823 

0.965 

0.204 / ** 

 Pre-test 2009 

2010 

0.029 

0.000 

0.829 

0.967 

0.032 

Mathematics items 

Mixed Rasch External Anchor 2009 

2010 

-0.125 

0.000 

1.021 

1.069 

0.120 / ** 

 Pre-test 2009 

2010 

0.008 

0.000 

0.885 

1.070 

0.001 

* p < .05. ** p < .01. 

 

vectors did not seem to have an effect on the proficiency differences of the operational 

mathematics tests.     

Differential Item Functioning   

 Inspection of the cR1 and ICCs suggested that the internal and external anchor items for 

both the reading test and mathematics test did not show DIF. Visual inspection of the ICCs 

suggested that higher values of the cR1  statistic was not due to DIF, but rather to a general 

lack of model fit. However, linking the two operational reading tests with pre-test items 

resulted in six items displaying DIF. Furthermore, linking the two operational mathematics 

tests resulted in eight items displaying DIF.  
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Table 3.  

Proficiency Distributions of Operational Tests without Aberrant Item-Score Vectors. 

Percentage Population M SD Cohen’s d / Sign. Student’s t 

Reading items 

1 2009 1.613 0.826 0.198 / ** 

 2010 1.791 0.965  

5 2009 1.627 0.826 0.201 / ** 

 2010 1.808 0.966  

10 2009 1.641 0.827 0.211 / ** 

 2010 1.831 0.966  

25 2009 1.694 0.828 0.202 / ** 

 2010 1.876 0.968  

50 2009 1.806 0.831 0.202 / ** 

 2010 1.989 0.971  

Mathematics items 

1 2009 1.121 1.021 0.118 / ** 

 2010 1.244 1.069  

5 2009 1.126 1.022 0.119 / ** 

 2010 1.250 1.070  

10 2009 1.135 1.022 0.113 / ** 

 2010 1.253 1.070  

25 2009 1.141 1.023 0.129 / ** 

 2010 1.276 1.071  

50 2009 1.171 1.025 0.122 / ** 

 2010 1.299 1.072  

* p < .05. ** p < .01. 
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 After removal of the reading items and mathematics items displaying DIF in the pre-

test data, the OPLM was fitted to the remaining data again. Table 4 shows the mean 

proficiencies of the operational tests estimated without DIF items. Removal of items 

displaying DIF did not seem to have an effect on the proficiency differences of the 

operational reading test and the operational mathematics test.   

Discussion 

 We conclude that the results of the linking procedure depend on the type of common 

items. For example, the confidence interval for the mean proficiency difference of the 

operational mathematics tests constructed with internal anchor items did not overlap with the 

confidence intervals constructed with the external anchor items and pre-test items. We also 

found evidence for the existence of differently motivated subpopulations. Removal of 

misfitting item-score vectors and items hardly affected the linking procedure. The 

conclusions were roughly the same for reading items and mathematics items.   

 As a result of fitting the mixed Rasch model, we found for an external anchor that the 

differences in mean proficiency between the two operational tests did not change but that the 

differences seemed to disappear for the pre-test data. Class-membership probabilities of the 

different tests for the motivated class might explain these results. The class-membership 

probabilities were almost the same in both years, both for the reading items and the 

mathematics items. However, the class-membership probabilities of the pre-test booklets 

varied tremendously, which made it worthwhile to fit a mixed Rasch model.    

  The current study used data from a test for which both internal and external anchor 

items as well as pre-test data are available. One could ask whether a combination of types of 

common items provides the best link. This is an interesting question to investigate in future 

research, but for all tests with a limited linking design, it is interesting to know what the 

effectiveness of the particular types of linking designs is. 
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Table 4.  

Proficiency Distributions of Operational Tests Using Different Types of Linking Data 

Without DIF Items 

Linking data Population M SD Cohen’s d / Sign. 

Student’s t 

Reading items  

Internal anchor 2009 1.453 0.832 0.124 / ** 

 2010 1.565 0.967  

External anchor 2009 1.610 0.825 0.194 / ** 

 2010 1.784 0.965  

Pre-test 2009 1.559 0.836 0.186 / ** 

 2010 1.728 0.975  

Mathematics items 

Internal anchor 2009 1.169 1.023 0.049 / ** 

 2010 1.220 1.071  

External anchor 2009 1.118 1.021 0.120 / ** 

 2010 1.243 1.069  

Pre-test 2009 1.066 1.031 0.115 / ** 

 2010 1.187 1.081  

* p < .05. ** p < .01. 

 

 The use of a mixed Rasch model proved to be useful with the current data. However, since 

the assumption of equal discrimination for all items is only partially valid and not likely to be 

met in most real datasets, it might be interesting to develop a mixed Birnbaum model. 

Furthermore, the current research only investigated a mixed Rasch model with two latent 
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classes, because it was assumed that examinees were either motivated or unmotivated to take 

the test. However, examinees could just as well have been motivated to a certain degree, in 

which case a multidimensional IRT model is more appropriate to model response behavior 

(Embretson & Reise, 2000).          
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