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Abstract 

In an item bank, on occasion some descriptive categories will be represented by a 
relatively small number of items. Because of test specification, transient categories may 
arise by intersection of original descriptive categories and may also be badly 
represented by items. In such cases, test construction may have to deal with 
combinatorial limits. The purpose of this paper is to investigate these limits. 
Key words: test construction, item categories, error control codes. 

1 



2 



Introduction 

It is not usual to hear about limits on test construction in an item bank context: rather 
the opposite is the case. Statements like 'the number of possible tests to be constructed 
from n items is (2n -1)' and 'if a category contains n items and we need w of them in 
our test this can be done in (:) ways' are not uncommon. Since these figures are 
reassuringly large in non-trivial cases, they tend to induce a feeling that all is well. 
Even if one regards test construction as a constrained optimization problem, the notion 
that generally in test construction the number of constraints is relatively small in 
comparison with many other optimization problems, will not easily lead to thoughts on 
limits on test construction. The problem is, that the above figures are context-free. 
Since many item banks contain substantial numbers of items, ranging from hundreds 
to several thousands of items it is convenient to impose some descriptive structure on 
the collection. In order to do so, some kind of category system must be used. A 
category can be regarded as a descriptive label that applies to an item; an item may be 
described by as many categories as are deemed necessary. For example, categories can 
be used to describe the content domains to which items belong or the type of item, such 
as knowledge or insight items. Further examples are the item format, for example 
multiple choice or yes-no items, the difficulty level of items, the presence of gender or 
minority group reference, the number of blanks in a cloze test items and so on. The 
membership of items of various categories and transient categories resulting from 
intersections of categories then determines the actual structure of an item bank. It is in 
fact this actual structure that is important in determining whether there are limits on test 
construction in those cases where item banks will be used repeatedly with more or less 
similar test specifications. 
The reason for this is that, once an item bank is in use and tests have been constructed, 
on many occasions future test construction has to take past construction into account. 
It is this factor, in conjunction with the actual structure of the item bank, that may 
cause limitations of the possibilities of test construction. Item banks for which the 
following material might be relevant are either small item banks with simple structure 
or large item banks with complex structure. The test construction problem addressed 
in this paper does not concern the actual design of tests. This paper deals with the 
question of how often a test can be constructed, given a particular item bank as 
mentioned above, and a specific test specification that has to be used repeatedly. As 
will be argued further on, frequently situations will arise where the test specification 
implies selection of items from small categories. If in such situations repeated test 
construction according to the same specification is demanded, the possibilities are very 
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quickly exhausted if no overlap between tests is allowed. This paper is not relevant for 
situations where no overlap is allowed. One could argue that if overlap is allowed, it 
would make more sense to formulate this at the test form level instead of a single 
category. This, however, would be missing the point. If the selection of items from one 
or several small categories is an intrinsic part of the test specification and repeated test 
construction is a necessity then overlap must be allowed at the category level or 
repetition will be severely restricted. The material in this paper enables one to study 
the effects of allowing specified amounts of overlap. At first glance this might seem to 
be a relatively simple combinatorial problem. As it happens, it is extremely tough for 
non-trivial cases. Fortunately, there is a formal analogy between some aspects of the 
theory of error-correcting codes and this combinatorial problem in repeated test 
construction; this issue will come up again later. Since this paper does not deal with 
test construction as such it ignores, apart from category constraints, various other 
quantitative constraints such as, for example, identical information functions, p-values 
in certain intervals and others. However, it should be clear that combinatorial 
limitations due to a category system, although existing independently of other 
constraints, may have repercussions for the ease with which such constraints can be 
met. This would imply some form of sensitivity analyses which would be far beyond 
the intention of this paper. In the remainder of this paper the following issues will be 
addressed: more remarks on the actual structure of the itembank; a combinatorial 
analysis of an item selection process; why this poses a difficult problem; what are the 
solutions, and finally, the combinatorial effects of a specific type of constraint. 

The Actual Structure of an Item Bank 

In this paper primary categories are those categories that are used to describe the items 
in an item bank and are also utilized by the user of an item bank in the specification 
of the test to be constructed. It is convenient to regard the items in the bank as the 
universal set and the primary categories as the names of subsets of items. If the number 
of elements in each subset is known a fair description of the item bank can be given. 
This description, however, says very little about the actual structure of the bank. For 
this, knowledge is needed about the number of elements in other sets that are related 
to the original subsets by the elementary set operations of union, intersection and 
complementation. Since the main interest is in limiting factors we will concentrate on 
intersections. The results of these intersections will be called categories. 
In practice, the following situations will occur frequently: 
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1 .  The item bank is relatively small and the number of primary categories is relatively 
small or large; 

2. The bank is relatively large and the number of primary categories is relatively large; 
3 . The bank is of any size and the distribution of items over the primary categories is 

haphazard which might occur with banks that have II grown organically II over the 
years. 

In all those cases, new categories formed by intersections of the primary categories can 
become small relative to the number of items that might be needed from them. It is of 
course also possible that primary categories are small to begin with; any conclusions 
to be made later in this paper then apply directly to these sets. As stated by Stocking 
and Swanson (1992, p 1 1): "Given the number of intrinsic item features that may be 
of interest to test specialists, the number of mutually exclusive partitions can be very 
large and the number of items in each partition can become quite small. For example, 
consider items that can be classified with respect to only 10 different item properties, 
each property having only two levels. The number of mutually exclusive partitions of 
such items is (210 -1) or over 1000 partitions. Even with a large item pool, the number 
of items in each mutually exclusive partition can become quite small." For tests that 
require stimulus material the limiting factor can occur on a different level. For 
example, in the case of a reading comprehension test where the test specification may 
refer to reading passages. Using part of an example of test construction in Stocking and 
Swanson (1992, p 21), one reads the following passage: "The first ten constraints are 
relevant to the content of reading passages. For example, a passage may be classified 
as (long or medium), as having content from the fields of (science, humanities, social 
sciences), as being (argumentative, narrative), containing references to (females, males) 
and references to (minorities). The next 1 1  constraints are relevant to the items 
associated with the reading passages. These items may ask about the main idea of a 
passage, an explicit statement, or require inference, etc. 11 If part of a (repeated) test 
specification requires a short reading passage about science in narrative style with 
reference to females but not to minorities, together with items that require inference, 
the possibities of test construction will depend on how the bank is stocked with such 
matters. The following example of a partial enumeration of primary categories and 
categories could easily occur in practice. 
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number of items in bank (primary categories) 600 
items from domain X 300 
knowledge items 175 
difficult items (categories) 260 
domain X and knowledge items 25 
domain X and difficult items 90 
difficult and knowledge items 50 
domain X, knowledge and difficult items 15 

Although the above primary categories each cover a substantial number of items, the 
results of intersection are categories of diverging magnitudes. Small categories can 
quickly exhaust the possibilities of test construction, even given a large tolerated 
overlap between tests. The following example will be used to demonstrate the possible 
numerical effect of a small category on test construction. 
Suppose that because of test specification, intersection of primary categories results in 
one small category. Assume as given that this category contains 16 items and that the 
test specification requires 7 items from that category. A further requirement is that in 
case several tests have to be constructed, the overlap between any two tests should be 
at most 2 items. This last demand could also be formulated as follows: if we regard the 
category as a binary vector where after item selection the chosen items are represented 
by 1 and the others by 0, then identical to the overlap demand is the statement that the 
Hamming distance between two vectors representing the tests should be at least 10. 
(The Hamming distance between two binary vectors of equal length is the aggregated 
element-wise sum (mod 2) of these vectors. In other words, to find the Hamming 
distance, count the number of positions where the two vectors have different elements. ) 
From here we use the following terminology and notation: n is the length of a vector 
(i. e. , the number of items in a category); w is the required weight of a vector which 
is the number of its I-elements (i. e. , the number of items required from that category) 
and d is the required minimum Hamming distance between any two vectors as 
determined by the specification of the maximum overlap. On the first occasion of test 
construction the number of possibilities is given below by (1). Due to the minimum 
distance requirement the number of possibilities is reduced on each subsequent occasion 
and is given by (2) - (4) for the second, third and fourth occasion. In the following 
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derivation the maximally allowed overlap is used on each occasion, in order to create 
the most favourable situation for test construction. 

(1) 

Inspection of Figure 1 shows that the elements of the maximally allowed overlap, 
(w - 0.5 d), have to be selected from the w elements in the first round; the other 
elements, (0.5d), have to be picked from the remaining (n -w) elements in the first 
round. Multiplication of both the number of ways these selections can be made 
produces (2). In a similar way, (3) and (4) are derived. 

( 0.5d ) X ( 0.5d ) X (n -w-0.5d) w-0.5d w-0.5d d-w ' 

( d -w ) X ( d -w ) X ( d -w ) x 1 w-0.5d w-0.5d w-0.5d 

using (;) 
= 

(n �r) (1) - (4) can be rewritten as (5) - (8). 

(0.5d) x (0.5d) X (n-w-0.5d), d-w d-w d-w 
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(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



Using the regularity in (5) - (8) in an attempt to make a fifth selection, we see in (9) 
below that this is impossible, since (n - 3 d + 2 w) = O. 
( 1 .  5 d - 2 w) X . . . . . . ( 1 .  5 d -2 w) X (n - 3 d + 2 w) = 0 . (9) 

Figure 1 presents an example of particular instances of the selection rounds (1)  - (4), 
based on the selection of seven items from 16 items with maximum overlap of two 
items for different selections. 

1. 

2. 

3. 
4. 

(5). 

1 1 

0 0 

0 0 

0 1 

-- --

1 

1 

0 

0 

1 

--

1 1 1 

0 0 1 

1 1 0 

0 0 0 -- -- --

1 

0 

0 

-

0 0 

1 1 

0 0 

0 1 

-- --
l 

Figure 1 

0 

1 

0 

1 

-

0 0 0 0 0 0 

1 1 0 0 0 0 

1 1 1 1 0 

0 0 0 1 1 1 

1 1 

A Selection of 7 Items from 16 with Maximum Overlap of 2 
Next, a specific proof that no more than four selections are possible (the approach is 
based on a proof of the Johnson bound, to be mentioned later on, as in MacWilliams 
& Sloane, 1981, p 525). Regard Figure 1 as a 4 by 16 matrix X with elements xj. The 
sum S of the inner products of the rows of X can be evaluated in two ways, row-wise 
and column-wise: 

4 4 16 

L L L X ;v Xjv• 
i=l j=l v= l 

j,.t.i 

and 

16 4 4 

L L L X ;v Xjv· 
v= l i=l j=l 

j,.t.i 

If d = 2o, then the following holds for the first evaluation. The specified distance 
between between any pair of rows of X is at least 2 o and therefore their inner product 
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is at most w -o. If A is the number of rows of X, then S :s; (w -o) A (A - 1) ,  or 
S < 2.4. 3 = 24 . 
The following holds for the second evaluation: if kv is the number of 1 's in the vth 
column of X then its contribution to Sis k/kv - 1).  If they exist, the summations must 
be the same. This means that 

Inspection of Figure 1 shows that this leads to 24 = 24. Now assume that a fifth round 
is possible, so A = 5. Evaluation via the first way leads to: S :s; (w -o)5.4 .  
Inspection of Figure 1 shows that the smallest possible S according to the second 
evaluation is obtained by placing, in the fifth round, 1 's in the columns where there 
was only one 1 previously. This happens four times. This implies that in three columns 
there will be three 1 's. Altogether this means three columns with three 1 's and thirteen 
columns with two 1 's, giving S = 18 + 26 = 44 (i. e. , 3(3.2) + 13(2.1)). This implies 
44 = (w - o) 20 or (w - o) = 2.2 .  
This is a contradiction, since in this example (w - o) < 2 ,  so no fifth round is 
posssible without violating the minimum distance requirement. Therefore, A = 4. So, 
if an item bank has a category containing 16 items and the test specification requires 
7 items from this category while there should be an overlap of at most 2 items between 
any two tests (as a whole or for that category), then this can be done exactly four 
times. The following notation will be used: A(16, 10, 7) = 4. 
The problem is how to find the numbers A (n, d, w) in general. Fortunately, there is 
a theory that is greatly concerned with these numbers; it is the theory of error­
correcting codes for constant weight codes. Unfortunately, the problem is regarded as 
being very difficult (see e.g. ,  MacWilliams & Sloane, 1981;  El Gamal et al. , 1987; 
Dueck & Scheuer, 1988). 

Some Theory on the Numbers A(n, d, w) 

The theory of error-correcting codes is part of communication and information theory 
and the purpose of codes is to detect and correct errors on noisy communication 
channels. The general idea is to add redundancy to a message-string by supplementing 
or replacing it by a longer string, such that the expected transmission errors are less 
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serious than the added capability. The following example is taken from Blahut (1983). 
Suppose we only have to transmit sequences of 2-bit binary numbers: these numbers 
are 00, 01 ,  10  and 1 1 . Any single-bit transmission error in these numbers is 
undetectable. But suppose the following arbitrary substitution is made: 

00 -+ 10101 
01 -+ 10010 
10 -+ 01 1 10 
1 1  -+ 1 1 1 1 1  

Once the substitution is decided on, receiving a 5-bit codeword implies receiving the 
corresponding original 2-bit word. If a single-bit transmission error occurs in this 
situation and a 5-bit codeword is received that is not a member of the substitution set, 
for example 01100, we search for the original 5-bit codeword that has the smallest 
Hamming distance to the received codeword and decide this was the original message 
(01 1 10). Obviously, this is not a particularly good code, since it can only detect very 
simple error patterns. In practice we try to find codes with many codewords of 
sufficient word length ( depending on the situation), with the codewords as different as 
possible from each other (specifying minimum Hamming distance). 

The nature of this theory need not concern us any further here; important is that part 
of the problems in this theory is the combinatorial problem of finding A (n, d, w). Each 
realization of (n, d, w) is a (for our purposes) binary vector of length n and weight w 

(the number of 1 's in the vector) with minimum Hamming distance d to any other 
vector in the colllection. Each realization is called a codeword and the complete 
collection is the code. If no other demands are formulated, this is called an unrestrained 
constant weight code and the problem in the theory of error-correcting codes is to find 
the largest possible A for (n, d, w). For notational convenience we will use d = 2 o 
where necessary. It is obvious that for binary constant weight vectors, dis always even. 
Why the determination of A (n, d, w) is in general such a difficult problem, 
MacWilliams and Sloane (1981) mention the following relation: 
A(n,2o,w) < {n(n - 1) . . .  (n -w+o)}/{w(w - l) . . .  «5}, (10) 

with equality holding if and only if a Steiner system S(w - c5 + 1 ,  w, n) exists. Steiner 
systems arise in the theory of t-designs (block designs theory). One of the main 
problems in t-designs is the question of their existence (see, e.g. ,  Constantine, 1987). 
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A t-design or, more completely, a t(v, k, A) design implies the following: given a set 
V with v elements then a t-design is a collection of distinct k-subsets of V (or blocks of 
size k of V) such that any t-subset of Vis present in exactly A blocks (of k-subsets) 
with t < k < v. Quoting Mac Williams and Sloane: it is a collection of committees 
chosen out of v people, each committee having k persons and such that any t persons 
serve together on exactly A committees. A Steiner system is a t-design with A = 1 ;  
such a t - (v, k, 1)  design is called a S(t, k, v) system. It is known (Constantine, 1987) 
that the existence of t-designs for t > 5 is problematic; only recently (as of 1988) 
very few designs for t = 6 have been discovered and no design for t = 7 is known. 
In terms of the Steiner system mentioned below ( 10), this means that for all practical 
purposes (w - o + 1)  � 5 ,  or w - o < 4. If we use c as symbol for the maximally 
allowed overlap, then d = 2 w - 2 c and o = w - c . Substituting we find c � 4 . So, 
in case of overlap of four items or less, the existence or non-existence of the relevant 
design can in principle be proven and in the first case A (n, d, w) can be determined. 

In a sense, however, this is shifting the problem to a different area. In Constantine 
(1987) methods of constructing t-designs are presented. The point is, that here too the 
problem of existence plays a role, or that only specific instances apply. It is not 
necessary to pursue this matter, since our point was to demonstrate the difficulty of 
determining A (n, d, w) in general. 
Another bound that can be quite useful is the Johnson bound (MacWilliams & Sloane, 
1981). It applies when the denominator in the following expression is positive: 
A(n, 2o, w) < [on I (w2 -wn +on)], ( 1 1 )  
where A is found by taking the integer part of this number. The utility of this bound 
is rather unpredictable. For example, for A (10, 4, 3) the bound does not apply, since 
the denominator in ( 1 1 )  becomes negative. Taking the absolute value (in this case 20) 
is no use and anyhow not allowed; the actual value is A (10, 4, 3) = 13 .  So, in all cases 
where w(n - w) > on applies, (1 1 )  is of no use. Using 2o = d = 2w -2c (with c 
the maximum overlap as above) and substituting gives 

(12) 
and the utility of (1 1)  can be checked by means of bounds on the specified overlap (c), 
bounds on the size of a category (n) or bounds on the number of items needed from 
that category (w); if (12) is true, then (1 1 )  can be used. Even when (1 1)  can be used 
the bound can become rather loose, as the following example will show. From the 
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literature the following ranges are known: range A (22, 10, 7) = 15  to 19, range 
A (23, 10, 7) = 19 to 23 and range A (24, 10, 7) = 24 to 27. The Johnson bounds are 
respectively (rounded to the lower integer) 22, 38 and 120. However, 
A ( 16, 10, 7) = 4 and this is also the Johnson bound. The impression is, that the bound 
becomes looser when the denominator in ( 1 1)  gets smaller relative to n. So, for such 
cases and when the denominator in (1 1)  is negative, it would be convenient if other 
methods for finding A (n, d, w) exist. Fortunately, such is the case: in recent years two 
heuristic approaches to this problem have been developed. Before presenting these, 
several other bounds are presented which can be useful on occasion, although the 
Johnson bound is regarded as the best (MacWilliams & Sloane, 1981). 

A (n, 2o , w) < (n/w) A (n - 1, 20, w - l) .  
This bound can be applied until a known value of A (n, d, w) is reached. Similarly , 

A (n, 2 o ,  w) ::;:;; (n l (n - w) A (n - 1, 2 o, w). 

It is not possible to say in advance which one of these two will give better results. 
Furthermore, some highly specific identities are known, depending on very specific 
combinations of values for d, w and n = x(mod y) . These are too specific to be of any 
use in an item banking context. One example will be presented. 

= n (n - 1) (n - 2) / 4. 3.2 if n - 2 or 4 (mod 6) 
A (n, 4, 4) = n(n - 1)  (n - 3) / 4.3 .2 if n - 1 or 3 (mod 6) 

= n (n 2 
- 3 n  - 6) I 4.3.2 if n = 0 (mod 6). 

(These last results are due to Kalbfleisch and Stanton and to Brouwer as mentioned in 
MacWilliams & Sloane, 1981 . )  
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Heuristic Approaches to A(n, d, w) 

In solving combinatorial optimization problems we try to find optima of functions of 
discrete variables. This can be done by either an exact algorithm or a heuristic 
algorithm. In the first case a global optimum, if it exists, is reached for every instance 
of the problem; in the second case the algorithm should produce solutions that are close 
(as defined in some sense) to a global optimum. Note that complete enumeration of the 
solution space is generally not practical for many optimization problems of realistic 
size. Proofs of convergence are a desirable property for approximation algorithms. 
However, the need for heuristic approaches is so great that in the past and present 
empirical evidence of effectiveness was and is accepted as a second best. The problem 
is that many combinatorial optimization problems that are of practical interest, are NP­

hard (Papadimitriou & Steiglitz, 1982). For this class of problems no algorithm is 
known that solves any of these problems in a time bounded by a polynomial function 
of the size (as defined in some way) of the problem. This means that very frequently 
solving large-scale problems exactly is in general not possible (however, solving for 
one of these problems means solving for the whole class, since these problems are 
transformable into each other). All this meant that in the past, for each specific 
combinatorial optimization problem, a specific approximation algorithm had to be 
developed (see, e.g.,  Syslo, Deo & Kowalik, 1983, for examples). 

In recent years there have been developments with respect to general approximation 
algorithms that are much less problem-specific. Some of these developments can be 
regarded as extensions of local search techniques (see, e.g. , Aarts & Van Laarhoven, 
1989). Local search involves the definition of configurations (suggested solutions), cost 
function (to evaluate the solutions) and a generating mechanism (to go from one 
configuration to another). Disadvantages of local search are the strong dependency on 
initial configurations and their termination on meeting the first local optimum, which 
is not necessarely the global optimum. Examples of recent advances that avoid these 
problems are Simulated Annealing (SA) and a variation on SA, the so-called Treshold 
Accepting algorithm (TA). Both have been used on the Traveling Salesperson Problem, 
which is often considered as a benchmark problem, and the problem of finding 
A (n, d, w) ; (El Gamal et al. , 1987, and Dueck & Scheuer, 1988). The TA algorithm 
will be used in this chapter to search for A (n, d, w) in practical time. Below, the 
essentials of both algorithms will be presented in pseudo computer language as in 
Dueck and Scheuer (1988, p 6). For an explanation and an application of SA in a 
psychometric context, see DeSarbo et al. (1989). In the following, a configuration is 
any possible randomly suggested solution to the optimization problem; temperature 
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functions as a control parameter in the same units as the cost function; while its value 
becomes lower, the chance of the cost 'escaping to a higher energy state' as it where, 
becomes smaller. 
(Comparable to a marble in a three-dimensional landscape of peaks and valleys, where 
the marble starts at a random peak and has to reach the lowest valley : occasionally the 
landscape is jolted and the intensity of the jolting decreases in time . The jolting here 
functions as temperature in SA). 
SA algorithm 
Choose an initial configuration 
Choose an initial temperature T > 0 
Opt: choose a new configuraion which is a stochastic small perturbation of the old 

configuration 
compute t..E: = quality (new configuration) - quality (old configuration) 
IF t..E > 0 

THEN old configuration: = new configuration 
ELSE with probability exp(- t..E/T) 

old configuration: = new configuration 
IF a long time no increase in quality or too many iterations 

THEN lower temperature T 
IF some time no change in quality any more 

THEN stop 
GOTO Opt 
From this brief description it is obvious that at very high temperature levels the 
algorithm makes a near random walk through the solution space; it is also clear that 
there is a built-in backtracking facility , since at all levels of the parameter T there is 
a non-zero probality of accepting cost increasing solutions. For theory on the 
convergence of SA algorithms, see e.g. , Faigle and Kem (1989) and Aarts and Korst 
(1989). The TA algorithm differs from SA only in the removal of the stochastic 
character of the acceptance rule for new solutions. It is schematically presented as 
follows. 
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TA algorithm 
choose an initial configuration 
choose an initial THRESHOLD T > 0 
Opt: choose a new configuration which is a stochastic small perturbation of the old 

configuration 
compute t.E: = quality(new configuration) - quality( old configuration) 
IF t.E > -T 

THEN old configuration: = new configuration 
IF a long time no increase in quality or too many iterations 

THEN lower TRESHOLD T 
IF some time no change in quality anymore 

THEN stop 
GOTO Opt. 
Dueck and Scheuer (1988) report comparisons of the results of their algorithm with 
results on some benchmark problems as reported in the literature for both the TSP 
problem and the A (n , d, w) problem. In the majority of comparisons, TA performs as 
well or better then SA for both problems. 

For the A (n, d, w) problem the TA algorithm is implemented to do the following: 
after the user specifies a guess as regards the size of A, the algorithm generates as start 
configuration a collection of A codewords of length n and weight w. The stochastic 
small perturbation consists in the random transposition of two positions in a randomly 
selected codeword. The quality of the new configuration is measured by 

(summation for codewords a and b for which holds that da ,b < d, where d is the 
specified minimum Hamming distance and da , b the actual Hamming distance between 
a and b) . The purpose of the algorithm is to mimimize this expression. Results for the 
A(23, 10, 7) problem were presented by El Gamal et al. (1987) and Dueck and Scheuer 
(1988) with values of 18  and 17 respectively, this being one of the few examples in 
Dueck and Scheuer where TA did less well then SA. The SA result of 18  was reported 
as the best result in the literature at that time. In the first appendix we present a result 
of A(23, 10, 7) = 19, and the corresponding table of Hamming distances obtained with 
an implementation of the TA algorithm. 
As can be seen in this table, no distance is less then 10, so a lower bound for A(23, 
10, 7) is 19. On IBM-compatible machines of types 386 and 486 the TA algorithm is 

15 



very fast and finds the lower bounds as known in the literature or even better as in the 
case above. (Actually, further trials with the TA algorithm for A(23, 10 ,  7) = 20 
suggested that the lower bound (and probably upper bound) might be 20; however, no 
actual solution was found). 
The general conclusion is that the TA algorithm is a suitable heuristic for finding values 
for A (n, d, w) that are near-optimal to optimal in most practical situations in an item 
banking context. 

Further Limits due to Constraints on Item Level 

In this paragraph we will show that seemingly innocuous restrictions in the test 
specification can have far reaching results. For this demonstration we will restrict 
ourselves to simple exclusions from outside the category under consideration, that is, 
if one particular ( or more) item from a different subset is included in the test then one 
particular (or more) item from the subset under consideration must be exluded. 
Obviously, the point here is that not a particular item is excluded but also all sets of 
which this item might be a member. Simple combinatorial considerations show that the 
effects can be rather restrictive. 
Again, let n be the number of items in the category and w the number of items to be 
selected from that category, according to the specification; let t be the number of items 
in that category that are excluded by the activation of one or more restrictions. 
If we have a set of n elements then the cardinality of the collection of subsets of size 
w is (;) . If we have other subsets of size (0 � t � w), then these subsets are present 
in exactly (:��) subsets of cardinality w (see, e.g., Constantine, 1987). If subsets of 
items of size w that contain t specific items are excluded (because one or more 
constraints are activated) from test construction, then the relative reduction in the 
number of possibilities is given by 

By increasing the number of such constraints the reducing factor grows very quickly. 
In order to keep the formula's  simple this will be demonstrated for the case of two 
restrictions that exclude one item each in the category under consideration, so 
t1 == t

2 
== 1 .  For this specific example the reducing factor becomes 

(13) 
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(The third term is subtracted to prevent double counting) . 
This example shows also (if necessary) that the exclusion of two specific items has 
different combinatorial effects compared to the exclusion of one specific pair of items . 
In the latter case the reducing factor is 

Why (13) signifies a 'growth' in the reducing factor can better be seen by using the 
identity (;) = (

n
�
w
) and rewriting (13) accordingly as 

(14) 
Inspection of (14) shows also that the effect of exclusions (in this specific example of 
two exclusions of one item) on the reducing factor increases while the difference 
between n and w grows smaller or, in other words, while the number of items required 
from that category increases . A simple numerical example for n = 10 and w decreasing 
from 9 will demonstrate the point. 

{ m . m - m} ; (1ioJ 

{ (�l • m - (!l} ; (f l 

{ m • m - m} ; ('3°l 

{ (�l • (�l - m} ; ('2l 
{ (;) + (�) - m} / ('s0) 
Etcetera. 

= 1 .00 
= . 98 
= .93 

= . 87 
= . 78 

This example shows that one has to be careful with exclusions of items from small 
categories. 
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Conclusions 

As mentioned in this paper, the categories from which items are drawn can be small, 
either because the primary categories used to describe the structure of the item bank 
are small or, probably more common, because the more transient categories that result 
from test specification are small. If no overlap between tests is allowed it is easy to see 
what the possibilities for test construction are and that they will be very limited. If 
overlap is allowed, it is more difficult to see what the possibilties are but they are at 
least more numerous, although generally still small in number. Generally speaking, if 
overlap between tests is allowed at all, it will rarely be more than a small number of 
items. If that small number is concentrated in one particular small category , because 
of the combinatorial limitations then, if other small categories are being used, the 
problem is transfered to those categories because no overlap will be allowed in further 
categories. Taking the example of A (23, 10, 7) = 19;  if this uses the maximally 
allowed overlap and, for example , 4 items from another category have to be used for 
19  tests, then this category should contain at least 76 items. If item exclusions could 
be operative at that moment, this number could be considerably larger. 
The following matter is also a potential source of difficulties. Again taking the example 
of A (23 ,  10, 7) , it is obvious that the contribution of 7 items from a set of 23 to total 
test information can be realized in (2,l) = 245 157 ways; a reduction to 19  ways could 
mean that elsewhere problems arise as regards this topic. 

The conclusions are unpleasant but simple. One should have as many items as is 
possible under the circumstances. None of the primary descriptive categories should be 
small. The test specification should be such that no small transient categories arise in 
the process. If for whatever reason small categories of any kind do arise, one should 
allow substantial overlap between tests and supply the user with the TA algorithm or 
an equivalent heuristic, in order to estimate the possibilities for test construction. 
However, the interpretation of terms such as many, small and substantial depends on 
actual circumstances and since the subject matter of this paper is usually beyond the 
capabilities of the average test constructor, it will be the task of the psychometrician 
to advise in these matters. 
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Appendix 
1 .  1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 

2 .  1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 

3 .  1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 

4 .  1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 

5 .  1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 

6 .  1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 

7 .  0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 

8 .  1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 

9. 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 

10 .  0 1 0 I 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 

1 1 .  0 0 0 0 0 0 0 0 0 I 1 0 1 0 1 1 0 1 0 0 1 0 0 

12 .  0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 I 1 1 0 0 0 0 

1 3 .  0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

14 .  0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 

15 .  0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 

1 6 .  0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 

17.  0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 

1 8 .  0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 

19 .  0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 

The table of Hamming distances belonging to this solution is presented below. The first 
row is the distance between the second and the first codeword; the second row are the 
distances between the third and first, respectively the third and the second codeword, 
and so on. 

10 

10 10 

10 10 10 

10 10 10 10 

10 10 10  10  10 

10 10 10 10 10 10 

10 12  10 10 10 10 12  

10  10  12  12  10 10 10 10 

10  10 10 10 10 10  10  10  10  

12  10  10  10  10  10  10  10 10 10 

10 10 10 10 10 12  10 10 10 10 10 

10 10  10 10 10 10 10 10 10 10 10 10 

10  10  10  10  10  10  12  10  10  10 10 10 10 

10 10 10 10 10 10 14 10 10 10 10 10 10 12 

10 10 10 10 10 10 10 10 10 10 10 10 10 10 12  

1 2  10 10 10 10 10 10 10 10 10 10 10 12 10 10 10 

10 10  1 2  1 0  1 0  1 0  10 10 10 12 10 10 10 10 10 10 10  

10  10 12  10 10 10 10 10 10 10 10 10 12 12 10 10 10 10 
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