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Abstract 

The present paper is about a number of relations between concepts of models from classical test theory (CTT), such as reliability, and item response theory (IRT). It is demonstrated that the use of IRT models allows us to extend the range of applications of CTT, and investigate relations among GOncepts that are central in CTT such as reliability and item-test correlation. 





1 Introduction 

The main purpose of this paper is to clarify some aspects of classical (psy­

chometric) test theory (CTT) by combining CTT with item response theory 

(IRT) modeling. Following, it will be demonstrated that the use of IRT 

models extends the range of applications of CTT, and allows investigation of 

concepts that are central in CTT such as reliability and item-test correlation. 

In Section 2, a general outline of CTT is presented. 1 Further explanation 

is given in Section 3 which is about the special case of binary (zero-one) T­

equivalent items. In Sections 4 and 5, some of the relations between CTT and 

the generalized partial credit model ( GPCM) of IRT are discussed. Section 

4 is about Fisher's information and its relation to the reliability of estimated 

abilities. In Section 5, we manipulate characteristics of the GPCM to in­

vestigate the effect on reliability or difficulty. We investigate, for instance, 

whether, under typical circumstances, items with high discrimination param­

eters are more reliable. In Section 6, we describe two possible applications. 

In the first application, the use of an IRT model allows the evaluation of clas­

sical test reliability of a test that has never been administered to ( a sample 

from) the population of interest. The second application entails the calcula­

tion of the correlation between latent variables measured by different tests. 

Finally, in Section 7 we discuss our findings. 
1 A more extensive discussion of CTT is found in the classical work by Lord and Novick 

(1968). 
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2 Classical Test Theory CTT distinguishes two random experiments: (1) sampling a respondent, and (2) sampling a score within a given respondent. Consider the second ex­periment first; that is, imagine that we could repeatedly administer an item to a generic subject v in such a way that the answers were independent. One can, for instance, imagine that the subject is "brainwashed" at each administration and forgets having seen the item before. We assume that our subject's behavior on the test is determined by his value on a vector variable 0 that we refer to as "ability." The tr ue score, ri (0v), of any person with ability 0 = 0v is defined as the expectation Ev [Xi j0 = 0v] of his intra-individual distribution. Let Xis denote the score on item ion testing occasion s. We may always write 
(1) where the deviations Eis - Xis - Ev [Xi j0 = 0v] represent random measure­ment error. W hile the measurement error varies across repeated administra­tions of an item to a person, the true score is a fixed parameter characterizing the combination of a person and an item. The intra-individual distribution of the measurement errors has zero mean and variance O'�i ( 0 ) . If we combine the two random experiments, the true score becomes a ran­dom variable Ev [Xi j0], i.e., the regression of Xi on 0, with values Ev [Xi j0 = 0v]- The distribution of the measurement error variables is now a mixture of the individual persons' error distributions. We assume that items generate discrete measurements, i.e., Xi E {0, ... , Mi}, where a higher score is associated with better performance. The Category 
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Response Function (C RF) gives the probability of obtaining a score k, as a function of ability. That is, (2) In practice, we would choose a fitting IRT model (e.g., Equation 26) but at this point we assume no particular functional form for the CRFs. We do assume that all CRFs depend on the same ability, i.e. , that different items measure one or more aspects of the same ability. It follows that Ti(0) = E�1 k�k(0). Hence, the true score is a transfor­mation of the ability. The conditional variance of Xi is equal to 
(3) where mi (0) Ev [X; l0] = E�1 k2 Pik(0), and we assume that O < aiJ0 ) < 

00. The population of interest will be referred to as the reference population. It is assumed that the IRT model holds in the reference population. Inte­grating Ti (0) over the distribution of 0 in the reference population gives us Ti E[Ti (0)] = E[Xi], the expected response to item i. The expectation over the reference population is denoted by E[.]. The difficulty (or expected p-value) of ite!Il i is defined as 1ri = if;- The variance of the observed score in the reference population is 
(4) where mi= E[mi(0)] = E[X;]. The true-score variance is given by 
(5) 
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The reliability of item i in the reference population is defined as the 

proportion of true variation; that is, 
2 

2 a,,. 
Px- - -2' · ' a X; 

(6) 

Item reliability indicates the precision with which differences in true score 

between persons are estimated by differences in observed item scores between 

individuals. An alternative expression for the item reliability is 

2 _ E[oi:;(0)] 
Px- - 1- 2 , ' 

(JX1 
(7) 

where E[o"i-J0)] = mi - E[(Ti(0))2]. Formula 7 reveals that the reliability of 

an item depends on the ratio of expected conditional variance and variance 

in the reference population. A third alternative expression will be given in 

the next section. 

Now, consider a test which consists of I> 1 items. We will refer to this 

test as the proposed test. As a test score we consider a linear combination 

Y I:{=1 wiXi of the item responses, where the wi are constant weights. 

The true score on the proposed test is defined as: 

7(0) = Ev[Yl0 = 0v] = L WiTi(0). (8) 
i=l 

Measurement error on the test is defined as E - Y - T(0) = I:{=1 WiEi. The 

expected test scorer I:{=1 WiTi . Its variance equals 

(9) 

We assume that the measurement errors on different items are indepen­

dent given 0, so that the error variance of the test score is given by 
I I 

a-;= Lw;a-;; = Lw;(mi - E[r;(0)]). 
i=l i=l 

4 
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The variance of the score O'} is given by O'; + O'; and the reliability of the test score in the reference population is given by 
2 

2 (T.,. p = Y (7'2 + (7'2 • 
.,. € 

(11) Test reliability is of interest because its square root, py, provides an upper bound to the validity of the test with respect to any criterion, i.e., the cor­relation of the test score with any criterion (see Lord & Novick, 1968, p. 72). Test reliability can also be shown to equal the square of the correlation between Y and T (see Lord & Novick, 1968, p. 57) .  The correlation between 
Y and T is not equal to the correlation between Y and 0 unless the latter is a linear transformation of T as, for example, in the Binomial model where 0 is a scalar random variable, M = 1, Pi1(0) = 0, and Pi0(0) = 1 - 0 (e.g. , Rost, 1996, pp. 113-119). In most applications, the relation between Y and 0 is postulated to be non-linear, however. When estimates of 0 are reported it is therefore more appropriate to calculate the reliability of the estimated ability values 0. To derive this reliability we first note that (12) where e = 0v - E[Bl0 = 0v] can be interpreted as measurement error and E[0l0 = 0v] as a true score. Since reliability is defined as the proportion of true-score variance in the reference population we find that p� = 1 _ E[Var(0l0J] , 0 ai + E[Var(0l0)] (13) where Var(Bl0) denotes the variance of the estimated values given the true values of 0. This equals the squared correlation between 0 and 0 if E[0l0] = 5 



a10 + a2 , where, a1 , a1 E JR.2
, so that the covariance between 0 and 0 equals 

the variance of 0, aJ 

The reliability of 0 shows a similar relation to the validity of the test 

as p}. To be more specific, if p(0, t) denotes the correlation between the 

estimates of 0 and estimates of some other latent trait e, and both estimates 

are unbiased 

(14) 

where p(0, e) denotes the disatten uated validi ty, i.e., the correlation between 

0 and e. If 0 and e are abilities measured by different subscales of a test, 

p( 0, e) will help to decide whether both subtests should be combined. In 

Section 5.3, we discuss the estimation of p(0, e). 

Another important item property in CTT is the Item-To tal Correlati on (ITC); the correlation of the score on item i with the score on the proposed 

test, including the item. C ov(  T, Ti)+ Cov( E, Ei) 

g 
(15) 

E[T(0)Ti(0)] - TTi + o-�. 

g 
In CTT, this correlation is interpreted as an item discrimination index be­

cause it indicates to what extent the item differentiates between subjects 

with high scores on the test and subjects with low scores on the test. Since 

the total score on the proposed test is calculated with the score on item i, 

the ITC is spuriously high. To correct the ITC, we calculate the item res t correlati on (IRC); the correlation between the score on an item and the total 
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score on the proposed test, excluding the item. First, the term cr�i can be deleted from (15). Let ITCi(-i) denote the ITCi with er�; = 0. If we apply the correction from Guilford and Fruchter (1978, p. 449, Equation 18.7) for decreasing the length of the test by one, we find that the IRC of item i is estimated by ITC(-i) IRCi = i 

1-p2 2 , p}/1 + Py where p� denotes the reliability of the proposed test. 
(16) 

Consider an arbitrary test with IR items, excluding the item of interest. To distinguish this test from the proposed test we call it the reference tes t. The correlation between item i and the score on the reference test is given by ITC(-i) , which may be interpreted as a measure of the "fit " of item i to the reference test. An application motivating our distinction between a proposed test and a reference test is discussed in Section 6 .1. 
3 The Case of Binary, T-Equivalent Items In this section, we make four simplifying assumptions. First, we assume that all items are binary with Xi = 1 if the answer is correct, and Xi = 0 otherwise. Second, we assume that all CRFs are equal, that is, �1 ( 0) = P( 0), and �0 (0) = 1 - P(0) for all items. Third, the CRFs are appropriately modelled by a Generalized Par tial Credit m odel {GPCM) 

P(0· 8) = 
exp(a(0 - 8)) 

' a , 
1 + exp(a(B - c5))' 

(17) where the parameters a, 8 E JR.2 are considered known. The ability 0 is a real scalar random variable and the items are said to be unidimensional. 7 



For the purpose of illustration we have drawn the CRFs and the true score for a GPCM in Figure 1. Note that the category parameter 8 is the value of 0 where P( 0; a, 8) = 1 - P( 0; a, 8) = 0.5. Fourth, we assume that the 
0.8 
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Figure 1: The first figure shows CRFs for a GPCM item with 8 = 1, and a = 2. The second figure shows the true score as a function of theta. 
distribution of 0 in the reference population is normal and that we know its mean and variance. This would be a reasonable assumption when, for instance, we have obtained estimates of these quantities using a large sample from the reference population. More information on the GPCM is presented in the next section. The true score equals the probability of a correct response, i.e., 'Ti (0) = 
P(0; a, 8) (see Figure 1). Since the true-scores of the items are all equal, the items are said to be T-equivalent. The conditional variance of the score for 

8 



each item is equal to 

o-1,(0) = P(0; a, 8)(1 - P(0; a, 8)). (18) 

Under the GPCM, the derivative of the true score with respect to 0 equals 

aoi ( 0 ) . The a parameter may therefore be interpreted as a discrimination 

parameter. It is usually required that a> 0, so that the true-score increases 

with ability. 

Using the formulae in the previous section we find that 

1r = E[P(0; a, 8)], ai = 1r(l - 1r),  (19) 

and the true-score variance for any item is given by 

(20) 

where ai denotes the variance of the proportions correct ( or p-values) in 

the reference population. We conclude that binary, -r-equivalent items have 

equal observed variances and equal true score variances. It follows that such 

items have the same measurement error variance, o-; = 1r(l - 1r) - a-i, and 

the same reliability: Pi= ai/o1. 

Reliability depends on the population and on the CRFs. When a--+ 0, 

given 8, ai � 0, and reliability becomes zero. If a � oo, P(0; a, 8) = Xi , 

so that ai = 0'3(- and Pi = 1. To illustrate the effect of increasing a we have 

drawn the CRF and the true score of an item with a very large a in Figure 

2. Figure 2 may be compared to Figure 1 to see the effect of increasing the 

value of a on the CRFs. 

Figure 2 illustrates that, if a becomes very large, the item reliability is 

perfect although we cannot distinguish between subjects with ability values 
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Figure 2: Plots of CRFs and true score against 0 for a GPCM item with parameters 8 = 1 and a =  80. on the same side of 0 = 8 (see Loevinger, 1954 or Lord & Novick, 1968, p. 465). It appears that high item reliability is not always desirable when the purpose of the study is to estimate abilities. An item such as the one drawn in Figure 2 would, however, be most useful if we wish to classify subjects into two groups, i.e., those with abilities over 8 and those with abilities below 8, but worthless if groups were defined otherwise. It should be noted, however, that items where ai is so high that Xi � Pi1 ( 0) are extremely rare in practice. In CTT, -r-equivalent items are said to be p arallel if their error terms are uncorrelated. The covariance between the scores on two parallel items 
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( i =/= j) is given by axixj - E[Xi(0)Xi (0)] - E[Xi(0)]E[Xi (0)] 

Furthermore, 
- E[Ti (0) + Ei (0) ) (Ti (0) + Ej (0))] - E[Xi(0)]E[Xj (0)] E[Tf (0)] - E[Xi(0)]E[Xi (0)] 

axixj Ja2 a2 xi xi 2 ap 2 
= -2- = Px ·  ax 

(21) 

(22) 

Hence, in any population, the covariances of scores on parallel items are equal and positive, and the item reliability equals the correlation between any two parallel items. The expected unweighted score on a proposed test with I T-equivalent items, given 0, equals T(0) = I P(0; a, 8). The expected score on the test equals E[Y] = T = hr, with variance a; = I2ai. If the items are parallel, the error variance on the test is given by I:{=1 a; = I ( a} - ai) .  It follows that 
(23) The reliability of the test as a function of the reliability of the items is 

2 -
Py -

- I 2� + I - I� 
ax a-x Ip} 

1 1  

(24) 
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70 

Figure 3:  Test reliability plotted against the number of parallel items in the 

test. 

This equation is known as the Spearman-Brown (SB) formula. Using the SB 

formula, the reliability of an aggregated measurement consisting of the sum or 

average of I parallel measurements of the same persons can be computed. If 

I =  1, for instance, p}- = p3c the reliability of a single item. For I =  I* + Z, 

we obtain the reliability of a test with J* items when it is lengthened by 

adding Z parallel items. The SB formula shows that the reliability of the 

test-score goes to 1 if I becomes large. As can be seen in Figure 3, however, 

there is usually a point beyond which adding further parallel items to the 

test makes little difference for the reliability of the test score. 

A bit of algebra shows that in the present circumstances Equation 15 
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0.5 

0.-45 

0.25 

Figure 4: Relation between item difficulty 1r and the item test correlation assuming 20 parallel GPCM items (a = 1). simplifies to 
(25) 

Using formula (19) we see that lim1-+oo ITCi = ffx, which provides an interpretation for p3c . A plot of the ITCi against 1r (for two values of a�) in Figure 4 shows that the relation is quadratic. This reveals that, in the given circumstances, the ITC is not a well-defined measure of item discrimination power because it depends on the item difficulty, on CJ'� , and on the number of items in the test. One should therefore be careful to give rules-of-thumb for the selection of items based on the ITC (see e.g. Ebel & Frisbie, 1986). To obtain an idea of the discrimination power of a particular item it would 13 



be more appropriate to look at a plot of the percentage correct responses to 

this item against the score on the proposed test. To this aim, the score must 

be divided into intervals ( score groups) to make sure that enough observations 

are made on the item in each score group (Verstralen, 1989). We may take 

any other variable besides the test score (e.g., income) to see if the item 

discriminates between levels of this variable or use these plots to investigate 

differential item functioning (DIF). We frequently use such figures in our 

daily work and options to produce them are incorporated in our software for 

CTT (Heuvelmans, 2001) . 

4 Fisher Information and Reliability 

In the previous section we introduced the GPCM for binary items. For 

polytomous items, the GPCM states that 

(26) 

where :E�=l (0-8ip) - 0, <Si = (8i1 , .. , 8iMJ, and Di is a constant that is added 

to make sure that :E�o Pik(0) = 1. For illustration purposes, we have drawn 

the CRFs of an GPCM item with three categories in Figure 5. Figure 5 also 

shows a plot of the true score as a function of 0, and the Fisher information 

function of the item which will be defined below. 

The category parameters, 8ip, are the values of 0 where the CRFs of 

adjacent categories are equal. When the category parameters are ordered 

(i.e., 8i0 < . . .  < 8iMJ there are segments, Sk = (8k, 8k+i), on the range of 0 

where category k is more likely than any other category, and these segments 
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Figure 5: CRFs, true score and information for an GPCM item with three categories; t5i = (-3, 1.67, 3), and ai = 1. 
are arranged conform the ordering of the category parameters. In this case, 8k+l - 8k is called the length of ca tegory k. In general, when some CRFs are rising at a certain 0, others must be falling since ��o %0 Pik (0) = %0 ��o �k(0) = 0. Figure 5 shows two ad­ditional aspects that are typical of the GPCM (see Appendix): (1) �0 (0) is non-increasing, and �M. (0) is non-decreasing in 0, and (2) the CRFs for categories 1, . .. , ( Mi - 1) are always bell-shaped, but not necessarily sym­metric. It can be shown that the CRFs are not exclusively related to the corresponding categories, which impedes substantive interpretation of their 
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location and shape. Let L(0 1Xi = k) = I{k(0) denote the likelihood function of 0 given the observed response Xi = k. The item (Fisher ) inf ormation f unction is defined as 

This shows that, in general, the item information depends on the combined rate of change in the CRFs. Using Equation 33 in the Appendix, the item information function of the GPCM is found to be equal to 
M; Ii(0) - at L pik(0; ai, oi) (k - Ev [Xi l0])2 

k=O at (Ev [X; 10] - (Ev [Xil0])2) 

Thus, the item information is proportional to the conditional (error) variance. When the item responses are independent given 0, which is a standard assumption in IRT, the test  inf ormation f unction is the sum of the item information functions, i.e., 
1(0) = L Ii (0), (28) 

i=l and E[I(0)] = "I:{=1 E[Ii (0) ] .  Thus, items with high (expected) information will yield a test with high (expected) test information. 16 
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Figure 6: Plot of pi ML 
against number of parallel items in a test. The curves 

' are drawn for situations that differ by the expected information of the items and the homogeneity of the population. As indicated in the legenda, ai largely determines how many items are required. Information is an important concept in IRT because it is related to the precision with which we can estimate abilities in the reference population. When abilities are estimated with the method of Maximum Likelihood (ML), the asymptotic (in the sense of many items) variance of 0, given 0, equals J-1 (0) . It follows from Equation 13 that 
2 

2 0"9 
Po,ML � ai + 1/ E[I(0)] "  (29) Given ai , the reliability depends exclusively on E[I(0) ] ,  which is additive in the expected information per item. Thus, if one reports ML estimates of the abilities, it is desirable to have high expected test information in the reference 17 



population. This is also true for some of the alternative ability estimators, 

although Var(0 l0) may differ from that of the ML-estimator . Note that the 

ML-estimator is not unbiased so that p� ML can only approximate the square 

of the correlation between 0 and 0. 

Figure 6 plots P�,ML against the number of parallel items in a test. We 

see that P�,ML shows a pattern that is similar to p} (see Figure 3). Figure 

6 also shows that the number of items needed to achieve a certain level of 

reliability is dependent upon the homogeneity of the population, i.e., more 

items are needed when the population is more homogeneous. 

As was noted before, there are situations where the expected information 

will be very low while the reliability is high. The relation between reliability, 

expected information and the GPCM is the subject of the next section. 

5 Exploring the Dependency of Reliability and 

Expected (Fisher) Information on the Pa­

rameters of the GPCM 

5 .1  Introduction 

It is quite difficult to describe precisely how properties such as reliability, 

expected information, etc. relate to the parameters of the postulated IRT 

model, or to the distribution of 0 in the reference population. The situation 

is aggravated when the expectations do not exist in closed form, which is the 

case, e.g. when 0 is distributed normally. It is not surprising, therefore, that 

little is known about such relations. 
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Figure 7: Plot of Pt, E[Ii (0)] ,  and E[oiJ0)] against the discrimination parameter ai . t5 = (-1, 1). The population is normal with E[0] = 0, and 
(T� = l. 

In this section, we demonstrate how the formulae in Section 2 enable graphical exploration of the dependencies between different properties of items using standard numerical integration techniques to calculate expec­tations. Graphical exploration is not nearly as good as solid mathematical proof but it may nevertheless be instrumental in suggesting directions for research. To be more specific, we will investigate the validity of two widely held convictions: 
19 



1. Both item-reliability and expected item information increase when O\ increases. 2. It is best to select items with 1r values near 0.50. 
We are especially interested to know what happens in " the typical situa­tion." The typical situation has the following characteristics: (i) 0 < ai < 10. (ii) The category parameters are ordered from small to large. (iii) The max­imum absolute difference between the category parameters lies between 0.5 and 6. (iv) The items are neither very difficult nor very easy for the reference population. (v) The reference population is neither very homogeneous nor very heterogeneous compared to the maximum absolute difference between the category parameters. 

5.2 Are Items with Large Discrimination Parameters 

Better? In the typical situation, we find that items with higher a values ( all other parameters constant) are indeed more reliable, and more informative. Figure 7 portrays a typical item. Although E[a-�. (0)] decreases with ai , a; increases more rapidly so that E[Ii(0)] = a;E[a-t (0)] increases with ai. The situation may change radically when the item is either very difficult or very easy for the reference population. This is illustrated with Figures 8, and 9. While reliability continues to increase with a, the expected item information decreases and beyond a certain value of a, the item contributes virtually nothing to the expected test information. 
20 
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Figure 8: Plots of Pftem, E [Ii(0)] , and E[oi (0)] against the discrimination parameter a. t5 = (0, 2). The population is normal with mean 6 and variance 1. The idea that higher a is associated with better items is also found wrong in some cases where the population is very homogeneous (i.e., O'� is small). Figures 13 to 15 in the Appendix illustrate some of the possibilities. Sum­marizing, we conclude that items with large discrimination parameters are usually better. 
5.3 Is 0 .50 the Ideal Item Difficulty ? Under typical circumstances both the expected information and the reliabil­ity are maximized when 1r-values are within the interval [0.30 - 0.70] , every­thing else constant (see Figure 10). Thus, items with difficulties around 0.50 
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Figure 9: Plots of pftem, E [Ii(0)] ,  and at against the a-parameter. � = (0, 2) . The population is normal with mean -6 and variance 1. are usually preferably. Divergent patterns are illustrated in Figure 11, and Figure 16 in the Appendix. Figure 16 shows a pattern which we found to occur in a situation where the category parameters are not ordered from small to large. Yet another interesting pattern is shown in Figure 11. Here, both the reliability and the expected information of the item can be zero while neither 1r nor the a-parameter are unusual. What we see in Figure 11 can be explained by the fact that it requires little ability to score in the second category and much ability to score in the third category (i.e., category 1 is quite long). When 1r is near 0.5, the bulk of the population lies within the segment S1 (see Figure 17 in the Appendix). This example is a bit contrived but serves 22 
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Figure 10: Plots of Piiem , E[Ii(0)] , and a-i-i against 1r. 0 = (0, 1) , and a =  2. The population is normal with variance 1. to demonstrate that it is not always true that items with difficulties around 0.50 are to be preferred. Lord (1952) used simulation to investigate the relation between 1r and test reliability. His result suggests that the optimal value of 1r lies between 0 .70 and 0.85. It is clear that his results depend on the IRT model and the distribution of 0 used to simulate the data. His recommendations regarding the "optimal value of 1r" are neither more valid nor less valid than recommen­dations by other authors (e.g. , Crocker & Algina, 1986; Feldt, 1993), except when the IRT model he used is more appropriate. 
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Figure 11 :  Pt, E[Ji (0)] , and at as a function of 1r. ai = 2, and � =  (-6, 6). 
6 Applications 

6.1  Selecting Items from a Pilot Test The state examination of Dutch as a second language (hereafter abbreviated to "the Stex ") is a large-scale examination of the ability to use the Dutch language in practical situations; sometimes called "functional literacy". Four aspects of functional literacy ; listening, speaking, writing, and reading, are examined separately. A GPCM is used to scale the data and equate an examination to a reference examination to ensure that the ability required to pass the examination stays the same over years. We will briefly discuss how the fomulae in Section 2 are used in the Stex to guide the construction of a new examination. In the Stex, the construction of a new examination is preceded by a pilot 
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study which entails the administration of new items to people that follow 

a Dutch language course. The purpose of this pilot study is to select those 

items that are best to figure in the coming examination. 

After the data from the pilot study have been collected, they are added to 

a large data set which contains the data obtained from previous pilot studies 

and examinations. This data set is called the data bank for later reference . 

l 

..._ Item; ___. 

Reftnn:e e.xarrimtirn 
� 

l'b.vexanimtim 
,----A--... 

Figure 12: Schematic representation of the data bank. 

Schematically, the data bank can be represented (as in Figure 12) by a 

matrix where the rows are subjects and the columns are items. In Figure 

12, the shaded areas represent realized item responses, while the blank areas 

represent missing responses. The systematic pattern of missing and observed 

data arises naturally because items are administered in booklets. While an 

examination usually consists of a single booklet, the items are spread over 

various booklets in the pilot to lessen the burden for respondents and allow 
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for more items to be tested. 

The reference examination is a subset of the items in the data bank. 

This reference examination was chosen by the examination committee and 

is believed to measure the ability of interest. The design of the pilot study 

is chosen to ensure that all items in the pilot study can be linked to one 

another, and to the reference examination via items that are common to one 

or more booklets. This is a technical condition which allows us to fit a GPCM 

to the item responses, and place the items on the same scale as the items 

in the reference examination. We also obtain an estimate of the distribution 

of the latent ability in the population of examinees. This population is the 

reference population. 

The first and most important step in the analysis of the pilot data is 

to establish a fitting GPCM using all relevant parts of the data bank. All 

subjects that are included in the analysis are assumed to be drawn from 

the reference population. Although the samples that participate in the pilot 

testing are generally less able, they are assumed to differ only in their ability 

distribution, which ensures that the parameters of the GPCM apply to them 

(e.g. , Steyer & Eid, 1993, par. 18.4). 

In the Stex, we first use a special purpose program to estimate the param­

eters of the GPCM (see Verstralen, 1996a,1996b) . We then scale the a's and 

round them to the nearest integer, consider them as fixed, and use the OPLM 

program (Verhelst, Glas & Verstralen, 1995) to reestimate the category pa­

rameters, and establish the fit of the model. To this aim, OPLM produces 

several " goodness-of-fit " statistics (see Glas & Verhelst, 1995). Items that 

do not conform to the model, and/or items with negative a-parameters are 
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discarded because the true score is expected to be increasing in 0. Following the calibration of the data from the pilot examination, we pro­vide the examination authorities with three pieces of information. First, we provide the item difficulties in the reference population. The examination committee strives at difficulties between 0.50 and 0.70, which will normally achieve optimal expected information, as we have seen in the previous para­graph. Second, we report expected item information and we recommend to discard those items that have the lowest values. This seems appropriate since estimated abilities will be reported as examination marks and expected item information is positively related to the reliability of the estimated abilities. Thirdly, we provide I RCis since the items should fit the reference exami­nation. With this information, the item writers then compose a proposed examination. The item difficulties are used to place more difficult items at the end of the examination booklets in order not to discourage candidates. W hen a proposed examination has been constructed, we provide an estimate of the reliability of the estimated abilities. Since the reliability provides a lower bound to the validity it should be sufficiently high. It could be argued that the Stex involves a classification problem with two classes; candidates below or above a cutting point 00 . The cutting point is de­termined by the examination committee who decides which score is required to pass the reference examination. Spray and Reckase (1994) have argued that one should select items with highest information at 00 . The information of the items at 00 need not to correlate perfectly with their expected informa­tion and information at 00 is an additional selection criterion. Eggen (1999) describes an elaborate item selection method which gives similar results. 
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In the Stex, the item difficulties have been reported to the item writers for 

some years now. It appears that we have been quite successful in predicting 

the realized item difficulties. When we look at the last nine examinations of 

the ability to listen (program 1), the correlation between the expected and the 

realized difficulties, averaged over items, is about 0.82. Both sets of p-values 

ranged between 0.63 and 0.68 as intended by the examination committee. 

We have not yet gained any experience with the expected information or the 

IRCs. 

6.2 Estimating the Correlation Between two Latent 

Traits 

Suppose we have two tests with one test being a measure of a latent trait 

0, and the other test a measure of a latent trait e. Equation 14 shows that 

the correlation p(0, t) may be much lower than p(0, e) if the estimates are 

not very reliable. While p(0, t) may be estimated from a data set we need to 

estimate the reliabilities in order to calculate p(0, e) = p(0, t)/ �-
To do so, we could use the estimated asymptotic variance of 0 ( or e) given 

0 (or e) (e.g., Verhelst, Glas & Verstralen, 1995, pp. 63-64) . This works well 

as long as there are sufficient items to justify the use of the asymptotic 

variance, and as long as the estimates are unbiased. When the number of 

items is small and/ or when there are many extreme test scores the estimated 

reliabilities may be wrong. 

An alternative procedure is as follows. The IRT model gives the distribu­

tion of the test score Y given 0; g(Y = yl0) , where y are the values taken by 

Y. Each value y gives us an estimated ability 0(y) and g(Y = yl0) = g(0 = 
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0(y)j0); the distribution of the estimated abilities given 0. The variance of 0 given 0 may now be calculated as Var(0j0) = E[il0] - (E[0j0] )2 (30) - � ii2 (y)g(ii = ii(y) IB) - ( � ii2 (y)g(ii = ii(y) I B) ) ' (31) 
We may then calculate the reliabilities via Equation (13) using numerical integration to calculate the expectation. These estimates are expected to be more robust against bias in the estimates. 
7 Discussion The purpose of this paper has been to clarify CTT. Our presentation of CTT was non-standard for two reasons. First, we have assumed that measurements are discrete. Second, we have assumed that the CRFs are defined by a suitable IRT model. The main advantage of the use of an IRT model is that we can test hypotheses on the relation between ability and the measurements. Computer programs such as OPLM (Verhelst, Glas & Verstralen, 1995) or CONQUEST (Wu, Adams, & Wilson 1997) provide a myriad of information on the appropriateness of the IRT model. Through the analysis we learn whether it is reasonable to assume that the measures are unidimensional, and whether the true score increases with ability or not, etc. When an appropriate IRT model is used this allows us to calculate classical indices for properties of items and test in situations where CTT could normally not be applied. For example, when the items of interest were not administered to the population of interest. 
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Throughout, the IRT model that we have used was the GPCM which is often used in practice. We could have used any other model. We could, for example, have considered a general latent class model where ability is a discrete variable and each value of the ability defines a latent class. With this model, and binary items, test reliability can be shown to be equal to 
2 Lg Pg (Li Pig) 2 - (Lg Pg Li Pig) 2 Py = 2 , (32) Lg Pg (Li Pig) 2 - (Lg Pg Li Pig) + Lg Pg Li Pig (l - Pig) where Lg sums over latent classes, Li sums over items, Pg denotes the probability of being in class g, and Pig denotes the probability to answer the i-th item correct when one is a member of class g. It is not clearly perceptible what Equation 32 means but it appears to be related to the ability to discriminate between the classes. For example, p} = 1 if there are one or more items that distinguish perfectly between the classes. More specialized indices have been developed to judge the quality of the items (e.g., Rost, 1996, pp. 1153-159). It must be noted that all calculations depend on the validity of the IRT model and the availability of good estimates of the distribution in the pop­ulation of interest. If we assume that the distribution of ability was nor­mal with mean µ and variance u�, an approximate 95% interval of uncer­tainty may be constructed by varying a-0 between u�

I
o

w
) = u�g) - l.64SE and u�high) = (]'0 + 1.64SE, respectively, where SE denotes the standard error of the standard deviation of the reference population. For exam­ple, we calculate the expected information in a population of interest with (J'�(g) = (u�Iow

)) 2 to get the lower end of an approximate 95% interval, and then with (J'� (g) = (u?igh) )2 to get the upper end of an approximate 95% 30 



interval around the expected information. We choose to vary a0 since it is estimated with much less precision than the mean and it is the main deter­minant of P1-. , p} or E[I(0)] . Another possibility is to take expectations over the posterior distribution of the parameters (e.g. , Lewis, 2001). As a topic for future research the relation between item properties of CTT and IRT item parameters to the quality of decision making should be considered. Many tests are used to make decisions on students while they are not composed in a way that is known to minimize the probability of erroneous decisions. 

31 



8 References 

Ebel, R.L., & Frisbie, D .A. (1986) . Essentials of educational measurement. 

Englewood-Clifffs: Prentice Hall. 

Crocker, L . ,  & Algina, J. (1986) . Introduction to classical and modern 

test theory. New-York: Holt, Rinehart and Winston. 

Eggen, T.J.H.M. (1999) . Item selection in adaptive testing with the se­

quential probability ratio test. Applied Pscyhological Measurement, 23, 249-

261. 

Feldt, L.S. ( 1993) . The relationship between the distribution of item 

difficulties and test reliabilility. Applied Psychological Measurement, 6, 37-

49. 

Guilford, J .P. , & Fruchter, B. (1978) . Fundamental statistics in Psychol­

ogy and Education. (6th Ed.) Tokyo: McGraw-Hill Kogakusha. 

Heuvelmans, A. (2001) .  TiaPlus user 's manual. Cito: Arnhem. Available 

at http://www.citogroep.nl/pok/poc/eindJr.htm. 

Lewis, C. (2001) .  Expected response functions. Chapter 9 in " Essays 

on item response theory. " Edited by A.Boomsma, M.A.J. van Duijn and T. 

Snijders. New-York: Springer 

Loevinger, J .  ( 1954) . The attenuation paradox in test theory. Psycholog­

ical Bulletin, 51, 493-504. 

Lord, F.M. (1952) . The relation of the reliability of multiple-choice tests 

to the distribution of item difficulties. Psychometrika, 1 7, 181-194. 

Lord, F.M. ,  & Novick, M.R. (1968) .  Statistical theories of mental test 

scores. Addison-Wesley Publ. Comp. :  London. 

Rost, J .  (1996) . Lehrbuch Testtheorie, Testkonstruktion. [Textbook for 

32 



test theory and test construction] Hans Huber : Bern. Steyer, R . ,  & Eid, M. (1993). Messen und tes ten. Springer-Verlag: Berlin. Spray, J.A, & Reckase, M.D. (1994). The selection of tes t items for deci­sion making with a compu ter adaptive tes t. Paper presented at the national meeting of the National Council on Measurement in Education, New Orleans. Verhelst, N. D., & Glas, C.A.W. (1995) . The one parameter lo gis tic Model. Chapter 12 in " Rasch models: Foundations, recent developments, and applications. " Edited by G. H. Fischer and I.W. Molenaar. New-York: Springer. Verhelst, N.D., Glas, C.A.W., & Verstralen, H.H.F.M. (1995). One pa­rame ter lo gis tic model OPLM. Computer software manual, Cito: Arnhem. Verstralen, H.H.F.M. (1989). Het groeperen van freq uentieverdelingen. [Dividing frequency distribution into groups]. Measurement and Research Report 98-3. Cito: Arnhem. Verstralen, H.H.F.M. (1996a). Es timating integer parameters in I RT models for poly tomo us items. Measurement and Research Report, Cito: Arn­hem. Verstralen, H.H.F.M. (1996b) . OPCAT: Es timating in teger category weights in OPLM. User Manual. Arnhem: Cito Wu, M.L., Adams, R.J., & Wilson, M.R. (1997). ConQ ues t: Generalized item response  modelling software. Melbourne: ACER. 

33 



9 Appendix Under the GPCM, the derivatives are given by Mi ai�k(0) [k - L rPir (0)] 
r=l 

It is easy to see that the derivatives are uniformly bounded, that is, {) a · (k - M·) < -Rk(0) < a·k  for all 0. i i _ {)0 i _ i ,  

(33) 

(34) It follows that :e Pi 0(0) � 0, and :e piMi (0) � 0; �o(0) is non-increasing, and PiMi (0) is non-decreasing in 0. If ai > 0, the true score is a continuous, strictly increasing function that varies smoothly between 0 and Mi- This implies that, for all 0 < k < Mi , there is a real value 0k such that Ev [Xi l 0  = 0k] = k. From 33 It follows that :e pik(0k) = 0. If 0 > 0k, Ev [Xil0] > Ev [Xi l 0k] and :e pik(0) is negative. If 0 < 0k, Ev [Xi l 0] < Ev [Xi l 0k] and :e pik(0) is positive. Note that if ai --+ oo, the true score function Ev [Xil0] becomes a step function (see Figure 2). The information becomes zero almost everywhere, except at those values of 0 where Ev [Xi l 0] = k. Thus, when ai increases be­yond limits, the information becomes concentrated around values of 0 where Ev [Xil0] = k, and the CRFs of categories 0 < k < Mi peak. 
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Figure 13: Plots of P�tem , E[Ii (0)] , and crt against the a-parameter. O = 

(0, 2) and the population is normal with mean 1 and standard deviation 0.2. 
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Figure 14: Plots of Pftem, E[Ii(0)], and at against the a-parameter. d = (0, 2) and the population is normal with mean 6 and variance 0.09. This population is way out of the effective range of the item. 
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Figure 15: Plots of P�em, E[Ii(0)] , and oii against the a-parameter. d = (-1, 0, -0.1). The population is normal with mean -4 and variance (0.25). 
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Figure 16: Pt,  E[Ii(0)] , and a-t as a function of 1r. ai = 15, and 6 = (-3, 1, 7, -1). 
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subject parameter O 

Figure 17: CRFs, information and true score. ai = 2, and d = (-6, 6) . The bell-shaped curve shows the location of the population which is normal with mean O and standard deviation 1 so that 1r = 0.5. 
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