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Abstract 

This paper is about the Linear Logistic Test Model (LLTM). We demonstrate that there are infinitely many equivalent ways to specify a model. An impli­cation is that there may well be many ways to change the specification of a given LLTM and achieve the same improvement in model fit. To illustrate this phenomenon we analyze a real data set using a Lagrange multiplier test for the specification of the model. 





1 Introduction 

Let Xvi denote a dichotomous random variable with realization Xvi that in­dicates that subject v chooses a particular response to item i. For ease of presentation we will assume that Xvi is coded as follows: 
. _ { 1 if the response is correct 

Xvi - 0 if the response is wrong • (1) 
In the Rasch Model (RM), the probability of a correct response is defined as 

p (X IC (3) exp[xvi(ev - ,Bi)] 
r vi = Xvi �v, i = 

l + exp(ev _,Bi), 
(2) 

where -oo < ev, ,Bi < oo. The probability of a correct answer is decreasing in ,Bi, which is recognized to be an item difficulty parameter. Similarly, ,v is a person parameter. The parameters of the RM are not identified because Pr(Xvi = Xvilev + c, ,Bi+c) = Pr(Xvi = Xvilev, ,Bi) for any constant c, and for all i E {1, ... , k }. It is customary to remove this arbitrariness in the parameterization of the model by imposing a linear restriction on the item parameters. This restriction is customary called a normalization. 
Definition 1 A normalization is a linear restriction on the item parameters, i.e., 

(3) 
i=l 

where Lti ai = 1, and d is an arbitrar y constant that is given the value zero. 
This restriction implies that there are only k - 1 independent item para­meters, and the item parameters must be interpreted relative to L:=1 ai,Bi. It is often convenient, for example, to consider the value of one of the item para­meters as a reference. This amounts to setting a9 = 1 ( for some g E { 1, ... , k}) and ai = 0 ( i -/- g). Let (3 = (,81, ... , f3k)t, where uppercase t denotes transposition. The LLTM is a RM with linear restrictions on the normalized item parameters, that is, 

p f3 = Q11 = ( I: qil11d, (4) 
l=l 
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where Q = (qis : i E {1, .. . , k }, s E {1, ... ,p}) is a k x p matrix of constant weights, and rJ = ( 'f/s : s E { 1, ... , p}) is a p-dimensional vector of so-called basic parameters (see Fischer, 1995, and references therein). We assume that p < ( k - l) so that the model is more parsimonious than the RM. We also assume that there are no restrictions on rJ. In many applications, the LLTM is specified according to a formalized theory about the cognitive operations required to solve the items, and the basic parameters represent the difficulty of particular cognitive operations. Consider, as an illustration, a set of paragraph comprehension items, which are classified according to the "transformations" the students use in respond­ing. For example, with some questions the answer resides in the text, in much the same wording as in the question, while in others, subjects would have to go beyond the information given and make inferences in arriving at the correct answer. Under the assumptions implied by the RM, the difficulty of each transformation can be represented by a basic parameter and the (g, l) entry in the Q-matrix represents the number of times the lth transformation is required to answer the gth item. Provided the theory is appropriate, and the Q-matrix is specified correctly, the LLTM furnishes a useful extension of the RM. Especially, because the model enables one to predict the difficulty of new items which may facilitate the construction of new tests for differ­ent groups of students. When the Q-matrix is misspecified, however, the predictions based on the model may be erroneous. This example illustrates the common practice to specify the Q-matrix for k item parameters, while the need to impose a normalization is ignored. Fischer (e.g., 1995) suggests that we examine the Q -matrix to assure our­selves that a normalization is imposed. To be more precise, he argues that the LLTM should be formulated as 
{3 = QT/ + elk = ( Q lk ) ( � ) , (5) 

where lk represents a k-dimensional unit vector, and the constant c is added to indicate that the item parameters are not unique. A normalization implies that c is u.niqu�l determined, which is true if and only if the augmented matrix ( Q lk has full column rank (e.g., Lang, 1987, pp. 59-60). Here we propose a d • erent approach. In Section 2, it is explained how the Q-matrix is adapted to impose a con­venient normalization. Neither the normalization nor the particular parame­terization of the basic parameters has an effect on the differences between the 
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item parameters or on the fit of the model, so that there are infinitely many ways to specify the same LLTM. In Section 3 we will discuss such equivalent LLTMs. An interesting implication is that researchers may think differently about a given set of items and nevertheless specify statistically equivalent models. Another implication is that there may well be many ways to change the specification of a given LLTM and achieve the same improvement in model fit. The latter implication will be illustrated in Section 4 where we discuss a test for the hypothesis that a single entry in the Q-matrix is spec­ified correctly. In line with Section 4, Section 5 is about the estimation of this entry when it is specified as a parameter. In Section 6, we analyze a real data set. Finally, we summarize and discuss our findings in Section 7. 

2 Normalizing the LLTM 

As noted in the Introduction, researchers usually specify the Q-matrix fork item parameters, and ignore the need for a normalization. As a first step in an analysis with the LLTM, one should therefore make sure that a normalization is imposed. Let Ik denote a k-dimensional unit matrix. Consider an arbitrary normalization indexed by a= (a1, ... , akt Given a vector of item parameters, the a-normalized item parameters are 
(6) 

· where La = Ik - lkat and atlk = 1. Substituting the postulated LLTM for the item parameters gives 
(7) 

Suppose, for example, that an LLTM is formulated as 

(8) 
The differences between any two item difficulty parameters can be arranged in the following matrix 

(9) 
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where the (i,j) entry is the difference between f3i and /3i· This matrix may be used to specify the LLTM for differences between the item parameters. Its first column, for instance, provides the model for differences with the first item. This is an LLTM with the following "normalized" Q-matrix: 
(10) 

By adapting the Q-matrix we have obtained the model for difficulties of the items relative to the first item. The second step in the analysis is to check the rank of the "normalized Q-matrix", Qa , to make sure that the basic parameters are identified. 
Proposition 2 The basic parameters are identified if and only if Qa has full column rank. Proof. The item parameters are identified beca use we have applied a normalization. That is, f3i1) f. /3�2) ⇒ Pr(X11i = Xvilev , 13}1)) f Pr(Xvi = Xvil(v ,J3J2)), for some i = 1, .. . , k. Hence, we must establish that 77<1) f. 77<2) ⇒ f3i1) f. /3�2). This is well known to apply if and only if Qa has full column rank (e.g., Lang, 1987, pp. 59-B0). ■ -

The rank of Qa is independent of the normalization. It is easily checked that LaLb = La , where band a denote two normalizations. Since rank(LaQ) = rank(LaLbQ) :'.S rank(LbQ) while rank(LbQ) = rank(LbLaQ) :'.S rank(LaQ) it follows that rank(LaQ) = rank(LhQ). 
3 Equivalent LLTMs 

There are many equivalent formulations of a LLTM because we can change the normalization and/ or the meaning of the basic parameters without chang­ing the restrictions on the differences between the item parameters. As ex­plained in the previous section, the normalization may be changed by means of the La matrix. The meaning of the basic parameters is changed by means of a non-singular transformation defined by r,* = T77, where T is a non­singular matrix. In general, therefore, an LLTM may be written as : 
(11) 
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where different choices of a and T give different specifications of the same LLTM. An interesting implication is that researchers who hold different theories about a given set of items may nevertheless specify LLTMs that are equivalent from a mathematical point of view. How do we determine whether two LLTMs are equivalent ? 
Definition 3 In general, two LLTMs Q(1) 77(1) and Q(2)77<2) are equivalent if 

(12) 

If Q�1) is in the column-space of Q�2), we may always find a non-singular matrix T-1 such that Q}i1) = Q�2)T-1. Hence, two LLTMs are equivalent when both Qa-matrices span the same column space, and the rank of the augmented matrix [Q�1); Q�2)] is p. The transformation matrix may then be calculated as: 
(13) 

where (Q�1)) 9 is an arbitrary g-inverse of Q�1) (see e.g., Pringle & Rayner, 1971). Another implication is that the same improvement in the specification of a postulated Q-matrix can be achieved in many ways. As an illustration we will, in the next section, derive an efficient score (Rao, 1947) or Lagrange multiplier test (Aitchison & Silvey, 1958; Silvey, 1959) for· the hypothesis that an arbitrary entry in the Q-matrix is specified correctly. 
4 A Lagrange Multiplier Test for the LLTM 

Suppose we consider the postulated LLTM as the null-hypothesis. To test the specification of the (g, l) entry in the Q-matrix, q91, we compare the postulated LLTM to an alternative model where q91 is specifies as a parameter cr91. That is, 
Ho 

H1 

5 

(14) 
(15) 



If the null hypothesis is true, an estimate of (J' 91 would be near q91. 
1 We could use a likelihood ratio test but this requires estimation under the alternative model. To avoid this, we employ the Lagrange Multiplier (LM) test. The LM test is similar to the likelihood ratio test but it does not require estimation under the general model (see Buse, 1982). Let 0 = (rl , (J'91)t denote the vector of parameters for the general model. Let So ( 00) be the vector of first order partial derivatives of the conditional loglikelihood (i.e., the score vector) of the general model evaluated at 00 , which denotes the Conditional Maximum Likelihood ( CML) estimates under the LLTM. That is, 00 = (f/, q91)t, where fJ denotes the CML estimate of the basic parameters. Similarly, l0,0 (BO) denotes the expected conditional information matrix evaluated at B0. Since B = ( rl , (J' 91 Y is partitioned, the score vector and the information matrix may likewise be partitioned: 

S (O ) _ ( S11(00) ) I (O ) _ ( 171,71(00) l71,u91 
(Bo) ) (l6) 0 0 - Sugl ( 0o) ' 0•0 0 - lugl,11 ( 0o) lug1,ug1 ( 0o) 

The LM test involves the following statistic (cf. Glas & Verhelst, 1995): 
(17) 

where 
Dgl = lug1,ug1 ( 0o) - lugl,11 ( 0o)l71 ,71(80)-1171 ,0-91 ( 0o). 

If the postulated LLTM holds, this statistic follows a chi-square distribution with one degree of freedom. Another view on the LM is given by Sorbom (1989), who demonstrates that ½c,o91 is approximately the increase in con­ditional loglikelihood when the corresponding element of the Q-matrix is estimated ( or specified as a constant with the value of the estimate). Note that 

provides an informal measure of the fit of item g under the LLTM. The char­acter x.9 denotes the number of correct responses to item g, and E[x.9 IR = r) denotes its expectation conditional on the observed subject scores. For later reference, we call (18) the Item Fit (IF) index. 
1 Note that the alternative model pertains to a class of models that is more general than 

the LLTM. A definition of these models and conditions for their identifiability are given 
by Bechger, Verhelst and Verstralen-(2000). 
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It can be shown that <.p
9
z is invariant under normalization and trans­formations of the basic parameters. This means that <.p

91 and l.{Jjh (where 
g, j E { 1, ... , k}, and l, h E { 1, ... , p}) will be the same if the corresponding general models are equivalent. The reverse implication does not hold because <.p

91 and l.{Jjh may be equal by change. 
Theorem 4 Let <.p

91 and l.{Jjh denote the statistics associated to two entries 
in a given Q-matrix. Let llf-1) denote a model where only the (g, l) entry in Q is estimated as a parameter, and let Jvf-2) denote a model where only the (j, h) entry is estimated as a parameter. Then, <.p

91 = l.{Jjh if Jvf-I) is equivalent 
to Ivf-2). The proof of this theorem is added as an appendix. 

This finding is intuitively plausible. When the same improvement in conditional loglikelihood can be achieved by estimating ( or re-specifying) one of several entries in the Q-matrix, the corresponding statistics should indeed be equal. 

5 Estimating er gl 

Suppose we keep the basic parameters at the ClVIL estimates and consider Fisher's Scoring (FS) algorithm to find optimal values for the parameter in the Q-matrix. After simplification of the gradient and the information matrix we find the following relation between estimates at iteration t and t + 1: 
(19) 

where n-
1s agz (00) is evaluated at the current values of the basic parameters. 

If we start the iterations at a;�) = q
91, the quantity n-1 S a

91 
(00), which 

equals <.p
91 divided by S a

91 
(00), gives a;�) - q

91. In the next section, we call this quantity the First FS Step (FFSS). To estimate the optimal value of q
91, we fix q91 at the estimated value of a91, estimate the basic parameters, take the next FS step, and continue this procedure until the specification of q
91 can no longer be improved. We have then replaced q91 by a ClVIL estimate of the parameter a

91, given the values of the other entries in Q. An estimate of its standard error is given by the square root of the inverse of la 
91 

,a 
91 

( 0) evaluated on the final estimates. Note that the estimates of an entry in Q will be biased when other entries of Q are also misspecified. 
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This procedure makes sense if a91 is identified and its value is unique. The following theorem provides a relatively simple way to determine the identifiability of single entries in the Q-matrix. It is proven in Bechger, Verhelst and Verstralen (2000). 
Theorem 5 Choose a normalization such that a9 = 0 and let Qa(-g) denote Qa with the gth row deleted., Then, the (g, l) entry in Q is identifiable if and 
only if Qa(-g) has full column rank and r,1 =J 0. 

As an illustration, consider the following LLTM: 

/32 = 2 1 'T/l 
= 2r,1 + 'T/2 ' ( 

/31 

) ( 

1 0 ) ( ) ( 'T/1 

) 
/33 1 0-32 

'T/2 
'T/1 + 0-32'T/2 

(20) 

where the (3, 2) entry is considered a parameter. Suppose that we do not normalize the LLTM. If we solve the equations for o-32 we find that 
/33 - /31 

a32 = 

/32 - 2/31 • 
(21) 

One might be tempted to conclude that a-32 is identified but this is not true because /32 - 2/31 depends on the normalization; that is, if c I= 0, /32 -
2/31 I= (/32 + c) - 2(/31 + c). This shows how important it is to consider the normalized Q-matrix rather than the matrix a researcher provides us with. The conclusion that o-32 is not identified is confirmed if we look at the rank of the Qa(-3) matrix. In the example that was mentioned in Section 2, 

(22) 
and o-21 is not identified. Both examples illustrate that the rank of Qa(-g) is at most k-2 so that no element of the Q-matrix .will be identified if p > k- l. When p < k- l, the Q-matrix may contain entries that are identified as well as entries that are not identified. Note that if we consider r,1 to be random with some non-degenerate, continuous distribution, the probability that r,1 = 0 is zero. If, however, in applications lr,1 I becomes very small, the FS algorithm may fail to converge. 
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6 An Application 

Consider as an illustration a data set consisting of 300 responses to five items that is published by Rost (1996, e.g. , p. 303). For these five items, the following Q-matrix was believed to be appropriate (Rost, 1996, section 3.4.1): 1 0 2 0 Q = 1 1 2 1 2 2 
(23) 

The entries in this Q-matrix specify the number of times that each of two cognitive operations is required to solve the corresponding item. We have used CML estimation as described briefly in the Appendix. The basic parameters ( with their asymptotic standard error within parenthesis) are estimated to be ry
1 = 0.46 (0.14), and ry

2 = 0.96 (0.10). The conditional loglikelihood of the model is -324 .92, which is only slightly lower than the conditional loglikelihood for the RM, which is -320.62. (Using a central chi-square approximation, minus twice this difference is associated with a probability level of 0.01.) As judged from the IF indices (see Equation 18), item 4 and item 5 are the worst fitting items. Item 4, for example, is associ­ated to an IF index of 14.35, which indicates that there are about 14 correct responses to many under the postulated LLTM. Since this is only a small percentage of the sample, the IF index suggest that the model fits the data very well. The <p's are 1.61 1.61 1.76 1.76 1 .61 1.61 (24) 6.93 6.93 8.30 8.30 
Equalities between the Mls suggest "equivalent" ways to improve the model. For starters, the Mls are equal for each row of Q since an equivalent improvement in loglikelihood can be achieved by a change in either one of the weights for the first or the second basic parameter. To be more precise, if the fit of the LLTM can be improved by adding a constant d to the estimated 
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f3i , this improvement can be achieved in two ways since 
� d d 
{3i + d = (qil + -)"11 + qi2'(J2 = qil'T/l + (qi2 + -)772. (25) 

T/1 7]2 

It is obvious that this phenomenon will appear in any LLTM, even when there are more than two basic parameters. The equality between the Mis of items 1 and 3 can also be explained by the presence of equivalent models. To be more specific, we found that an LLTM with the (1, 2) entry specified as -0.347 is equivalent to an LLTM with entry (1, 2) fixed at 0 and entry (3, 2) specified as 1 + 0.347. The value 0.347 was found using the FS procedure described in the previous section. With either specification, the conditional loglikelihood improved ½ x 1 .61. The results suggests that the greatest improvement in conditional loglike­lihood ( about 4. 15) can be achieved by estimating either entry in the fifth row. Since the entries in the Q-matrix represent the number of times that a certain cognitive operation is used in the solution process, it seems reason­able to consider only integer values. The FFSS suggests that the (5, 1) entry should be about 2 lower and that the (5, 2) entry should be about 1 lower. If we specify q51 = 0 we obtain an LLTM with a loglikelihood of -321.15. The basic parameters are now estimated to be f/1 = 0.49 (0 .09), and f/2 = 1.38 (0 .10). Suppose that instead of changing the value of q51 , we change the value of q41 to 1. The cp's for the parameters of the fifth item are no longer significant and the fit of the model has improved to -321.68, which is only slightly lower than the likelihood of the model with q51 = 0. This shows that the cp's are not independent. The basic parameters are now estimated to be 771 = 0 .38 (0.09) and rJ2 = 0.95 (0.10), close to the values under the first model. Although the different specifications are not equivalent, substantial arguments are needed to distinguish between them. 
7 Conclusion 

Researchers often specify the Q-matrix as if there were k independent item difficulty parameters and ignore the need for a normalization. To deal with this unfortunate situation, Fischer (e.g., 1995) suggests that we examine the Q-matrix to assure ourselves that a normalization is imposed. Unlike Fischer, we have proposed that a given Q-matrix be adapted to make sure that a convenient normalization is imposed. We have found that the basic 
10 



parameters are identified if and only if the adapted Q-matrix is of full column rank. If the adapted Q-matrix is of deficient column rank, the researcher is required to specify a new Q-matrix. We have also found that there are infinitely many ways to specify an LLTM because one is completely free to choose a normalization or transform the basic parameters. An interesting implication is that researchers may think differently about a given set of items and nevertheless specify statisti­cally equivalent models. Another implication is that there are many ways to change the specification of a given LLTM and achieve the same improvement in model fit. We have demonstrated that this affects the LM test for single entries in the Q-matrix. In general, the statistics associated with different sets of entries should be equal if the same improvement can be achieved by changing the specification of either set of entries. It may be tempting to use the LM test in the LLTM in the same way as is done in Structural Equation Modeling (SEM). That is, to examine the statistics, to free the restriction that leads to the largest reduction in goodness-of-fit and to repeat the process with the revised model until an adequate fit is developed. Bollen (1989) surveys years of experience with the LM test and puts in the following caveats against this procedure: 
1. The central chi-square distribution may not even be valid for statistics associated with correctly specified entries. The reason is that the wrong values in other places in the Q-matrix are part of the null hypothesis. 
2 .  The statistics are not independent. 
3. The order in which parameters are freed or restricted can affect the significance tests for the remaining parameters. 
4. The LM test is most useful when the misspecifications are minor. Fun­damental changes in the structure of the model may be needed but these are not detectable with these procedures. 
5. Simulation studies show that a specification search that is guided on the LM test is quite likely to lead one to the wrong model. 
These findings highlight the importance of guidance from substantive knowledge in the specification of the LLTM and suggest that the LM test should be used with caution. Finally, we note that it is common practice in SEM to supplement the LM test with a preliminary estimate of the parame­ter, which is given by the first FS step (see Section 5). 
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8 Appendix: 

8.1 The LM test depends neither on the normaliza­

tion, nor on the parameterization of the basic pa­

rameters 

Theorem 6 The value of the statistic associated to the LM test depends 
neither on the normalization, nor on the parameterization of the basic para­
meters. 

To prove this statement we proceed in two steps. First, we prove that the statistic r.p91 is independent of the normalization. · Then, we prove that the value of the statistic is not changed by a transformation of the basic parameters. We start by giving general expressions for the score vector and the conditional information matrix. In general, the statistic r.p is given by 
(26) 

It follows from the chain rule that Se ( 6) is given by 
(27) 

where l (/3) denotes the conditional loglikelihood of the item parameters un­der the RM, J = ( �) denotes the Jacobian matrix of first-order partial derivatives (e.g., 35), and 0i denotes a parameter is 6 = (rl , o-91 f  (Bechger, Verhelst and Verstralen (2000) give a general expression for this Jacobian matrix.) The conditional information matrix is given by 
t ( [ a2 l (/3) ] ) Ie,e (6) = J -E B/3Bf3t J. (28) 

The derivatives with respect to the item parameters can be found, e.g. , in Fischer (1974 or 1995). Suppose that we change to a different normalization indexed by a. The Jacobian matrix is now: 
(29) 
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We use the following identities, and substitute Ja in the equation for the statistic <p to obtain f.Pa i the LM test statistic under arbitrary normalization. 
(30) 

The first identity is proven by Verhelst (1993, lemma 1). The second identity follows easily by substituting the derivatives. Now the LM test statistic is 

If one substitutes (29) in this equation, and uses the identities (30), one finds that <pa = <p. This proofs that the statistic <p is independent of the normal­ization. It follows from the chain rule, and the rule about the transformation of the information after reparameterization (e.g., Azzalini, 1996, Equation 3.11) that the statistic <p is also invariant under various parameterizations of the basic parameters. Thus, if two alternative hypotheses are equivalent, the associated statistics will be the same. ■ 
8.2 A Common Framework for CML Estimation of the 

RM and the LLTM 

In this paragraph we demonstrate that CML estimates of the item parameters in the RM or the basic parameters in the LLTM can be obtained using the same algorithm. This algorithm may not efficient because it involves multiplication with matrices that may in practice be very large and sparse but may be useful with small data sets ( as in the present paper) or in theoretical work. First, the researcher chooses a Q-matrix and a normalization, i.e. , a vector a, such that atlk = 1. The CML estimates of the normalized item parameters are 
(32) 

where f/ denotes the CML estimates of the basic parameters and La = Ik -lkat. The asymptotic variance-covariance matrix of the normalized item parameters is (33) 
13 



where 1;;,� ( fJ) denotes the asymptotic variance-covariance matrix of the esti­mates of the basic parameters. If rank( Qa) = p the basic parameters are identified and we may use a FS algorithm to estimate the basic parameters. The FS algorithm requires the score vector and information matrix, which are given by (27) and (28) , respectively. The Jacobian matrix J = LaQ- The FS algorithm involves the evaluation of the elementary symmetric functions which is described by Verhelst, Glas and Van der Sluis (1984) , or Verhelst and Veldhuijzen (1991). To fit the RM, we may choose Q = N r, which is a k x k - 1 matrix that we obtain by deleting the rth row of lk. Note that if Q = N, rl = (f3a - /3r , f3a-1 - /3r , • · · , /Jr-1 - /3r, /3r+i - /3r , ... , f3r+b - f3r), where 

{ 2 if r = l a = 1 otherwise (34) 
and b = k - r. That is, the CML estimates must be interpreted as distances relative to the rth item. To calculate the LM statistic for the (g, l) entry in the Q-matrix it is convenient to choose a normalization where a9 

= 0. The Jacobian matrix is then given by (35) 
where P(rll ) denotes a column vector with all elements equal to zero except the gth entry, which is equal to 'T/t • The notation Q(o-

91 ) indicates that Q is now a function of the parameter o-91. The score vector and the conditional information matrix are again given by (27) and (28) , respectively. 
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