
Report Nr 01 

Item selection using 
Multiobjective Programming 

A.J.R.M. Gademann 

Cito 





ITEM SELECTION USING MULTIOBJECTIVE PROGRAMMING 

by 

A.J.R.M. Gademann 

Report Nr 01 

Project 'Optimal Item Selection' 

CITO 

Arnhem, the Netherlands (1987) 

Cito lnstituut voor Toetwntwikkaling 

Bibliotheek 

I j .. l IIUl 11111 IIIU lttll lttll II Ill II Ill I lllf 

· 8501 017 2009 

1 1111 11111 f 111111111111111 DI llffl 111111111 





General Introduction 

The purpose of project 'Optimal Item Selection' is to solve a nwnber of 

issues in automated test design, making extensive use of optimization 

techniques. To this end, there has been close cooperation between the project 

and, among others, the department of Operations Research at Twente 

University. In each report, one or several theoretical issues are raised and 

an attempt is made to solve them. Furthermore, each report is accompanied by 

one or more computer programs, which are the implementations of the methods 

that have been investigated. The texts of these programs were included in the 

original thesis report, but will not be included in this version. In due 

time, requests for these programs can be sent to the program director. 

T.J.J.M. Theunissen 

project director 



Summary 

In this thesis two methods are described to solve the item selection 

problem when several criteria are involved. These criteria are 

represented by a composite objective function that has to be minimized 

or maximized over the feasible region. 

The first method can be applied if the composite objective function is 

linear. A tractable implementation of this method is presented as well 

as some simulation results. 

The second method can be applied if we are dealing with a quadratic 

composite objective function. A tractable implementation of this 

method is still in progress. Some simulation results for this method 

are presented. However, there are still some theoretical problems that 

have to be managed. 

Some advices for users of these methods as well as some 

recommendations for a supplementary study can be found in this thesis. 

2 



Preface 

In this report a study is made of methods to solve the item selection 

problem when several criteria are involved. 

This study is part of a research program for developing automized 

testing service systems, a cooperative project of several institutes 

among which the National Institute for Educational Measurement (CITO) 

and the University of Twente (UT). 

I 'd like to thank the CITO for giving me the opportunity to perform 

this study. Furthermore I' d like to thank everyone that supported me. 

Special thanks I' d like to give to my supervisors Phiel 

Theunissen (CITO) and Sjoerd Baas (UT) for their advices, the pleasant 

cooperation and the cups of coffee they offered me. 

Noud Gademann 

Faculty of Applied Mathematics 

University of Twente 

3 



Contents 

1 

2 

3 

Test design 

1. 0 Introduction 

1.1 Test theory 

Specification of the item selection problem 

2.0 Introduction 

2.1 The specification 

2. 2 Justification of the multiobjective approach 

Linear multiobjective programming 

3. 0 Introduction 

3. 1 The multiobjective programming approach to solve 

the item selection problem 

3.2 An interactive method to solve the CMOPP 

3.3 The computer program 

3. 4 Some simulation results 

3. 5 Conclusions 

6 

6 

10 

10 

11 

15 

15 

18 

22 

25 

32 

4 Multiobjective programming with quadratic 

objective functions 

5 

4.0 Introduction 34 

4. 1 The Kuhn-Tucker conditions to characterize an optimal 

solution of a quadratic programming problem 34 

4. 2 The algorithm of Wolfe to find a solution that 

satisfies the Kuhn-Tucker conditions 37 

4.3 Problems that might occur when Wolfe 's algorithm 

is applied 39 

4. 4 The computer program 42 

4. 5 Some simulation results 42 

4.6 Conclusions 46 

Review 49 

4 



References 

Appendix 

A Simulated item bank of chapter 3 

B Simulated item bank of chapter 4 

51 

52 

56 



1 Test design 

1.0 Introduction 

In today 's practice testing plays a very important role. Tests are 

used for example to identify a student 's ability on certain subjects, 

or as part of an application procedure, to learn about someone 's 

qualities. 

Test theory is the theory concerned with the problem of how to design 

a good test. One strai3htforward way to design a test is by choosing 

items until a specified number has been reached. Another method of 

test design consists of selecting a number of items that together 

satisfy certain specified conditions on the test to be designed. The 

items are selected from a bank filled up with a great number of items, 

a so-called item bank. This second method of test design is the 

subject of the study in this report. The process is called item 

selection. 

1.1 Test theory 

In this paragraph a brief introduction to test theory will be given. 

For more details, see for example [ l] and [ 7]. 

To design a test by item selection we need information about the items 

that are stored in the item bank. Since most tests are used to 

identify someone 's ability on a certain subject, we need a 

mathematical expression about the way a person 's answer to an item is 

related to his ability. For that purpose we introduce the item 

response function, which is a measure of the probability that a person 

with known ability answers correctly to a dichotomous item (an item 

that can be answered in only two distinct ways). Several item response 

functions are known in test theory. The one we will use in our study 

was introduced by Rasch. 

6 



Denoting by 8 the ability to be measured, the probability p of a 

correct answer to an item is in the Rasch-model given by: 

(1. 1) p p (8) = 1 

1 + e- (8-b) 

Commonly 8 has a value between -3 and +3. The greater 8, the higher 

the ability. The 'e' in (1. 1) is the mathematical constant 2. 71828, 
-1 that is ln (1). The parameter b is called the item difficulty. From 

(1. 1) we see that for very difficult items (b ➔ +<xi) p ➔ 0, and for 

very easy items (b ➔ -oo) p ➔ 1. 

The Rasch-model is a special case of the Birnbaum-model and is one of 

the simpler item response models. It ignores, in stead of many other 

response models, the influence on the probability p of guessing and 

the discriminating power of an item. But for a lot of purposes the 

Rasch-model is appropriate, and therefore, as well as for its 

simplicity, it is often used. 

As mentioned in the previous paragraph, the items that are selected 

from the item bank have to satisfy certain conditions. An important 

type of condition is deduced from the so-called information function. 

The term information function will now be elucidated in brief using an 

introductory book by Lord [ 5]. Only the interpretation, not the 

mathematical backgrounds, will be elucidated. 

Suppose we have a test consisting of n items, performed by a person 

with ability level 8. For every item we introduce a variable Xj. For a 

correct answer to item j we say that Xj - 1, otherwise Xj - 0. Now the 

total score x0 of a person for this test is given by: 

(1. 2) 

What we want to achieve is a proper decision on someone' s ability, 

based on his test score x0 . By using the item response function of all 

items in the test, it is possible to derive a 95 % confidence interval 

8 , 9] for the ability 8 of the tested person from his test score. 

7 



Now, by definition the information function I(8, x
0

) for any test score 

x
0 

is inversely proportional to the square of the length of the 

asymptotic confidence interval for estimating ability 8 from x
0

• (By 

asymptotic is meant, that the test contains a huge amount of items.) 

So, when the information function is relatively high at ability level 

8
0

, this means that at this level the estimation of a person 's 

ability, based on his test score, is relatively good. This is an 

important characteristic, on which some of the most relevant 

conditions concerning a test are based. 

When PJ � p
j
(S) is the item response function of item j, and y is the 

fractional score of correct answers, the information function is by 

definition: 

(1. 3) 1(8, y) 
< :a µy 1° >

2 

varyje 

When we substitute for y the score z = (test score x
0
)/n the 

information function becomes: 

(1.4) 

since 

Taking y 

(1.5) 

1(8, z) � 

I PJ* (l-p
j
) 

j=l 

and 

x
j 

we get the so-called item information function: 

Another important concept that requires further explanation is known 

as the test information function. When items in a test are independent 

- that means that an answer to an item is not influenced by another 

item in the test - the test information function is specified by: 

8 



(1. 6) r<e) - I r<e, x
j
) 

j=l 

The test information function forms an upperbound to the information 

that can be obtained from a test. An important observation is, that 

for independent items the information is additive. So when we have for 

example 5 items in a test, we can easily sum up the information at 

every point to get the 5-item test information function. 

Using the Rasch-model we can derive the following expression for the 

item information function: 

-(8-b
j
) 2 (e ) 

• 
The maximum item information is obtained for 8 = b

j
, that is where 

the ability level equals the item difficulty. It has a value of 

9 



2 Specification of the item selection problem 

2. 0 Introduction 

In this chapter we will formally specify the i tern selection problem 

that is the subject of our study. This problem may be regarded as an 

extension of the problem specified by Boomsma ([ 1)) . 

2.1 The specification 

Before we can specify the item selection problem we need to introduce 

the target information function. The target information function is a 

discrete function that specifies for a number of ability levels Si the 

amount of information a user wants to achieve in the test that is to 

be designed. In general the number of ability levels , that is values 

for 8, for which a 'target' is specified, is not greater than seven, 

and the ability levels are in the range [-3, +3] . 

The conditions that we specify are derived from the given target 

information function and from the test information function. We use 

the property of the latter that values at any point can be obtained by 

summing up the item information of all selected items, that is all 

items in the test. When a test designer uses the values of the target 

information function at m points on the 8-axis, say Si, i=l, . .  , m, this 

results in the following m conditions: 

(2.1) 
n 
I 1(81, j) * x

j 
:2:: T(81) 

j=l 

where: 

i=l, .. , m  
x

j
=O or 1, j=l, .. , n  

- n is the number of items in the item bank, 

- T(81) is the specified target information at ability level Si, 

- I(81, j) is the item information of item j at ability level Si, 

- x
j 

is the decision variable associated with item j, 

if item j is selected 

otherwise 

10 



We will regard the item selection problem as a deterministic problem, 

in spite of the stochastic nature of 1 (81, j) and 1 (8). 

Now we have characterized the main constraints, but the problem is not 

complete without the formulation of an objective. 

2.2  Justification of the multiobjective approach 

Boomsma ( [  l]) used only constraints (2.1) and his objective was to 

minimize the number of items selected while satisfying these 

constraints. He studied several solution methods for his version of 

the item selection problem and compared those methods on accuracy and 

computation time. Boomsma' s study can be continued in two ways: 

1) The problem specification is not changed, but more accurate and 

faster (eventually heuristic) methods to solve the item selection 

problem are designed. This was done by Razoux Schultz ( [  6]). He 

developed some very fast heuristics that produced about the same 

level of accuracy as Boomsma' s best methods. However, a 

disadvantage of these heuristics is, that they are very much 

depending on the structure of the problem. This means that when a 

slight change in the problem specification is made, often also 

the heuristic has to be adjusted. And although in theory this 

is not a very difficult task, one has to take into account that 

in practice a user is not always able to make an appropriate 

change in a heuristic, since he/she is not familiar with all the 

theoretical backgrounds. 

2) The problem is extended in the following sense: 

A user could have more wishes than just satisfying the 

target information function, and more or other objectives than 

just minimizing the number of items selected. In that case 

the item selection problem should be extended with one or more 

objective functions and/or some other kinds of conditions. 

In this report a study is made of methods to solve the item selection 

problem in the sense of point 2). We will elucidate why there is a 

need for such an extension of the problem specification. 

11 



When we examine some tests that result from using Boomsma 's methods to 

solve the item selection problem, we observe that the items are often 

selected in one or more groups with about the same item difficulty 

within each group. This results from specifying the minimization of 

the number of selected items as objective. Razoux Schultz showed this 

and he used this feature to construct his heuristics. However, 

sometimes a user does not want the items to be selected in groups. 

Furthermore a user often wants to construct several tests using the 

same item bank, the same conditions and the same solution method, but 

resulting in a different test (so-called parallel tests). When we 

apply one of Boomsma' s methods we are not able to construct 

parallel tests. 

such 

One of the extra wishes that a user often specifies is, that the 

selected items form a representative test for the subject the test is 

about. Suppose for example that a biology test is constructed and a 

user wishes that about 20 % of the selected items refers to the animal 

world, about 30 % refers to the vegetable kingdom and about 15 % 

refers to the human being. 

Also there can be a number of so-called cost factors we have to 

reckon with when we design a test, for example: the total amount of 

text of the selected items may not exceed 2 pages for layout reasons. 

From this we may conclude that the item selection problem as specified 

by Boomsma often needs to be extended to satisfy other conditions or 

to optimize other or more objectives. In this report so-called 

multiobjective programming methods are developed and/or examined. A 

multiobjective approach of the item selection problem is made for the 

following reasons: 

as mentioned above there is sometimes more than one objective 

involved when a test has to be designed; 

in general, there are two possibilities to translate a user's wishes 

into mathematical expressions. One way is to specify additional 

conditions that have to be satisfied, and thereby reduce, thus 

change, the feasible region. Another way is to leave the feasible 

region unchanged, but specify an objective function such that the 

user's wishes will be fulfilled as optimally as possible. 

12 



We should take into account that we are dealing with a problem of 

integer programming since the decision variables x
j
, j=l, .. , n, can 

only take the integer values O or 1 (see (2. 1)). In general it is very 

difficult to find exact solutions to integer programming problems. In 

this report quasi-exact methods will be studied. This will be done in 

the following manner. 

As in Boomsma ( [ 1]) we will derive our solution to the item 

selection problem by solving the continuous version of the problem 

exactly and then determine the integer solution by rounding off. This 

rounding off is done in such a way that non-integer values - that are 

values in the range <0, l> - are rounded up to one. The continuous 

version of the item selection problem differs only from the discrete 

version in the sense that we demand for the decision variables x
j
, 

that O�x
j
�l, j-1, .. , n, instead of demanding that x

j
=O or 1, j=l, . .  , n. 

It is easy to see that, in general, when we derive the integer 

solution to the item selection problem from the solution to the 

continuous problem by rounding up the non-integer values, the fewer 

the nwnber of variables that have non-integer values, the more exact 

the derived integer solution will be. Furthermore it is known that, 

when we are dealing with a problem that is specified by a linear 

objective function, linear functions that describe the feasible region 

and only integer-valued lower- and upperbounds to the decision 

variables, the nwnber of non-integer values in a solution to that 

problem is not greater than the number of conditions that have to be 

fulfilled (see [ 2] ). 

For this reason we decided to translate a user's wishes into linear 

objective functions, if possible. So in general our item selection 

problem is specified by a few (eight or less) linear conditions that 

have to be fulfilled and one or more linear objective functions that 

have to be optimized. Hence we are confronted with a linear 

multiobjective programming problem. 

In the next chapter we will describe a method to solve the item 

selection problem by this linear multiobjective approach. 

13 



However, it isn't always possible to translate a user's wishes into 

(a) linear objective function(s). In that case one can decide to 

formulate some additional linear conditions that have to be fulfilled, 

but there may also be rather tractable quadratic objective functions 

involved. Hence, in chapter 4 a general method to solve multiobjective 

programming problems with quadratic objective functions involved, will 

be described and examined for its usefulness to solve the item 

selection problem. 

14 



3 Linear multiobjective programming 

3.0 Introduction 

In this chapter we will describe a method to solve the item selection 

problem by a multiobjective approach when only linear objective 

functions are involved. 

In paragraph 1 the formal describtion of the multiobjective 

programming approach will be given, and some theory about how to solve 

the resulting multiobjective programming problem will be elucidated. 

In paragraph 2 an interactive method to find satisfactory solutions to 

the item selection problem by multiobjective programming will be 

given. In paragraph 3 an implementation of this method in the form of 

a computer program for IBM-compatible PC 's will be elucidated. In 

paragraph 4 some tests that resulted from applying this computer 

program, using several simulated item banks, will be examined. Finally 

in paragraph 5 some remarks about the discussed method and algorithm 

are made that could be of use for any user or for further 

investigations on this subject. 

3.1 The multiobjective programming approach to solve the 

item selection problem 

Suppose a user has l objectives (�1) which he wants to optimize, and 

these objectives can be translated into l linear objective functions 

f1, i=l, .. ,l , that have to be minimized. Besides m constraints, 

derived from the target information function, have to be fulfilled. 

Then our linear multiobjective programming problem is given by: 

(3.1) 

(3. 2. a) 

(3. 2.b) 

Min F (x) = { f1 (x), . .  , fl(x) 
n 
l I (81, j)*xj � T (81), 

j=l 

x
j 

= 0 or 1, 

where: 
n 

f1 (x) = l c�*x
j
, 

j�l 
X (x1, .. ,�), 

, such that 

i 1, .. ,m 

j 1, .. , n  , 

i 1, . .  ,l , 

n number of items in the item bank involved. 

15 



Thus (3.1) gives the l objective functions that have to be minimized, 

and (3. 2) specifies the feasible region. To get the continuous version 

of this problem we have to replace (3. 2. b) by: 

(3. 2.c) j=l, . .  , n. 

As mentioned in the previous chapter, we will derive our solution to 

the item selection problem from the solution to the continuous version 

of the multiobjective programming problem. Therefore we will describe 

a method to solve the problem given by (3. 1), (3. 2. a) and (3. 2. c), 

which we will refer to with the term CMOPP (Continuous MultiObjective 

Programming Problem) . We have to take into account that in general 

there is not a unique solution to the CMOPP, since more than one 

objective function is involved which in general can not be minimized 

all at the same time by one test. Therefore we will look for so-called 

nondominated solutions. 

(3. 3) 

(3.4) 

Definition: the feasible region of the CMOPP is given by: 

X � (x = (x1 , . .  ,�)Ix fulfils (3. 2. a) and 

(3. 2. c)). 

Definition: a point x EX is a nondominated solution of the 

CMOPP if there exists no x EX such that 

F (x) � F (x) and F (x) � F (x). 

(F (x) � F (y) means that f1 (x) � fi (y), i=l, . .  ,l) 

In practice this means that x EX is a nondominated solution if it is 

not possible to find an x EX that decreases the value of one of the 

objective functions without increasing the value of another function, 

compared with the objective function values f1 (x), i-1, . .  , n. 

(3.5) Definition: the set of nondominated solutions will be 

denoted by N, and the set of dominated solutions 

by D. Thus D is given by X - N. 

16 



From (3.4) it is seen that: x,x EN� ( F(x)5F(x) � F(x)-F(x) ). Now 

we have to give some definitions of tools that we use to identify 

nondominated solutions to the CMOPP. 

(3. 6) 

(3.7) 

(3.8) 

Definition: the parametric space A is given by: 
l 

A - <.�I>. E Rl, >..1�0. i-1, .. ,l, I >..1
=ll. 

i=l 

Definition: given). EA, let P(>..) denote the problem: 

min I >..1*f1(x) - min >..*F(x), 
xEX i=l xEX 

that is: find a point x EX such that 

>.*F(x) 5 >.*F(x), Vx EX. 

Definition: L ={xlx E X,x solves P(>..) for some >.. EA), 

(L)-{xlx E X,x solves P(>..) for some). E int(A)). 

It has been proved repeatedly that (L) � N � L (e.g. see Yu [ 9]) . 

This conclusion allows us to solve the CMOPP by means of P(>.). We must 

take into account that N may not be equal to L if there are 

alternative solutions to P(>..) for some). EA, but: 

(3. 9) Lemma: if for some). EA, x is the unique solution of P(>..), 

then x EN. 

Proof: suppose x E D. Then there exists x E X such that 

F(x) 5 F(x). Since >. � 0, >..*F(x) 5 .X*F(x). Thus x 

can not uniquely solve P (>.) , a contradiction. [=:J 

It has to be noted that this lemma is generally applicable since it 

does not explicitly require F(x) (thus f1(x) ... fl(x)) to be linear. 

Zeleny [10] gives a method to find a finite covering {A1, .. ,Ak) of the 

paramatric space A that has the following qualities: 

(3.10) 
k 
u Ai

= A, int(Ai) n int(A
j
) - 0 for i#j, 

i=l 

for i=l, .. ,k there exists a point xA. E N such that xA 1 i 
solves P(>.) for all). E Ai. 

17 



With the help of this method we could find the finite covering of A, 

and as a byproduct due to lemma (3. 9) all nondominated solutions to 

the CMOPP, since N � L. However, this can be a rather time-consuming 

problem, because the number of subsets that cover the parametric space 

A can turn out to be very large, although it remains finite. But we 

should take into account that in practice often just a small part of 

the parametric space is of interest to find a suitable nondominated 

solution to the CMOPP and that we are not interested in the other 

solutions. 

Suppose for example that a user wants to design a test and his 

obj�ctive is the following: the number of items that are selected to 

fulfil the target information has to be small but the test should not 

match recent tests to much. We suppose further that f 1 (x) expresses 

the objective of minimizing the number of items selected and f2 (x) 

expresses the objective of matching recent tests as little as 

possible. Then the parametric space is given by (3. 6) with l=2. It is 

clear that in general a user is not interested in the solution for 

which either A1 - 0 or Az - 0 since this solution would eliminate the 

interest of the corresponding objective function. So a satisfactory 

nondominated solution will probably be found in the range 0.3�A1�0. 7. 

The method that will be given in the next paragraph to solve the CMOPP 

is based on a part of the theory to produce a finite covering of the 

parametric space. For more details about this theory see [10] . 

3.2 An interactive method to solve the CMOPP 

Suppose we have l linear objective functions fi (x), i=l, .. , l. 

Furthermore we have a parametric space A, defined by (3.6) and a 

feasible region X defined by (3. 3). We now define the composite 

objective function AF as follows: 

(3.11) Definition: AF - A*F (x) I Ai*fi (x) for some A EA. 
i-1 

18 



Problem (3.7) now can be given by: 

(3.12) min >.F 
xEX 

To distinguish from the composite objective function >.F we will call 

the objective functions f1(x) from now on single objective functions. 

We can interprete the parameter >. as a vector of weights >.1 , where 

each >.1 is a measure of the importance to the user of the 

corresponding single objective function f1(x). The method that we will 

describe uses the simplex method to solve the linear programming 

problem (3.12). Some definitions will be given to make clear how this 

method works. For symbols that are used in the definitions and that 

are not explained we refer to the general simplex tableau given in 

figure (3.16). We assume that the reader is familiar with the simplex 

method (otherwise see [ 8]). 

When we denote the current basic solution as Xc (xB, xN), where XB is 

the m-vector of basic variables and xN is the (n-m)-vector of nonbasic 

variables, we can give the following definitions: 

(3.13) 

(3.14) 

(3. 15) 

Definition: J is the set of indices of the basic variables, 

and J of the nonbasic variables. 

Definition: the reduced costs of variable xJ associated with 

the single objective function f1(x) are given by: 

6
1 '° 1* 1 

• 1 i 1 l J - L er YrJ - CJ, J- , • • n, � , · ·, · 
reJ 

Definition: the reduced costs of variable x
j 

associated with 

the composite objective function >.F are given by: 
l 

zJ - L >-1*6�, j=l, .. ,n. 
i-1 

19 



(3.16) 

r 

1 

m 

Figure: a general simplex tableau. 

* * * 
cl Cm Cm+l 

* 
Basis C b o Xl . . . Xm Xm+l 

.. 0 Xl cl Y 1  1 

* 
xm c

m Ym 0 

Zo 0 

. .  

. . .  

. . . 

0 

1 

0 

Y 1m+l 

Ymm+l 

Zm+l 

. . . 

. . .  

. . .  

. . . 

* 
c

j 

x
j 

Y 1 j 

Ymj 

z
j 

. . .  

. . 

. . .  

. . .  

* 
en 

xn 

Yi n 

Ymn 

zn 

For simplicity reasons it is asswned that variables x1 to � are in 

the basis (thus form x B) and variables �1 to Xn are nonbasic 
* 1 l 

variables (thus form xN). c1 stands for the vector (c1, . .  , ci). 

From the theory of the simplex method we know that an optimal solution 
* * 

x to (3.12) has been found if x satisfies (3.17) : 

(3.17) z
j I A1*6� � 0, 

i=l 
j=l, . .  , n. 

Besides we know that z
j 

= 0 for all j E J. Now the following theorem 

characterizes the domain in the A-space associated with x :  

(3.18) 
* 

Theorem: Let A EA and let x solve (3.12) with reduced 

costs 6� associated with the single objective 

functions. 

Let A (x ") = { AIA E Rl ; 

.. .. 

l 
I Ai *6� � 0 for j E J} . 

i-1 

Then A E A (x ) and x solves (3 .12) for all 

A E A (x ) . 

The proof of this theorem is straightforward since the optimality 

conditions of the simplex method given by (3.17) reduce to z
j
�O,j E J, 

when we consider that z
j
=O for j E J, and because of the fact that the 

reduced costs S
j 

are independent of A according to definition (3.14) . 

So the following holds: 

20 



(3. 19 ) 
... 

Proof of (3.18): x solves (3.12)@ z
j 

� 0, j e J@ 

l .X1*6� � 0, j e J @ .x E A (x" ) 
i-1 

and for all .X E A (x" ) the same holds. CJ 

A(x ) is a member of the finite set (A1, .. , Ak} that covers A. A useful 

property of the sets A1, i=l, . .  , k  is that they are convex. 

Since the number n of decision variables x
j 

is in general quite large 

(an item bank contains usually at least 300 items) and the number of 

basic variables is in general small (usually not greater than 8), the 

number n-m of nonbas ic variables is also quite large. Therefore it 

still isn 't easy to characterize A (x )  exactly. 

But given a i EA it is very easy to check whether or not 

i e A (x" ). We can simply compute z
j 

from (3 . 15) using i, and if 

z
j
�0, j e J, then .X e A (x" ) because of theorem (3.18). In that case we 

don 't have to solve (3.12) for i to see whether we 'll find a better 

nondominated solution. 

Hence there is a method available by which it is quite easy to 

examine the feasible region X for suitable nondominated solutions. We 

can simply start with assigning weights to the single objective 

functions to compose .XF. Then we solve (3. 12) and from the continuous 

solution we derive an integer solution by rounding the non-integer 

values up to 1. This solution then represents a test that consists of 

selected items from the item bank involved, and that satisfies the 

conditions that were deduced frcm the target information function. If 

this test is not satisfactory, we vary the parameter .X and if the new 

.X is not a member of A (x ) - and therefore will not lead to the same 

solution - we solve (3. 12) again for this new .X. This procedure can be 

continued until a satisfactory test has been designed. 

To finish the theoretical part of this method some remarks about its 

usefulness must be made. An advantage of this method is that it 

prohibits a user from solving (3 . 12) for several assigned weights .X 

that will all lead to the same test. 

21 



Another advantage is, that the number of single objective functions 

that are involved in the item selection process hardly influences the 

computation time to solve the CMOPP. This is clear to see since the 

simplex method is applied to the composite objective function AF and 

deleting or adding single objective functions or varying the parameter 

A only changes the objective function coefficients of AF. However the 

computation time for the simplex method depends mainly on the number 

of variables n and on the number of constraints m. 

Although in this way a large number of objectives may be used, it must 

be taken into account that the larger the number of objective 

functions used, the harder it is for a user to keep insight in which 

part of the parametric space A is useful. 

This leads us to what one could see as a disadvantage of the method. 

Assigning useful weights to the single objective functions might cause 

problems for some users. Insight in the theoretical backgrounds as 

proposed in this report, as well as experience in applying this 

method, might make it more easy to assign useful weights. 

Some results from applying this method to solve the item selection 

problem will be given in paragraph 4, but before doing so an 

implementation will be described in the next paragraph. 

3.3 The computer program 

The purpose of this study was to develop a useful method by which 

various versions of the item selection problem can be solved in 

combination with a tractable implementation of this method. This 

resulted in a computer program that will be elucidated in this 

paragraph. 

The computer program is written in Turbo-Pascal and can be implemented 

on any IBM-compatible PC under MS-DOS. The program was developed on an 

Olivetti M24 PC. It makes no sense to compare the computation time of 

this program to solve the item selection problem with the computation 

times given in Boomsma [ 1), since Boomsma implemented his programs on 

a DEC 10 mainframe. 

22 



Besides we have to take into account that it was not the main purpose 

of this study to develop a very fast algorithm, as for instance Razoux 

Schultz [ 6] did, but an algorithm that could be applied to solve 

various versions of the item selection problem without changing the 

algorithm. 

The main part of the algorithm uses the revised simplex method. An 

extension has been made to construct the composite objective function 

AF out of several single objective functions by assigning weights Ai. 

The simplex method computes the reduced costs zJ associated with the 

composite objective function AF but an extension has been made to 

compute the reduced costs 6� associated with the single objective 

functions fi(x) also. Some other extensions have been made that are of 

special use for solving the item selection problem. That way we've got 

an algorithm that works as follows: 

STEP 1 

STEP 2 

STEP 3 

STEP 4 

STEP 5 

STEP 6: 

start: assign weights to the single objective functions. 

solve the continuous version of the item selection problem. 

derive an integer-solution to the item selection problem. 

perform a backtrackstep on the integer-solution. 

if a satisfactory test has been designed: save it and go to 

step 6, else change the parameter A so that not the same 

solution will be found and return to step 2. 

stop. 

A block scheme of the algorithm is given in figure (3. 20) 

(3. 20) Figure: block scheme of the al6orithm. 

START CONTINUOUS SOLUTION !==4==!1TNTEGER SOLUTION 

.!lQ 

STOP SATISFIED? BACKTRACKS TEP 

23 



Ad 1) Before the problem can be solved the composite objective 

function AF has to be determined. This is done by assigning 

weights to the single objective functions f1 (x). 

Ad 2) The revised simplex method is applied to the continuous version 

of the item selection problems (the CMOPP) and the reduced costs 

associated with the single objective functions are computed. 

Ad 3) An integer-solution to the item selection problem is derived by 

rounding off the solution of 2) as follows: variables that have 

already an integer value (0 or 1) remain unchanged, the other 

values are rounded up to one. This means in practice that those 

items which associated variables had non-zero values in the 

solution of 2) are selected. This way it is guaranteed that the 

conditions associated with the target information function are 

fulfilled. 

Ad 4) Performing a backtrackstep means, that it is checked whether or 

not it is possible to eliminate one of the selected items 

without violating any of the constraints. The items are checked 

in order of ascending item number and the first item that suits 

is eliminated. 

Ad 5) The test that resulted from step 4) is examined by the user. If 

he/she is satisfied the test can be saved. Else a user can 

assign new weights to the single objective functions and if 

these weights will not lead to the same solution the algorithm 

returns to step 2) to produce a new test. 

Ad 6) Steps 2) until 5) can be continued until the user has designed 

(a) satisfactory test (s). Then the algorithm stops. 

A listing of the procedures of the computer program that represent the 

extensions to the revised simplex method that have been made, is 

presented in appendix B. 

24 



One of the options of the main menu of the algorithm is to build up a 

single objective function with penalty coefficients for matching tests 

that have already been designed once. Among others this option will be 

elucidated in the next paragraph, where some of the test results from 

applying the described algorithm are discussed. 

3.4  Some test results. 

In this paragraph we will generate several tests using the algorithm 

of figure (3. 20) to illustrate some of its possibilities. The items 

will be selected from a simulated item bank containing 200 items with 

difficulty parameters in the range [-3,+3]. The items in the bank are 

sorted in order of increasing item difficulty, thus: i>j � bi�b
j
. In 

our test problem we specify 3 target information points. The discrete 

target information function is given by: 

(3. 21) T(-1) 

T (O) 

T (+l) 

3. 50 

4. 00 

3.50 

The specification of these target information points leads to 3 

constraints that have to be fulfilled by selecting the items from the 

item bank. As we know from chapter 1, to solve the item selection 

problem we have to know the item information of the items in the bank 

for the ability levels that targets are specified for. These item 

information values are stored in the item bank. Figure (3.22) shows a 

part of the simulated item bank that we use in this test example. The 

entire bank is presented in appendix A. 

25 



(3.22) 

Number 
Number 

Item-
number 

1 
2 
3 

43 
44 

95 
96 

151 
152 

198 
199 
200 

of 
of 

Figure: a simulated item bank. 

items in the bank: 200 
target information points: 3 

Item information for 

-1. 000 

0 .130784 
0.143329 
0.159519 

0.249867 
0.249969 

0.201239 
0.193828 

0. 106442 
0.097793 

0.016850 
0.015603 
0. 005954 

Target 

3.500 

0.000 

0.059110 
0.066508 
0.076809 

0.192382 
0.198629 

0.249834 
0.249942 

0.198245 
0.188106 

0.043219 
0.040194 
0. 015856 

information: 

4.000 

8 -

1.000 

0.023589 
0.026843 
0.031508 

0. 101344 
0.106786 

0.191891 
0.199363 

0.249980 
0.249470 

0.101136 
0.095059 
0.040810 

3.500 

Item difficulty 

-2.698028 
-2.561758 
-2.391304 

-1.046163 
-0.977706 

-0. 051473 
0.030465 

0.981961 
1.092139 

3.048831 
3.128319 
4.111701 

The first objective that we specify is to minimize the number of 

items: 

(3.23) 
200 

min f1 (x) = min I x
j 

j-1 

Our first item selection problem now consists of optimizing (3. 23) 

while satisfying the conditions associated with the target information 

function. This results in the following test: 

26 



(3 . 24) Test 1 

Number of items in the test: 18 

The following items are selected: 

89 90 91 92 93 86 

96 

87 

97 

88 

98 99 100 101 102 103 

94 95 

The test information that is obtained by this test is given by: 

(3. 25) I (-1) - 3 . 54880 

I (O) 4. 48141 

I (+l) - 3. 51864 

So from (3. 21) and (3 . 25) we see that the target information 

conditions are fulfilled. To find this solution the algorithm required 

18 iterations. One item was eliminated in the backtrackstep. It has to 

be noted that the optimal objective function value of the CMOPP was 

about 17 . 7  so we can be sure that we do definitely need at least 18 

items to fulfil the constraints. 

When we examine test 1 we notice that only items are selected with 

difficulty parameters close to 0 .  This is a consequence of the problem 

specification (see [ 6]). A user might not be satisfied by this test 

since he wishes for example that items of various levels of difficulty 

are selected . This aim can be translated into the objective that also 

items have to be selected with difficulty parameters that differ 

considerably from O. Therefore we can for instance formulate the 

following objective function: 

(3. 26) 
200 

min I ( j b
j

l - 2. 5)2 * x
j 

j-1 

Optimizing this objective function would lead to selecting items with 

difficulty levels close to -2. 5 or close to +2.5. So one could expect 

that when we combine (3. 23) and (3. 26) a more satisfactory test would 

result . We can use the information we obtained from test 1 to adjust 

our problem specification for further investigations. 

27 



Since we know that it is possible to fulfil the target information 

constraints by selecting 18 items, we can investigate what we can 

obtain when we optimize (3.26) but don 't want to select significantly 

more than 18 items. Therefore we add the following constraint to our 

problem specification: 

(3. 27) 
200 
l x

j 
:S M 

j-1 

The M in (3. 27) stands for the maximum number of items we want to be 

selected in the test. We have to consider that if we solve the CMOPP 

while fulfilling (3. 27) it is very well possible that the resulting 

test contains more than M items since non-integer values of the 

solution of the CMOPP are rounded up to one. So if we allow for 

instance no more than 25 items in our test we should give M a  value 

about 24 or 23, depending on the number of constraints in the problem 

specification. If we solve our item selection problem for M = 18. 5, 

A1 = 0 and Az = 1 - so only objective (3. 27) is involved this 

results in the following test: 

(3. 28) Test 2 

Number of items: 19 

The following items are selected: 

57 58 59 60 61 62 63 64 65 126 

127 128 129 130 131 132 133 134 135 

I(-1) - 3. 55456, I(O) - 4. 30199, I(+l) 3 . 63416 . 

We see that 19 items are selected and the items are selected in two 

groups with difficulty parameters close to -0. 60 or +O. 60. Thus the 

variation in the item difficulty parameters has indeed increased and 

therefore a user might prefer test 2 although it contains one extra 

item in comparison with test 1. 

So when we are looking for a test that satisfies several wishes, we 

will often not select a minimum number of items . This is an important 

observation which we will use in our further investigations. From now 

on we will use a value of 20 for M, which means in practice that we 

allow at the most 21 items to be selected. 

28 



In the next step in our investigation of the item selection problem we 

combine (3. 23) and (3 . 26) to a composite objective function. We solve 

the item selection problem for A1 - A2 - 0. 5 (with M = 20 ! ) . This 

results in the following test : 

(3.29) Test 3 

Number of items: 20 

The following items are selected : 

42 43 44 45 46 47 48 49 50  51 

144 145 146 147 148 149 150 151 152 153 

1 (-1) 3. 57420, 1 (0) - 4.00267 , l(+l) = 3. 58378 . 

We see that test 3 also consists of two eroups of items with 

difficulty parameters near -1 and near +1. Furthermore we notice that 

in this case the influence of (3.23) is in fact nil since both 

objective functions have the same weight 0.5 but the objective 

function coefficients in (3. 26) are only less than 1 - thus less 

relevant than the coefficients of (3. 23) - for items with difficulty 

parameter greater than 1. 5 or less than -1. 5. Thus as long as such 

items are not selected the solution is not influenced by (3. 23). 

An observation we can make when we examine the three tests designed so 

far is, that no items are selected twice. This is a coincidence since 

we did not specify an objective function that would minimize the 

number of matching items between consecutive tests. If we had 

increased M for example to 18.8 instead of 20 , test 3 would probably 

contain several items that are also selected in test 2. However, for 

practical purposes it is interesting to design a test that matches 

previous tests as little as possible. Therefore we specify the 

following objective 

(3. 30) 
200 

min l c� * x
j 

j=-1 

29 



3 The objective function coefficient c
j 

is a penalty that can be put to 

a positive value if item j has been selected in a previous test. A 

user can select these coefficients by assigning penalty values to 

tests he/she does not want to match too much. Then c� is the sum of 

these penalty values of the tests that contain item j. The following 

test is a result of assigning a penalty value of 2 to tests 2 and 3. 

So c� = 2 for the items selected in test 2 or test 3 since they are 

all selected once, and c� = 0 for the other items. We choose Ai =0, 

A2 � A3 = 0. 5. 

(3. 31) Test 4 

Number of items: 21 

The following items are selected: 

38 39 40 41 52 53 54 55  56 136 

137 138 139 140 141 142 143 154 155 156 

157 

I (-1) 3. 55358, I (0) 4 . 209 73, I (+l) 3.9 5047 . 

We observe that again one extra item is selected. However, if we look 

at the spread of the selected items over the item bank, this is the 

best result obtained so far. We will derive one more test involving 

f2(x) and f3(x) . We choose the same A's and we assign penalty 

coefficients of value 2 to tests 2, 3 and 4. This results in the 

following test: 

(3. 32) Test 5 

Number of items: 20 

The following items are selected: 

33 34 35 36 37 66 67  68 69 70 

122 123 124 12 5 158 159 161 162 163 164 

I (-1) 3. 51886, I (0) 4.00011 , I (+l) 3.57333. 

30 



In table (3 . 33) all results are presented. Tests 6 ,  7 ,  8 and 9 were 

derived by ass igning penalty values 1 to all previous tests . Test 10 

was derived by assigning penalty values of respectively 

8 , 6 , 2 , 7 , 1 , 4 , 3 , 5  to tests 1 . .  8 ,  and test 11 was derived by ass igning 

penalty values of respectively 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8  to tests 1 .  . 8. The 

weights for the s ingle obj ective functions that were used for tests 

6 .. 11 are : >.
1 

= >.2 -0 and >.
3 

- 1. 

(3 . 33) 

Test 
number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Table : some resulting tests . 

Number Selected items 
of items 

18 86 .. 103 

19 57 . .  65 126 .. 135 

20 42 . .  51 144 . .  153 

21 38 . .  41 52 . .  56 
136 .. 143 154 .. 157 

20 33 .. 37 66  . .  70  
122 . .  125 158 159 
161 . .  164 

21 27 . .  32 82 . .  85  
104 . .  108 160 165 . .  169 

21 21  . .  26 80 81 
109 . .  116 170 . .  174 

21  17  . .  20  71  72  7 5  . .  79  
117 . .  121 175 . .  179 

2 1  14 . .  16 7 2  .. 7 9  
117 . .  121 180 . .  184 

20 14 . .  16 66 . .  70  73 74 
109 110 122 . .  125 
159 180 . .  182 

21 13 . .  16 73 74 
93 . .  103 180 . .  183 

31 

1 (-1) 1 (0) 

□ 
3 . 55 4.48 3 . 51 

3.55 4 . 30 3 . 63 

3 . 57 4 . 00 3 . 58 

3 . 55 4 . 21 3 . 95 

3 . 52 4.00 3.57 

3.67 4 . 18 3 .  71 

3 . 61 4 . 16 3 . 73 

3.65 4.20 3 . 70 

3.57 4 . 16 3 . 69 

3 . 53 4.07 3 . 53 

3 . 68 4.27 3 . 67 



The mean computation time to solve these problems was about 90 

seconds. We recognize that test 9 is the first test that contains 

items that were also selected in previous tests . It contains 9 items 

of test 8 and none of the other lower numbered tests. If tests 1 . .  8 

were used in practice in order of ascending test number , this would 

mean that test 9 matches only the most recent test , which is not very 

preferable . 

So when items have to be selected that were also selected in previous 

tests , a user might prefer items from certain tests to be selected 

twice if necessary. Test 10 was derived by assigning various penalty 

values to tests 1 . .  8 which are a measure of the importance to a user 

of disjunct tests. Test 11 is a special case of this strategy : the 

penalty values are assigned in such a way that matching a previous 

test is less relevant if that test is less recent. 

As mentioned before , test 9 is the first test that contains items that 

were selected once before. This is a very nice and perhaps surprising 

result that is especially interesting for a user who wants to generate 

parallel tests. For it appeared to be possible in this case to design 

8 strictly distinct tests that used 161 of the available 200 items in 

the simulated item bank . And also the number of items selected does 

not vary too much. 

In the next paragraph some overall conclusions about the solution 

method presented in this chapter , will be given. 

( 3 . 5 ) Conclusions 

In this chapter a method is described to solve the item selection 

problem by a linear multiobjective approach. This resulted in a 

tractable computer implementation. The results , presented in paragraph 

4 ,  show that it is quite easy to examine the feasible region for 

satisfactory tests . The upperbound on the number of items that are 

allowed to be selected , as well as the penalty function f3 (x) turned 

out to be very helpful tools to solve the item selection problem. 

32  



The results are of special importance to users that want to design 

parallel tests. But also tests consisting of items that were nicely 

distributed over the simulated item bank were designed (f .e. tests 5, 

6, 8 and 10). 

The overall conclusion can be that a useful method has been developed 

to design tests that fulfil more objectives than just selecting a 

small number of items. The interactive working of the algorithm is of 

great importance to find convenient results. Designed tests have to be 

examined repeatedly and based on that, other objectives have to be 

included or other weights or penalty values have to be assigned. From 

real-life applications it should become clear whether a user is able 

to make proper decisions that actually lead to satisfactory results . 

Further investigations 

have to be performed 

to develop other useful objective functions 

and other examples using various target 

information functions have to be examined for possible problems. 

33 



4 Multiobjective programming with quadratic objective functions 

4 . 0  Introduction 

In this chapter we will elucidate a general method to solve a 

multiobjective programming problem with linear constraints and a 

quadratic composite objective function. This means that the single 

objective functions can be either linear or quadratic, and it is 

supposed that at least one objective function is quadratic. 

In paragraph 1 necessary and sufficient conditions for a solution 

to be optimal are presented. In paragraph 2 a method to find a 

solution that satisfies these conditions will be elucidated. In 

paragraph 3 a discussion about problems that might occur when this 

method is applied, will be presented. In paragraph 4 some test results 

will be presented and discussed and finally in paragraph 5 some 

conclusions and recommendations will be presented. 

4 . 1 The Kuhn-Tucker conditions to characterize an optimal 

solution of a quadratic programming problem 

Consider the following multiobjective programming problem : 

(4 . 1) 

(4 .2. a) 

(4 .2. b) 

l I (8i , j  )*xj - �+1 T (Bi), 
j=l 

where: 

i=l, . .  m, 

j=l, . .  , n, 

fi (x) is a linear or quadratic objective function for 

i-1, . .  ,l and at least one fi(x) is quadratic, 

- x = (x1, . . ,�) , the vector of decision variables 

associated with the n items in the item bank. 

- �+i is a slack variable for condition i, i=l, .. , m, 

where condition i is associated with target T (Bi). 

34 



Thus in fact (4.2) specifies the same feasible region as (3. 2. a) and 

(3. 2. c).  The only difference in the specification is the introduction 

of the slack variables Xn+i. So the problem specified by (4 . 1) and 

(4. 2) differs only from the CMOPP in chapter 3 because quadratic 

single objective functions are involved. We will refer to the problem 

specified by (4.1) and (4. 2) with the term QMOPP (Quadratic 

MultiObjective Programming Problem). As in chapter 3 we will define a 

composite objective function as follows: 

(4. 3) Definition: given parametric space A defined by (3. 6) and 

some A EA, the composite objective function AF 

is given by : 

AF = A*F (x) I Ai*f1 (x), with F (x) as in (4 . 1) .  
i=l 

The feasible region X of the QMOPP is given by (4 . 2). For A EA we can 

formulate - as in chapter 3 - the following subproblem of the QMOPP : 

(4. 4) min AF. ( X as in (4. 2) 
xEX 

As we know from chapter 3, a unique solution of (4. 4) is a 

nondominated solution of the QMOPP, and since we are looking for 

nondominated solutions we can solve the QMOPP by means of (4.4). 

Wolfe developed a general method to solve problems with a quadratic 

objective function and linear constraints, such as (4.4) using the 

Kuhn-Tucker necessary conditions for constrained non-linear 

programming. The search for such a solution is performed in the 

following manner. Given problem (4. 4) we first introduce the 

associated Lagrangian function L that is given by: 

(4 . 5 ) L = L (x, ,c, µ, v) 

n n+rn 
+ I (x

j
-l)*µ

j 
- I x

j
*v

j 
j=l j=l 

where the ,c i , i-1, . .  , m, µ
j 
, j=l, .. n, and v

j 
, j=l, .. , n+m are the 

so-called Lagrange multipliers. 

35 



Now the Kuhn-Tucker necessary and sufficient conditions for a vector 

x E Rn+m to be an optimal solution of (4. 4) in case F(x) is convex and 

the feasible region X is non-empty and closed in Rn are: 

(4. 6) Theorem: a vector x E Rn+m is an optimal solution of (4. 4) 

if and only if there exist vectors � E Rm , µ E Rn 

and v E Rn+m, �, µ, v�0, such that the following 

conditions are satisfied: 

1) 

2) 

3) 

4) 

5) 

6) 

6L 

6xJ 
6 L  

s� 1 
6 L  :S 
6µ

j 

6L :S 
6v

j 

*6L µ
j oµj 

v .*o L 

J 6vJ 

0, j=l, . .  , n+m, 

0, i=l, . .  , m, 

0, j=l, . .  , n, 

0, j=l, . .  , n+m, 

0 ,  j=l, .. , n, 

= 0, j=l, .. , n+m. 

For the proof of this theorem we refer to { 3 ) .  Conditions 2), 3) and 

4) guarantee that the solution x is an element of the feasible region 

X. Conditions 5) and 6) express that a dual variable can only be 

non-zero if the associated constraint is active . Finally condition 1) 

expresses that a solution x must not only be feasible but also optimal 

for L(x, �, µ, v), that is besides satisfying 2) to 6) also all partial 

derivatives of L with respect to x1, . .  Xn-tm must be 0. 

Since problem (4. 4) has linear constraints and a quadratic objective 

function, the associated Kuhn-Tucker conditions form a system of 

linear equations and inequalities, apart from the so-called 

complementarity conditions 5) and 6). So when we apply the Kuhn-Tucker 

conditions, finding a solution to (4. 4) is translated into finding a 

solution to an almost linear system. This suggests the use of some 

adapted LP method (e. g. simplex). In the next paragraph such a method 

will be presented. 

36 



4.2 The algorithm of Wolfe to find a solution that satisfies the 

Kuhn-Tucker conditions 

Wolfe [ 3] has introduced a method to find a solution x that satisfies 

the Kuhn-Tucker conditions as presented in theorem ( 4. 6 ) . Before we 

will describe this method we will give a somewhat different 

representation of the Kuhn-Tucker conditions. This is done by making 

the partial derivatives of the Lagrangian function L as they occur in 

(4. 6 )  explicit. The system specified by the Kuhn-Tucker conditions for 

problem (4 . 4) then becomes: 

(4.7.1) 

(4. 7. 2 )  

(4 . 7.3)  

(4.7 . 4) 

(4. 7. 5 )  

(4 . 7. 6 )  

L l (91, j ) 'kx
j 

- �+i = T (91 ),  
J -1 

x
j 

:S 1, 

x
j 

2: 0 ,  

µ
j
* (l-x

j
) - 0 � µ

j
-o or 

II j*X
j 

= 0 � ll
j
-Q or 

x
j 
- 1, 

X
j
=O, 

i=l, . .  , m, 

i=l, . .  , m, 

j-1, .. , n, 

J -1, . .  , n+m, 

J -1, . .  , n, 

j-1, . .  , n+m. 

When we combine (4 . 7.1 ) and (4. 7. 6 )  for J -n+l, . .  , n+m we can 

delete (4 . 7.1) for j-n+l, . .  , n+m and replace (4 . 7 . 6 )  by : 

11 
j
=O or x

J
-0 , 

"1-0 or �+i-o ' 

J -1, . .  , n, 

i-1, . .  , m .  

From (4. 7 )  we see that the Lagrange multipliers 11n+i • i=l, .. , m  are 

redundant and therefore they are eliminated. Wolfe suggested a method 

to find a solution that satisfies (4.7 ) by using simplex. This method 

is now presented in the form of an algorithm . 

(4.8 ) Wolfe 's  algorithm to find a solution to system (4.7 ) 

" 

STEP 1 Apply phase 1 of the simplex method to find a point x 
" 

in the feasible region X of (4.4),  that is find an x EX 

that satisfies conditions (4. 7.2 ) ,  (4. 7. 3)  and (4. 7. 4) . 

37 



STEP 2 

STEP 3 

STEP 4 

Add n non-negative artificial variables uj 
to the conditions 

(4. 7.1) , such that we get the following conditions: 

{ 

+1 

-1 

Assign values to the artificial variables and the Lagrange 

multipliers in the following manner: 

. _ I o (AF) " I > . _ u
j 

. �(x) _o , J 1, .. , n, 
J 

/\ 

� : =0, µ: =0, v : �o .  

Then the vector (x, �, µ, v, u) satisfies (4. 7. 1*) and 

(4 . 7.2) , . .  , (4 . 7. 6) .  

Apply phase 2 of the simplex method to the following problem : 

(*) • '\' >O · -1 m1n L.. u
j
, u

j
_ , J - , . .  , n, 

j-1 
such that (4.7.1*) and (4 . 7.2) , . .  , (4.7. 6) are satified . 

Start with the feasible vector (x, �, µ, v, u) of step 2. 

A slight modification of the simplex method has to be made to apply it 

in step 4, since complementarity conditions (4.7.5) and (4 . 7. 6) are 

involved. This variation on the standard simplex method means that it 

is not allowed to introduce a variable into the basis if that causes a 

violation of conditions (4.7. 5) or (4. 7.6) . 

It is clear to see that, if the minimum derived in step 4 of the 

algorithm is equal to zero, a feasible solution to system (4. 7) has 

been found, since in that case all artificial variables uj are equal 

to zero and therefore (4. 7 . 1  ) reduces to (4. 7 . 1). And because of 

theorem (4. 6) we know that this feasible solution contains also a 

vector x that solves problem (4.4), if a solution exists. 

38 



From this we might conclude that Wolfe 's algorithm is a convenient 

tool to find nondominated solutions to the QMOPP and therefore to find 

solutions to the item selection problem, since they can be deduced 

from the continuous solutions by rounding off (c. f. chapter 3.). But 

there are still some theoretical and practical problems that might 

occur when we apply Wolfe's algorithm to (4.4). These problems will be 

discussed in the next paragraph. 

4.3 Problems that might occur when Wolfe ' s  algorithm is applied 

In the previous paragraph we described Wolfe ' s  algorithm as a tool to 

solve (4. 4) . But will the algorithm always end with a solution for 

which all artificial variables are equal to zero, and if not, are 

there certain conditions that have to be satisfied to guarantee such a 

solution in step 4 of the algorithm? This is of course an important 

question since the solution derived by the algorithm is optimal only 

if it satisfies the Kuhn-Tucker conditions (4. 7), thus if all 

artificial variables are equal to zero. The objective function >.F 

plays an important role in whether or not Wolfe 's algorithm will be 

successful in deriving a solution to (4.4). Since >.F is a quadratic 

function it can be given in the following general form: 

(4 . 9 ) >.F(x) - ex + x'Dx, 

that is as the sum of a linear and a quadratic function. It is known 

that >.F is convex if and only if x'Dx is a positive definite or 

positive semidefinite form, that is if D is a positive definite or 

positive semidefinite matrix. If D ls positive definite >.F is strictly 

convex. In that case there exists a unique solution to (4. 4). 

It has also been proved ( [  3])that, if >.F is strictly convex, Wolfe 's 

algorithm always terminates with a solution for which all artificial 

variables are equal to zero, provided that the feasible region X is 

non-empty and continuous, which is certainly the case for the problems 

considered here. So there are no problems if >.F is strictly convex. 

39 



There might occur some problems if D is not a positive definite matrix 

since in that case we can 't be sure that there exists a unique 

optimum. If AF is not convex , local optima might cause problems, since 

in that case it depends on the start vector whether or not Wolfe 's 

algorithm will identify a global optimum if one exists. If AF is not 

strictly convex there might exist alternative solutions or even an 

unbounded solution to (4.4), especially if the feasible region is 

unbounded. But if a user is familiar with the item selection problem 

he will not specify conditions that represent an unbounded feasible 

region. There might be some alternative solutions but this does not 

cause a serious problem since Wolfe' s algorithm will identify one of 

these alternatives when local optima do not interfere. Another point 

that is beneficial for the algorithm to identify the global optimum, 

is that in general the feasible region of (4.4) is convex and 

continuous, so that if a bounded optimum exists, it will not be 

isolated (that is, it can be reached by the algorithm since the 

feasible region is continuous). 

So we don 't expect many problems in practice when Wolfe 's algorithm is 

applied, in the sense that in general a solution to (4.4) will be 

found. It has to be noted that usually it is very difficult to 

establish whether or not D is positive definite or positive 

semidefinite since D is a (n x n)-matrix and n can be very large (300 

or more). 

Another aspect that we have to discuss is the problem size. Wolfe 's 

algorithm might in theory be a nice tool to solve (4. 4) since from the 

above it leads to a solution in most cases. But we have to take into 

account that in step 4 of the algorithm the simplex method has to be 

applied to problem (*) with (4*n + 2*m) variables and (n + m) 

constraints, where n is the number of items in the item bank involved 

(that is the number of decision variables in (4. 4)) and m is the 

number of constraints in (4 . 4). This means that , compared with the 

linear problem (3. 12) where n variables and m constraints where 

involved, the computation time will be huge. 

40 



Another problem is that the size of arrays in an implementation of the 

algorithm for most computers is limited. So for large problems we have 

to find an alternative way to store the coefficient-matrix of (*) . 

However , all the problems mentioned so far can be managed. 

An aspect that might cause a problem that is most difficult to solve , 

is: is the solution of (4.4) that we will find , suitable to derive a 

solution to our item selection problem by rounding off? In the linear 

case we knew that the solution to the CMOPP contains at most m 

non-integer values for the decision variables and therefore is suited 

to derive an integer solution by rounding off. But when a quadratic 

objective function is to be optimized it is very well possible that in 

the optimal solution a great number of decision variables have 

non-integer values. This depends very much on the problem 

specification. We can illustrate this by the following example. Look 

at the 2 simple quadratic programming problems below . 

(4.10) 

(4 . 11) 

n 
max l x

j
*(l-x

j
) 

j=l 

n 
min l x

j
*(l-x

j
) 

j=l 

Suppose the feasible region for both problems is given by : 

(4.12) x
j 

= 0 or 1 ,  j=l , .. , n .  

It is clear to see that the optimum for both problems is equal to zero 

(and is independent of the values of the x
j

, provided that they 

fulfil (4.12)). But now suppose that the feasible region is given by: 

0 :5 x
j 

:5 1 ,  j=l , . .  , n .  

The optimum of (4.11) is again zero and all decision variables have 

integer values (either O or 1) . But (4.10) reaches its maximum of 

n*O. 25 for x
j
=O. 5 ,  j=l , . .  n ,  so all variables have non-integer values 

in the optimum. 

41 



This simple example illustrates that the problem specification is of 

great influence whether or not the continuous solution of a problem 

differs considerably from the integer solution and therefore is less 

or better suited to derive a satisfactory solution to the item 

selection problem. In paragraph 5 some examples are presented and 

discussed to show the possibilities and problems when Wolfe' s 

algorithm is applied to solve the item selection problem. 

4. 4 The computer program 

The algorithm, described in the previous paragraph, has not yet been 

implemented in a tractable computer program like the program in 

chapter 3. However, all the essential parts to construct such a 

program have already been developed. There are seperate programs 

available that solve the steps 1 and 4 of Wolfe' s algorithm. The 

program that solves step 1 is just phase one of the revised simplex 

method . The program that solves step 4 is a somewhat changed version 

of the revised simplex method to provide that conditions 4. 7. 5 and 

4. 7. 6 .  will be satisfied. Some essential procedures of the latter 

program are presented in appendix D. The development of a tractable 

program is still in progress. 

Hence we are already able to derive simulation results. Some results 

will be presented in the next paragraph. 

4.5 Some simulation results 

Due to a lack of time the algorithm of paragraph 4. 3 has not yet been 

applied extensively to simulated item selection problems. However, 

some theoretical ideas have been developed and some results are 

available. 

Applying the algorithm only makes sense if any quadratic function 

exists that represents a user 's wish concerning a test that has to be 

designed. We will pay attention in this paragraph to the wish of a 

user to build up a representative test in the sense that the selected 

items have to represent certain subjects (remember the example of a 

biology test in chapter 2) . 

42 



Suppose there are s subjects involved (like human being, vegetable 

kingdom etc.) and that a user has specified for some of these subjects 

a desirable fraction of the total number of items in the test. We 

define : 

(4 . 13) DF1 = desired fraction of the selected items that refers to 

subject i, 0 S DF1 s 1 ,  i E (l , . .  , s } .  

S1 set of items in the itembank that refer to subject i, 

i - 1, . .  , s. 

If for some subject i no desired fraction has been specified, then the 

user has no special wishes concerning that subject. Of course the sum 

of the specified desired fractions has to be less than or equal to 1. 

Now the objective of the designer to build up a representative test 

can be given by : 

(4 . 14) min I (DF1*1 xJ - I xJ)
2, 

i j jeS1 

where the sum has to be taken over those subjects i for 

which a fraction DF1 has been specified. 

In (4 . 14) DF1*1 xJ refers to 
j 

the desired fraction of selected items 

that refers to subject i and I x
j 

refers to the selected number of 
jES1 

items that refer to subject i. The minimum has to be derived of course 

over the feasible region. We see that the theoretical minimum 0 of 

g1 (x) is obtained if all desirable fractions are exactly met by the 

test. Minimizing g1(x) over the feasible region thus means fulfilling 

the user 's wish as good as possible. 

43 



The matrix of partial derivatives of g1 (x) is given by: 

(4 . 15) D -

- l  otherwise 

and s
j 

is the subject that item j refers to. 

It is clear to see that the rows of matrix D are identical for all j 

that belong to the same set S1 . We can solve this by adding a matrix 

e*In (e times the n-identity matrix) to D .  Then the rank of D is n .  

If we minimize g1(x) subject to conditions (2. 1) and (3.27) our 

problem specification is complete. Some simulation results will be 

presented now , using the (not sorted) item bank of appendix C. 

Our simulation problem is specified as follows: 

Two objectives are involved. The first one is to minimize the number 

of items in the test (c.f. (3. 23)) and the second objective is to 

build up a representative test (c.f. (4. 14)). The item bank contains 

50 items. There are three subjects for which a desirable fraction is 

specfied. The associated sets of items are given by: S1 - ( 1, . .  , 15 } ,  

S2 - ( 21, .. , 30}  and S3 - ( 36 ,  .. , 45 } . For several desired fractions 

DF1 , i=l .. 3, and assigned weigths Ak, k-1,2 results are presented in 

table (4. 16). 

44 



(4. 16 ) Table: some simulation results 

Test 1 

� 

4 number 

DF 1 0. 30 0. 30 0. 40 
DF2 0. 25 0. 25 0. 30 
DF3 0. 25 0 . 25 0. 30 

I 
). 1 

I 
1 0 . 5  [J]JD]J. 33 

).2  0 0. 5 0. 67 

I M I 10 
� 

Number of 9 9 10 10 
items 

Items in S 1 10 3 10 3 10 3 10 
14 

Items in S2 24 25 25 25 25 

Items in S 3 39 40 40 40 41 40 
41 44 

Other items 31 34 17 31 17 31 17 31 
34 47 34 47 34 47 
48 48 48 

The mean computation time to solve these problems was about 360 

seconds . These results show that we indeed can design more 

representative tests when we involve the quadratic objective function 

g1 (x). However, there are some theoretical problems we have to reckon 

with when we specify the desired fractions and assign the weights to 

the single objective functions. 

The first problem is that the specified fractions have to be 

realistic. If a test consists for example of about 20 items and there 

are only 3 items in the item bank that refer to subject i, it makes no 

sense to specify DFi = 0. 5. So we have to be familiar with the 

composition of the item bank to be able to specify realistic desired 

fractions. 

45 



The second problem is that, when A2 is relatively great compared with 

A1, there might be a considerable nwnber of fractional values in the 

solution of the QMOPP, and therefore this solution would not be 

useful. 

Finally we have to take into account that matrix D might not be 

(semi-) positive definite and therefore might cause problems in 

finding a solution to the QMOPP. 

4.6 Conclusions 

The only quadratic objective function that has been used in a 

simulated item selection problem so far, is g1 (x) of (4. 14). From the 

previous paragraph we know that including this function can lead to 

representative tests. However, there are still some theoretical 

problems that have to be managed. Further investigations have to prove 

whether or not we can solve these problems in a proper way. 

Apart of this function there are some other quadratic functions that 

are of interest for further investigations . They have not yet been 

applied to simulated item selection problems. 

The first one we will specify is associated with the objective to 

improve the calibration of the item bank that is involved in the item 

selection problem. An item bank is said to be well calibrated if the 

estimation error for the difficulty parameter b
j 

is about the same for 

all items in the bank. The value of b
j 

is estimated, based on 

previously examined tests. The following simple example will 

illustrate why differences in the estimation error do occur. 

Suppose there have been 20 tests examined so far. In all those tests 

both item i and item j were selected. There have been 7 correct 

answers to item i and to item j. Based on these results, item i is 

estimated to be twice as difficult as item j (we do not concern about 

how this is reflected by the item difficulty parameter). Items k and m 

however have been selected only three times together in the same test. 

46 



In those three tests there have been 2 correct answers to item k and 

one to item m. Based on this, item m is estimated to be twice as 

difficult as item k. ( Of course the estimation is not as easy as 

proposed here, since all items are involved in the estimating 

process. ) It is obvious that the first estimation, concerning items i 

and j, is more confident than the second estimation since the first 

estimate involves many more tests. This example illustrates why the 

estimation errors can differ considerably. 

Suppose there exists a matrix D that expresses how proper pairs of 

items are calibrated, in such a way that the smaller dij
, the worse 

pair i, j is calibrated . We now specify the following function: 

(4. 17) g2 (x) - x' Dx -I I d1j * x1 * x
j 

i j 

Now our objective to improve the calibration of the item bank can be 

expressed by minimizing g2 (x) over the feasible region. 

The same idea can be used when logical conditions are involved that 

concern only pairs of items. Suppose a test has to be designed by item 

selection, but certain pairs of items are not allowed to be selected, 

that is: the two items that form the pair are not allowed to be 

selected both. If we then specify the elements dij 
of matrix D as 

follows: 

(4.18) 

if pair i, j is not allowed to be selected 
(H stands for a huge integer) 

otherwise 

we can again express our objective by minimizing x'Dx over the 

feasible region. 

These two examples of using quadratic functions to express a user's 

objective are correctly formulated in case only 0-1 variables are 

involved. Further investigations will have to prove whether the 

solutions to the associated QMOPP 's are also useful. 

47 



Besides studying several quadratic obj ective functions, also further 

investigations have to be performed to find tractable methods for 

identifying more than one nondominated solutions, like the method 

presented in chapter 4. 

48 



5 Review 

In this thesis two methods to solve item selection problems involving 

several criteria are discussed. The first method - described in 

chapter 3 - can be applied when criteria can be translated into linear 

objective functions. A tractable implementation of this method has 

been developed. Further investigations to identify useful objective 

functions have to be performed. 

The second method - described in chapter 4 - has to be applied when 

quadratic objective functions are involved. A tractable implementation 

of this method is still in progress. Some simulation results have been 

presented. From the simulations we know that there are still some 

theoretical problems that have to be managed. Further investigations 

on this subject as well as on the possibilities to combine both 

methods have to be performed. We could think for instance of deriving 

conditions that specify whether or not a solution to a QMOPP will 

remain unchanged if the parameter A is changed (c. f. chapter 3). 

We will finish this thesis with a survey of subjects concerning test 

design that have been paid attention to. The numbers in parentheses 

refer to the methods that were involved when these subjects were 

included in simulated item selection problems. (Number 3 refers to the 

method described in chapter 3 ,  and number 4 refers to the method 

described in chapter 4.) 

1) 

2) 

3) 

4) 

Specification of target information points 

This is expressed by linear constraints (3, 4) 

Minimize the number of items in a test 

This is expressed by a linear objective function (3, 4) 

Specification of the (minimum or maximum) number of items 

This is expressed by a linear constraint (3, 4) 

Design of a representative test 

This is expressed by a quadratic objective function (4) 

49 



5 )  Minimize the matching of consecutive tests 

This is expressed by a linear objective function (3 ) 

6 )  Specification of logical conditions concerning pairs of items 

A quadratic objective function has been suggested . The method of 

chapter 4 has to be applied when this function is included. 

7 )  Improve the calibration o f  the item bank 

A quadratic objective function has been suggested. The method of 

chapter 4 has to be applied when this function is included. 

so 



References 

[ l] Y. Boomsma, Item selection by mathematical programming, Arnhem, 
1986, Cito special bulletin nr. 47 . 

[ 2] Y. M . I .  Dirickx, S . M. Baas, B. Dorhout, Operationele Research , 
Enschede, 1986. 

3] G. Hadley, Nonlinear and dynamic programming, Reading etc. , 1964. 

[ 4 ]  H.W . Kuhn and A. W. Tucker, Nonlinear programming, Proceedings on 
the second Berkeley symposium on mathematical statistics and 
probability, Berkeley, 1951 . 

[ 5] F . M. Lord, Applications of item response thery to practical testing 
problems, Hillsdale, 1980. 

[ 6] A.F Razoux Schultz jr . ,  Item selection using heuristics , Enschede , 

1987 . 

[ 7] T.J . J . M. Theunissen, "Binary programming and test design",  
Psychometrika, 50 (1985) , 4,  p.  411-420. 

[ 8] H . M. Wagner, Principles of Operations Research, With applications to 

managerial decisions, second edition, Englewood cliffs, 1975. 

[ 9] P. L .  Yu, "Cone convexity, cone extreme points and nondominated 

solutions in decision problems with multiobjectives" ,  Center for 
system science nr. 72-2, Rochester, 1972. 

[ 10] M .  Zeleny, Linear multiobjective programming, Berlin etc . ,  1974, 
Lecture notes in economics and mathematical systems nr. 95. 

51 



Appendix A Simulated itembank of chapter 3 

Number of items in the bank: 200 

Number of target information points: 3 

Item Item information for 8 = Item difficulty 
number parameter b

j 

-1 . 000 0.000 1.000 

1 0 .130784 0.059110 0.023589 -2.698028 
2 0 . 143329 0.066508 0 . 026843 -2.561758 
3 0 . 159519 0.076 809 0.031508 -2 . 391304 
4 0.160441 0 .077425 0.031792 -2 . 381704 
5 0 . 168996 0.083312 0.034538 -2.292748 
6 0.186350 0. 096372 0.040841 -2 . 110865 
7 0.189541 0.098970 0. 042133 -2 . 07 6775 
8 0.194231 0.102922 0.044122 -2 . 026075 
9 0.206585 0.114234 0 . 049992 -1 . 887444 

10 0. 211112 0 . 118784 0.052432 -1.833999 
11 0.212039 0 . 119748 0.052956 -1.822821 
12 0.217 559 0.125748 0.056263 -1.754293 
13 0.226124 0 .136165 0.062227 -1.638966 
14 0.227346 0 .137793 0 . 063186 -1.621294 
15 0.227452 0.137936 0.063271 -1 . 619744 
16 0.230011 0.141497 0.065399 -1 . 581362 
17 0.231932 0.144317 0.067111 -1.551216 
18 0 . 232022 0.144452 0.067194 -1. 549774 
19 0.232327 0.144915 0.067478 -1.544845 
20 0 . 232642 0.145395 0 . 067773 -1. 539737 
21 0.235639 0.150203 0.0707 69 -1.488860 
22 0.236328 0.151374 0.07 1511 -1. 476525 
23 0.236591 0 . 151829 0.071800 -1. 471746 
24 0.237874 0.154111 0 . 073263 -1.447800 
25 0 . 239164 0.156524 0 . 074831 -1.422558  
26 0.240344 0.158853 0 . 076366 -1.398247 
27 0.240610 0.159398 0.076729 -1.392563 
28 0. 241185 0.160599 0 .077531 -1.380054 
29 0.241934 0.162220 0.078623 -1. 363187 
30 0. 242105 0.162601 0.078882 -1.359225 
31 0.242172 0.162749 0.078983 -1 . 357678 
32 0.242803 0.164193 0.079968 -1.342663 
33 0.243234 0.165216  0.080671  -1.332034 
34 0 . 244366 0.168056 0.082649 -1.302516  
35 0 . 245054 0 . 169916 0.083964 -1.283187 
36 0 . 245148 0.170179 0.084152 -1. 280451 
37 0.245523 0 . 171256 0.084922 -1.269250 
38 0.245534 0.171286 0.084944 -1.268931 
39 0. 2477 82 0.178952 0.090599 -1.188925 
40 0 . 248253 0 . 180984 0.092152 -1.167589 
41 0.248280 0.181110 0.092249 -1.166267 
42 0.249084 0.185374 0 . 095591 -1 . 121225 
43 0 . 249867 0.192382 0.101344 -1.046163 
44 0.249969 0.198629 0.106786 -0. 977706 
45 0.249953 0.199091 0 .107202 -0 . 972564 

52 



46 0. 249953 0 . 199103 0 . 107212 -0.972436 
47 0. 249667 0.203141 0. 110932 -0.927011 
48 0 . 249560 0. 204101 0. 111840 -0. 916066 
49 0.249402 0.205317 0.113003 -0.902115 
50 0 . 249240 0. 206398 0. 114051 -0. 889619 
51 0.248058 0. 212004 0 .119711 -0. 823253 
52 0. 247959 0.212372 0. 120097 -0.818789 
53 0.247914 0. 212536 0. 120270 -0. 816795 
54 0.247473 0.214052 0.121882 -0. 798246 
55 0.246396 0.217212 0. 125357 -0.758711 
56 0. 244852 0.220887 0. 129613 -0 . 711016 
57 0.244659 0.221296 0. 130103 -0 . 705573 
58 0. 244464 0.221702 0.130593 -0.700143 
59 0. 244072 0. 222489 0 . 131551 -0 . 689544 
60 0.243399 0.223765 0 .133135 -0. 672099 
61 0.243120 0. 224269 0.133771 -0. 665115 
62 0.241582 0. 226831 0.137102 -0. 628786 
63 0. 240204 0.228863 0 .139874 -0 . 598815 
64 0.238924 0.230575 0. 142310 -0. 572652 
65 0.237987 0.231736 0.144024 -0. 554344 
66 0.236971 0. 232917 0.145820 -0 . 535225 
67 0. 236338 0. 233616 0 . 146911 -0.523649 
68 0. 235415 0. 234587 0. 148466 -0. 507192 
69 0. 234567 0.235435 0.149861 -0. 492457 
70 0.232480 0 . 237354 0 . 153173 -0. 457634 
71 0.228781 0 . 240263 0.158690 -0.399950 
72 0. 228721 0.240305 0 . 158775 -0.399055 
73 0. 227921 0.240861 0. 159917 -0.387154 
74 0. 227807 0.240938 0. 160079 -0. 385471 
75 0. 226505 0.241789 0.161900 -0. 366511 
76 0 . 226238 0 . 241956 0.162270 -0.362670 
77 0 . 226231 0.241961 0 . 162279 -0. 362572 
78 0.225458 0.242432 0. 163338 -0.351562 
79 0. 224804 0.242816 0.164224 -0.342344 
80 0. 223500 0.243542 0.165964 -0.324256 
81 0.216859 0.246528 0.174371 -0. 236800 
82 0. 216312 0 .  246726 0.175034 -0. 229892 
83 0 . 215762 0.246918 0 . 175695 -0.222991 
84 0 . 215701 0.246939 0.175768 -0 . 222225 
85 0.215632 0. 246962 0. 175851 -0. 221363 
86 0. 214602 0. 247301 0. 177078 -0. 208542 
87 0 .  213041 0. 247772 0 . 178911 -0. 189353 
88 0.210837 0.248353 0.181449 -0.162699 
89 0.208865 0. 248792 0. 183672 -0 .139253 
90 0.207373 0. 249076 0.185327 -0 . 121727 
91 0 . 203107 0.249671 0.189931 -0 . 072594 
92 0.202708 0.249711 0.190352 -0 . 068066 
93 0.202167 0.249760 0.190922 -0.061937 
94 0 . 201448 0 . 249819 0.191673 -0.053829 
95 0 . 201239 0.249834 0.191891 -0.051473 
96 0.193828 0. 249942 0. 199363 0.030465 
97 0 . 190063 0.249684 0.202982 0.071179 
98  0 . 189007 0.249575 0. 203976 0.082502 
99 0.186813 0.249300 0. 206014 0.105929 

100 0 . 184746 0. 248981 0. 207899 0.127882 

53 



101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 

0.180146 
0.180055  
0.1787 56 
0. 176932 
0. 176208 
0.175548 
0.175530 
0.174592 
0.174519 
0.174445 
0.172738 
0.172285 
0.170950 
0.169993 
0.166996 
0.166565 
0 . 164290 
0.161730 
0.160288 
0.157612 
0.156771 
0 . 152402 
0.152181 
0 . 151553 
0 . 146288 
0 . 144102 
0 . 143848 
0.143074 
0.139056 
0.138662 
0 . 137487 
0 .137250 
0.135439 
0 . 129863 
0 . 127368 
0.126484 
0 . 125931 
0.125186 
0 . 120666 
0.118153 
0.116908 
0.115456 
0 . 114872 
0. 113651 
0.113558 
0.112746 
0.112242 
0.110271 
0 .107784 
0 .107181 

0 . 248065 
0.248044 
0 . 247734 
0. 247262 
0.247063 
0.246876 
0.246870 
0.246594 
0.246572 
0.246550 
0.246016 
0.245 869 
0 . 245418 
0.245082 
0.243955  
0.243784 
0.242844 
0.241711 
0 . 241038 
0 . 239723 
0.239293 
0.236919 
0.236793 
0. 236432 
0. 233219 
0.231789 
0.231619 
0.231097 
0. 228273 
0. 227986 
0.227119 
0.226942 
0 . 225 568 
0.221096 
0.218976 
0.218206 
0.217720 
0.217060 
0.212911 
0 . 210500 
0. 209276 
0.207825 
0. 207235 
0.205986 
0.205891 
0.205050 
0.204523 
0 . 202436 
0 . 199734 
0. 199068 

0.211975 0.176396 
0.212053 0 . 177348 
0. 213174 0.190974 
0.214725 0 . 210071 
0.215333 0 . 217629 
0. 215884 0.224524 
0 . 215900 0. 224716 
0 . 216676 0.234497 
0. 216737 0.235264 
0.216798  0.236032 
0.218192 0.253815 
0.218559 0 . 258534 
0.219629 0. 272425 
0.220388 0.282381 
0 . 222716 0.313535 
0 . 223044 0.318016 
0 . 224755  0 . 341658 
0.226628 0.368284 
0.227659 0 . 383294 
0.229525 0 . 411193 
0.230098 0.419974 
0 . 232975 0 . 465723 
0. 233116 0.468052 
0.233514 0 . 474643 
0.236701 0.530258 
0.237943 0 . 553510 
0. 238084 0.5 56222 
0.238510 0.564477 
0 . 240619 0 . 607630 
0.240817 0. 611889 
0. 241395 0. 624604 
0.241510 0. 627177 
0. 242366 0 . 646881 
0.2447 54 0.708237 
0.245697 0.736078 
0.246011 0.746006 
0.246202 0.7 52235 
0.246453 0.760646 
0 . 247809 0 . 812228 
0.248433 0. 841340 
0 . 248707 0. 855890 
0.248994 0. 872976 
0.249100 0.879882 
0.249304 0 . 894386 
0.249319 0 . 895488 
0.249439 0. 905192 
0.249508 0 . 911238 
0 . 249736 0. 935017 
0.249925 0.965393 
0. 249954 0. 972821 

54 



151 0.106442 0.198245 0 . 249980 0.981961 
152 0.097793 0.188106 0 . 249470 1.092139 
153 0 . 097783 0. 188093 0. 249469 1.092278 
154 0.096848 0.186941 0 . 249318 1.104570 
155 0.089907 0 .178036 0.247553 1.198522 
156 0.089625 0. 17 7661 0.247456 1.202441 
157 0.089104 0 . 176966 0. 247271 1 . 209708 
158 0 . 088952 0.176763 0. 247216 1 . 211835 
159 0.088507 0.176165 0. 247051 1. 218086 
160 0.086150 0 . 172957 0.246087 1 .  251540 
161 0.085548 0. 172125 0 . 245816 1.260205 
162 0.085186 0. 171622 0.245648 1.265433 
163 0.085021 0. 171393 0.245570 1. 267817 
164 0.084129 0.170148 0. 245137 1. 280772 
165 0.080749 0. 165329 0.243281 1 . 330859 
166 0 . 07 8342 0.161804 0 . 241745 1.367510 
167 0 . 078083 0 . 161421 0. 241569 1 . 371502 
168 0.07 8072 0. 161404 0. 241561 1 .  371676 
169 0.077441 0.160465 0. 241122 1. 381456 
170 0.077362 0.160347 0. 241066 1 . 382685 
171 0.076344 0.158819 0. 240327 1.398604 
172 0.075799  0 . 157996 0. 239917 1.407188 
173 0 . 073344 0.154235 0 . 237943 1 . 446496 
174 0. 072135 0. 152354 0 . 236892 1.466230 
175 0.071950 0 . 152065 0.236726 1 . 469270 
176 0.069732 0. 148554 0. 234641 1. 506261 
177 0.065959 0 . 142425 0. 230654 1. 571421 
178 0.064428 0.139881 0.228868 1 .  598737 
179 0 . 063356 0 . 138079 0.227557 1. 618197 
180 0. 060919 0 . 133924 0.224389 1. 663443 
181 0.057665 0.128243 0 .  219728 1 . 726284 
182 0.055218 0.123869 0. 215877 1. 775573 
183 0.048587 0.111574 0.203821 1.919270 
184 0. 047712 0.109902 0.202040 1. 939500 
185 0.047478 0 . 109453 0. 201556 1. 944961 
186 0.046703 0.107960 0. 199929 1 . 963223 
187 0 . 043185 0.101068 0.192055 2 . 049703 
188 0 . 041897 0. 098498 0.188968 2 . 082927 
189 0.041423 0. 097546 0.187802 2.095387 
190 0.039003 0.092628 0.181601 2.161101 
191 0.038259 0 . 091097 0 . 179607 2 . 182049 
192 0.038119 0 . 090807 0 . 179226 2.186047 
193 0. 037758 0.090062 0.178241 2. 196368 
194 0 . 035201 0.084715 0.170967 2 . 272252 
195 0.032494 0 . 078941 0 . 162689 2 . 358310 
196 0 . 025335 0.063102 0.137650 2.622842 
197 0.024279 0.060692 0 . 133534 2. 667721 
198 0.016850 0 . 043219 0.101136 3.048831 
199 0.015603 0.040194 0.095059 3.128319 
200 0.005954 0. 015856 0.040810 4. 111701 

Target information: 

3 . 500 4 . 000 3.500 

55 



Appendix B Simulated item bank of chapter 4 

The items marked with a (*) are selected in the simulation results of 
chapter 4. 

Number of items : so 

Number of target information points: 2 

Item Item information for 8 - Item difficulty 
number parameter b

j 
-1.000 1. 000 

1 0.247959 0.120097 -0.818789 
2 0.113558 0.249319 0.895488 
3 0.226231 0.162279 -0.362572 (*) 
4 0.248253 0.092152 -1.167589 
5 0 . 242105 0.078882 -1.359225 
6 0 . 078342 0.241745 1.367510 
7 0.080749 0.243281 1 . 330859 
8 0.088507 0.247051 1. 218086 
9 0.047712 0.202040 1. 939500 

10 0.184746 0.207899 0.127882 (*) 
11 0.085548 0.245816 1.260205 
12 0 . 249867 0.101344 -1 . 046163 
13 0.089104 0. 247271 1.209708 
14 0.114872 0.249100 0.879882 (*) 
15 0.107181 0.249954 0 .  972821 
16 0. 249560 0.111840 -0.916066 
17 0.138662 0 . 240817 0.611889 (*) 
18 0.160441 0.031792 -2.381704 
19 0.113651 0.249304 0.894386 
20 0.038259 0.179607 2.182049 
21 0.236591 0.071800 -1. 471746 
22 0.086150 0.246087 1.251540 
23 0. 143329 0.026843 -2. 561758 
24 0.201239 0.191891 -0.051473 (*) 
25 0.157612 0.229525 0.411193 (*) 
26 0.243399 0.133135 -0.672099 
27 0 .156771 0.230098 0.419974 
28 0.137487 0.241395 0.624604 
29 0.244852 0.129613 -0. 711016 
30 0.069732 0.234641 1.506261 
31 0.175530 0.215900 0. 224716 (*) 
32 0.212039 0.052956 -1. 822821 
33 0.072135 0.236892 1.466230 
34 0.215701 0.175768 -0.222225 (*) 
35 0.146288 0. 236701 0.530258 
36 0.085186 0.245648 1. 265433 
37 0.228781 0.158690 -0. 399950 
38 0.216312 0.175034 -0.229892 
39 0.215632 0.175851 -0. 221363 (*) 
40 0.178756 0.213174 0 . 190974 (*) 

56 



41 0.180146 0 . 211975 0.176396 (* ) 
42 0.227921 0.159917 -0. 387154 
43 0 . 152181 0 . 233116 0 . 468052 
44 0 . 215762 0 . 175695 -0 . 222991 (*)  
45 0 . 245523 0.084922 -1.269250 
46 0 . 249969 0.106786 -0. 977706 
47 0.224804 0.164224 -0.342344 (*)  
48  0 . 228721 0.158775 -0 . 399055 (*) 
49 0.238924 0.142310 -0 . 572652 
so 0 . 242803 0.079968 -1.342663 

Target information : 

1 . 600 1.700 

57 








