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Abstract 

A methodology is presented for evaluating whether the item response function of an 

attitude statement is monotone or single-peaked. A new model for attitude measure­

ment is introduced. This model has item response functions that are single-peaked. 

Depending on the item parameters, the peak of the item response function can be 

at plus or minus infinity which corresponds to a monotone increasing or decreasing 

item response function. That is, the new model contains a model with monotone 

item response functions as a special case. This implies that testing whether the 

item response function of a statement is monotone, boils down to evaluating the 

goodness-of-fit of a restricted model relative to a more general (unrestricted) model. 

The goodness-of-fit of the restricted model is evaluated with a posterior-predictive 

check. It is found that the power of the traditional posterior-predictive check is un­

satisfactory. This problem is solved by computing the posterior-predictive p-value 

using the posterior distribution of the nuisance parameters under the unrestricted 

instead of the restricted model. The methodology is applied to a real data set. 

Key words: MCMC methods, Gibbs sampling 
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This paper is about probabilistic models for attitude measurement. Attitudes 

are usually measured by the responses to a number of statements expressing vari­

ous attitudes with respect to a particular topic. Examples of such topics are capital 

punishment, environmental issues, and health care. In this paper, the responses are 

assumed to be dichotomous, indicating agreement or disagreement with the state­

ment. We use Yvi to denote the response of the v-th subject on the i-th statement. 

The variable Yvi is defined as follows: 

( 1 if subject v agrees with statement i 
Yvi = � 

l O if subject v does not agree with statement i 

In the following, statements will also be called items. 
In probabilistic models for attitude measurement the probability that subject v 

agrees with statement i is governed by the unknown attitude of subject v, denoted 

by 0v. Models differ in the precise nature of the relation between this probability 

and 0v. Usually, this probability is assumed to be a parametric function of 0v. This 

parametric function also depends on one or more item parameters, which are denoted 

by Wi. The probability that person v agrees with item i is denoted by P(Yvi = 

ll0v ,w;), and is called the item response function (IRF). 

Most probabilistic models for attitude measurement are inspired by Coombs' 

(1964) deterministic parallelogram model. Some examples are the models developed 

by Andrich and Luo (1993), Hoijtink (1990), Verhelst and Verstralen (1993), and 

Roberts (1995). The model of Coombs assumes that the response (agree or disagree) 

depends on the distance between the attitude of the subject and the content of the 

item, denoted by Ji ( '5; = w;1 ). Specifically, if the attitude of the subject is sufficiently 

close to the content of the item, the subject agrees with the item, otherwise he 
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FIGL"RE 1. 

Example of a monotone (solid line) and a single-peaked (dashed line) IRF. 

disagrees. Formally, this can be written as follows: 

1 if 10v - c5;1 :s; e 
o if 10v - c5;I > e , 

in which t is some positive number. That is, the response is a decreasing function of 
the distance between the subject's attitude and the item 1s content. It follows from 
the model that, if the subjects are ordered according to their attitude, and the items 
are ordered according to their content, then the 1-responses in the data matrix have 
the shape of a parallelogram. Probabilistic models for attitude measurement that 
are inspired by the parallelogram model have the property that the probability that 
a person agrees with an item is a decreasing function of the distance between the 
attitude of the subject and the content of the item. This implies that the IRF as 
a function of 0 is first increasing (when 0 is smaller than J;) and then decreasing 
(when 0 is larger than J;). In other words, the IRF is a single-peaked function of 0. 

An example of such an IRF is given in Figure 1. 
A second class of probabilistic models for attitude measurement are inspired by 

the deterministic scalogram model of Guttman (1944). Examples of such models are 
the Rasch (1980) model, which was proposed by Jansen (1983) as a model for the 
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measurement of attitudes, and the One Parameter Logistic Model (OPLM) (Verhelst 
& Glas, 1995) which was proposed by Klinkenberg (2001) for the same purpose. The 
basic assumption of the scalogram model is that the response of a subject depends 
on whether or not his attitude dominates the content of the item. Specifically, if a 
subject's attitude is larger than the item's content, the subject agrees with the item. 
Formally, this can be expressed as follows: 

That is, the response of a subject is an increasing function of his attitude. It follows 
from the model that, if the subjects are ordered according to their attitude, and 
the items are ordered according to their content, then the I-responses in the data 
matrix have a triangular shape. Probabilistic models for attitude measurement that 
are inspired by the scalogram model have the property that the probability that a 
subject agrees with an item is an increasing function of the attitude of the subject. 
An example of such an IRF is given in Figure 1. 

A slight extension of models with monotonically increasing IRFs involves that 
the IRFs are assumed to be monotone, but not necessarily increasing. This gives 
rise to a classification of attitude statements as belonging to one of two classes. For 
some statements, which are said to be positively worded, the IRF is increasing, and 
for other statements, which are said to be negatively worded, the IR.F' is decreasing. 
Recoding the responses to the negatively worded statements produces a data set 
that is in agreement with a model with only monotonically increasing IRFs. 

This recoding is closely related to a scaling method known as the method of 
summated ratings (Likert, 1932). This method involves that the responses to a subset 
of the items are first recoded, and after this recoding, the total number of items a 
subject endorses (his sum score) is taken to reflect his attitude. It is known that, 
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if all IRFs are monotonically increasing, the expected value of the sum score is 
monotonically related to the attitude (e.g., Lord & Novick, 1968). Thus, we see 
that the method of summated ratings makes sense if (a) the lRFs of all items 
are monotone, and (b) it is known for each item whether its IRF is increasing or 
decreasing. 

The main difference between the two approaches is whether the IRF is single­
peaked or monotone. This difference is relevant as it gives rise to a different interpre­
tation of the resulting scale. If the responses are governed by a single-peaked IRF, 
a subject can disagree with an item for one of two reasons, whereas if the responses 
are governed by a monotone IRF, a subject can only disagree for a single reason. In 
particular, with a single-peaked IRF, a subject can disagree because his attitude is 
too far to the left of the item's content (disagreeing from below), as well as because 
his attitude is too far to the right of the item's content ( disagreeing from above). In 
contrast, with a monotone increasing IRF, a subject can only disagree because his 
attitude is too far to the left of the item's content. And with a monotone decreas­
ing IRF, a subject can only disagree because his attitude is too far to the right of 
the item's content. In this paper a methodology by means of which one can study 
whether the IRFs of a set of items are monotone or single-peaked is presented. Since 
a monotone IRF can be regarded as a special case of a single-peaked lRF, with 
the peak at plus or minus infinity, this involves testing the null hypothesis that the 
peak is at, respectively, plus or minus infinity. In the first section, we introduce a 
new model with single-peaked IRFs that contains as a special case a model with 
monotone IRFs. In the second section, we show how the parameters can be esti­
mated in a Bayesian framework. In the third section, we deal with the problem of 
testing the assumption that the IRFs are monotone. In the fourth section, the results 
of a simulation study are presented. In the fifth section an application is presented, 
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and in the last section some conclusions are drawn. 

1. A Model Allowing for Monotone as well as Single-Peaked IRFs 
1.1. The Model 

To introduce the new model, we first consider the model of Coombs. In this 
model, a subject agrees with an item if his attitude is in a symmetric interval of 
width 2� about the item's location 8i. We allow the width of this interval to be 
different for different items. In particular, we consider the model 

and reparameterize the model as follows: ai = 6; - �i, and /3; = 8i + �i- This repara­
meterization gives the following model: 

(1) 

As f3i goes to infinity, this model becomes identical to the Guttman model, and as 
ai goes to minus infinity, this model becomes identical to a Guttman model with 
decreasing IR.F's. We see that this deterministic model has both the scalogram model 
of Guttman and the parallelogram model of Coombs as special cases. 

We now describe how this deterministic model can be turned into a probabilistic 
model. Assume that a person's attitude is subject to some random variation about 
his or her true attitude. In particular, let the realized attitude X be a random 
variable with expectation 0. Now, rather than evaluating whether 0 is in a symmetric 
interval about the item's location, a person evaluates whether his realized attitude 
is in this interval. Since the realized attitude is not observable, it is integrated out of 
the model to obtain the probability that a person agrees with an item. If we assume 
that the realized attitude X has a logistic distribution with expectation 0 and scale 
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parameter one, we obtain the following IRF: 

(2) 

where a; is smaller than or equal to {3;. We also introduce an item precision parameter 

ai that influences the steepness of the IRF. In particular, by letting 1/ a; be the scale 

parameter of the logistic distribution of X, we obtain the following IRF: 

exp [a-i(0 - ,Bi)] 
1 + exp [a(0 - ,Bi)] (3) 

As /3; goes to infinity, this IRF becomes identical to the IRF of the two-parameter 

logistic (2-PL) model (Birnbaum, 1968). Similarly, as a; goes to minus infinity, this 

IRF becomes identical to the complement of the IRF of the 2-PL model. That is, 

if /3; = oo we obtain a monotone increasing IRF, whereas if a; = -oo we obtain a 

monotone decreasing IRF. As the item precision parameter a; goes to infinity, the 

IRF becomes identical to the deterministic model of Coombs or Guttman, depending 

on whether the boundary parameters a; and /3; are finite or not. 

In the context of the model introduced in this section, the null hypothesis that 

the IRF of item i is an increasing function of 0 can be written as follows: 

Ho1 : a; = -oo 

Similarly, the null hypothesis that the IRF of item i is a decreasing function of 0 

can be written as follows: 

1.2. Related Models 
We now consider how model (3) is related to other models for attitude mea­

surement. \,Ve first consider the relation between model (3) and the graded response 
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model (Samejima, 1969). Second, we consider its relation with the stochastic unfold­
ing model derived from the partial credit model by Verhelst and Verstralen (1993). 
Third, we consider the relation with the model considered by Klinkenberg (2001 ). 
Fourth, we show that the model belongs to the class of latent response models 
(LRMs) (Maris, 1995). 

It is readily seen that the model in (3) is equivalent to a graded response model 
for trichotomous responses, in which the two extreme responses are collapsed into 
a disagree response. That is, if Uvi satisfies the following graded response model for 
trichotomous responses: 

eOu-Oi(J+I) 

1 + eo.-s,c,+LJ 
with 8;1 = -oo and 8;4 = oo, then the following recoding of the responses: 

11  if Uv ; = 1 Yvi = � 
l O if Uvi = 0 or Uvi = 2 

takes the graded response model into the model (3) with o:; = 8;2 and /3; = 0;3. 

(4) 

(5) 

The recoding that takes the graded response model into the model in (3) 1s 
equivalent to the one used by Verhelst and Verstralen in their formulation of a 
stochastic unfolding model from the partial credit model. Specifically, these authors 
assume that the random variable Uvi is in accordance with the partial credit model 
of Masters (1982) for trichotomous responses. That is, Uvi satisfies the following 
partial credit model for trichotomous responses: 

. exp (jBv - ��=o o;9) P( Uvi = J JBv, O;o, 6;1, 0;2) = °"2 
(he - °"h r. ) L.Jh=O exp v L.Jg=O uig 

Klinkenberg (2001) considers the following monotone IRT model for attitude 
measurement: 
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where a; is a known constant. If the a;'s are known positive constants, this model 

is known as the OPLM. In Klinkenbergs version of the model, the a;'s are assumed 

to be known, but are not required to be positive. It is easily seen that a negative a; 

corresponds to a decreasing IRF. To see how this model is related to our model it 

is useful to reparameterize Klinkenbergs model as follows: 

if a; < 0, and 

a;= -oo 

(3; = o; 

/J; = 00 

u; = la; I 

if a; > 0. With this reparameterization, we see that this model differs from our 

model with monotone IRFs in that the discrimination parameters u; is assumed to 

be known beforehand. That is, this model involves a further restriction on_ the model 

in (3). 

The model in (3) belongs to the class of LRMs. LRMs are characterized by 

the property that the observed responses are the result of a mapping that takes 

unobserved (latent) responses as its argument. One way to formulate the model in 

(3) as a LRM is to consider the random variable Uvi as the latent response. These 

latent responses are modeled with the graded response model in ( 4) and the mapping 

that takes the latent responses into the observed responses is given in (5). ln this way, 

the model in (3) is formulated as a LRM with discrete latent responses. The model 

in (3) can also be formulated as a LR.vl with continuous latent responses. Specfically, 
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in the above, we considered the random variable Xvi as the latent response. These 
latent responses are modeled with the logistic distribution with expectation 0v and 
scale parameter a; . The mapping that takes the latent responses into the observed 
responses is given in ( 1), with 0 replaced by the latent response. The main reason for 
considering the latter formulation is that it enables us to use a Bayesian estimation 
procedure that was specifically developed for LRMs with continuous latent responses 
by Maris and Maris (2002). 

2. Parameter Estimation 
Before introducing the method of parameter estimation, we make two prelim­

inary remarks. First, as is true for all models involving subject parameters, the 
number of parameters increases with the number of subjects. That is, the attitude 
parameters 0v are incidental parameters (Neyman & Scott, 1948). It is known that 
joint estimation of the structural item parameters and the incidental subject para­
meters in general does not lead to consistent estimates of the structural item para­
meters. This problem is overcome by considering the subjects as a random sample 
from a population characterized by an attitude distribution G. That is, we integrate 
the attitude parameters out of the model. Rather than estimating each subject's at­
titude, only the parameters of the attitude distribution are estimated. The attitude 
distribution is assumed to be normal with expectation µ and variance v2

. 

Second, the parameters of the model in (3) are not identified. The type of non­
identification is the same as for the 2-PL model. That is, adding a constant to 
the item parameters a; and {3;, as well as to the attitude parameter 0v does not 
affect the probability. Also, multiplying the item parameters a; and /3; as well as the 
attitude parameter 0v by a constant, and dividing the item precision parameter a; 

by the same constant does not affect the probability either. This location and scale 
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non-identification is removed by setting the expectation of the attitude distribution 

to zero and its variance to one. The model in (3) also exhibits a reflection non­

identification. This is seen by replacing ai by -/3i, /3i by -ai, and 0v by -0v , To see 

how the reflection non-identification can be removed, first observe that the IRF has 

its maximum value when 0v equals (ai + /3;)/2. From this it follows that if we impose 

the restriction ( a1 + /31 ) > 0, the IRF of item 1 will take its maximum value at a 

positive value of 0v , Subject to this constraint, the IRFs can no longer be reflected. 

For estimating the item parameters ( a, f3, u) ,  a Bayesian method is used. The 

key feature of the Bayesian framework is that the parameters are considered as 

random variables. This allows us to study the properties of the posterior by drawing a 

sample from it. Typically, one is interested in the posterior expectation and variance 

of the parameters. Within the Bayesian framework it is also possible to do hypothesis 

testing. In the next section, this will be described in some detail. 

In general, drawing independent samples from a high-dimensional distribution 

is a complicated problem. However, in the last decade, several methods have been 

developed for drawing dependent samples from such a distribution, which turns out 

to be much easier for many distributions. Such methods are called Markov chain 

Monte Carlo (MCMC) methods (Gelman, Carlin, Stern, & Rubin, 1995; Tanner, 

1996). These methods involve ( a) setting up a Markov chain which in the limit 

generates a dependent identically distributed ( did) sample from the posterior, and 

(b) the use of the Monte Carlo method for estimating properties of the posterior 

from properties of the did sample. The particular MCMC method we use here is the 

DA-T-Gibbs sampler (Maris & Maris, 2002). 

The prior distribution of the item parameters /3i and a; is taken to be a bivariate 

normal distribution with expectation zero, standard deviation 10, and correlation 

zero, truncated to the set a; ::; (3; .  The prior distribution of the item precision pa-
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rameter CTi is taken to be the normal distribution with expectation 1 and standard 
deviation 10,  truncated to the positive real numbers. As before, the attitude pa­
rameters 0v are assumed to be a random sample from a normal distribution with 
expectation one and standard deviation 1 .  

With this prior distribution, the following posterior distribution is obtained: 
J(a, ,8, u ly) oc IT f IT P(Yvi = Yvi l0v, a;, ,6;, cri)cp(0v lO, l)d0v 

V i 

IT cp(a; IO , l O)cp(,6;10, 10)I(-oo,,6; ) (a;)cp(cri l l , lO)I(o,oo) (cr;) 
The DA-T-Gibbs sampler requires that the observed data are augmented with 

continuous latent data. In particular, the DA-T-Gibbs sampler requires that the 
observed data can be conceived as the result of a mapping that takes continuous 
latent data as its argument. The goal of this data augmentation is to set up a joint 
posterior distribution ( of latent data and parameters) from which it is easy to draw 
a sample. For generating a sample from this joint posterior, a Gibbs sampler is 
used. The basic idea behind the Gibbs sampler is to partition the complete set of 
random variables into a number of disjoint subsets, and to draw each subset in turn, 
conditional on the current values of all the other subsets and the observed data. 
This distribution of a subset, conditional on all the other subsets and the observed 
data, is called a full conditional distribution. F'or some models, sampling from the full 
conditional distributions becomes very simple after a transformation of the latent 
data. This transformation of variables distinguishes the DA-T-Gibbs sampler from 
other MCMC-methods. 

2. 1. Data Augmentation 

The IRF in Equation 3 can be written as follows: 
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That is, the latent data are logistically distributed with location parameter 0v and 
scale parameter a; 1 . 

The joint posterior distribution can be written as follows: 

V i 

{1  + exp [a; (Xvi - 0v)]} 2 

II cp( 0v I0, 1) II <P( a; I0, 10 )<P(,Bi, 0, 1 0)I(-oo,/3; ) (a;) 
V i 

2.2. Transformation 

(6) 

The key feature of the DA-T-Gibbs sampler is that, after some transformation of 
the latent data, the distribution of the transformed latent data does not depend on 
the parameters.  It can be shown that, after this transformation, the full conditional 
distributions are all truncated distributions (Maris & Maris, 2002). Sampling from 
a truncated distribution is usually simple. 

For the model in (3), the following transformation removes the parameters from 
the distribution of the latent data: 

The joint posterior can now be written as follows : 

V i 

(1 + exp(zv;))2 

II <P(0v l0, 1) II </>(a; I0, 10)</)(,Bi , 0 ,  10)I(-oo,/3; ) (ai )  
V I 

(7) 
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Using a Gibbs sampler to sample from the joint posterior in (7) is much easier 

than for the joint posterior in (6). The reason for this is that the parameters and 
the latent data only co-occur in the range restrictions. 

2.3. Gibbs Sampling 

We now consider the Gibbs sampler used for sampling from the joint posterior 
distribution in (7). The t-th iteration of this Gibbs sampler involves the following 
steps: 
l .  Imputation step: For v = l • • · N and i = 1 • • • M, sample z�!) conditionally on 

(y' 9(t-l) , Q'.(t-1) l 13(t-l) 
1 

O'(t- 1)) 

2 .  Posterior step: 

1 For v - 1 · · · N sample (}(t) conditionally on (y z(t) a(t-l) r.1(t-l) u(t-l)) • - V ) l l /J  l 

2. For i = 1 · · · M sample o:/t), {3;(t) conditionally on (y, z(t), 9(t) , u(t-l)) 
3. For i = 1 · · · M sample a!t) conditionally on (y, z(t) , 9(t), a(t) , 13(t)) 

We use u (t) to denote the realization of the random variable U in the t-th iteration. 
In general, the conditioning is on (a) the parameter values of the previous steps of 
the current cycle, and (b) the parameter values of the later steps of the previous 
cycle. l<or the Gibbs sampler described above, the full conditional of a subject (item) 
parameter does not depend on the other subject (item) parameters. This is reflected 
in our notation by suppressing those random variables on which the full conditional 
does not depend. 

All full conditionals are truncated distributions. We only consider the full condi­
tional of 0v. The full conditional distribution of 0v is a truncated normal distribution: 

4>s(0v lO, 1) oc ( 9 I(o: , ,{]; ) (zvw: 1 + 0v)Yvi [ 1 - I(01 ; ,{]; ) (ZviO-i 1 + 0v)r-Yv i) 
</J(0v lO, 1) (8) 
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This is a normal distribution truncated to the set 3: 

{ 0v : i;i I(a; ,{3i ) (ZviO"i 1 + 0v )Y" i  [1 - I(o:;,/3. ) (Zvi(J'i l + 0v)] l -Yui = 1 }  
which depends on a, /3 ,  u, and zv1 , . . .  , Zvn • It can be shown that 3 restricts the 

range of 0v to the union of a number of disjoint intervals. This is easily seen by 

considering the contribution of a single item to this range restriction. Specifically, if 

Yvi equals one, we obtain that 0v is in a closed interval, whereas if Yvi equals zero, it 

is restricted to the complement of this closed interval. The intersection of a number 

of closed intervals and a number of complements of closed intervals is the union of a 

number of disjoint intervals. We do not show the algebra behind this simplification 

because it would lead us too far. 

We have shown how a did sample from the joint posterior distribution f(a, /3, u, 8, z ly) 

can be obtained. From this sample, one can obtain a sample from the posterior dis­

tribution of any subset of the random variables by dropping the other random 

variables from the chain. 

2.4- An Item-Level Statistical Test for Monotonicity  of the !RF 

For the construction of an item-level statistical test for monotonicity of the IRF, 

we stay within the Bayesian framework. In particular, as a reference distribution for 

our test we make use of the posterior-predictive distribution. This type of model 

evaluation is called a posterior-predict ive check (PPC) (Rubin, 1984) .  

A PPC evaluates whether the observed data are similar to replicated data that 

are generated under the model. To understand the rationale behind PPC's, it is 

useful to consider this method as a two-step procedure. In the first step, the pa­

rameters are assumed to be known, and one computes the probability of observing 

a test statistic that is more extreme than the one that is actually observed . This 

probability is called the predictive p-value. This predictive p-value can be computed 
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analytically or approximated via simulation. The latter option is almost always more 
convenient. In the second step, the predictive p-value (which is computed condition­
ally on some parameter value) is averaged over the posterior distribution of the 
parameters, resulting in a posterior-predictive p-value. 

In its standard form, as originally conceived by Rubin (1984), the posterior 
distribution of the parameters under the null hypothesis is used. This is not always 
a good choice, as will be illustrated by a simple example. This example also points 
the way to the solution of the problem. Consider the problem of testing whether 
a random variable X is normally distributed with expectation zero and unknown 
variance a-2

. The sample mean Xn will be used as a test statistic. Bayarri and Berger 
(2000) show that, with the non-informative prior for a-2 , the posterior-predictive 
distribution of the sample mean is a scaled 7-distribution with n degrees of freedom 
and scale parameter 

It is readily seen that the posterior predictive p-value of the observed sample mean 
is the following: 

(9) 

where 7� denotes a 7 distributed random variable with n degrees of freedom. If the 
null hypothesis does not hold, then Jn- 1 I:; X[ can be large, resulting in a large 
posterior predictive p-value. 

This is not a finite sample problem. To see this, start from the fact that, for large 
n, the posterior-predictive distribution of the sample mean is the normal distribu­
tion with expectation zero and variance n- 1 (µ2 + a-2) ,  where µ denotes the unknown 
expectation of X. Consequently, for large n, the comparison is essentially between 
observed data that are normally distributed with expectation µ and variance a-2 , 
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and replicated data that are normally distributed with expectation zero and vari­

ance (µ2 + o-2) .  This comparison seems pointless unless µ equals zero (i.e., the null 

hypothesis holds). 

The source of the problem is the posterior distribution of the nuisance parameter 

o-2
, which is an inverse gamma distribution with shape parameter equal to n/2 and 

scale parameter equal to (I:; xn/2. This scale parameter is too large unless µ equals 

zero. This also points to the solution of the problem: Use the posterior distribution 

of the nuisance parameter o-2 under the unrestricted model (i.e., both µ and o-2 

unknown). This posterior is the inverse gamma distribution with shape parameter 

(n - 1)/2 and scale parameter (n - l)/2s; , in which s; is the sample variance on 

( n - 1) degrees of freedom. The posterior predictive distribution of the sample mean 

now becomes the scaled T distribution with (n - 1 )  degrees of freedom and scale 

parameter Jn- 1 s;. The resulting posterior predictive p-value of the observed sample 

mean, 

(10)  

is equal to the frequentist p-value. Consequently, for large n,  the comparison 1s 

essentially between observed data that are normally distributed with expectation µ 

and variance o-2
, and replicated data that are normally distributed with expectation 

zero and variance o-2
. Thus, to avoid the problem that the replicated data might not 

be comparable to the observed data if the null posterior is used, we propose to use 

the posterior distribution of the parameters under the unrestricted model in (3) . 

Contrary to the frequentist framework, in the Bayesian framework, there is no 

problem with using a test statistic that depends on the nuisance parameters as well 

as on the data (Meng, 1994) .  Such a test statistic is called a discrepancy measure. 

The posterior predictive distribution of such a discrepancy measure is obtained in 

exactly the same way as the posterior-predictive distribution of a test statistic that 
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depends on the data only. 

We now consider the discrepancy measure that is used for testing the two null 

hypotheses in which we are interested: The IRF is monotonically increasing or de­

creasing. This discrepancy measure is the covariance between the observed responses 

on item i and the latent trait 0 . In the Appendix,  we show that , for given /Ji and 

a;, this covariance is minimized if <:Yi equals minus infinity. Similarly, this covariance 

is maximized if /Ji equals plus infinity. 

To evaluate whether the observed value of the covariance between the responses 

and the attitude is too large (small) under the null hypothesis that the IRF is 

decreasing (increasing) , we compare it with its posterior predictive distribution. 

The posterior predictive distribution of this discrepancy measure is computed with 

the nuisance parameters obtained from their posterior distribution under the unre­

stricted model in (3).  

3 .  Simulation Study 

We now consider the results of a small simulation study conducted to evaluate 

the operating characteristics of the item-level statistical test for monotonicity intro­

duced in the previous section. The simulation study is set up as follows. A set of 24 

items is used, of which 6 items have an increasing IRF, 6 a decreasing one, and 1 2  

are single-peaked. The items differ in their location on the attitude continuum and 

their discriminatory power. The 1 2  items with a single-peaked IRF also differ with 

respect to the degree of single-peakedness. By this, we mean the extent to which 

the maximum of the IRF falls in one of the tails of the population distribution of 

the attitudes (here, the standard normal ) .  It is easily seen that , if an IRF's mode 

becomes more extreme, it becomes more difficult to distinguish it from a monotone 

IRF. Details concerning the item parameters used can be found in Table 1 .  With 
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the item parameters in this table 1 and a random sample of size 245 from a standard 

normal distribution1 , 100 data sets were generated according to the model in (3). 

3. 1. Convergence of the Markov Chain 

We first consider a preliminary technical issue involved in the evaluation of a 

posterior-predictive p-value. The Monte Carlo estimate of this p-value is valid only if 

the parameters used for generating the replicated data are a draw from the posterior 

distribution. The MCMC method presented in the above achieves this goal only in 

the limit. Therefore, the initial iterations, the so-called burn-in cycles, are usually 

discarded and the rest of the Markov chain is considered to be a did sample from the 

posterior. To evaluate whether a sufficient number of iterations has been discarded in 

order for the Markov chain to have converged, we use the ,/Yi, statistic of Gelman and 

Rubin (1992). This convergence diagnostic is computed using multiple independent 

replications of the Markov chain. Specifically, the Markov chain is considered to be 

converged if the value of ,/Yi, is below 1 .2 for each parameter of the model. 

F'or each of the 100 data sets , a Markov chain was run for 60000 iterations. 

Starting values were drawn from the prior distribution. Of the 60000 iterations, the 

first 20000 were discarded to ensure convergence. To evaluate whether a burn-in 

of 20000 was sufficient to reach convergence, for 20 of the 100 data sets we ran 10 

replications of the Markov chain using independent draws from the prior distribution 

as starting values. For these 20 data sets, we computed the convergence diagnostic 

proposed by Gelman and Rubin (1992) .  The largest of these convergence diagnostics 

was 1.05, indicating that a burn-in of 20000 is sufficient for the Markov chain to have 

converged. 

1The numbers of 245 subjects and 24 i t ems are identical to the numbers of subjects and items 

in the application on which is reported in the next section .  



TABLE 1 .  

Item parameters used to generate the data in the simulation study 

item number Oi /3i 

1 -oo - 1 .5  

2 - 00  - 1  

3 -oo -0.5 

4 - 00  0 

5 - 00  0.5 

6 -oo 1 

7 -2 .5  0 

8 -2 -0.5 

9 -1 .5 1 

10  -1 2 

1 1  -0.5 1 

12 0 0.5 

13 0.5 1 

14 1 3 

15 1 .5 2 

16 0 1 

17  0 .5  1 .5 

18  1 2.5 

19 -1 .5  00 

20 -1 00 

21  -0 .5 00 

22 0 00 

23 0.5 00 

24 1 

ai 

1 

2 

3 

4 
5 
6 
4 
2 

5 

6 

1 

8 

5 

6 

3 

6 
9 
9 

1 

2 

3 

4 
5 

6 

decreasing 
decreasing 
decreasing 
decreasing 
decreasing 
decreasing 
single-peaked 
single-peaked 
single-peaked 
singlf'-peaked 
single-peaked 

single-peaked 

single-peaked 
single-peaked 
single-peaked 
single-peaked 
single-peaked 
single-peaked 
increasing 
increasing 
. . mcreasmg 
. . mcreasmg 
increasing 
. . mcreasmg 
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3.2. Parameter Recovery 

Before we discuss the results of the item-level test, we first check the recovery of 
the parameters. In Figure 2, the true parameters are plotted against their average 
EAP estimate, with the average taken over replications of the data. Items with a 
true location parameter equal to plus or minus infinity are not included in these 
figures. For the six items with a decreasing IRF, the average EAP estimates of the 
a parameter are between -7.02 and -7.26. These estimates are sufficiently far in 
the tail of the standard normal population distribution for the IRF evaluated at 
the estimated parameters to be indistinguishable from a decreasing IRF. For the 
six items with an increasing IRF, the average EAP estimates of the {3 parameters 

• are between 7. 13 and 7.86. These estimates are sufficiently far in the tail of the 
population distribution for the IRF evaluated at the estimated parameters to be 
indistinguishable from an increasing IRF. 

It is seen in Figure 2 that, except for the location parameters of items 8, 1 1 , 14, 
15 and 18, the recovery is excellent. The IRF evaluated at the true parameter values 
for items 8, 1 1, 14, 15 and 18 is given in Figure 3. For item 8, the poor recovery is due 
to the fact that the true a parameter is in the left tail of the population distribution. 
As a consequence, it is difficult to distinguish its lRF from a decreasing lRF . For 
items 14, 15 and 18 the poor recovery results from the fact that the true {3 parameter 
is in the right tail of the population distribution. As a consequence, it is difficult 
to distinguish its lRF from an increasing lRF. For item 11, both the true a and {3 
parameter are not in the tail of the population distribution. The poor recovery of 
both the a and {3 parameter is due to the fact that the value of the IRF changes 
little over the range from -2 to +2. This implies that the responses to such an item 
provide little information about the item location parameters. 

The results of the simulation study indicate that the recovery of the parameters 
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True IRF evaluated at true parameter values fo r  items 8 ,  1 1 ,  1 4 ,  15 ,  and 1 8  

i s  good, unless (a) one of the i tern location parameters i s  in  the tail of  the population 
distribution, or (b) the value of the IRF changes little over the attitude continuum. 
If one of the item location parameters is in the tail of the population distribution, 
the estimated parameter tends to be too extreme (positive or negative). 

3. 3. Item-level Tests 

We now turn to the results of the item-level tests. In Table 2, a summary of 
the results is given. This table contains the mean and the standard deviation of 
the posterior-predictive p-values, and the proportion p-values smaller than or equal 
to 0.05, taken over replications of the data. We first examine whether the item­
level tests succeed in detecting the 12 items with a single-peaked lRF. We reject a 
hypothesis if the posterior-predictive p-value is smaller than or equal to 0.05. lt is 
seen in Table 2 that, except for items 8, 11, 14, 15 and 18, both p-values are on 
average smaller than 0.05. The performance of the item-level tests is worst for items 
8, 11, 14, 15 and 18. This is not surprising because (a) item 8 is almost a decreasing 
item (its a parameter is located in the extreme left tail of the attitude distribution), 
(b) items 14, 15 and 18 are almost increasing items (their {3 parameters are all 
in the extreme right tai l of the attitude distribution), and ( c) item 1 1  has a low 
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discriminatory power. 

Next, we consider the p-values for the items with a monotone IRF. It is seen 
in Table 2 that for the incorrect null hypothesis, the average p-value is 0 for all 
items, and for the correct hypothesis, the p-values are tightly concentrated about 
0.5. The latter indicates that the probability that the null hypothesis is incorrectly 
rejected is much smaller than 0.05. This in contrast with a frequentist p-value which 
is uniformly distributed under the null hypothesis, and hence leads to 5 percent 
incorrect rejections. 

We conclude that the item-level tests (a) correctly reject the null hypothesis, 
unless an item with a single-peaked IRF is too close to a monotone IRF, and (b) 
almost never incorrectly reject the null hypothesis. 

4. Application 

We now apply our item-level tests to data collected by Roberts (1995)2 with a 
questionnaire on capital punishment. The questionnaire consists of the 24 items in 
Table 3, originally published by Thurstone (1932) and later republished by Shaw 
and Wright (1967) .  Roberts (1995) asked 245 subjects to express their agreement 
with the items on a six point rating scale. The scale ranged from strongly disagree to 
strongly agree. The responses were dichotomized by recoding the first three response 
categories as zero (disagree) and the last three categories as one (agree). 

We consider the results of the item-oriented tests introduced in the above. The 
p-values are computed as before. Ten replications of a Markov chain of length 60000 
were generated to determine whether a burn-in of 20000 is sufficient for the Markov 
chain to have converged. The largest value of the convergence diagnostic was 1.18, 
indicating that the Markov chains have converged. Using the remaining 40000 draws 

2These data were published on the internet at http://www.musc.edu/cdap/Roberts 
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TAB LE 2 .  

Mean, standard deviation (sd ) ,  and proportion of p-values smaller than 0 . 0 5  (pr(reject) )  o f  the 

distribution of the p-values for the item-level tests of monotonicity. 

Item Decreasing Increasing 

mean sd pr(reject) mean sd pr( reject) 

1 0 .417 0.064 0 .00 0.000 0 .000 1 .00 

2 0.461 0 .059 0 .00 0.000 0.000 1 .00 

3 0 .482 0.044 0.00 0 .000 0.000 1 .00 

4 0.487 0 .022 0 .00 0.000 0 .000 1 .00 

5 0.495 0.020 0.00 0 .000 0.000 1 .00 

6 0.507 0.014 0.00 0.000 0.000 1 .00 

7 0 .042 0 .066 0 .77 0.000 0.000 1 .00 

8 0.054 0.083 0.66 0.000 0 .000 1 .00 

9 0.000 0.000 1 .00 0 .000 0 .000 1 .00 

10 0.000 0.000 1 .00 0 .028 0 .039 0 .82 

1 1  0.023 0.043 0 .84 0 . 143 0 . 125 0 .31  

12 0 .000 0.000 1 . 00 0.000 0 .000 1 .00 

13 0 .000 0 .000 1 .00 0.000 0.000 1 .00 

14 0.000 0.000 1 .00 0 .423 0 . 123 0.00 

15 0.000 0 .000 1 .00 0 .278 0 . 1 38 0 .05 

16 0 .000 0.000 1 .00 0.000 0 .000 1 .00 

1 7  0 .000 0 .000 1 . 00 0.000 0.000 1 .00 

18 0 .000 0.000 1 . 00 0 .235 0. 124 0.05 

19 0 .000 0 .000 1 .00 0 .471 0 .044 0.00 

20 0.000 0 .000 1 .00 0 .495 0.030 0 .00 

21 0 .000 0.000 1 . 00 0 .496 0 .018 0 .00 

22 0 .000 0.000 1 . 00 0 .488 0.021 0.00 

23 0 .000 0 .000 1 . 00 0 .496 0.020 0.00 

24 0 .000 0 .000 1 . 00 0 .505 0 .017  0.00 
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from the posterior, a set of replicated data was generated for every 50-th draw, 

resulting in 800 replicated data sets . .  For each of these replicated data sets the 

discrepancy measures are computed and compared with the discrepancy measures 

computed with the observed data. The resulting p-values are given in Table 3 .  

In Table 3, the items are grouped according to their p-values. The first group 

of items are all items for which the hypothesis of an increasing IRF is not rejected, 

whereas the hypothesis of a decreasing IRF is rejected. The second group of items 

are all items for which the hypothesis of a decreasing IRF is not rejected, whereas 

the hypothesis of an increasing IRF is rejected. The third group consists of items for 

which both tests are significant. These items have a single-peaked IRF. The fourth 

group consists of items for which neither of the tests is significant. These items have 

a flat IRF. We see that, of the 24 statements,  18  have a monotone IRF, 4 have a 

single-peaked IRF, and 2 items have a flat IRF. 

We now examine whether these results are consistent with the content of the 

statements .  The items in the first group in Table 3 are all favorable towards capital 

punishment, and the items in the second group are all opposed to capital punish­

ment . Of the items in the third group, the first three (6,  9 ,  and 18 )  express an am­

bivalent position. That is, to agree with these items, a subject has to agree both with 

a positively worded statement ( e.g. , Capital punishment is necessary in our imper­

fect civilization) and with a negatively worded statement ( e .g. , Capital punishment 

is wrong) . For such items , it is not too surprising that their IRF is single-peaked. 

It should be observed that also items 1 and 3 express such an ambivalent position, 

but their IRF is nevertheless monotone. The fourth item in the third group (item 

22) expresses an indifferent position towards capital punishment . Again , it is not 

surprising that the IRF of this statement is single-peaked. The items in the fourth 

group have in common that (a) very few subjects agree with them, and (b) they 
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express a very extreme position in favor of capital punishment. 



TABLE 3 .  
Posterior-predictive p-values for the two item-level statistical tests based on the covariance 

between the item responses and the attitudes. The items are grouped according to their 

posterior-predictive p-values. 

1 Capital punishment may be wrong 0 0.451 

but it is the best preventative to crime. 
3 I think capital punishment is 0 0 .481 

necessary but I wish it were not. 
4 Any person, man or woman, young or old, who 0 0.471 

commits murder, should pay with his own life. 
10  We must have capital punishment for some crimes. 0 0.501 

1 7  Capital punishment is just and necessary. 0 0.45 

20 Capital punishment gives the 0 0.474 

criminal what he deserves. 
23 Capital punishment is justified 0 0.335 

only for premeditated murder. 
24 Capital punishment should be 0 0.475 

used more often than it is. 
2 Capital punishment is absolutely never justified. 0.515 0 

5 Capital punishment cannot be regarded as a 0.463 0 

sane method of dealing with crime. 
8 Capital punishment has never been 0.51 0 

effective in preventing crime. 
12  I do not believe in  capital 0.321 0 

punishment under any circumstances. 
13 Capital punishment is  not 0.5 0 

necessary in modern civilization. 
1 4  We can't call ourselves civilized as long as we 0.484 0 

have capital punishment. 

27 
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TABLE 3 .  

Continued 

15 Life imprisonment is more effective 0.44 0 

than capital punishment. 
16 Execution of criminals is a 0.504 0 

disgrace to civilized society. 
19 Capital punishment is the most 0 .441 0 

hideous practice of our time. 
21 The state cannot teach the sacredness of 0.544 0 

human life by destroying it. 
6 Capital punishment is wrong but 0 0 

is necessary in our imperfect civilization. 
9 I don't believe in capital punishment but 0.006 0 

I'm not sure it isn't necessary. 
18 I do not believe in capital punishment but it 0 0 

is not practically advisable to abolish it 
22 It doesn't make any difference to me whether 0 0 

we have capital punishment or not. 
7 Every criminal should be executed. 0.09 0.487 

1 1  I think the return of the whipping post would 0.369 0 .204 

be more effective than capital punishment. 
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5. Conclusion 

In this paper, a methodology for evaluating whether the relation between the 
subject's attitude and the probability that a subject agrees with a statement is 
monotone or single-peaked was presented. These two possible relations are not mu­
tually exclusive. Specifically, a monotone IRF is a special case of a single-peaked 
IRF (one with its maximum at plus or minus infinity). Consequently, it is possible 
to reject the hypothesis that the relation is monotone in favor of the more general 
hypothesis that it is single-peaked. With the item-level tests introduced in the above 
it is not possible to reject the hypothesis that the IRF is single-peaked. 

Our method for evaluating whether the IRF of a single item is monotone or 
single-peaked differs from existing Bayesian procedures for evaluating model fit. 
The difference is that the posterior-predictive p-value is computed using the mar­
ginal posterior distribution of the nuisance parameters under the unrestricted model 
rather than the posterior distribution under the null hypothesis. In a small simula­
tion study, we found that this new method gave satisfactory results. More research 
is needed however to establish the statistical properties of this alternative approach. 

In our application, concerned with capital punishment, we found that most of 
the statements are in agreement with a model with monotone IRFs. We found that 
the content of these statements was in agreement with the results of the item­
level tests. Moreover, the statements for which the IRF is not monotone reflect 
either an ambivalent position, or indifference towards capital punishment. Based on 
a single application one can, of course, not conclude that IRFs of attitude statements 
are typically monotone. However, we hope to have shown that it is important and 
worthwhile to evaluate whether attitude statements conform to the assumption of 
monotone IRFs. 
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Appendix 

In this appendix we show that, under the model in (3) ,  the covariance between 

the responses to an item and the latent trait () is minimized at a; = -oo. Showing 

that this covariance is maximized at f3i = oo proceeds along the same lines. 

Our starting point is a reformulation of the expression for the covariance that 

turns out to be convenient for what is to be shown. First, assume, without loss of 

generality, that, in the population, 0 has zero expectation. The covariance can be 

expressed in the following way: 

COV(Y, 0 la, (3 , c,)  = E(Y0 la, (3 , c,)  

= j 0P(Y = l l0, a, (3, c,)f(0)d0 

Since P(Y = 1 10, a, ,B, c,)  equals P(a � X � ,8 10, c,)  the covariance can be rewritten 

as follows: 

COV(Y, 0 la, (3, c,) = j 0 (i13 

f(x l0, c,)dx) J(0)d0 

= l
e 
(j 0f(0lx, c,)d0) f(x lc, )dx 

= 1: E(0 lx ,  c,)f(x jc,)dx ( 1 1 )  

To show that the covariance is smallest i f  a = - oo ,  we show that the covariance 

is a single-peaked function of a. This implies that it is smallest at the boundary points 

a = -oo and a = (3. At a = (3, the covariance equals zero, whereas at a = -oo 

it is smaller than zero (Ross, 1996, Proposition 7.2 . 1 ) .  That is, the covariance is 

smallest if a = -oo. That the covariance is a single-peaked function of a means 

that its first derivative with respect to a has one change of sign, and the change is 

from positive to negative. Differentiating the covariance with respect to a gives the 



following result: 
:a COV(Y, 0 la, ,B, o-) = -E(0 IX = a, o-)f(X = a lo-) ( 12 )  

Observe that f(X = alli) is always positive. If the distribution of the latent random 
variable X is a log-concave location family, as is the case for the logistic distribution 
in our model, then it follows from Lemma 1 that E(0 IX = a) has one change of sign, 
and the change is from negative to positive. As a consequence, the first derivative 
of the covariance with respect to a has one change of sign also, and the change is 
from positive to negative, as was to be shown. 

Theorem 1. If the distribution of X is a log-concave location family with location 
parameter 0, then E(0 lx) has one change of sign, from negative to positive. 

Proof. It is known that a log-concave location family has monotone likelihood 
ratio (Lehmann, 1986, Example 1, p.509): 

f(x1 - 02) < f(xi - Bi ) J(x2 - 02) - .f(x2 - 01) 
Multiply ing the left and right hand sides with J(x2) /  f(x1) we see that also the 
conditional distribution of 0 ( conditional on X) has monotone likelihood ratio: 

f(:1;1 -02)9(02) J(a;i -01 )g(01) 
J(:ni ) = g(02 Jx 1 )  < g(01 'x1)  = J(xi ) J(:i;:z-02 lo(02l g( 02 Jx2 )  - g( 0 1 lx2 )  J(a;2�0il.11(0tl 
J(x2 ) f(:1;2 ) 

It is also known that if the distribution of 0 conditionally on X has monotone 
likelihood ratio, then E(0 Jx) has a single change of sign, and the change is from 
negative to positive (Lehmann, 1986, lemma 2, p.85). This completes the proof. 
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