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General Introduction 

The purpose of Project 'Optimal Item Selection' is to solve a number of 

issues in automated test design, making extensive use of optimization 

techniques. To this end, there has been close cooperation between the project 

and, among others, the department of Operations Research at Twente 

University. In each report, one or several theoretical issues are raised and 

an attempt is made to solve them. Furthermore, each report is accompanied by 

one or more computer programs, which are the implementations of the methods 

that have been investigated. The texts of these programs were included in the 

original thesis report, but will not be included in this version. In due 

time, requests for these programs can be sent to the project director. 

T.J.J.M. Theunissen 

project director. 
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Summary 

This study concerns the item selection problem, which is a 
problem from test theory, where items are chosen in order 
to design a test that fulfils certain demands in the best 
possible way. This item selection problem can be 
formulated as a mathematical programming problem. The 
derivation of this is based on the so-called Rasch model. 

In previous work on this subject a large area already has 
been covered. In this report the earlier results are 
examined in order to get a good picture of the explored 
and unexplored fields. 

After that some new methods to solve the problem are 
described, all dealing with situations where cost 
minimization is the objective, whereas some methods also 
take care of a special category division for the selected 
items. 

Finally the results of a number of experiments are 
reported, incorporating the most important algorithms. 
Some conclusions about the use of these methods are 
summarized. 
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Preface 

The study about the item selection problem in this report, 
which serves as my master thesis Applied Mathematics at 
the University of Twente, is part of a CITO-project 
performed by the GPO-department. Its results will be 
incorporated in a larger project by several Dutch 
institutes. 

I do not claim to give a complete coverage of the problem 
area. However I hope to have divided the item selection 
problem into clear-cut sub-areas, some of which I will 
treat extensively. 

I would like to thank the staff members of OPD for making 
it possible for me to work on the item selection problem 
in good atmosphere, and especially P.Sanders, T.Theunissen 
and H.Verstralen for their advices. Furthermore I am 
indebted to S.Baas from the University of Twente who was 
my supervisor and who supported me with ideas and took 
care that I stayed on the right track. 

14-th of April 1988, 
CITO Arnhem, 
J.G. Kester. 
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0 General Introduction 

CITO in Arnhem is the National Institute for Educational 
Measurement. It has 320 staff members, of which 18 find 
their work at OPD, a Dutch abreviation for Research and 
Psychometric Services, the research department of CITO. 

I worked on the CITO-project Optimal Item Selection, of 
which the results will be used in the long-term project 
Test Service Systems. The goal of this latter project, 
that is executed by several Dutch institutes, is to come 
to a system where a user, e. g. a teacher who wants to test 
his pupils, can get a test that fulfils his demands simply 
by giving some details to the computer and waiting a few 
minutes. 

Such a system should be achieved with large item banks, 
i.e. collections of items for testing purposes, and with 
computer software that selects the best items for the test 
out of these banks: the Optimal Item Selection process. 

So the problem that is faced is the following. Construct 
and implement a computer program that is able to design a 
test by selecting from an item bank those items that meet 
certain specified conditions in the best possible way and 
in a reasonable time. 

In this report my contribution to the project will be 
described. First I will give some necessary information 
about the underlying test theory (section 1). Secondly I 
will derive a mathematical model for the optimal item 
selection problem (section 2). After that there will be 
the exact problem formulation that is the subject of this 
master thesis (section 3). Then I will discuss the 
previous work on this subject, done by my predecessors at 
CITO (section 4). Then it is time to report on my own 
work: some methods to solve the item selection problem 
when looking mainly at costs (section 5/7), followed by 
the results of various experiments with those methods 
(section 8), and by some remarks on the complexity of the 
algorithms (section 9). I will finish this report with a 
number of conclusions and recommendations for further 
study (section 10). 

The listings of the written software and examples of an 
item bank and problem file can be found in the appendices. 



Dichotomous items 

Item response 
function 

1 Introduction test theory 

In this section I will give an explanation about the 
underlying test theory. Most of it can be found in the 
first five sections of a book by F.M. Lord [11). Here I 
will give the most important ideas and definitions. 

Today, testing is a very common way to determine a 
person's ability. Tests are used e.g. at schools, job 
selections and military examinations. In this study a test 
is supposed to consist of a number of dichotomous items, 
i.e. items that can be answered in only two ways: right or 
wrong. 

Now if one wants to design a test that gives most 
information about someone's ability, one has to know the 
response behaviour of that person on the items of that 
test. Hence the item response function is defined as the 
probability that someone with ability 9 answers the item 
correctly: 

p(9) ,.. C (1.1) 

This three-parameter logistic function was introduced by 
Birnbaum. In general 9 is assumed to have a value between 
-3 and 3. In this function e is the mathematical constant 
2.7182818 .. and D is a positive constant, which will be 
taken equal to one here. 
The parameters a, b and c have the following meaning. 

Discriminating Parameter a represents the discriminating power of the 
power item, i.e. the degree in which item response varies with 

ability. More specific: a is the slope of the curve at 
9-b. 

Difficulty Parameter b is the difficulty parameter of the item. It 
parameter has the same scale as the ability 9 and it determines the 

"relative position" of the curve on the X-axis: as b 
increases, i.e. the more difficult the item becomes, the 
further the curves moves to the right. 

Guessing parameter Parameter c is the guessing parameter of the item, i.e. 
the probability that someone with an absolute lack of 
ability (9 ➔ -oo) answers the item correctly. One can think 
of a multiple choice question with five possible answers, 
where c=0.2. 

The meaning of these parameters for the item response 
function is illustrated in figure 1. 1. 

7 
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An item response function 

After substituting a=l and c=O in (1.1) the Rasch model 
arises, which will be used throughout this report: 

(1. 2) 

Now suppose one has a test with n items. For every ability 
8 one can compute a 95%-confidence interval for the 
expected score, i.e. the expected number of correct 
answers, a person with ability 8 will achieve. When this 
is done for several values of 8 between -3 and 3 one can 
obtain a 95%-confidence belt like in figure 1.2. Here the 
test contains 80 items. 

When the test results are known and for every person with 
known ability the score is marked in figure 1.2, at most 
2½% of the persons should be above the belt and at most 
2½% below it. 

However one wants to say something about a person's 
ability based on his score. Suppose someone has a score of 
xO, then a 95%-confidence interval for his ability is 
given by (81,82). 

According to Birnbaum the information function 1(8,x} for 
a score x is inversely proportional to the square of the 
length of the asymptotic confidence interval for 
estimating the ability 9 from the score x. Here asymptotic 
means that the number of items n goes to infinity. 



figure 1. 2 

Item information 
function 

Test information 
function 

Determination of a 95%- confidence interval for e 

Now one can derive the item information function, 

(1. 3) 

where ui=l if item i is answered correctly and ui=O 
otherwise. 

An upperbound to the information that can be obtained from 
a test is given by the test information function 

1{9} =.� (Pi')2/(Pi(l-Pi)) 
i-1 

(1. 4) 

It is clear that the test information function is simply 
the sum of the individual item information functions. This 
feature is illustrated in figure 1.3. 

After substituting the Rasch function (1. 2) into (1.3) one 
finds: 

e- (S-bi)/ (l+e- (8-bi))2 

l/(e-<9-bi)+2+e<9-bi)) (1.5) 

9 



figure 1. 3 
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A test information function composed of five item 
information functions 

The item information function has its maximum value for 
8=bi: l{bi,ui}-O.25. One can easily see this by thinking 
of an intelligent girl Mary with ability approximately 
equal to 2. Now it makes no sense to give Mary an easy 
item with difficulty -2, because she will probably answer 
this item correctly, i.e. when this item is answered one 
can not say much more about Mary's ability. So this easy 
item provides very little information. However if Mary is 
given an item with difficulty 2, then the chances of a 
right and wrong answer are approximately equal: this item 
gives much information about Mary's ability. Of course 
more than just one item is required to get some more 
definite information about Mary's ability, but items of 
difficulty 2 contribute much more to this than items of 
difficulty -2. 



Target information 
function 

figure 1.4 

The last function that is to be defined is the target 
information function. This function gives at every ability 
level the amount of information that is desired for a 
test. For instance if one wants to design a test that will 
separate the good half of a class from the bad half, one 
should gain much information at 8-0, as in figure 1. 4. 

Information 

-3 0 3 

Ability 

Example of a target information function 

This was in short the underlying test theory. For more 
details or derivations I refer the reader to Lord [11]. 
This abstract should suffice to understand the rest of 
this report. 

11 
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2 Mathematical modeling 

In this section I am going to derive a mathematical model 
for the item selection problem, making use of the theory 
from the previous section. 

Suppose a desired test is specified by a target 
information function so that at every ability level S it 
is known how much information is required. For practical 
reasons the target information function will be specified 
at a finite number of ability points: Verstralen [16] has 
proved that a specification at three to five different 
points is sufficient to fix information functions. In this 
study I will look at target information functions 
specified only at the points (-3, -2, -1, 0, 1, 2, 3} or at a 
subset of these points. 

Now suppose one wants to design a test from an item bank 
containing n items. Let Xj be defined by Xj=l if item j is 
selected in the test and Xj=O otherwise. Further let the 
target information function be specified at m points 
81, .. , Sm: the information points, and the required 
information at those points is I(9i) i=l .. m. Finally let 
I(9i, j) be the value of the information function of item j 
at ability Si (=information point i). Now the problem is 
to find a test for which the test information function 
exceeds the target information function at the specified 
points. Since a test information function is the sum of 
the individual item information functions, this condition 
can be translated into the following inequalities: 

I(81, l)*x1 
. . . . . . . . 

I(Sm, l)*x1 

Xj € (0, 1} 

+ 

+ 

I(S1, 2)*x2 
. . . . . . . .  

1(9m, 2)*x2 

j=l. . n  

+ 1(91, n)*xn >= 1(91) 
• • • • t • I • •  (2. 1) 

+ I(Sm, n)*xn >= I (Sm) 

One can assign a positive cost Cj to every•item j 
expressing the eagerness to have item j in the test. A 
high cost for instance can be given to an item that has 
been selected recently in another test, and a low cost can 
be given to an item of which the parameters are not so 
well-known, i. e. a bad-calibrated item: it should be 
included in some more tests in order to become more sure 
about its parameters. 

From this last remark it follows that the values I(Si,j) 
are not known with 100% certainty. However in this report 
I will assume otherwise, since the deterministic 
constraints (2.1) become considerably more complicated 
when they are made stochastic. Moreover, a stochastic 
approach will probably not be relevant, also for practical 
purposes. 



Mathematical 
programming 
problem 

Multi-dimensional 
knapsack problem 

With the costs Cj and the definitions aij-I (8i,j) and 
bi-I(8i) for i-1 .. m and j-1 .. n this results in the 
following mathematical programming problem with cost 
minimization. 

n 
(P) min.�

1
cj*Xj 

s.t. n J-

j:l 
aij*Xj >- bi 

Xj f { 0, 1} 

i-1. .m 

j-1. .n 

(2.2) 

Note that with cj-1 for j-1 .. n the number of items is 
minimized. 

In literature problem (P) is known as the multi­
dimensional 0-1 knapsack problem. This is a NP-hard 
problem, so when the number of items becomes large it 
becomes very difficult to find the optimal solution for 
this problem. Therefore there is a great need for 
algorithms that can give optimal or near-optimal solutions 
in a reasonable time. The search for those algorithms was 
started by other persons already and I will follow in 
their footsteps, as outlined in the next section. 

As will be seen later, the item selection problem is not 
fully covered by this mathematical model. There are 
certain demands that can not be described by constraints 
as in (P), but for a lot of applications the model is 
sufficient. 

13 
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3 Problem formulation 

In this section I will give the formal problem 
description, which will be used as the starting point for 
this thesis. 

Boomsma [4], Gademann [5] and Razoux Schultz [12] have 
investigated and elaborated several algorithms for test 
construction from a large item bank. Among those various 
methods one can distinguish two mainstreams: an exact 
approach, in which the optimal solution is pursued, and a 
heuristic approach: problem-specific algorithms that yield 
near-optimal solutions. In the studies of Gademann and 
Razoux Schultz more emphasis was put upon extra demands 
which have to be imposed on the tests in view of practical 
usibility. 

This all leads to the following problem formulation. 
Making use of the already obtained insights and previously 
developed methods one has to investigate whether there is 
at least one best method. Such a method should unify known 
principles and possible new concepts into practically 
useful algorithms. 

Hereby one should take the following points into account. 
(a) Next to the already introduced constraints there are 
also extra demands concerning the partitioning of items 
into certain categories. 
(b) Because of the size of the problem one should make 
use of the special structure as much as possible. 
(c) Future users must be accounted for with every 
algorithm considered. 



Linear relaxation 

4 Previous work 

In this section I am going to describe previous work on 
the subject. Boomsma [4] , Gademann [5] and Razoux Schultz 
[12] all had their own way of approaching the item 
selection problem. As already stated, one can make a 
distinction between exact and heuristic methods. Now here 
I will explain the main principles of both approaches and 
evaluate some of the algorithms on their practical 
usibility. 

4.1 The exact approach 

The exact approach of the item selection problem consists 
of those methods where one tries to obtain an exact 
solution for problem (P), i. e. the real optimum. This was 
done by Boomsma [4] and Gademann [5] in two manners. First 
there is a branch and bound method by Balas and secondly 
there is a continuous approach, in which the (0, 1)­
constraints are relaxated and the resulting problem is 
solved with the Simplex method. Although these Simplex­
orientated methods do not always lead to the optimum, I 
will nevertheless consider them in this section because of 
the exact way in which the problem is approached. They are 
called quasi-exact methods and are studied here with a 
linear and a quadratic objective function. 

4.1. 1 Balas' algorithm 

Boomsma [4] describes a branch and bound algorithm as 
designed by Balas. It can be found in Syslo, Deo and 
Kowalik [13] . Test results showed that the optimum to (P) 
is found, but also that computation time gets huge when 
the number of items n becomes greater than 100. Since the 
item selection is supposed to take place at item banks 
with 300 to 1000 items, I propose to let this method rest 
until the computing capacity is sufficient for coping with 
the extensive calculations needed for the Balas' 
algorithm. 

4. 1. 2 Continuous approach with linear objective function 

The idea behind the continuous approach is the following. 
Replace in problem (P) the (0, 1)-constraints by upper- and 
lowerbounds on the variables Xj· The result is a linear 
relaxation (RP) of problem (P). 

(RP) 
n 

min � c·*x· • 1 J J s.t. n J-
� a· ·*x· >- b1.· j-1 l.J J 

Xj >- 0 
Xj <- 1 

i-1. .m 

j=l .. n 
j-1. .n 

(4.1) 

15 
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Problem (RP) can be solved exactly with the Simplex 
method. Suppose this gives a solution with objective 
function value z (RP). This solution will probably not be a 
feasible solution for (P), since some variables Xj may 
have a non-integer value. It can be proved however that an 
optimal solution for (RP) contains at most m variables 
with a non-integer value. Since m is the number of 
information constraints there will never be more than 
seven non-integer variables. 

A feasible solution for (P) can be derived from the (RP)­
solution by rounding every variable Xj with O<xj<l off to 
one. One can easily see that this indeed gives a feasible 
solution for (P) and because of the relatively small 
number of non-integer variables this is a near-optimal 
solution. Let z (P) be the objective function value of the 
optimal solution for (P) and z (RRP) the objective function 
value corresponding with the rounded-off solution, then it 
follows that: 

z (RP) <= z (P) <- z (RRP) (4.2) 

In other words z (RP) is a lowerbound on the unknown 
optimal objective function value z (P) and gives an 
indication of how good, i. e. how near-optimal, the 
rounded-off objective function value z (RRP) actually is. 

This relaxation idea was used by Boomsma [4] and proceeded 
by Gademann [5]. For the Simplex part of the job they used 
the Land and Doigh algorithm (LANDO) with a few minor 
adjustments to make it appropriate for this type of 
problem. 

Gademann extended Boomsrna's program by making it work with 
multiple objective functions. Suppose there are linear 
objective functions fk (x) = �j Cjk*xj for k=l .. p. Now the 
linear multiple objective function F is given by 
F (x) = �k µk*fk (x) = �k �j µk*cjk*Xj. 

It is obvious that this multiple objective function is not 
essentially different from the single objective function 
of (P), but this approach makes it easier to give 
priorities to certain goals by an appropriate choice of 
the weight-vector µ. 

The main disadvantage of this approach can also be found 
in the use of the weights. A lot of experience with the 
algorithm is required to be able to assign values to the 
weight-parameters µk in a fast satisfactory way. 



Figure 4.1 
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Quadratic 
objective 
functions 

The flowchart of the multi-objective algorithm by Gademann 
can be found in figure 4.1. 

IB Start I > Assign weights to the 

r-
> objective functions 

I 

V 

Determine a continuous 
solution with LANDO 

I 

V 
Determine integer solution 

by rounding off 
I 

I 
V 

(I) Backtrack step on integer solut ion 
I 

no V 
Satisfied with yes 
resulting test ? 

Flowchart of the multi-objective algorithm 

The backtrack step means that the integer solution is 
checked on the presence of a redundant item, i.e. an item 
that can be omitted (corresponding variable is set to 0) 
without violating the information constraints. 

In section 8 there will be some test results for this 
algorithm. 

4.1. 3 The multiple quadratic approach 

Gademann [5] also pays attention to problems with linear 
constraints and multiple quadratic objective functions. 
These problems have the following form. 

(QP) mint µk*fk (x) 
s.t. n 

k=l 

� ai·*x· >- bi j-1 J J 

Xj £ ( 0, 1) 

i-1. .m (4.3) 

j-1. .n 

Here fk (x) - �1 L j dklj*x1*xj + �j Ckj*Xj is a quadratic 
objective function for k-1 . .  p. The weights µk k-1 .. p have 
the same interpretation as in the linear case. 

17 
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In case the multiple objective function is strictly 
convex, Gademann shows that the algorithm of Wolfe can 
optimally solve the relaxed version of this problem. The 
general idea behind this algorithm is that an optimal 
solution has to satisfy a number of conditions: the Kuhn­
Tucker conditions. Now finding a solution vector x that 
satisfies these conditions becomes a problem with linear 
constraints and a linear objective function. This can be 
solved with the Simplex method. For more details I refer 
to Gademann [5] . 

However there are a few practical problems. First the 
resulting linear programming problem has 4n+2m variables 
and n+m restrictions. Since n will be quite large it can 
last very long before Simplex has solved this problem, 
even on a big mainframe computer. Secondly one can place 
questionmarks at the rounding-off procedure. There will no 
longer be at most m variables resulting from Simplex with 
non-integer value. In some cases all m variables can have 
a non-integer value. Now rounding off to an integer 
solution will probably lead to a big gap between the 
optimal solution for (QP) and the integer solution found. 

Test results in [5] have shown that for small problems (20 
items) the Wolfe algorithm can give good solutions for 
(QP). For larger problems it can not be used in practice 
yet, because of the already mentioned size of the 
resulting linear programming problem. Still this is an 
important method, since quadratic objective functions 
enable the processing of logical restrictions. 

A logical restriction is a condition on a test of the 
form: if item 1 is selected, then item 2 should not be 
selected and vice versa. This restriction can be dealt 
with in a quadratic objective function like in (4.3), by 
setting dk12-dk21-H, where H is a large positive constant, 
for k=l .. p. 

Until there is no sound way to settle with logical 
restrictions, this quadratic objective function approach 
can not be ignored. However it still needs a lot of care 
and dedication to become of practical use for the item 
selection problem. 



Surrogate problem 

4.2 The heuristic approach 

Among the heuristic approaches, I consider those 
algorithms that give a good feasible, though not 
necessarily optimal, solution for (P) in relatively short 
time. The main feature of the heuristic algorithms is the 
relative weight of the exactness of the solution against 
the computation time. One tries to get a near-optimal 
solution for (P), but an increasing accuracy imposed on 
the item selection process will lead to increasing 
computation times. 

Heuristic algorithms for the item selection problem were 
developed by Boomsma [4] and Razoux Schultz [12] . I will 
consider the Surrogate method by Boomsma and the 
algorithms Mindev and Twoitems by Razoux Schultz. 

4.2. l The Surrogate method 

In the Surrogate method problem (P) is reduced to the 
surrogate problem (SP). 

(SP) 

(4.4) 

j=l. .n 

So the multiplier vector µ reduces the different original 
information constraints from problem (P) to one surrogate 
constraint. Now of course the problem is how to choose a 
multiplier vector µ, so that when the surrogate constraint 
is satisfied this is also true for the original 
information constraints. Boomsma shows that such a 
surrogate constraint is obtained by taking for µ the 
vector of the dual variables correspondin& with the 
optimal solution for (RP). 

Since at that moment there was no fast method available to 
obtain these dual variables, Boomsrna makes use of an 
iterative method by Gavish and Pirkul [6] to find good 
multipliers. 

The flowchart of the resulting heuristic, that finds a 
good solution for (P), can �e found in figure 4.2. It 
should be noted however that Boomsma studied problem (P) 
with all cj-1, i.e. he was only minimizing the number of 
items. This makes problem (SP) very easy to solve: 
continue to select that item j which maximizes �i µi*aij 
until the selected coefficients add up to �i µi*bi. 

19 
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Flowchart of the Surrogate method 

The most critical constraint is determined as follows. 
Solve the problems (P(i) ) for i=l . .  m. These problems are: 

(P(i) ) min � c·*x· 
j=l J J s.t. n 

� a· ·*x· >= b
1
• 

j=l 1J J 
Xj € { 0, 1} 

(4. 5) 

j=l. . n  

Let z(i) be the optimal objective function value of 
problem (P(i) ) .  If z(i*) = max z(i) then i* is the most 
critical constraint, and z(i*) the objective function 
value of the corresponding solution. 



Ad (II) 

Ad (I) 

The ideal pair of multipliers is determined iteratively by 
searching for a µ>0 so that the solution S (l,µ) to 

n 
min

j�l 
cj*Xj 

s.t. n 

j�l
(a1j+µ*a2j)*xj >- b1+µ*b2 

Xj E (0, 1} j-1 . ,n 

(4.6) 

satisfies both constraint 1 and 2. Note that here µ1=1 and 
µ2-µ. 

After some testing Boomsma made an adjustment, in which 
the loop in the flowchart of figure 4.2 is traversed only 
once. If the constraints are not satisfied a filling-up 
procedure is called that selects extra items until all 
information constraints are satisfied . 

In [4] Boomsma gets good test results with this Surrogate 
method. However the more recent study by Razoux Schultz 
[12) shows better heuristics which make this method a bit 
outdated. Moreover for practical use there should be the 
possibility to work with costs. This can be arranged in 
this method, but then it becomes a lot more difficult to 
find optimal solutions for the (0, 1)-knapsack problems 
(4.5) and (4.6) , which would lead to the use of less 
accurate heuristics. 

4.2.2 The clusterpoint method 

The clusterpoint method was developed by Razoux Schultz 
[12). It is a heuristic for problem (P) with c·-1 for 
j=l .. n. Razoux Schultz discovered that in a so1ution for 
an item selection problem the selected items have 
difficulty parameters that are always close to one or two 
values: the clusterpoints. He made use of this feature by 
constructing an algorithm that first determines two near­
optimal clusterpoints, i.e. clusterpoints close to the 
best possible clusterpoints, and then selects items with 
difficulty parameter close to those points until all 
constraints are satisfied. 

The algorithm was implemented in the computer program 
Twoitems of which the flowchart can be found in figure 
4. 3. 

The clusterpoints bl and b2 are optimal if the function 
G (bl, b2) - min ( [f (81-bl) + f (81-b2)] / I (81) } 

i-1. . m  
is maximal. Here 81 is the ability level corresponding 
with information point i and ! (81) the target information 
value at information point i, i-1 . .  m. The function f is 
the item information function (1.5). 
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Fl-> � 
Find two near-optimal 
clusterpoints bl and b2 

l .-------·v--------------. 

,,,. 

I 
no 

no 
I 
I 

Find the two items jl and j2 
with difficulty parameter 
closest to bl and b2 resp. 

I 

V 

Select an item as close 
to jl as possible 

I 

V 

I All constraints satisfied? 
I 

V 
Select an item as close 

to j2 as possible 
I 

V 

I All constraints satisfied? 
I 

yes 

yes 

I 
V 

1Br-

Flowchart of the clusterpoint algorithm Twoitems 

In words this search for optimal clusterpoints proceeds as 
follows. The information point where the total information 
from two items with difficulty parameters bl and b2 
divided by its target information value is minimal is 
called the critical information point. Now one searches 
for the pair (bl, b2) that maximizes this relative 
information at the corresponding critical information 
point. 

Razoux Schultz showes that this searching can be done in a 
fast way by a stepwise approximation, making use of some 
special properties of the item selection problem. For 
further details I wish to refer to his report [12]. 

Note that in order to get the best results with this 
algorithm, the items should be ordered within the bank 
according to increasing difficulty. This is no essential 
restriction, so for reasons of convenience I will asurne 
all item banks in this report to be ordered that way. 

The test results in [12] for Twoitems are very good. In a 
few seconds this method gives a very sharp upperbound to 
the minimum number of items that is required to satisfy 
the information constraints. Because this algorithm works 
exclusively with costs Cj-1 for j-1 .. n, there is no direct 
practical use for it, but it can very well be used as part 
of a more general algorithm to get a proper idea about the 
number of items involved in the selection process. 
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Ad (I) 

Ad (II) 

4. 2.3 The minimum deviation method 

The minimum deviation method is a heuristic by Razoux 
Schultz [12] for the positive cost problem (P) . It is an 
extension of an algorithm by Boomsma [4] , which was only 
suited for the cases with cj-1 for j=l . .  n. It was 
implemented in the computer program Mindev and the working 
of it can best be understood by inspecting the flowchart 
in figure 4. 4. 

II Start Determine information point i 
that requires most information 

no 

(I) 

(II) 

,--------v-----------, 
Find non-selected item k with 
difficulty parameter approximately 
equal to 81 and set M: =h (81, k)/ck 

.....-------v-----------.. 

Calculate d and search in interval 
(81-d, 81+d) for non-selected 

item j with h (9i, j)/cj > M 

Add item k 1<--
n

_
o

_�, Suchvitem j exists? 
to selection 

V 

I 
.....----�v yes 

Update k: =j and 
M: -h (81, J)/cj 

All constraints � Backtrack step l�BI 
satisfied ? - - 7 -

yes 

Flowchart of the minimwn deviation method 

Define Cmin = min Cj and h (0i,J) the value of the 
information function of item j at ability level 81 
(=information point i) for i=l .. m and j-1 . .  n. In this 
algorithm one searches for the item j which maximizes 
h (81, j)/cj. Since M-h (81, k)/ck for a non-selected item 
it follows that h(81,j)/cj >- M ➔ h (81, j) >- M*cmin· 
the ordering of the item bank can be used. 

k, 
Now 

By means of the inverse of the information function (1. 5) 
a search interval for the optimal item j can be 
determined. Let d=ln [a+j (a2+1)] with a-½ (M*cmin), then the 
search interval is given by (81-d, 81+d). Only items with 
difficulty parameter in this interval can produce the 
optimal item j. When during the search M gets larger, the 
interval gets smaller and so this process will yield the 
optimal item j. 
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For a more detailed explanation I again refer to Razoux 
Schultz' report [12). 

Mindev gives good test results. It is very fast and the 
obtained solution forms a pretty sharp upperbound to the 
optimal solution for (P). Though usually it does not 
produce the optimal solution, this method is very 
appropriate for a first quick estimate of the costs. In 
section 8 Mindev will be tested elaborately in order to 
compare it with more accurate but slower algorithms. 



5 Working with categories 

Sometimes a test has to be designed with items concerning 
different subjects . For instance a Physics test should 
cover the topics Electricity, Magnetism and Nuclear 
Physics. Moreover these topics should be in the test at 
certain proportions, for instance half of the test should 
deal with Electricity, a third should cover Magnetism and 
the rest should be about Nuclear Physics. 

In [5] Gademann gives a method to deal with such category 
division. He formulates a quadratic objective function: 

(5.1) 

Here DFk - desired fraction of selected items referring to 
subject k, for k-1 .. s; Sk - set of items in the item bank 
referring to subject k, for k-1 .. s. So with this objective 
function the sum of the quadratic deviations between the 
desired and actually determined numbers of items for each 
subject is minimized . 

Since the quadratic multiple objective approach in [5] is 
not yet suitable for practical use and the test results 
are not that good, I had to search for alternatives. Here 
I will discuss three different approaches. Two of them are 
based on the algorithm Mindev and one works with the 
Simplex method. 

5.1 The Simplex approach 

The Simplex method can be used for working with categories 
by adding extra constraints to the problem. When defining 
DFk and Sk as above, appropriate constraints could be: 

n n 
DFk*.L Xj - 1 <- L Xj <- DFk*

j
L
=l

Xj + 1 
J=l jESk 

k-1 .. s 

This would lead to the following set of constraints: 
n 

. L Xj - DFk*. L Xj >- -1 
J€Sk J-1 

n 
DFk* L Xj - L Xj >- -1 

j=l jESk 

k-1 .. s 

k-1 .. s (5. 2) 

Although this seems to be a solid way to solve the 
category division, there are a few disadvantages. First 
when a solution obtained with the Simplex method is 
rounded off to an integer solution by setting all Xj with 
O<xj<l equal to one, it may occur that one or more of the 
constraints out of (5.2) are violated. Now this is not the 
end of the world, there could still result a good category 
division, but it may not be as sharp as aimed for. 
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The second disadvantage concerns the exactness of the 
integer solution. In section 4.1.2 was shown that when the 
number of constraints increases, also the number of non­
integer variables in the solution of the linear relaxation 
of (P) increases. After rounding off, the integer solution 
tends to be less exact. So the more category constraints 
of the type (5.2) are added, the less exact the final 
integer solution becomes. 

Those two disadvantages can be taken care of partly by 
using instead of (5.2) the constraints : 

i: x ·  >- DFk*N 
j ESk J 

k=l . . s  ( 5 . 3 ) 

Here N is the minimal number of items required to satisfy 
the information constraints, so the objective function 
value to (P) with cj-1 for j-1 .. n. Now rounding off will 
not give problems, and the number of extra constraints has 
been halved. N needs to be known in advance, which could 
be accomplished by using the fast accurate heuristic 
Twoitems from section 4.2.2. 

Since adding extra constraints to the Simplex method will 
lead to both higher computation times and less exact 
integer solutions I decided to give priority to finding 
good and fast heuristics to solve this category division 
problem. Therefore I did not implement the above approach 
in an algorithm. However this does not mean that this 
approach is not appropriate for implementation. When the 
heuristics I will descibe in the next sections, would not 
satisfy in future practice, this idea can still be used in 
an effort to produce a good algorithm. 

5.2 The Split - up approach 

This method is based on the principle of dividing problem 
(P) into s subproblems, where s is the number of 
categories one is working with. These subproblems (Pk) 
have the following form : 

(Pk) min.� cj*xj 
s. t. J ESk 

� a··*x · >= DFk*bi j ESk l.J J 

Xj E { 0 ,  1 )  

i-1 . . m  (5.4) 

Note that the subsets Sk form a partition of the item 
collection { 1  .. n )  and that �k DFk*bi = bi. Now all items 
selected on the basis of these subproblems put together 
form a feasible solution for the original problem (P), and 
furthermore the proportions between the categories will be 
approximately equal to the desired ratios. 



Figure 5.1 

In general the resulting objective function value will be 
greater than z (P), because of the compensation effects 
that can arise at the selection process of problem 
(P) , i.e . an information shortage for one category can be 
compensated by an information overspill for another 
category. This compensation effect can partly be 
accomplished , using this approach, by performing a 
backtrack step on the resulting solution. However this 
will make the resulting proportions less desirable, so one 
can question whether a cost reduction is worth the 
inaccuracy. 

I used the algorithm Mindev from section 4.2.3 to solve 
subproblems (Pk) ,  I chose this algorithm because of its 
speed and ease of applicability in this situation. It is 
not the algorithm that gives lowest costs, but here the 
main interest is a good category division. The flowchart 
of the algorithm can be found in figure 5.1. 

fF-1--> �) 
Read desired fractions 
DFk for k-1. . s. 

I 

I k :�1 I 
yes 

.--------�v-----------, 
Assign all items from category k 

to subset Sk 
I 

.-----v------� 

Apply Mindev to Sk 

yes 

-------�v-------� 
Gather results and calculate 

resulting percentages for 
every category k, k=l .. s 

Flowchart of the algorithm Split- up 
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While reading the desired percentages DFk, k=l .. s, there 
is a check whether this input is correct, i.e. whether �k 
DFk = 100. A second problem may arise when percentages are 
given that lead to infeasible solutions, simply because 
there are not enough items of some category in the bank. 
This problem is related to the problem of specifying the 
target information values too high and will be discovered 
by the algorithm. In those cases a user just has to start 
from scratch again, that means specifying new target 
information values or percentages. This experience will 
probably make him richer. 

The above method was tested extensively and some of the 
results can be found in section 8, where a comparison is 
made with other algorithms. 

5 . 3  The Direct approach 

With this approach problem (P) is not divided into 
subproblerns, but solved as a whole by the algorithm 
Mindev. In order to get a nice category division there 
needs to be an adaptation in Mindev. 

Define s (j) = the category of item j, j=l .. n ;  N (k) = the 
number of items from category k selected so far, k=l .. n ;  N 
= the total number of items selected so far. Now in the 
steps (I) and (II) of the Mindev flowchart in figure 4.4 
an item j needs to be not only non- selected, but also has 
to meet the following requirement: 

N(s (j)) <= round ( DFs(j)*N ) (5.5) 

Here "round" represents the rounding-off function. This 
function is not absolutely necessary, but it weakens the 
demand somewhat, which will probably lead to more cost­
friendly solutions than with the Split-up approach. Since 
Mindev contains a backtrack step the proportions found 
will be less close to optimal than those of Split- up. The 
test results in section 8 will shine more light on both 
methods. 
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6 The TopS algorithm 

This algorithm is a heuristic method based on an article 
by David J. Gonsalvez e. a. [ 8 ] . In this article an 
algorithm to solve the multicovering problem with 
heuristics is presented, together with a way to construct 
a confidence interval for the optimal solution for this 
problem. The multicovering problem has the following form . 

n 
(MCP) min .�

1
cj*Xj 

s. t. n J-

- �
l

aij*Xj >- bi 
J-

Xj f { 0, 1} 

i-1. . m  (6 . 1) 

j-1. .n 

The difference with problem ( P) is that here aij e {0, 1 )  
for i-1 . .  m and j-1 . .  n. However article [8] proved to be 
applicable to the item selection problem too, after a few 
minor changes. Later on I will deal with the confidence 
intervals, but first I want to focus on the algorithm in 
its adapted form. 

6. 1 The algorithm 

The algorithm consists of two parts. In the first part 
problem (P) is solved several times with different item 
selection criteria. The best five solutions are picked out 
and the corresponding criteria are put in a special set : 
the topS. In the second part of the algorithm problem (P) 
is solved again several times, but now at every iteration 
(- selection of one item) a selection criterion is 
randomly chosen out of the topS. The best solution 
resulting from parts 1 and 2 will be the final solution. 
The solution of problem (P) goes according to the 
flowchart in figure 6. 1. 

Fl-> � 
Determine criterion (k, j) 
for all items j, j-1. . n  

I 

V 

Find n 
criteria 

on-selected 
n value and 

item i* with greatest 
add j to the selection 

I 

I 
V 

I All constraints satisfied ? 
I no I 

I Backtrackvstep 

Flowchart of solution procedure in TopS algorithm 
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In [8] ten possible criteria are given. Since this article 
is based on the multicovering problem, I had to 
investigate whether those criteria had any relevance for 
the item selection problem and whether there could be 
established any other suitable criteria, not mentioned in 
[8] . This lead to the following criteria. 

criterion 1 :  1/cj 

criterion 2 :  

criterion 3 :  1/cj 

criterion 4 :  

criterion 5 :  1/cj 

criterion 6: 

criterion 7 :  

criterion 8 :  1/cj 

m 
* � a · . 

i=l iJ 

1/cj 
m 

* � [ 
i�l 

1/cj 
m 

* � [ 
i=l 

1/cj 

1/cj 

m 
* � [ 

i=l 
(b (i)2*aij)/rsurn (i) 

aij /space ( i) 
m 

* .� b (i) 2*aij 1-l 
(b(i)2*aij)/space (i) 
m 

* � [ 
i-1 

aij/rsurn(i) ] 
m m 

* ln [ � 1/ ( � 1 
i-1 • i=l 

m m 

m 
- � a·.) 

i=l 1J 
m 

] 

* ln [ � b (i)/ {� b (i) 
i=l i=l 

- � a · .) 
i=l 1J 

Hereby it should be noted that each summation for i=l to m 
only applies to the violated constraints. Furthermore b (i) 
is the information still needed at information point i, 
rsurn(i) = �j aij • where the summation over j is performed 
with respect to every non-selected item j, and finally 
space (i) = rsurn (i) - b (i). This means that both b (i) and 
rsurn (i) change continuously during the selection process, 
and therefore all criterion values have to be calculated 
anew at every step. I assume rsurn(i) and space (i) always 
to be greater than zero, else there would be no feasible 
solution for (P). 

Regarding criteria 7 and 8 a computational problem arises 
when the arguments of the logarithm get smaller than one. 
In those cases the criterion values are set equal to 1/cj . 
In the original multicovering case those problems would 
not arise. 

Finally with "criterion (k, j)" in figure 6.1 is meant the 
criterion value of criterion k for item j, k=l .. 8, j =l .. n .  

The flowchart of the complete Top5 algorithm can be found 
in figure 6. 2. 

This random choosing can be done in a weighted and in an 
unweighted version. I worked with weights, i. e. gave the 
criterion that scored best in part 1 a greater chance to 
be chosen than number two etc .. The values of these 
weights are more or less arbitrary and can be found best 
through experience. 
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Part 1 :  
� � Start ij . � 

Solve (P)vwith criterion k r 
I 

I k : -�+1 I 
yes 

no 
.---------v------------. 

Pick out best five solutions and put 
corresponding criteria into the tops 

I 

Part 2 :  I r ,�1 I 

(I) 

----------·v·--------------, 
Solve (P) ,  but now choose randomly a 
criterion from topS at every iteration 

(- step (I) of figure 6 . 1) 

I r =+l I 
v·---- yes 

r<-Rmax? 
no 

,------------v---------, 
The best solution from the 8+Rmax 

� 
.__ __ s_o_l_u_t_i_o_n_s_i_s_t_h_e_f_i_n_a_l_s_o_l_u_t_i_o_n__,-� 

Flowchart of the complete TopS algorithm 

Experiments performed with the algorithm from figure 6 . 2  
exhibited two striking features . First, the first part of 
the algorithm gives the same three criteria as the best in 
almost all cases. Those criteria are the numbers 5 , 2  and 
4, in that order. Secondly it takes a very long time , 
sometimes more than 30 minutes for a problem with 300 
items , to solve (P) with this algorithm . This is due to 
the fact that (P) is solved not just once, but altogether 
8+Rmax times . 
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This made me introduce the following changes into the 
algorithm. 
- The first part is skipped. I directly start with the 
second part of the algorithm, with a top3 instead of a 
topS, consisting of criteria 5, 2 and 4 .  
- The weights for this top3 are set 0.50, 0.30 and 0. 20. 
Rmax is set equal to 3. 

These changes lead to more reasonable computation times, 
as can be seen in the des cription of the test results in 
section 8. 

6. 2 A confidence interval for the optimal solution 

In [ 8 ]  a method is given to construct a confidence 
interval for the optimal solution for (P), in the light of 
the heuristic solutions from the second part of the TopS 
algorithm. The idea is based on an article by B. L. Golden 
and F. B. Alt [ 7 ]  and stems from the following line of 
thought. 

Suppose there are S independent solutions for (P) obtained 
by one or more heuristics. The corresponding objective 
function values Zi are bounded from below by the unknown 
optimal objective function value z (P), i=l . .  S. Now the 
distribution of the Zi approaches a Weibull distribution 
with z (P) as the location parameter. This distribution 
generally has the following shape. 

Fx (xO) = Prob ( x<=xO ) = 1 - exp ( - [  (xO-a)/b ]c ) 
with 0<=a<=x0 , b>=O and c>=O (6.2) 

Here a is the location parameter, so in this case a=z (P), 
b is the s cale parameter and c is the shape parameter. 

Suppose that from now on the Zi are arranged in increasing 
order with z1=v. It can be derived from (6 . 2) that 
Fzi (a+b) = l-exp ( - 1) .  From this it follows: 

Prob ( v<=a+b ) 1 - Prob ( v>a+b ) 
1 - Prob ( zi>a+b, i=l . .  S )  = 

1 - (l- Fz1 (a+b))* . . . .  * (1 - Fzs (a+b)) 
1 - exp ( - S) 

Or: Prob ( v-b<=a<=v ) = 1 - exp ( - S) (6.3) 

In other words : (v- b, v) is a 100* (1- exp ( - S))% confidence 
interval for the optimal objective function value of 
problem (P). So the intention now is to get an estimate of 
the parameter b from the objective function values Zi, 
i=l .. S. 



Maximum likelihood One way could be to solve the maximum likelihood equations 
equations for the parameters a , b  and c from the Weibull 

distribution. Those equations can be found in Johnson and 
Kotz [10 ] , but are very complicated : it would take a lot 
of time to solve them . 

Statgraphics A second method is to use statistical software that is 
able to provide good estimates for the Weibull parameters. 
I tried the software package Statgraphics, but this 
package knows the Weibull distribution only by the two 
parameters b and c ;  a is assumed to be zero, which it is 
not in the problem considered here . I tried to solve this 
by substracting v from all Zi, i-1 .. S, but this did not 
lead to satisfactory results. 

A third approach was suggested in [ 8 ] . Good estimates for 
the Weibull parameters are given by : 

a v- (z2 - v) 
b Zr-a 
c = ln (-ln(0. 5))/( ln(zm-a)-ln (b) ) 

(6 . 4) 

Here Zm is the median of z1 .. zs and r= [0 . 63*S+l], with [z] 
being the largest integer less than or equal to z. In ( 8) 
the estimates from (6.3) are used as initial values for 
the Harter-Moore iterative procedure [9 ] in order obtain 
very good estimates for the Weibull parameters. 

Since the Top5 method was already taking quite a lot of 
time, I decided to use the initial values from (6.3) to 
construct the confidence interval (v-b, v) for z (P) . Note 
that expression (6 . 2) with S-Rmax=3 already provides a 95% 
security that z (P) is in the interval, but the estimate 
for b will in this case not be so accurate. The 
consequences of this are illustrated by the test results 
in section 8. 
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7 The Subgradient method 

This method was developed according to an article by J.E. 
Beasley [2] , which on its turn was based on an article by 
E .  Balas and A .  Ho [1] . The article [ 2 ]  deals with the set 
covering problem (SCP). 

(SCP) 
n 

min � c·*x· · =1 J J s.t. n J 
� ai · *x ·  >- 1 

j-1 J J 

Xj f { 0, 1} 

i-1. .m (7.1) 

j-1. .n 

This is basically the same problem as the multicovering 
problem of (6.1) and so the main difference with (P) is 
again that aij f (0, 1} for i-1 . .  m and j-1 .. n. Note that 
here bi-1 for i=l . .  m .  This is no limitation, since in (P) 
every information constraint i can be divided by its 
target information value bi, because all bi>O, i=l . .  m. 
From now on in this section I will assume that (P) is 
transformed accordingly, i.e. bi-1 for i=l . .  m. 

Although the algorithm that is described in [2] is 
specially designed for (SCP) , I adopted the general 
principle on which the algorithm was built. The underlying 
idea is as follows. 

First a feasible solution for the dual problem of a 
relaxed version of problem (P) is determined. This serves 
as a lowerbound on the optimal objective function value of 
(P). Then this lowerbound is improved by means of 
subgradients. An upperbound is obtained by a heuristic 
that is called several times in the course of the 
algorithm and that makes use of the current values of the 
lagrange multipliers. 

In order to get a clear picture of the relations between 
the various primal and dual problems that are used in this 
section, I will define those problems that have not been 
considered yet. 

The dual problem (DRP) of 

(DRP) 
n m 

min ( . �  Wj - � ui 
t J=l i=l s. . m 

w ·  
J 

- � a · j*u · . 1 l. l. l.= 
Ui 
Wj 

problem (RP) of (4.1) is : 

) 

>= - c· j=l. .n ( 7 . 2 ) 
0 J >= i=l. . m 

>= 0 j=l. . n  



Linear relaxation 

Figure 7. 1 

Setting all w1 -0 for j -1 . .  n yields the dual problem (DP) 
that is regaraed in behalf of this algorithm . 

(DP) 
m 

max � ui i-1 s . t .  m 
� ai · *u ·  

i-1 J 1 
Ui 

j -1. . n  
i-1 . . m  

( 7 . 3 ) 

This is the dual problem of problem (RP) without the 
upperbounds to the variables Xj , j -1 . .  n. I call this 
latter problem the linear relaxation (LRP) of problem (P) . 

( LRP) min .�
1

cj *Xj 
s. t. n J -

� aij *Xj >- 1 
j-l x ·  >- 0 

J 

i-1 . . m  
j -1 .  . n  

( 7 . 4 )  

Now let z (Q) be the optimal obj ective function value of 
problem (Q) ,  where Q is from the problem set 
{ P, RP , LRP, DRP , DP ) ,  then it follows that : 

z (LRP) = z (DP) <- z (RP) - z (DRP) <- z (P) ( 7 . 5 ) 

So a feasible solution for (DP) provides a lowerbound on 
the optimal objective function value of (P) .  

In figure 7 . 1 the flowchart of the algorithm can be found. 
The various subroutines used in this flowchart will now be 
explained in order to elucidate the algorithm. 

� Start 1�1 ---� Initialization 

V 
? Produce a lowerbound with the 

lagrangean lowerbound procedure 
I 

1 .  2 
I 

V 
1 I I 

Decision box 
I 1. 1 

V 
Find feasible solution with heuri stic 

I 

2 . /i 
V 

I 
2. 1 

Decision box 2 
I 

V 

Update lagrange multipliers 
with subgradients 

Flowchart of the Subgradient algorithm 
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Both an initial feasible solution for (P) as for (DP) are 
required. The former serves as the first upperbound and 
the latter as the first lowerbound on the optimal 
objective function value of (P). 

The first upperbound Zub is obtained quickly by Mindev, 
while the first lowerbound Zlb is determined by setting 
for all k=l .. m: uk: - u: - min [ cj/ �i aij ] . This gives a 
feasible solution for (DP) , because suppose otherwise, 
i.e. there is a k e (1 . .  n} with L i aik*ui > ck, then 
u*L i aik >ck and hence ckf L i aik < u - min [ cj/ �i aij ] , 
which leads to a contradiction. So the first lowerbouna is 
given by Zlb - L i ui - m*u. 

The lagrange multipliers si are initiated as si: =ui=u, 
i-1. . m. 

In this procedure the lagrangean lowerbound problem (LLP) 
is solved , given the current values of the lagrange 
multipliers si, i-1 . .  m .  This problem is: 

(LLP) 
n 

min ( � [ Cj 
s . t. j-l 

Xj f ( 0 , 1} 

m m 
- L a · · *s · ] *x ·  + � s · ) 

i-1 iJ i J i-1 i 
j=l. .n 

( 7 . 6) 

Now define Cj: - Cj - L i aij *si as the lagrangean costs, 
then the solution for (LLP) is found by setting Xj : -1 if 
Cj <=D and Xj: -0 otherwise, j-1 .. n. Call the resulting 
solution vector X. It can be proved that a new lowerbound 
is given by z - L i Cj*Xj + L i Si· If z>z1b then update 
z1b: =z. In that case a sharper lowerbound has been found. 

This heuristic produces a feasible solution for (P), which 
also is a new upperbound. It selects items at minimal 
lagrangean costs till all information constraints are 
satisfied. It is not so much a sophisticated as a fast 
algorithm that makes use of the continuously changing 
lagrange multipliers. As a consequence it provides 
different solutions, which tend to get better as the 
lagrange multipliers are improving . The flowchart of this 
heuristic can be found in figure 7.2. 



Figure 7. 2 
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Flowchart of the greedy heuristic using lagrangean costs 

The subgradients Gi are determined in order to improve the 
lagrange multipliers si, i-1 . . m. They provide a search 
direction for better Si and are defined as: 

n 
Gi : = 1 - L aiJ

· *X · i-1. . m  (7. 7) 
j -1 J 

Here X= (X1 . .  Xn)T is the current solution vector determined 
by the lagrangean lowerbound procedure. 

Intuitively Gi can be seen as a kind of slack parameter 
for the information constraint i from problem (P). If Gi<O 
then there is enough information at constraint i and 
therefore one can give less weight to this constraint: si 
can be lowered . If Gi>O then there is not enough 
information at constraint i, so there has to be an extra 
emphasis on this constraint: Si has to be enlarged. All 
this applies to i-1 . .  m. 

The lagrange multipliers are updated as follows . Let f be 
a factor that is initiated at 2 and is halved whenever 
there is no substantial improvement on the lowerbound for 
some iterations in a row. Define the stepsize T as 
T: - f* (zub - z1b)/ L i Gi2 , then the new lagrange 
multipliers become: 

si: - max [ 0 ,  Si + T*Gi ] i�l . .  m (7. 8) 

Although the greedy heuristic is fast, it can not be 
called at every iteration, since the number of iterations 
can be more than 200. Therefore it is only called about 
ten times during the algorithm . In box l the heuristic is 
called whenever the improvement of the lowerbound has been 
less  than 0.01 over the last nine iterations [ 1.1 ] . 
Otherwise the algorithm continues with box 2 [1. 2]. 
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Box 2 
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Whenever the improvement on the lowerbound has been less 
than 0.01 over the last ten iterations, the factor f is 
halved. If this makes f<0.008 the algorithm stops [2.1]. 
Otherwise the lagrange multipliers are updated again 
[ 2 .  2]  

The just described algorithm is my final version of 
Subgradient, the version I used in the experiments. 
However this does not mean that it is the best possible 
Subgradient method. Especially the criteria used at the 
decision boxes offer an opportunity for changes that might 
lead to improvements. I did some efforts on that area, but 
without significant success. 

A second possibility for improvement may be the greedy 
heuristic. If in some easy way one could find out when the 
lagrange multipliers are "good", the heuristic could be 
called at those moments, probably leading to better 
solutions than in the situation where the calls take place 
rather arbitrary. 

Further I tried another heuristic based on the Surrogate 
method. The lagrange multipliers si, i-1 .. m, are used in 
order to get problem (P) in a form like (4.4) : a (0, 1)­
knapsack problem with one surrogate constraint. Now a 
feasible solution for (P) is obtained by selecting item j 
which maximizes L i si*aij/cj until all information 
constraints are satisfiea. However this search is not 
essentially different from the search for an item j which 
minimizes (cj - L i si*aij), which is done at the greedy 
heuristic. So it is no surprise that the results with this 
surrogate heuristic were almost the same as with the 
greedy heuristic, while the latter was a bit faster . 
Therefore I maintained the greedy heuristic. 

Another effort I made concerned speeding up the 
convergence of the lagrange multipliers, by preventing a 
zigzag-process. According to a study by A. de Boer [3] 
this zigzag-effect can occur when the angle between the 
old multiplier vector sk and the new one sk+l is obtuse. 
That is whenever <sk+l, sk> < 0, with <., . >  the Eucledian 
inproduct . In this case the change in the lagrange 
multipliers is too drastic and has to be slowed down . This 
can be done by setting the new lagrange multipliers 
vector: 

(7 .  9 ) 

Unfortunately this adjustment leads to a deterioration 
instead of an improvement, however with other changes of 
this kind a better Subgradient method might be obtained. 

In the next section this method will be tested and 
compared with other methods from this study. 



8 Test results 

In this section various methods from the previous sections 
are tested in order to come to a clear insight into the 
practical use of these methods. For this testing I always 
used the same set of problems : a problem file introduced 
by E. Timminga [14] consisting of thirteen problems with 
various structures. This problem file can be found in 
appendix I. Further I worked all the time with an item 
bank, generated by a program by Razoux Schultz [ 12] , 
containing 300 items. The difficulty parameters are drawn 
from a Normal distribution with mean equal to 0 and 
variance equal to 2. The categories are drawn from a 
Discrete Uniform distribution on { l  .. 5) . This bank can be 
found in appendix I I. 

The algorithms used for the testing are the Simplex 
algorithm from section 4. 1.2 , the algorithm Mindev from 
section 4.2. 3, the TopS method from section 6 ,  which is 
strictly speaking a Top3 method , the algorithm Subgradient 
from section 7 and the two category division methods 
Split-up and Direct from the sections 5. 2 and 5. 3 
respectively. I introduced two little adaptations into the 
Simplex algorithm. First I made it appropriate for working 
with the given problem file and item bank and secondly I 
had it perform extra backtrack steps , i.e. investigate for 
every item whether it is redundant or not, instead of j ust 
for one item. 

The tests are performed on a Victor V286 personal computer 
(XT) for three different cost structures. First a low cost 
structure, in which favourable items , i.e. items with 
costs smaller than one , have unfavourable difficulty 
parameters , i.e. difficulty parameters in the range 
(-3, -0. 75) or (0.7 5, 3). So in the ordered item bank those 
items have low or high numbers. The second is a high cost 
structure: items with favourable difficulty parameter have 
an unfavourable cost. Finally there is a random cost 
structure , in which the costs vary from favourable to 
unfavourable throughout the item bank. 

8.1 Low cost structure 

In this cost structure all items have a cost of one , 
except for the items: 
1, 5, 295, 300: cost=0.5 
10, 20, 30, 270, 280, 290: cost=0. 6 
40, 50, 60 , 70, 80 , 210, 220, 230, 240, 2 50: cost-0.7 
The desired percentages for the category division can be 
found in the tables 8.1 up to and including 8.6. 
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Table 8 . 1 Test results on low cost structure for Simplex 

Problem Costs Time (s) Lowbound 

1 64 . 2  74 64 . 015 
2 18 . 6  101 18 . 396 
3 24 . 6  137 24 . 010 
4 76.0 274 75 . 619 
5 33.1 176 31 . 343 
6 60 . 7  151 60 . 126 
7 31 . 2 138 30 . 694 
8 7 3 . 2  178 72 . 570 
9 24 . 6  112 24 . 010 
10 73 . 2  136 72 . 390 
11 15 . 5  38 15 . 413 
12 76 . 0  147 75 . 619 
13 33.1 114 31 . 343 

Total 604 . 0  1776 595 . 548 

Table 8. 2 Test results on low cost structure for Mindev 

Problem Costs Time (s) 

1 64 . 4  17 
2 19.6 5 
3 24.6 5 
4 78 . 7  19 
5 33.1 5 
6 62.1 14 
7 31 . 5 4 
8 73 . 6  19 
9 24 . 6  5 
10 72.8 19 
11 15.7 5 
12 78.7 19 
13 33.1 4 

Total 612.5 140 
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Table 8.3 Test results on low cost structure for TopS 

Problem Costs Time ( s) Conf . int 

1 64 . 2  140 (64.2 64.2) 
2 19.0 9 8  ( 19 . 0  19 . 0) 
3 24.6 189 ( 24 . 0  24 . 6) 
4 76 . 4  412 (76 . 4  76.4) 
5 32 . 6  298  ( 32 . 6  32.6) 
6 60.4 254 ( 59.2 60 . 4) 
7 3 1 . 2 194 ( 3 1.2 31.2) 
8 72 . 8  223  (72 . 8  72 . 8) 
9 24 . 6  132 ( 24.6 24.6) 
10 7 3.2 271 (73 . 2  7 3 . 2) 
11 15 . 5  41 ( 15.5 15.5) 
12 77 .4 238  (77.4 77 . 4) 
13 32.6 162 ( 32 . 6  32 . 6) 

Total 604 . 5 2652 -

Table 8 .4 Test results on low cost structure for Subgradient 

Problem Costs Time (s) Lowbound 

1 64 . 2  82  64.015 
2 18.8 115 18 . 392  
3 24 . 6  154 24.010 
4 76 . 3  309 75.618 
5 32.4 241 31 .  309 
6 60.7 153 60.121 
7 31 . 2 114 30 . 692  
8 72.8 124 72. 568 
9 24.6 118 24.009 
10 72.6 239  72 . 352 
11 15.5 58 15.413 
12 75.7 129 75.618 
13 32.4 120 31. 331  

Total 601 . 8  1956 595 . 448 
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According to these tables, there is a clear difference 
between the fast algorithm Mindev and the slower 
algorithms Simplex, TopS and Subgradient. Mindev on the 
average requires only 11 seconds to solve a problem, while 
the slower algorithms take 137 to 204 seconds. However the 
latter algorithms give solutions that are closer to 
optimal. Here Subgradient bears the palm with also 
lowerbounds that are very close to those of the Simplex 
method. The confidence intervals given by the Tops 
algorithm are bad: at six of the thirteen problems the 
optimal objective function value is certainly not in the 
interval. This can probably be due entirely to the lack of 
a sufficient number of random runs Rmax. With Rmax=3 it 
appears to be impossible to come to a good estimate for 
the b-parameter of the Weibull distribution. More random 
runs however would lead to too high computation times. 

Before passing to the tables 8. 5 and 8.6 I have to explain 
the term quadratic deviation (QD), that is used in these 
and other tables. 

QD: = �k (DFk-RPk)2 (8. 1) 

Here RPk is the realized percentage for category k, 
k=l .. 5. These percentages can be found in the columns 
before the QD-column. 

Test results on low cost structure for Split-up 

Problem Costs Time (s) RP1 RP3 RP5 QD 

1 66. 8 4 30.4 40. 6 29.0 1 . 5  
2 21. 5 2 34.6 38 . 5  26. 9 33 . 0  
3 27. 8 2 30. 3 39. 4 30. 3 0. 5 
4 80.8 5 29. 8 40.4 29. 8 0. 2 
5 39.8 2 31. 1 40.0 28.9 2.4 
6 63.5 4 31. 3 38. 8 29. 9 3. 1 
7 38. 8 2 31. 8 40.9 27. 3 11.3 
8 7 7  .4 5 30.0 40.0 30.0 0 . 0  
9 27. 8 2 30. 3 39.4 30. 3 0. 5 
10 76.4 5 30.4 40 . 5  29. 1 1 .  2 
11 17. 3 1 31 . 6 36. 8 31. 6 15 . 4  
12 80.8 5 29.8 40. 4 29 . 8  0 . 2  
13 38. 1 2 30.2 41. 9 27.9 8. 1 

Total 656.8 41 - - - 7 7  . 4  



Table 8 . 6  Test results on low cost structure for Direct 

Problem Costs Time (s) RP1 RP3 RP5 QD 

1 66 . 2  15 27.9 39.7 32 . 4  10.3 
2 20.5 5 32 . 0  40.0 28 . 0  8.0 
3 26 . 5  4 34 . 4  37.5 28 . 1  29 . 2  
4 79 . 1  18 30.1  38 . 6  31 . 3 3.7 
5 34 . 5  4 27 . 5  40 . 0  32 . 5  12.5 
6 62 . 2  13 30.3 37 . 9  31. 8 7 . 7  
7 34.4 4 30. 8 38.4 30. 8 3 . 8 
8 74.9 17 29.5 38.5 32 . 0  6 . 5  
9 26 . 5  4 34.4 37 . 5  28 . 1  29 . 2  
10 75.1 18 30. 8 38 . 4  30.8 3.8 
11 15.8 4 29. 4 41. 2 29.4 2.2 
12 79.1 17 30 . 1  38 . 6  3 1 . 3 3 . 7  
13 34 . 8  4 30 . 0  37 . 5  32 . 5  12.5 

Total 629 . 6  127 - - - 133.1 

From the tables 8 . 5  and 8 . 6  it can be concluded that the 
Split-up approach comes closer to the desired percentages 
and in less time than the Direct approach . The latter 
however keeps a better eye on the costs . 

8.2 High cost structure 

In this cost structure the items 76  up to and including 
224 have a cost of 1 . 5  and the other items all have a cost 
of one . The desired percentages for the category division 
are DF1-0 , DF2-S0 , DF3-0 , DF4-S0 and DF5-0 . The test 
results can be found in the tables 8.7 up to 8 . 12 
included. 

The conclusions from the tables 8 . 7 , 8.8 , 8 . 9  and 8 . 10 are 
similar to those in the low cost structure . Now Mindev 
takes 7 seconds averagely , while the other methods require 
153 to 214 seconds . From those methods again Subgradient 
is best . The confidence intervals by TopS do not contain 
the optimal values at five problems at least. 

Concerning tables 8 . 11 and 8.12 I can say that again 
Split -up comes closer to the desired percentages at less 
time , but the Direct approach provides solutions at lower 
costs. 
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Table 8. 7 Test results on high cost structure for Simplex 

Problem Costs Time (s) Lowbound 

1 92.0 129 91 . 546 
2 24 . 0  88 22 . 826 
3 31 . 0  222 29 . 949 
4 105 . 0  246 104 . 416 
5 39.0 197 38 . 571 
6 74.5 178 7 3 . 452 
7 38 . 0  180 36 . 812 
8 104 . 0  139 103 . 679  
9 31.0 169 29.949 
10 104.0 207 103 . 679 
11 21 . 0  59 20 . 619 
12 105.0 260 104.416 
13 39.0 121 38 . 571  

Total 807 . 5  2195 798 . 485 

Table 8. 8 Test results on high cost structure for Mindev 

Problem Costs Time (s) 

1 92 . 5  14 
2 23 . 5  1 
3 31 .  5 2 
4 107 . 5  16 
5 39 . 0  2 
6 73 . 5  4 
7 39 . 0  1 
8 104 . 0  16 
9 31 . 5 2 
10 104 . 0  16 
11 21 . 0  4 
12 107 . 5  16 
13 40 . 5  3 

Total 815 . 0 97 
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Table 8 . 9  Test results on high cost structure for TopS 

Problem Costs Time (s) Conf . int . 

1 92 . 0  162 (92 . 0  92 . 0) 
2 24 . 0  99 (24 . 0  24 . 0 ) 
3 32 . 0  177 (32 . 0  32 . 0) 
4 105 . 5  436 (105.5 105.5) 
5 39.0 295 (39 . 0  39.0 ) 
6 74 . 0  271 (74 . 0  74 . 0 ) 
7 38 . 0  191 (38 . 0  38 . 0) 
8 104 . 0  244 (104 . 0 104.0) 
9 3 1 . 0  128 (31 .  0 31 . 0 )  
10 105.0 3 14 (105 . 0  105 . 0) 
11  21 . 0  49 (21 . 0  21.0 ) 
12 104 . 5  259 (104 . 5  104 . 5) 
13 39 . 0  160 (37.0 39 . 0) 

Total 809 . 0  2785 -

Table 8 . 10 Test results on high cost structure for Subgradient 

Problem Costs Time (s) Lowbound 

1 92 . 0  105 91 . 544 
2 23 . 5  102 22.826 
3 31 . 0  155 29 . 938 
4 104 . 5  238 104 . 414 
5 39 . 0  318 38 . 504 
6 73 . 5  167 73 . 440 
7 38 . 0  115 36 . 810 
8 104 . 0  127 103 . 679 
9 3 1 . 0  115 29 . 942 
10 104 . 0  250 103 . 561  
11 21.0 51 20 . 619 
12 104 . 5  148 104 . 415 
13 39 . 0  103 38 . 57 1  

Total 805 . 0  1994 798.263 
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Table 8 . 11 

Table 8 .12 
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Test results on high cost structure for Split-up 

Problem Costs Time (s) RP2 RP4 QD 

1 100.0 3 50. 0 50.0 0 . 0  
2 25. 0 1 50 . 0  50.0 0.0 
3 33. 0 1 50 . 0  50. 0 0. 0 
4 116. 0 4 50 . 6  49.4 0 . 7  
5 49. 0 1 48 . 9  51. 1 2 . 4  
6 99 . 0  3 48 . 7  51. 3 3 . 4 
7 49 . 0  1 48 . 9  51. 1 2. 4 
8 115 . 0  4 50 . 0  50 . 0  0. 0 
9 33.0 1 50 . 0  50.0 0.0 
10 115.0 4 50. 0 50. 0 0. 0 
11 23.0 1 47 . 6  52. 4 11. 5 
12 116.0 4 50 . 6  49.4 0.7 
13 49 . 5  1 48 . 9  51.1 2 . 4  

Total 922 . 5  29 - - 23 . 5  

Test results on high cost structure for Direct 

Problem Costs Time (s) RP2 RP4 QD 

1 99 . 0  8 49. 3 50. 7 1. 0 
2 24.5 1 50 . 0  50.0 0 . 0  
3 31 . 0  1 48 . 4  51. 6 5 . 1  
4 116 . 0  9 50 . 6  49. 4 0 . 7  
5 43 . 5  2 48. 8 51 . 2 2 . 9  
6 97 . 0  6 49. 3 50.7 1 . 0  
7 42 . 0  1 47 . 6  52.4 11 . 5  
8 114 . 0  9 49 . 4  50.6 0 . 7  
9 31.0 1 48. 4 51. 6 5 . 1  
10 114.0 9 49. 4 50. 6 0.7 
11 22.0 2 45 . 0  55 . 0  50.0 
12 116. 0 9 50. 6 49.4 0 , 7  
13 43 . 5  2 48.8 51 . 2 2 . 9  

Total 893. 5 60 - - 82. 3 

8 . 3 Random cost structure 

In this random cost structure for all items the costs are 
drawn from a Uniform distribution on (0.1 2. 1 ) .  The 
desired percentages are DF1-25 , DF2=25, DF3-25, DF4=25 and 
DF5=0 . The test results can be found in tables 8. 13  up to 
and including 8. 18. 



Table 8 . 13 Test results on random cost structure for Simplex 

Problem Costs Time (s) Lowbound 

1 30.36 182 30 . 326 
2 4.81 116 4.678 
3 8.11 205 7.767 
4 3 7.33 349 3 7.006 
5 16 . 22 273 15 . 884 
6 27 . 24 225 27 . 193 
7 16 . 22 227 15 . 884 
8 37 . 14 267 3 6 . 975 
9 8. 11 159 7 . 767 
10 37 . 14 243 3 6 . 975 
11 3 . 70 7 1  3.547 
12 37 . 33 243 37.006 
13 16 . 22 200 15.884 

Total 279.93 2760 276 . 892 

Table 8 . 14 Test results on random cost structure for Mindev 

Problem Costs Tirne (s) 

1 31 . so 28 
2 6 . 48 7 
3 8 . 40 8 
4 38.39 32 
5 17 . 30 9 
6 28 . 56 24 
7 17 . 30 9 
8 37 . 04 32 
9 8 . 40 8 
10 37. 04 32 
11 4.38 6 
12 38 . 39 32 
13 17 . 30 9 

Total 290. 48 236 
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Table 8 . 15 

Table 8 . 16 
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Test results on random cost structure for TopS 

Problem Costs Time (s) Conf. int. 

1 30. 36 158 (30.36 30. 36) 
2 4. 79 93 (4.79 4.79) 
3 7 . 98 184 (7.71 7 . 98) 
4 37.15 435 (37.15 37. 15) 
5 16 . 25 305 (16. 16 16. 25) 
6 27 . 24 258 (27.24 27. 24) 
7 16. 30 2 11 (16. 30 16 . 30) 
8 37 . 09 239 (37. 09 37.09) 
9 7. 98 131 (7. 98 7. 98) 
10 37. 09 298 (37 . 09 37 . 09) 
11 3 . 70 43 (3.70 3. 70) 
12 37 . 15 251  (37.15 37.15) 
13 16. 25  177 (16 . 25 16. 2 5) 

Total 279. 33 2783 -

Test results on random cost structure for Subgradient 

Problem Costs Time (s) Lowbound 

1 30. 36 89 30 . 326  
2 4. 79 89 4. 678 
3 8 . 11 122 7. 766 
4 37. 33 209 37. 005 
5 16. 22  183 15.881 
6 27. 24 119 27. 193 
7 16 . 22 113 15. 884 
8 37 . 04 105 36. 972 
9 8. 11 87 7. 767 
10 37. 04 219 36. 960 
11 3. 70 so 3. 547 
12 37. 28 107 37. 006 
13 16 . 22 95 15. 884 

Total 279. 66  1587 276. 869 

None of the tables 8 . 13 / 8. 16 enforces any changes in the 
conclusions about the algorithms. Mindev is the fastest 
with an average of 18 seconds, Subgradient requires 122 
seconds, and Simplex and TopS take 212 and 2 14 seconds 
respectively. The obtained costs hardly differ for the 
slow methods and the confidence intervals by TopS now 
certainly do not contain the optimal obj ective function 
value at four problems. 



Table 8 . 17 

Table 8 . 18 

Test results on random cost structure for Split-up 

Prob Costs Time(s) RP1 RP2 RP3 RP4 QD 

1 39 . 77 7 23 . 5  25.9 23 . 5  27 . 1  9 . 7  
2 10 . 79 2 23.1 26.9 23 . 1  26 . 9  14 . 4  
3 14.55 2 25.7 22 . 9  25 . 7  25 . 7  5 . 9  
4 48.86 8 24 . 4  25 . 6  24 . 4  25 . 6  1 . 4  
5 23 . 47 3 28 . 0  24 . 0  26 . 0  22 . 0  20 . 0  
6 37 . 02 6 23 . 6  25 . 0  26.4 25 . 0  3 . 9  
7 23 . 47 3 28.0 24.0 26 . 0  22.0 20 . 0  
8 48 . 21 8 24 . 2  25 . 3  24 . 2  26 . 3  3 . 1  
9 14 . 55 2 25 . 7  22 . 9  25 . 7  25 . 7  5 . 9  
10 48 . 21 8 24 . 2  25 . 3  24 . 2  26 . 3  3 . 1 
11 7 . 36 2 25 . 0  25 . 0  25 . 0  25 . 0  0 . 0  
12 48 . 86 8 24 . 4  25 . 6  24 . 4  25 . 6  1.4 
13  23 . 47 3 28.0 24 . 0  26 . 0  22 . 0  20 . 0  

Tot 388 . 59 62 - - - - 108 . 8  

Test results on random cost structure for Direct 

Prob Costs Time(s) RP1 RP2 RP3 RP4 QD 

1 37 . 74 31 22 . 5  26 . 3  26 . 2  25 . 0  9 . 4  
2 6 . 13 8 28 . 0  24 . 0  24 . 0  24 . 0  12.0 
3 9 . 80 8 21 . 2 24 . 2  27 . 3  27 . 3  25 . 7  
4 47 . 04 35 23 . 3  25 . 6  25 . 6  25 . 5  3 . 9  
5 18.94 11 21 . 3 27 . 7  23 . 4  27 . 6  30 . 3  
6 34 . 90 26 25.0 25 . 0  26 . 4  23 . 6  3 . 9 
7 18 . 94 11 21 . 3 27 . 7  23 . 4  27 . 6  30 . 3  
8 46 . 31 34 22.5 25 . 8  27 . 0  24 . 7  11 . 0  
9 9 . 80 8 21 . 2 24 . 2  27.3 27.3 25 . 7  
10 46.31 35 22 . 5  25 . 8  27 . 0  24.7 11 . 0  
11 5 . 00 6 26 . 3  21 . 1  31 . 6 21.0 76 . 5  
12 47 . 04 35 23 . 3  25 . 6  25 . 6  25 . 5  3 . 9  
13 18 . 94 10 21 . 3 27 . 7  23 . 4  27 . 6  30.3 

Tot 346 . 89 258 - - - - 273 . 9 

This also leads to the same conclusions as before . Split­
up is the fastest and gives better proportions , while 
Direct provides solutions at lower costs . 
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9 Complexity of the algorithms 

In this section I will make some remarks on the complexity 
of the algorithms that were tested in the previous 
section, in connection with the size of the item selection 
problem. This size depends on the number of items in the 
bank, n, and on the target information values, which have 
a direct bearing upon the number of items required to 
fulfil the information constraints. 

Define the item need N as the number of items needed to 
satisfy the information constraints. Now N will only be 
known when an algorithm has solved (P), but that is 
annoying for someone who wants to predict something about 
the computation time before applying an algorithm. 
Therefore it is necessary to have an estimate of N .  

N is problem-dependent. It depends on the target 
information values, the number of information points m and 
the distance d between the first and the last information 
point, i.e. d-Sm-81. Now if B- L i bi is the total target 
information, then a good measure for N has proved to be: 

N z B* (d+8) / (2*m) (9. 1) 

Of course this formula can not be used for exact 
calculations of N, since this also depends for instance on 
the cost structure, but it gives an idea of the magnitude 
of N, which is sufficient regarding the determination of 
the complexities in this section. Therefore I will treat N 
as a known quantity, since (9. 1) gives an adequate 
estimate. 

The number of information constraints m can be regarded as 
a kind of a constant. It will always be in the range 
{ l  .. 7} , so when I need m in the complexity calculations I 
will use the average value m - 4. Now the complexity of 
the algorithms Simplex, Mindev, TopS and Subgradient will 
be determined successively. 

9. 1 Simplex 

Theoretically this algorithm, that means the pure Simplex 
part of it, has an exponential com

1
lexity. In practice 

however it has a complexity of O (n ). 



9 . 2 Mindev 

Stepwise I will go through the algorithm and determine the 
complexity by counting the simple statements that have to 
be executed . Hereby I make no distinction between p . e .  an 
addition or a multiplication . However I think it is 
sufficient for getting a general idea of the complexity of 
the algorithm . 

Initialization : ½mn + n + m = n (½m + 1 )  
Selection proces : N* (4m + ½n) = ½nN 
Backtrack step : ¼n2 + nm =  ¼n2 

Reporting : m + N = N 

This yields for the entire algorithm : 
n* (½m + 1 + ½N + ¼n) + N = ¼ (n2 + 2nN) , so the complexity 
of Mindev is O (n2 + 2nN).  

9,3  TopS 

The same procedure as with Mindev gives : 

Initialization : 2m + nm =  run 
Random selections : 3* [ 3m + 2n + N (2mn+3m)  + ¼n2 + nm] =  

= 6mnN + 3/4n2 

After substitution of m-4 the total becomes : 
4n + 24nN + 3/4n2 = 3/4n2 +24nN , so the complexity for 
Tops is O (n2 + 32nN) . 

9.4 Subgradient 

For Subgradient stepwise determination gives : 

Mindev start : ¼ (n2 + 2nN) 
Initialization : nm + mn(rn+l) - mn (m+2) 
Lowerbound procedure : f (m , N) * (2nm + 3m + n)  = 

= f (m, N)* (n(2m+l) ) 
Greedy algorithm : 10* [ N (n+2rn) + n ( m+2) ] = lOnN 
Reporting : n (m+l) 

Here f (m, N)  represents the number of iterations in the 
lowerbound procedure . I assume it is of O (mN) . In practice 
f(m, N) - mN is sufficient, however this can change 
drasticly if the criteria used in the decision boxes are 
changed . 

After substitution of m-4 and f (m, N)-mN the total becomes : 
n* [¼n + lO½N + mN (2m+l) + m+l + m (m+2) ] = n* (¼n + 46½N) , 
so the complexity of Subgradient is O (n2 + 186nN) . 
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9.5 Some final remarks on the determined complexities 

There are two remarks to be made on the results of the 
previous sections. 

(i) Regarding the complexity of Subgradient and TopS, one 
could think that TopS is a faster algorithm, which is in 
contradiction with the test results of section 8. But 
remember that these complexities give an idea of how 
computation time increases when n and N increase . They can 
not be seen as formulas that give the computation time for 
the algorithm in any situation. 

(ii) It can now be explained why the Split-up approach is 
faster than the Direct approach. Suppose five categories 
are used, then the complexities for Split - up and Direct 
can be derived from the complexity of Mindev. 

Direct : n2 + 2nN 
Split-up: 5* [ (l/5n)2 + 2*1/Sn*l/SN ] - l/S* (n2 + 2nN) 

So in this case the Direct approach will require five 
times as much computation time as the Split-up approach. 
Hence it follows that the more categories are used, the 
faster the Split-up approach becomes relative to the 
Direct approach. 

More in general: if the principle of dividing problem (P) 
into subproblems is used in the algorithms TopS, 
Subgradient or Simplex, the computation time can be 
reduced drastically. However in section 8 it can be seen 
that this computation time reduction is at the expense of 
solutions at higher costs, so this should only be tried in 
situations where costs are not that important, like with 
category division. It may be a nice subject for further 
study. 



10 Conclusions and recommendations 

In this thesis several methods to solve the item selection 
problem have been discussed. All these methods were 
developed for problems with positive costs. Two of them 
also had the possibility of selecting items according to a 
certain specified category division. This last section 
will be used for some final remrks on the described 
algorithms and for a look into the future: what is there 
still to be done? 

The test results from section 8 have shown that problem 
(P) from (2. 2) can be solved very close to optimal by the 
heuristics Subgradient, TopS and the quasi-exact Simplex 
method. This is done within a reasonable time. Subgradient 
can be regarded as the best of those algorithms, since it 
gives solutions at the lowest costs in the least time and 
moreover provides a lowerbound on the optimal objective 
function value which is almost as sharp as the exact 
solution of the relaxed problem (RP) , i. e. the lowerbound 
given by the Simplex method. 

The lowerbounds given by TopS are disappointing. However 
it is very well possible that those confidence intervals 
are a failure simply because the number of independent 
solutions, that is the number of random runs in the 
algorithm, is not sufficient for a good estimate of the b·  
parameter of the Weibull distribution. It is also possible 
that the assumption of a Weibull distribution for the 
objective function values does not suit the actual 
situation, for one would expect that a lowerbound 
procedure is in some way dependent of the heuristic used, 
which is not the case in the TopS method. This can only be 
discovered by testing the algorithm with a larger number 
of random runs. However this will take quite a lot of 
time, which makes such a method less competitive for 
solving the item selection problem. Still this Tops 
approach is very interesting, if only because of the fact 
that the random runs provide better solutions than the 
runs where just one criterion is used. I think the TopS 
method deserves further study. 

The two methods that deal with the category division 
appear to perform well. The Split- up approach is the 
fastest and reproduces the desired percentages best, but 
the Direct approach provides solutions at lower costs . It 
seems a matter of taste which method is to be preferred. 
If however the solutions given by Direct or Split-up would 
give unsatisfactory results concerning the costs, one can 
always apply the principle of Split-up, i. e. the division 
of problem (P) into subproblems , to a slower but more 
accurate algorithm like Subgradient. In section 9.5 it was 
shown that this may lead to solutions at low costs in a 
more than reasonable time. 
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Now when looking at the place of the item selection 
problem within the Test Service Systems (TSS), what should 
still be done before that aspect of TSS is properly 
attended to? Most of the needs will probably only be 
discovered in the prototyping phase, but right now I can 
spot two of them. 

The first potential need is the possibility of specifying 
a maximum number of items Imax one wants to have in a 
test. Gademann [5] shows that with Simplex this problem 
can be solved by adding to (P) the constraint: 

n 

j�l
xj <- Imax-2 (10. 1) 

Here Imax-2 is taken instead of Imax in order to absorb 
the rounding-off effect. 

For the other methods the problem becomes more 
complicated, but it may be solved by an interaction 
between the user and his computer. If the resulting test 
does not please him because of too many items, he should 
lower the target information values so that the number of 
items in the next test will be less t�an Imax. This 
interaction will only perform well after some experience 
of the user with TSS. 

The second need is more urgent . It is the possibility of 
working with logical restrictions. I already spoke of this 
in section 4. 1. 3, where a suggestion of Gademann to 
formulate this by means of a quadratic objective function 
is rejected because the corresponding algorithm can not 
work in practice yet. However the problem remains. 

Verstralen [15] shows that logical restrictions can be 
transformed into a set of linear equations in the (0, 1)­
variables Xj , j=l . .  n. For instance the logical restriction 
"if item 1 is in the test, then item 2 should not be in 
the test and vice versa" can be transformed into the 
equation : 

x1 + x2 <- 1 (10. 2) 

These equations can not be dealt with by Simplex, because 
of the rounding- off effect. Suppose that the solution of 
(RP) has x1-½ and x2-½, then rounding off would give x1=l 
and x2=l, which would violate constraint (10.2). 

A second problem is that a logical restriction with only 
10 variables can lead to a set of 70  linear equations. 
This makes it unlikely that problems with logical 
restrictions can be solved exactly. Again an interaction 
between user and computer can be the solution, but that 
requires a lot of experience with TSS and besides, with 
many logical restrictions it will be an endless task. 
Therefore I think that the first priority for further 
study should be on these logical restrictions. 
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Appendix I 

Appendix II  

Appendix III  

List of appendices 

Problem file used at the experiments of section 8. 

Item bank used at the experiments of section 8 .  

Programming code of the algorithms developed in this 
report. 

These appendices can all be found in a separate volume. 
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