
Report' Nr 03

Various mathematical programming
approaches toward item selection

J.G. Kester

Clto

VARIOUS MATHEMATICAL PROGRAMMING APPROACHES TOWARD

ITEM SELECTION

by

J.G. Kester

Report Nr 03

Project 'Optimal Item Selection'

CITO

Arnhem, the Netherlands (1988)

3.4

69
3

Cito lnstituut voor Toetsontwikkeiing

Bib!iotheek

..... ,.,...., ••u•11••••• .. •11■■1u■1■ 1■■1111■■1

8501 017 2083
I IIII II Ill II Ill II Ill II Ill II Ill II Ill II Ill I IIII

General Introduction

The purpose of Project 'Optimal Item Selection' is to solve a number of

issues in automated test design, making extensive use of optimization

techniques. To this end, there has been close cooperation between the project

and, among others, the department of Operations Research at Twente

University. In each report, one or several theoretical issues are raised and

an attempt is made to solve them. Furthermore, each report is accompanied by

one or more computer programs, which are the implementations of the methods

that have been investigated. The texts of these programs were included in the

original thesis report, but will not be included in this version. In due

time, requests for these programs can be sent to the project director.

T.J.J.M. Theunissen

project director.

2

Summary

This study concerns the item selection problem, which is a
problem from test theory, where items are chosen in order
to design a test that fulfils certain demands in the best
possible way. This item selection problem can be
formulated as a mathematical programming problem. The
derivation of this is based on the so-called Rasch model.

In previous work on this subject a large area already has
been covered. In this report the earlier results are
examined in order to get a good picture of the explored
and unexplored fields.

After that some new methods to solve the problem are
described, all dealing with situations where cost
minimization is the objective, whereas some methods also
take care of a special category division for the selected
items.

Finally the results of a number of experiments are
reported, incorporating the most important algorithms.
Some conclusions about the use of these methods are
summarized.

0

1

2

3

4

4.1

4.1.1

4.1. 2

4.1. 3

4.2

4.2.1

4.2.2

4.2.3

5

5.1

5.2

5.3

6

6.1

6.2

7

Contents

Preface

General introduction

Introduction test theory

Mathematical modeling

Problem formulation

Previous work

The exact approach

Balas' algorithm

5

6

7

12

14

15

15

15

Continuous approach with linear objective function 15

The multiple quadratic approach

The heuristic approach

The Surrogate method

The Clusterpoint method

The minimum deviation method

Working with categories

The Simplex approach

The Split-up approach

The Direct approach

The Top5 algorithm

The algorithm

A confidence interval for the optimal solution

The Subgradient method

17

19

19

21

23

25

25

26

28

29

29

32

34

3

8

8.1

8.2

8.3

9

9.1

9.2

9.3

9.4

9.5

10

4

Test results 39

Low cost structure 39

High cost structure 43

Random cost structure 46

Complexity of the algorithms 50

Simplex 50

Mindev 51

TopS 51

Sub gradient 51

Some final remarks on the determined complexities 52

Conclusions and recommendations 53

References 55

List of appendices 57

Preface

The study about the item selection problem in this report,
which serves as my master thesis Applied Mathematics at
the University of Twente, is part of a CITO-project
performed by the GPO-department. Its results will be
incorporated in a larger project by several Dutch
institutes.

I do not claim to give a complete coverage of the problem
area. However I hope to have divided the item selection
problem into clear-cut sub-areas, some of which I will
treat extensively.

I would like to thank the staff members of OPD for making
it possible for me to work on the item selection problem
in good atmosphere, and especially P.Sanders, T.Theunissen
and H.Verstralen for their advices. Furthermore I am
indebted to S.Baas from the University of Twente who was
my supervisor and who supported me with ideas and took
care that I stayed on the right track.

14-th of April 1988,
CITO Arnhem,
J.G. Kester.

5

Test Service
Systems

Optimal Item
Selection

6

0 General Introduction

CITO in Arnhem is the National Institute for Educational
Measurement. It has 320 staff members, of which 18 find
their work at OPD, a Dutch abreviation for Research and
Psychometric Services, the research department of CITO.

I worked on the CITO-project Optimal Item Selection, of
which the results will be used in the long-term project
Test Service Systems. The goal of this latter project,
that is executed by several Dutch institutes, is to come
to a system where a user, e. g. a teacher who wants to test
his pupils, can get a test that fulfils his demands simply
by giving some details to the computer and waiting a few
minutes.

Such a system should be achieved with large item banks,
i.e. collections of items for testing purposes, and with
computer software that selects the best items for the test
out of these banks: the Optimal Item Selection process.

So the problem that is faced is the following. Construct
and implement a computer program that is able to design a
test by selecting from an item bank those items that meet
certain specified conditions in the best possible way and
in a reasonable time.

In this report my contribution to the project will be
described. First I will give some necessary information
about the underlying test theory (section 1). Secondly I
will derive a mathematical model for the optimal item
selection problem (section 2). After that there will be
the exact problem formulation that is the subject of this
master thesis (section 3). Then I will discuss the
previous work on this subject, done by my predecessors at
CITO (section 4). Then it is time to report on my own
work: some methods to solve the item selection problem
when looking mainly at costs (section 5/7), followed by
the results of various experiments with those methods
(section 8), and by some remarks on the complexity of the
algorithms (section 9). I will finish this report with a
number of conclusions and recommendations for further
study (section 10).

The listings of the written software and examples of an
item bank and problem file can be found in the appendices.

Dichotomous items

Item response
function

1 Introduction test theory

In this section I will give an explanation about the
underlying test theory. Most of it can be found in the
first five sections of a book by F.M. Lord [11). Here I
will give the most important ideas and definitions.

Today, testing is a very common way to determine a
person's ability. Tests are used e.g. at schools, job
selections and military examinations. In this study a test
is supposed to consist of a number of dichotomous items,
i.e. items that can be answered in only two ways: right or
wrong.

Now if one wants to design a test that gives most
information about someone's ability, one has to know the
response behaviour of that person on the items of that
test. Hence the item response function is defined as the
probability that someone with ability 9 answers the item
correctly:

p(9) ,.. C (1.1)

This three-parameter logistic function was introduced by
Birnbaum. In general 9 is assumed to have a value between
-3 and 3. In this function e is the mathematical constant
2.7182818 .. and D is a positive constant, which will be
taken equal to one here.
The parameters a, b and c have the following meaning.

Discriminating Parameter a represents the discriminating power of the
power item, i.e. the degree in which item response varies with

ability. More specific: a is the slope of the curve at
9-b.

Difficulty Parameter b is the difficulty parameter of the item. It
parameter has the same scale as the ability 9 and it determines the

"relative position" of the curve on the X-axis: as b
increases, i.e. the more difficult the item becomes, the
further the curves moves to the right.

Guessing parameter Parameter c is the guessing parameter of the item, i.e.
the probability that someone with an absolute lack of
ability (9 ➔ -oo) answers the item correctly. One can think
of a multiple choice question with five possible answers,
where c=0.2.

The meaning of these parameters for the item response
function is illustrated in figure 1. 1.

7

figure 1.1

Rasch model

Information
function

8

P(B)
'.or-------------,,-�::::;;;;;;---

5

Inflexion

� /
/� I

I

/ : -----� -7t- - - ➔ --- - '7 - - -

I \ I
:

// a I : c
0 L I Y 8

b

An item response function

After substituting a=l and c=O in (1.1) the Rasch model
arises, which will be used throughout this report:

(1. 2)

Now suppose one has a test with n items. For every ability
8 one can compute a 95%-confidence interval for the
expected score, i.e. the expected number of correct
answers, a person with ability 8 will achieve. When this
is done for several values of 8 between -3 and 3 one can
obtain a 95%-confidence belt like in figure 1.2. Here the
test contains 80 items.

When the test results are known and for every person with
known ability the score is marked in figure 1.2, at most
2½% of the persons should be above the belt and at most
2½% below it.

However one wants to say something about a person's
ability based on his score. Suppose someone has a score of
xO, then a 95%-confidence interval for his ability is
given by (81,82).

According to Birnbaum the information function 1(8,x} for
a score x is inversely proportional to the square of the
length of the asymptotic confidence interval for
estimating the ability 9 from the score x. Here asymptotic
means that the number of items n goes to infinity.

figure 1. 2

Item information
function

Test information
function

Determination of a 95%- confidence interval for e

Now one can derive the item information function,

(1. 3)

where ui=l if item i is answered correctly and ui=O
otherwise.

An upperbound to the information that can be obtained from
a test is given by the test information function

1{9} =.� (Pi')2/(Pi(l-Pi))
i-1

(1. 4)

It is clear that the test information function is simply
the sum of the individual item information functions. This
feature is illustrated in figure 1.3.

After substituting the Rasch function (1. 2) into (1.3) one
finds:

e- (S-bi)/ (l+e- (8-bi))2

l/(e-<9-bi)+2+e<9-bi)) (1.5)

9

figure 1. 3

10

Ab1h1y

A test information function composed of five item
information functions

The item information function has its maximum value for
8=bi: l{bi,ui}-O.25. One can easily see this by thinking
of an intelligent girl Mary with ability approximately
equal to 2. Now it makes no sense to give Mary an easy
item with difficulty -2, because she will probably answer
this item correctly, i.e. when this item is answered one
can not say much more about Mary's ability. So this easy
item provides very little information. However if Mary is
given an item with difficulty 2, then the chances of a
right and wrong answer are approximately equal: this item
gives much information about Mary's ability. Of course
more than just one item is required to get some more
definite information about Mary's ability, but items of
difficulty 2 contribute much more to this than items of
difficulty -2.

Target information
function

figure 1.4

The last function that is to be defined is the target
information function. This function gives at every ability
level the amount of information that is desired for a
test. For instance if one wants to design a test that will
separate the good half of a class from the bad half, one
should gain much information at 8-0, as in figure 1. 4.

Information

-3 0 3

Ability

Example of a target information function

This was in short the underlying test theory. For more
details or derivations I refer the reader to Lord [11].
This abstract should suffice to understand the rest of
this report.

11

Positive costs

Stochastic
approach

12

2 Mathematical modeling

In this section I am going to derive a mathematical model
for the item selection problem, making use of the theory
from the previous section.

Suppose a desired test is specified by a target
information function so that at every ability level S it
is known how much information is required. For practical
reasons the target information function will be specified
at a finite number of ability points: Verstralen [16] has
proved that a specification at three to five different
points is sufficient to fix information functions. In this
study I will look at target information functions
specified only at the points (-3, -2, -1, 0, 1, 2, 3} or at a
subset of these points.

Now suppose one wants to design a test from an item bank
containing n items. Let Xj be defined by Xj=l if item j is
selected in the test and Xj=O otherwise. Further let the
target information function be specified at m points
81, .. , Sm: the information points, and the required
information at those points is I(9i) i=l .. m. Finally let
I(9i, j) be the value of the information function of item j
at ability Si (=information point i). Now the problem is
to find a test for which the test information function
exceeds the target information function at the specified
points. Since a test information function is the sum of
the individual item information functions, this condition
can be translated into the following inequalities:

I(81, l)*x1
.

I(Sm, l)*x1

Xj € (0, 1}

+

+

I(S1, 2)*x2
.

1(9m, 2)*x2

j=l. . n

+ 1(91, n)*xn >= 1(91)
• • • • t • I • • (2. 1)

+ I(Sm, n)*xn >= I (Sm)

One can assign a positive cost Cj to every•item j
expressing the eagerness to have item j in the test. A
high cost for instance can be given to an item that has
been selected recently in another test, and a low cost can
be given to an item of which the parameters are not so
well-known, i. e. a bad-calibrated item: it should be
included in some more tests in order to become more sure
about its parameters.

From this last remark it follows that the values I(Si,j)
are not known with 100% certainty. However in this report
I will assume otherwise, since the deterministic
constraints (2.1) become considerably more complicated
when they are made stochastic. Moreover, a stochastic
approach will probably not be relevant, also for practical
purposes.

Mathematical
programming
problem

Multi-dimensional
knapsack problem

With the costs Cj and the definitions aij-I (8i,j) and
bi-I(8i) for i-1 .. m and j-1 .. n this results in the
following mathematical programming problem with cost
minimization.

n
(P) min.�

1
cj*Xj

s.t. n J-

j:l
aij*Xj >- bi

Xj f { 0, 1}

i-1. .m

j-1. .n

(2.2)

Note that with cj-1 for j-1 .. n the number of items is
minimized.

In literature problem (P) is known as the multi­
dimensional 0-1 knapsack problem. This is a NP-hard
problem, so when the number of items becomes large it
becomes very difficult to find the optimal solution for
this problem. Therefore there is a great need for
algorithms that can give optimal or near-optimal solutions
in a reasonable time. The search for those algorithms was
started by other persons already and I will follow in
their footsteps, as outlined in the next section.

As will be seen later, the item selection problem is not
fully covered by this mathematical model. There are
certain demands that can not be described by constraints
as in (P), but for a lot of applications the model is
sufficient.

13

14

3 Problem formulation

In this section I will give the formal problem
description, which will be used as the starting point for
this thesis.

Boomsma [4], Gademann [5] and Razoux Schultz [12] have
investigated and elaborated several algorithms for test
construction from a large item bank. Among those various
methods one can distinguish two mainstreams: an exact
approach, in which the optimal solution is pursued, and a
heuristic approach: problem-specific algorithms that yield
near-optimal solutions. In the studies of Gademann and
Razoux Schultz more emphasis was put upon extra demands
which have to be imposed on the tests in view of practical
usibility.

This all leads to the following problem formulation.
Making use of the already obtained insights and previously
developed methods one has to investigate whether there is
at least one best method. Such a method should unify known
principles and possible new concepts into practically
useful algorithms.

Hereby one should take the following points into account.
(a) Next to the already introduced constraints there are
also extra demands concerning the partitioning of items
into certain categories.
(b) Because of the size of the problem one should make
use of the special structure as much as possible.
(c) Future users must be accounted for with every
algorithm considered.

Linear relaxation

4 Previous work

In this section I am going to describe previous work on
the subject. Boomsma [4] , Gademann [5] and Razoux Schultz
[12] all had their own way of approaching the item
selection problem. As already stated, one can make a
distinction between exact and heuristic methods. Now here
I will explain the main principles of both approaches and
evaluate some of the algorithms on their practical
usibility.

4.1 The exact approach

The exact approach of the item selection problem consists
of those methods where one tries to obtain an exact
solution for problem (P), i. e. the real optimum. This was
done by Boomsma [4] and Gademann [5] in two manners. First
there is a branch and bound method by Balas and secondly
there is a continuous approach, in which the (0, 1)­
constraints are relaxated and the resulting problem is
solved with the Simplex method. Although these Simplex­
orientated methods do not always lead to the optimum, I
will nevertheless consider them in this section because of
the exact way in which the problem is approached. They are
called quasi-exact methods and are studied here with a
linear and a quadratic objective function.

4.1. 1 Balas' algorithm

Boomsma [4] describes a branch and bound algorithm as
designed by Balas. It can be found in Syslo, Deo and
Kowalik [13] . Test results showed that the optimum to (P)
is found, but also that computation time gets huge when
the number of items n becomes greater than 100. Since the
item selection is supposed to take place at item banks
with 300 to 1000 items, I propose to let this method rest
until the computing capacity is sufficient for coping with
the extensive calculations needed for the Balas'
algorithm.

4. 1. 2 Continuous approach with linear objective function

The idea behind the continuous approach is the following.
Replace in problem (P) the (0, 1)-constraints by upper- and
lowerbounds on the variables Xj· The result is a linear
relaxation (RP) of problem (P).

(RP)
n

min � c·*x· • 1 J J s.t. n J-
� a· ·*x· >- b1.· j-1 l.J J

Xj >- 0
Xj <- 1

i-1. .m

j=l .. n
j-1. .n

(4.1)

15

Integer solution

Land and Doigh
algorithm

Multiple objective
functions

16

Problem (RP) can be solved exactly with the Simplex
method. Suppose this gives a solution with objective
function value z (RP). This solution will probably not be a
feasible solution for (P), since some variables Xj may
have a non-integer value. It can be proved however that an
optimal solution for (RP) contains at most m variables
with a non-integer value. Since m is the number of
information constraints there will never be more than
seven non-integer variables.

A feasible solution for (P) can be derived from the (RP)­
solution by rounding every variable Xj with O<xj<l off to
one. One can easily see that this indeed gives a feasible
solution for (P) and because of the relatively small
number of non-integer variables this is a near-optimal
solution. Let z (P) be the objective function value of the
optimal solution for (P) and z (RRP) the objective function
value corresponding with the rounded-off solution, then it
follows that:

z (RP) <= z (P) <- z (RRP) (4.2)

In other words z (RP) is a lowerbound on the unknown
optimal objective function value z (P) and gives an
indication of how good, i. e. how near-optimal, the
rounded-off objective function value z (RRP) actually is.

This relaxation idea was used by Boomsma [4] and proceeded
by Gademann [5]. For the Simplex part of the job they used
the Land and Doigh algorithm (LANDO) with a few minor
adjustments to make it appropriate for this type of
problem.

Gademann extended Boomsrna's program by making it work with
multiple objective functions. Suppose there are linear
objective functions fk (x) = �j Cjk*xj for k=l .. p. Now the
linear multiple objective function F is given by
F (x) = �k µk*fk (x) = �k �j µk*cjk*Xj.

It is obvious that this multiple objective function is not
essentially different from the single objective function
of (P), but this approach makes it easier to give
priorities to certain goals by an appropriate choice of
the weight-vector µ.

The main disadvantage of this approach can also be found
in the use of the weights. A lot of experience with the
algorithm is required to be able to assign values to the
weight-parameters µk in a fast satisfactory way.

Figure 4.1

Ad (I)

Quadratic
objective
functions

The flowchart of the multi-objective algorithm by Gademann
can be found in figure 4.1.

IB Start I > Assign weights to the

r-
> objective functions

I

V

Determine a continuous
solution with LANDO

I

V
Determine integer solution

by rounding off
I

I
V

(I) Backtrack step on integer solut ion
I

no V
Satisfied with yes
resulting test ?

Flowchart of the multi-objective algorithm

The backtrack step means that the integer solution is
checked on the presence of a redundant item, i.e. an item
that can be omitted (corresponding variable is set to 0)
without violating the information constraints.

In section 8 there will be some test results for this
algorithm.

4.1. 3 The multiple quadratic approach

Gademann [5] also pays attention to problems with linear
constraints and multiple quadratic objective functions.
These problems have the following form.

(QP) mint µk*fk (x)
s.t. n

k=l

� ai·*x· >- bi j-1 J J

Xj £ (0, 1)

i-1. .m (4.3)

j-1. .n

Here fk (x) - �1 L j dklj*x1*xj + �j Ckj*Xj is a quadratic
objective function for k-1 . . p. The weights µk k-1 .. p have
the same interpretation as in the linear case.

17

Logical
restrictions

18

In case the multiple objective function is strictly
convex, Gademann shows that the algorithm of Wolfe can
optimally solve the relaxed version of this problem. The
general idea behind this algorithm is that an optimal
solution has to satisfy a number of conditions: the Kuhn­
Tucker conditions. Now finding a solution vector x that
satisfies these conditions becomes a problem with linear
constraints and a linear objective function. This can be
solved with the Simplex method. For more details I refer
to Gademann [5] .

However there are a few practical problems. First the
resulting linear programming problem has 4n+2m variables
and n+m restrictions. Since n will be quite large it can
last very long before Simplex has solved this problem,
even on a big mainframe computer. Secondly one can place
questionmarks at the rounding-off procedure. There will no
longer be at most m variables resulting from Simplex with
non-integer value. In some cases all m variables can have
a non-integer value. Now rounding off to an integer
solution will probably lead to a big gap between the
optimal solution for (QP) and the integer solution found.

Test results in [5] have shown that for small problems (20
items) the Wolfe algorithm can give good solutions for
(QP). For larger problems it can not be used in practice
yet, because of the already mentioned size of the
resulting linear programming problem. Still this is an
important method, since quadratic objective functions
enable the processing of logical restrictions.

A logical restriction is a condition on a test of the
form: if item 1 is selected, then item 2 should not be
selected and vice versa. This restriction can be dealt
with in a quadratic objective function like in (4.3), by
setting dk12-dk21-H, where H is a large positive constant,
for k=l .. p.

Until there is no sound way to settle with logical
restrictions, this quadratic objective function approach
can not be ignored. However it still needs a lot of care
and dedication to become of practical use for the item
selection problem.

Surrogate problem

4.2 The heuristic approach

Among the heuristic approaches, I consider those
algorithms that give a good feasible, though not
necessarily optimal, solution for (P) in relatively short
time. The main feature of the heuristic algorithms is the
relative weight of the exactness of the solution against
the computation time. One tries to get a near-optimal
solution for (P), but an increasing accuracy imposed on
the item selection process will lead to increasing
computation times.

Heuristic algorithms for the item selection problem were
developed by Boomsma [4] and Razoux Schultz [12] . I will
consider the Surrogate method by Boomsma and the
algorithms Mindev and Twoitems by Razoux Schultz.

4.2. l The Surrogate method

In the Surrogate method problem (P) is reduced to the
surrogate problem (SP).

(SP)

(4.4)

j=l. .n

So the multiplier vector µ reduces the different original
information constraints from problem (P) to one surrogate
constraint. Now of course the problem is how to choose a
multiplier vector µ, so that when the surrogate constraint
is satisfied this is also true for the original
information constraints. Boomsma shows that such a
surrogate constraint is obtained by taking for µ the
vector of the dual variables correspondin& with the
optimal solution for (RP).

Since at that moment there was no fast method available to
obtain these dual variables, Boomsrna makes use of an
iterative method by Gavish and Pirkul [6] to find good
multipliers.

The flowchart of the resulting heuristic, that finds a
good solution for (P), can �e found in figure 4.2. It
should be noted however that Boomsma studied problem (P)
with all cj-1, i.e. he was only minimizing the number of
items. This makes problem (SP) very easy to solve:
continue to select that item j which maximizes �i µi*aij
until the selected coefficients add up to �i µi*bi.

19

Figure 4.2

Ad (I)

20

Fl-> �
Determine most critical constraint 1
and corresponding solution

,,�

(II)

no

I
V

Determine constraint 2 that is
most violated by current solution

l
V

Determine ideal pair of
multipliers µ1 and µ2

l
V

Combine constraints 1 and 2
with multipliers µl and µ2 to a

new surrogate constraint 1
l
V

Determine solution for the
resulting problem (SP)

All

I
V

original constraints
satisfied?

I
v yes

Backtrack step on

11 11 current solution '--- Stop

Flowchart of the Surrogate method

The most critical constraint is determined as follows.
Solve the problems (P(i)) for i=l . . m. These problems are:

(P(i)) min � c·*x·
j=l J J s.t. n

� a· ·*x· >= b
1
•

j=l 1J J
Xj € { 0, 1}

(4. 5)

j=l. . n

Let z(i) be the optimal objective function value of
problem (P(i)) . If z(i*) = max z(i) then i* is the most
critical constraint, and z(i*) the objective function
value of the corresponding solution.

Ad (II)

Ad (I)

The ideal pair of multipliers is determined iteratively by
searching for a µ>0 so that the solution S (l,µ) to

n
min

j�l
cj*Xj

s.t. n

j�l
(a1j+µ*a2j)*xj >- b1+µ*b2

Xj E (0, 1} j-1 . ,n

(4.6)

satisfies both constraint 1 and 2. Note that here µ1=1 and
µ2-µ.

After some testing Boomsma made an adjustment, in which
the loop in the flowchart of figure 4.2 is traversed only
once. If the constraints are not satisfied a filling-up
procedure is called that selects extra items until all
information constraints are satisfied .

In [4] Boomsma gets good test results with this Surrogate
method. However the more recent study by Razoux Schultz
[12) shows better heuristics which make this method a bit
outdated. Moreover for practical use there should be the
possibility to work with costs. This can be arranged in
this method, but then it becomes a lot more difficult to
find optimal solutions for the (0, 1)-knapsack problems
(4.5) and (4.6) , which would lead to the use of less
accurate heuristics.

4.2.2 The clusterpoint method

The clusterpoint method was developed by Razoux Schultz
[12). It is a heuristic for problem (P) with c·-1 for
j=l .. n. Razoux Schultz discovered that in a so1ution for
an item selection problem the selected items have
difficulty parameters that are always close to one or two
values: the clusterpoints. He made use of this feature by
constructing an algorithm that first determines two near­
optimal clusterpoints, i.e. clusterpoints close to the
best possible clusterpoints, and then selects items with
difficulty parameter close to those points until all
constraints are satisfied.

The algorithm was implemented in the computer program
Twoitems of which the flowchart can be found in figure
4. 3.

The clusterpoints bl and b2 are optimal if the function
G (bl, b2) - min ([f (81-bl) + f (81-b2)] / I (81) }

i-1. . m
is maximal. Here 81 is the ability level corresponding
with information point i and ! (81) the target information
value at information point i, i-1 . . m. The function f is
the item information function (1.5).

21

Figure 4. 3

2 2

Fl-> �
Find two near-optimal
clusterpoints bl and b2

l .-------·v--------------.

,,,.

I
no

no
I
I

Find the two items jl and j2
with difficulty parameter
closest to bl and b2 resp.

I

V

Select an item as close
to jl as possible

I

V

I All constraints satisfied?
I

V
Select an item as close

to j2 as possible
I

V

I All constraints satisfied?
I

yes

yes

I
V

1Br-

Flowchart of the clusterpoint algorithm Twoitems

In words this search for optimal clusterpoints proceeds as
follows. The information point where the total information
from two items with difficulty parameters bl and b2
divided by its target information value is minimal is
called the critical information point. Now one searches
for the pair (bl, b2) that maximizes this relative
information at the corresponding critical information
point.

Razoux Schultz showes that this searching can be done in a
fast way by a stepwise approximation, making use of some
special properties of the item selection problem. For
further details I wish to refer to his report [12].

Note that in order to get the best results with this
algorithm, the items should be ordered within the bank
according to increasing difficulty. This is no essential
restriction, so for reasons of convenience I will asurne
all item banks in this report to be ordered that way.

The test results in [12] for Twoitems are very good. In a
few seconds this method gives a very sharp upperbound to
the minimum number of items that is required to satisfy
the information constraints. Because this algorithm works
exclusively with costs Cj-1 for j-1 .. n, there is no direct
practical use for it, but it can very well be used as part
of a more general algorithm to get a proper idea about the
number of items involved in the selection process.

Figure 4. 4

Ad (I)

Ad (II)

4. 2.3 The minimum deviation method

The minimum deviation method is a heuristic by Razoux
Schultz [12] for the positive cost problem (P) . It is an
extension of an algorithm by Boomsma [4] , which was only
suited for the cases with cj-1 for j=l . . n. It was
implemented in the computer program Mindev and the working
of it can best be understood by inspecting the flowchart
in figure 4. 4.

II Start Determine information point i
that requires most information

no

(I)

(II)

,--------v-----------,
Find non-selected item k with
difficulty parameter approximately
equal to 81 and set M: =h (81, k)/ck

.....-------v-----------..

Calculate d and search in interval
(81-d, 81+d) for non-selected

item j with h (9i, j)/cj > M

Add item k 1<--
n

_
o

_�, Suchvitem j exists?
to selection

V

I
.....----�v yes

Update k: =j and
M: -h (81, J)/cj

All constraints � Backtrack step l�BI
satisfied ? - - 7 -

yes

Flowchart of the minimwn deviation method

Define Cmin = min Cj and h (0i,J) the value of the
information function of item j at ability level 81
(=information point i) for i=l .. m and j-1 . . n. In this
algorithm one searches for the item j which maximizes
h (81, j)/cj. Since M-h (81, k)/ck for a non-selected item
it follows that h(81,j)/cj >- M ➔ h (81, j) >- M*cmin·
the ordering of the item bank can be used.

k,
Now

By means of the inverse of the information function (1. 5)
a search interval for the optimal item j can be
determined. Let d=ln [a+j (a2+1)] with a-½ (M*cmin), then the
search interval is given by (81-d, 81+d). Only items with
difficulty parameter in this interval can produce the
optimal item j. When during the search M gets larger, the
interval gets smaller and so this process will yield the
optimal item j.

23

24

For a more detailed explanation I again refer to Razoux
Schultz' report [12).

Mindev gives good test results. It is very fast and the
obtained solution forms a pretty sharp upperbound to the
optimal solution for (P). Though usually it does not
produce the optimal solution, this method is very
appropriate for a first quick estimate of the costs. In
section 8 Mindev will be tested elaborately in order to
compare it with more accurate but slower algorithms.

5 Working with categories

Sometimes a test has to be designed with items concerning
different subjects . For instance a Physics test should
cover the topics Electricity, Magnetism and Nuclear
Physics. Moreover these topics should be in the test at
certain proportions, for instance half of the test should
deal with Electricity, a third should cover Magnetism and
the rest should be about Nuclear Physics.

In [5] Gademann gives a method to deal with such category
division. He formulates a quadratic objective function:

(5.1)

Here DFk - desired fraction of selected items referring to
subject k, for k-1 .. s; Sk - set of items in the item bank
referring to subject k, for k-1 .. s. So with this objective
function the sum of the quadratic deviations between the
desired and actually determined numbers of items for each
subject is minimized .

Since the quadratic multiple objective approach in [5] is
not yet suitable for practical use and the test results
are not that good, I had to search for alternatives. Here
I will discuss three different approaches. Two of them are
based on the algorithm Mindev and one works with the
Simplex method.

5.1 The Simplex approach

The Simplex method can be used for working with categories
by adding extra constraints to the problem. When defining
DFk and Sk as above, appropriate constraints could be:

n n
DFk*.L Xj - 1 <- L Xj <- DFk*

j
L
=l

Xj + 1
J=l jESk

k-1 .. s

This would lead to the following set of constraints:
n

. L Xj - DFk*. L Xj >- -1
J€Sk J-1

n
DFk* L Xj - L Xj >- -1

j=l jESk

k-1 .. s

k-1 .. s (5. 2)

Although this seems to be a solid way to solve the
category division, there are a few disadvantages. First
when a solution obtained with the Simplex method is
rounded off to an integer solution by setting all Xj with
O<xj<l equal to one, it may occur that one or more of the
constraints out of (5.2) are violated. Now this is not the
end of the world, there could still result a good category
division, but it may not be as sharp as aimed for.

25

Subproblem (Pk)

26

The second disadvantage concerns the exactness of the
integer solution. In section 4.1.2 was shown that when the
number of constraints increases, also the number of non­
integer variables in the solution of the linear relaxation
of (P) increases. After rounding off, the integer solution
tends to be less exact. So the more category constraints
of the type (5.2) are added, the less exact the final
integer solution becomes.

Those two disadvantages can be taken care of partly by
using instead of (5.2) the constraints :

i: x · >- DFk*N
j ESk J

k=l . . s (5 . 3)

Here N is the minimal number of items required to satisfy
the information constraints, so the objective function
value to (P) with cj-1 for j-1 .. n. Now rounding off will
not give problems, and the number of extra constraints has
been halved. N needs to be known in advance, which could
be accomplished by using the fast accurate heuristic
Twoitems from section 4.2.2.

Since adding extra constraints to the Simplex method will
lead to both higher computation times and less exact
integer solutions I decided to give priority to finding
good and fast heuristics to solve this category division
problem. Therefore I did not implement the above approach
in an algorithm. However this does not mean that this
approach is not appropriate for implementation. When the
heuristics I will descibe in the next sections, would not
satisfy in future practice, this idea can still be used in
an effort to produce a good algorithm.

5.2 The Split - up approach

This method is based on the principle of dividing problem
(P) into s subproblems, where s is the number of
categories one is working with. These subproblems (Pk)
have the following form :

(Pk) min.� cj*xj
s. t. J ESk

� a··*x · >= DFk*bi j ESk l.J J

Xj E { 0 , 1)

i-1 . . m (5.4)

Note that the subsets Sk form a partition of the item
collection { 1 .. n) and that �k DFk*bi = bi. Now all items
selected on the basis of these subproblems put together
form a feasible solution for the original problem (P), and
furthermore the proportions between the categories will be
approximately equal to the desired ratios.

Figure 5.1

In general the resulting objective function value will be
greater than z (P), because of the compensation effects
that can arise at the selection process of problem
(P) , i.e . an information shortage for one category can be
compensated by an information overspill for another
category. This compensation effect can partly be
accomplished , using this approach, by performing a
backtrack step on the resulting solution. However this
will make the resulting proportions less desirable, so one
can question whether a cost reduction is worth the
inaccuracy.

I used the algorithm Mindev from section 4.2.3 to solve
subproblems (Pk) , I chose this algorithm because of its
speed and ease of applicability in this situation. It is
not the algorithm that gives lowest costs, but here the
main interest is a good category division. The flowchart
of the algorithm can be found in figure 5.1.

fF-1--> �)
Read desired fractions
DFk for k-1. . s.

I

I k :�1 I
yes

.--------�v-----------,
Assign all items from category k

to subset Sk
I

.-----v------�

Apply Mindev to Sk

yes

-------�v-------�
Gather results and calculate

resulting percentages for
every category k, k=l .. s

Flowchart of the algorithm Split- up

27

Ad (I)

28

While reading the desired percentages DFk, k=l .. s, there
is a check whether this input is correct, i.e. whether �k
DFk = 100. A second problem may arise when percentages are
given that lead to infeasible solutions, simply because
there are not enough items of some category in the bank.
This problem is related to the problem of specifying the
target information values too high and will be discovered
by the algorithm. In those cases a user just has to start
from scratch again, that means specifying new target
information values or percentages. This experience will
probably make him richer.

The above method was tested extensively and some of the
results can be found in section 8, where a comparison is
made with other algorithms.

5 . 3 The Direct approach

With this approach problem (P) is not divided into
subproblerns, but solved as a whole by the algorithm
Mindev. In order to get a nice category division there
needs to be an adaptation in Mindev.

Define s (j) = the category of item j, j=l .. n ; N (k) = the
number of items from category k selected so far, k=l .. n ; N
= the total number of items selected so far. Now in the
steps (I) and (II) of the Mindev flowchart in figure 4.4
an item j needs to be not only non- selected, but also has
to meet the following requirement:

N(s (j)) <= round (DFs(j)*N) (5.5)

Here "round" represents the rounding-off function. This
function is not absolutely necessary, but it weakens the
demand somewhat, which will probably lead to more cost­
friendly solutions than with the Split-up approach. Since
Mindev contains a backtrack step the proportions found
will be less close to optimal than those of Split- up. The
test results in section 8 will shine more light on both
methods.

Multicovering
problem

Figure 6 . 1

6 The TopS algorithm

This algorithm is a heuristic method based on an article
by David J. Gonsalvez e. a. [8] . In this article an
algorithm to solve the multicovering problem with
heuristics is presented, together with a way to construct
a confidence interval for the optimal solution for this
problem. The multicovering problem has the following form .

n
(MCP) min .�

1
cj*Xj

s. t. n J-

- �
l

aij*Xj >- bi
J-

Xj f { 0, 1}

i-1. . m (6 . 1)

j-1. .n

The difference with problem (P) is that here aij e {0, 1)
for i-1 . . m and j-1 . . n. However article [8] proved to be
applicable to the item selection problem too, after a few
minor changes. Later on I will deal with the confidence
intervals, but first I want to focus on the algorithm in
its adapted form.

6. 1 The algorithm

The algorithm consists of two parts. In the first part
problem (P) is solved several times with different item
selection criteria. The best five solutions are picked out
and the corresponding criteria are put in a special set :
the topS. In the second part of the algorithm problem (P)
is solved again several times, but now at every iteration
(- selection of one item) a selection criterion is
randomly chosen out of the topS. The best solution
resulting from parts 1 and 2 will be the final solution.
The solution of problem (P) goes according to the
flowchart in figure 6. 1.

Fl-> �
Determine criterion (k, j)
for all items j, j-1. . n

I

V

Find n
criteria

on-selected
n value and

item i* with greatest
add j to the selection

I

I
V

I All constraints satisfied ?
I no I

I Backtrackvstep

Flowchart of solution procedure in TopS algorithm

2 9

Ad (I)

Ad (I)

30

In [8] ten possible criteria are given. Since this article
is based on the multicovering problem, I had to
investigate whether those criteria had any relevance for
the item selection problem and whether there could be
established any other suitable criteria, not mentioned in
[8] . This lead to the following criteria.

criterion 1 : 1/cj

criterion 2 :

criterion 3 : 1/cj

criterion 4 :

criterion 5 : 1/cj

criterion 6:

criterion 7 :

criterion 8 : 1/cj

m
* � a · .

i=l iJ

1/cj
m

* � [
i�l

1/cj
m

* � [
i=l

1/cj

1/cj

m
* � [

i=l
(b (i)2*aij)/rsurn (i)

aij /space (i)
m

* .� b (i) 2*aij 1-l
(b(i)2*aij)/space (i)
m

* � [
i-1

aij/rsurn(i)]
m m

* ln [� 1/ (� 1
i-1 • i=l

m m

m
- � a·.)

i=l 1J
m

]

* ln [� b (i)/ {� b (i)
i=l i=l

- � a · .)
i=l 1J

Hereby it should be noted that each summation for i=l to m
only applies to the violated constraints. Furthermore b (i)
is the information still needed at information point i,
rsurn(i) = �j aij • where the summation over j is performed
with respect to every non-selected item j, and finally
space (i) = rsurn (i) - b (i). This means that both b (i) and
rsurn (i) change continuously during the selection process,
and therefore all criterion values have to be calculated
anew at every step. I assume rsurn(i) and space (i) always
to be greater than zero, else there would be no feasible
solution for (P).

Regarding criteria 7 and 8 a computational problem arises
when the arguments of the logarithm get smaller than one.
In those cases the criterion values are set equal to 1/cj .
In the original multicovering case those problems would
not arise.

Finally with "criterion (k, j)" in figure 6.1 is meant the
criterion value of criterion k for item j, k=l .. 8, j =l .. n .

The flowchart of the complete Top5 algorithm can be found
in figure 6. 2.

This random choosing can be done in a weighted and in an
unweighted version. I worked with weights, i. e. gave the
criterion that scored best in part 1 a greater chance to
be chosen than number two etc .. The values of these
weights are more or less arbitrary and can be found best
through experience.

Figure 6.1

Part 1 :
� � Start ij . �

Solve (P)vwith criterion k r
I

I k : -�+1 I
yes

no
.---------v------------.

Pick out best five solutions and put
corresponding criteria into the tops

I

Part 2 : I r ,�1 I

(I)

----------·v·--------------,
Solve (P) , but now choose randomly a
criterion from topS at every iteration

(- step (I) of figure 6 . 1)

I r =+l I
v·---- yes

r<-Rmax?
no

,------------v---------,
The best solution from the 8+Rmax

�
.__ __ s_o_l_u_t_i_o_n_s_i_s_t_h_e_f_i_n_a_l_s_o_l_u_t_i_o_n__,-�

Flowchart of the complete TopS algorithm

Experiments performed with the algorithm from figure 6 . 2
exhibited two striking features . First, the first part of
the algorithm gives the same three criteria as the best in
almost all cases. Those criteria are the numbers 5 , 2 and
4, in that order. Secondly it takes a very long time ,
sometimes more than 30 minutes for a problem with 300
items , to solve (P) with this algorithm . This is due to
the fact that (P) is solved not just once, but altogether
8+Rmax times .

31

Weibull
distribution

32

This made me introduce the following changes into the
algorithm.
- The first part is skipped. I directly start with the
second part of the algorithm, with a top3 instead of a
topS, consisting of criteria 5, 2 and 4 .
- The weights for this top3 are set 0.50, 0.30 and 0. 20.
Rmax is set equal to 3.

These changes lead to more reasonable computation times,
as can be seen in the des cription of the test results in
section 8.

6. 2 A confidence interval for the optimal solution

In [8] a method is given to construct a confidence
interval for the optimal solution for (P), in the light of
the heuristic solutions from the second part of the TopS
algorithm. The idea is based on an article by B. L. Golden
and F. B. Alt [7] and stems from the following line of
thought.

Suppose there are S independent solutions for (P) obtained
by one or more heuristics. The corresponding objective
function values Zi are bounded from below by the unknown
optimal objective function value z (P), i=l . . S. Now the
distribution of the Zi approaches a Weibull distribution
with z (P) as the location parameter. This distribution
generally has the following shape.

Fx (xO) = Prob (x<=xO) = 1 - exp (- [(xO-a)/b]c)
with 0<=a<=x0 , b>=O and c>=O (6.2)

Here a is the location parameter, so in this case a=z (P),
b is the s cale parameter and c is the shape parameter.

Suppose that from now on the Zi are arranged in increasing
order with z1=v. It can be derived from (6 . 2) that
Fzi (a+b) = l-exp (- 1) . From this it follows:

Prob (v<=a+b) 1 - Prob (v>a+b)
1 - Prob (zi>a+b, i=l . . S) =

1 - (l- Fz1 (a+b))* * (1 - Fzs (a+b))
1 - exp (- S)

Or: Prob (v-b<=a<=v) = 1 - exp (- S) (6.3)

In other words : (v- b, v) is a 100* (1- exp (- S))% confidence
interval for the optimal objective function value of
problem (P). So the intention now is to get an estimate of
the parameter b from the objective function values Zi,
i=l .. S.

Maximum likelihood One way could be to solve the maximum likelihood equations
equations for the parameters a , b and c from the Weibull

distribution. Those equations can be found in Johnson and
Kotz [10] , but are very complicated : it would take a lot
of time to solve them .

Statgraphics A second method is to use statistical software that is
able to provide good estimates for the Weibull parameters.
I tried the software package Statgraphics, but this
package knows the Weibull distribution only by the two
parameters b and c ; a is assumed to be zero, which it is
not in the problem considered here . I tried to solve this
by substracting v from all Zi, i-1 .. S, but this did not
lead to satisfactory results.

A third approach was suggested in [8] . Good estimates for
the Weibull parameters are given by :

a v- (z2 - v)
b Zr-a
c = ln (-ln(0. 5))/(ln(zm-a)-ln (b))

(6 . 4)

Here Zm is the median of z1 .. zs and r= [0 . 63*S+l], with [z]
being the largest integer less than or equal to z. In (8)
the estimates from (6.3) are used as initial values for
the Harter-Moore iterative procedure [9] in order obtain
very good estimates for the Weibull parameters.

Since the Top5 method was already taking quite a lot of
time, I decided to use the initial values from (6.3) to
construct the confidence interval (v-b, v) for z (P) . Note
that expression (6 . 2) with S-Rmax=3 already provides a 95%
security that z (P) is in the interval, but the estimate
for b will in this case not be so accurate. The
consequences of this are illustrated by the test results
in section 8.

33

Set covering
problem

Dual relaxed
problem

34

7 The Subgradient method

This method was developed according to an article by J.E.
Beasley [2] , which on its turn was based on an article by
E . Balas and A . Ho [1] . The article [2] deals with the set
covering problem (SCP).

(SCP)
n

min � c·*x· · =1 J J s.t. n J
� ai · *x · >- 1

j-1 J J

Xj f { 0, 1}

i-1. .m (7.1)

j-1. .n

This is basically the same problem as the multicovering
problem of (6.1) and so the main difference with (P) is
again that aij f (0, 1} for i-1 . . m and j-1 .. n. Note that
here bi-1 for i=l . . m . This is no limitation, since in (P)
every information constraint i can be divided by its
target information value bi, because all bi>O, i=l . . m.
From now on in this section I will assume that (P) is
transformed accordingly, i.e. bi-1 for i=l . . m.

Although the algorithm that is described in [2] is
specially designed for (SCP) , I adopted the general
principle on which the algorithm was built. The underlying
idea is as follows.

First a feasible solution for the dual problem of a
relaxed version of problem (P) is determined. This serves
as a lowerbound on the optimal objective function value of
(P). Then this lowerbound is improved by means of
subgradients. An upperbound is obtained by a heuristic
that is called several times in the course of the
algorithm and that makes use of the current values of the
lagrange multipliers.

In order to get a clear picture of the relations between
the various primal and dual problems that are used in this
section, I will define those problems that have not been
considered yet.

The dual problem (DRP) of

(DRP)
n m

min (. � Wj - � ui
t J=l i=l s. . m

w ·
J

- � a · j*u · . 1 l. l. l.=
Ui
Wj

problem (RP) of (4.1) is :

)

>= - c· j=l. .n (7 . 2)
0 J >= i=l. . m

>= 0 j=l. . n

Linear relaxation

Figure 7. 1

Setting all w1 -0 for j -1 . . n yields the dual problem (DP)
that is regaraed in behalf of this algorithm .

(DP)
m

max � ui i-1 s . t . m
� ai · *u ·

i-1 J 1
Ui

j -1. . n
i-1 . . m

(7 . 3)

This is the dual problem of problem (RP) without the
upperbounds to the variables Xj , j -1 . . n. I call this
latter problem the linear relaxation (LRP) of problem (P) .

(LRP) min .�
1

cj *Xj
s. t. n J -

� aij *Xj >- 1
j-l x · >- 0

J

i-1 . . m
j -1 . . n

(7 . 4)

Now let z (Q) be the optimal obj ective function value of
problem (Q) , where Q is from the problem set
{ P, RP , LRP, DRP , DP) , then it follows that :

z (LRP) = z (DP) <- z (RP) - z (DRP) <- z (P) (7 . 5)

So a feasible solution for (DP) provides a lowerbound on
the optimal objective function value of (P) .

In figure 7 . 1 the flowchart of the algorithm can be found.
The various subroutines used in this flowchart will now be
explained in order to elucidate the algorithm.

� Start 1�1 ---� Initialization

V
? Produce a lowerbound with the

lagrangean lowerbound procedure
I

1 . 2
I

V
1 I I

Decision box
I 1. 1

V
Find feasible solution with heuri stic

I

2 . /i
V

I
2. 1

Decision box 2
I

V

Update lagrange multipliers
with subgradients

Flowchart of the Subgradient algorithm

3 5

Initialization

Lagrange an
lowerbound
procedure

Greedy heuristic

36

Both an initial feasible solution for (P) as for (DP) are
required. The former serves as the first upperbound and
the latter as the first lowerbound on the optimal
objective function value of (P).

The first upperbound Zub is obtained quickly by Mindev,
while the first lowerbound Zlb is determined by setting
for all k=l .. m: uk: - u: - min [cj/ �i aij] . This gives a
feasible solution for (DP) , because suppose otherwise,
i.e. there is a k e (1 . . n} with L i aik*ui > ck, then
u*L i aik >ck and hence ckf L i aik < u - min [cj/ �i aij] ,
which leads to a contradiction. So the first lowerbouna is
given by Zlb - L i ui - m*u.

The lagrange multipliers si are initiated as si: =ui=u,
i-1. . m.

In this procedure the lagrangean lowerbound problem (LLP)
is solved , given the current values of the lagrange
multipliers si, i-1 . . m . This problem is:

(LLP)
n

min (� [Cj
s . t. j-l

Xj f (0 , 1}

m m
- L a · · *s ·] *x · + � s ·)

i-1 iJ i J i-1 i
j=l. .n

(7 . 6)

Now define Cj: - Cj - L i aij *si as the lagrangean costs,
then the solution for (LLP) is found by setting Xj : -1 if
Cj <=D and Xj: -0 otherwise, j-1 .. n. Call the resulting
solution vector X. It can be proved that a new lowerbound
is given by z - L i Cj*Xj + L i Si· If z>z1b then update
z1b: =z. In that case a sharper lowerbound has been found.

This heuristic produces a feasible solution for (P), which
also is a new upperbound. It selects items at minimal
lagrangean costs till all information constraints are
satisfied. It is not so much a sophisticated as a fast
algorithm that makes use of the continuously changing
lagrange multipliers. As a consequence it provides
different solutions, which tend to get better as the
lagrange multipliers are improving . The flowchart of this
heuristic can be found in figure 7.2.

Figure 7. 2

Sub gradients

Decision boxes

Box 1

II Start I� Find non - selected
item j with minimal Cj

.---------v------.

Add item j to selection

...-------------v-------.
All constraints satisfied ?

v yes
Backtrack step

I

Flowchart of the greedy heuristic using lagrangean costs

The subgradients Gi are determined in order to improve the
lagrange multipliers si, i-1 . . m. They provide a search
direction for better Si and are defined as:

n
Gi : = 1 - L aiJ

· *X · i-1. . m (7. 7)
j -1 J

Here X= (X1 . . Xn)T is the current solution vector determined
by the lagrangean lowerbound procedure.

Intuitively Gi can be seen as a kind of slack parameter
for the information constraint i from problem (P). If Gi<O
then there is enough information at constraint i and
therefore one can give less weight to this constraint: si
can be lowered . If Gi>O then there is not enough
information at constraint i, so there has to be an extra
emphasis on this constraint: Si has to be enlarged. All
this applies to i-1 . . m.

The lagrange multipliers are updated as follows . Let f be
a factor that is initiated at 2 and is halved whenever
there is no substantial improvement on the lowerbound for
some iterations in a row. Define the stepsize T as
T: - f* (zub - z1b)/ L i Gi2 , then the new lagrange
multipliers become:

si: - max [0 , Si + T*Gi] i�l . . m (7. 8)

Although the greedy heuristic is fast, it can not be
called at every iteration, since the number of iterations
can be more than 200. Therefore it is only called about
ten times during the algorithm . In box l the heuristic is
called whenever the improvement of the lowerbound has been
less than 0.01 over the last nine iterations [1.1] .
Otherwise the algorithm continues with box 2 [1. 2].

37

Box 2

38

Whenever the improvement on the lowerbound has been less
than 0.01 over the last ten iterations, the factor f is
halved. If this makes f<0.008 the algorithm stops [2.1].
Otherwise the lagrange multipliers are updated again
[2 . 2]

The just described algorithm is my final version of
Subgradient, the version I used in the experiments.
However this does not mean that it is the best possible
Subgradient method. Especially the criteria used at the
decision boxes offer an opportunity for changes that might
lead to improvements. I did some efforts on that area, but
without significant success.

A second possibility for improvement may be the greedy
heuristic. If in some easy way one could find out when the
lagrange multipliers are "good", the heuristic could be
called at those moments, probably leading to better
solutions than in the situation where the calls take place
rather arbitrary.

Further I tried another heuristic based on the Surrogate
method. The lagrange multipliers si, i-1 .. m, are used in
order to get problem (P) in a form like (4.4) : a (0, 1)­
knapsack problem with one surrogate constraint. Now a
feasible solution for (P) is obtained by selecting item j
which maximizes L i si*aij/cj until all information
constraints are satisfiea. However this search is not
essentially different from the search for an item j which
minimizes (cj - L i si*aij), which is done at the greedy
heuristic. So it is no surprise that the results with this
surrogate heuristic were almost the same as with the
greedy heuristic, while the latter was a bit faster .
Therefore I maintained the greedy heuristic.

Another effort I made concerned speeding up the
convergence of the lagrange multipliers, by preventing a
zigzag-process. According to a study by A. de Boer [3]
this zigzag-effect can occur when the angle between the
old multiplier vector sk and the new one sk+l is obtuse.
That is whenever <sk+l, sk> < 0, with <., . > the Eucledian
inproduct . In this case the change in the lagrange
multipliers is too drastic and has to be slowed down . This
can be done by setting the new lagrange multipliers
vector:

(7 . 9)

Unfortunately this adjustment leads to a deterioration
instead of an improvement, however with other changes of
this kind a better Subgradient method might be obtained.

In the next section this method will be tested and
compared with other methods from this study.

8 Test results

In this section various methods from the previous sections
are tested in order to come to a clear insight into the
practical use of these methods. For this testing I always
used the same set of problems : a problem file introduced
by E. Timminga [14] consisting of thirteen problems with
various structures. This problem file can be found in
appendix I. Further I worked all the time with an item
bank, generated by a program by Razoux Schultz [12] ,
containing 300 items. The difficulty parameters are drawn
from a Normal distribution with mean equal to 0 and
variance equal to 2. The categories are drawn from a
Discrete Uniform distribution on { l .. 5) . This bank can be
found in appendix I I.

The algorithms used for the testing are the Simplex
algorithm from section 4. 1.2 , the algorithm Mindev from
section 4.2. 3, the TopS method from section 6 , which is
strictly speaking a Top3 method , the algorithm Subgradient
from section 7 and the two category division methods
Split-up and Direct from the sections 5. 2 and 5. 3
respectively. I introduced two little adaptations into the
Simplex algorithm. First I made it appropriate for working
with the given problem file and item bank and secondly I
had it perform extra backtrack steps , i.e. investigate for
every item whether it is redundant or not, instead of j ust
for one item.

The tests are performed on a Victor V286 personal computer
(XT) for three different cost structures. First a low cost
structure, in which favourable items , i.e. items with
costs smaller than one , have unfavourable difficulty
parameters , i.e. difficulty parameters in the range
(-3, -0. 75) or (0.7 5, 3). So in the ordered item bank those
items have low or high numbers. The second is a high cost
structure: items with favourable difficulty parameter have
an unfavourable cost. Finally there is a random cost
structure , in which the costs vary from favourable to
unfavourable throughout the item bank.

8.1 Low cost structure

In this cost structure all items have a cost of one ,
except for the items:
1, 5, 295, 300: cost=0.5
10, 20, 30, 270, 280, 290: cost=0. 6
40, 50, 60 , 70, 80 , 210, 220, 230, 240, 2 50: cost-0.7
The desired percentages for the category division can be
found in the tables 8.1 up to and including 8.6.

39

Table 8 . 1 Test results on low cost structure for Simplex

Problem Costs Time (s) Lowbound

1 64 . 2 74 64 . 015
2 18 . 6 101 18 . 396
3 24 . 6 137 24 . 010
4 76.0 274 75 . 619
5 33.1 176 31 . 343
6 60 . 7 151 60 . 126
7 31 . 2 138 30 . 694
8 7 3 . 2 178 72 . 570
9 24 . 6 112 24 . 010
10 73 . 2 136 72 . 390
11 15 . 5 38 15 . 413
12 76 . 0 147 75 . 619
13 33.1 114 31 . 343

Total 604 . 0 1776 595 . 548

Table 8. 2 Test results on low cost structure for Mindev

Problem Costs Time (s)

1 64 . 4 17
2 19.6 5
3 24.6 5
4 78 . 7 19
5 33.1 5
6 62.1 14
7 31 . 5 4
8 73 . 6 19
9 24 . 6 5
10 72.8 19
11 15.7 5
12 78.7 19
13 33.1 4

Total 612.5 140

40

Table 8.3 Test results on low cost structure for TopS

Problem Costs Time (s) Conf . int

1 64 . 2 140 (64.2 64.2)
2 19.0 9 8 (19 . 0 19 . 0)
3 24.6 189 (24 . 0 24 . 6)
4 76 . 4 412 (76 . 4 76.4)
5 32 . 6 298 (32 . 6 32.6)
6 60.4 254 (59.2 60 . 4)
7 3 1 . 2 194 (3 1.2 31.2)
8 72 . 8 223 (72 . 8 72 . 8)
9 24 . 6 132 (24.6 24.6)
10 7 3.2 271 (73 . 2 7 3 . 2)
11 15 . 5 41 (15.5 15.5)
12 77 .4 238 (77.4 77 . 4)
13 32.6 162 (32 . 6 32 . 6)

Total 604 . 5 2652 -

Table 8 .4 Test results on low cost structure for Subgradient

Problem Costs Time (s) Lowbound

1 64 . 2 82 64.015
2 18.8 115 18 . 392
3 24 . 6 154 24.010
4 76 . 3 309 75.618
5 32.4 241 31 . 309
6 60.7 153 60.121
7 31 . 2 114 30 . 692
8 72.8 124 72. 568
9 24.6 118 24.009
10 72.6 239 72 . 352
11 15.5 58 15.413
12 75.7 129 75.618
13 32.4 120 31. 331

Total 601 . 8 1956 595 . 448

41

Quadratic
deviation

Table 8. 5

42

According to these tables, there is a clear difference
between the fast algorithm Mindev and the slower
algorithms Simplex, TopS and Subgradient. Mindev on the
average requires only 11 seconds to solve a problem, while
the slower algorithms take 137 to 204 seconds. However the
latter algorithms give solutions that are closer to
optimal. Here Subgradient bears the palm with also
lowerbounds that are very close to those of the Simplex
method. The confidence intervals given by the Tops
algorithm are bad: at six of the thirteen problems the
optimal objective function value is certainly not in the
interval. This can probably be due entirely to the lack of
a sufficient number of random runs Rmax. With Rmax=3 it
appears to be impossible to come to a good estimate for
the b-parameter of the Weibull distribution. More random
runs however would lead to too high computation times.

Before passing to the tables 8. 5 and 8.6 I have to explain
the term quadratic deviation (QD), that is used in these
and other tables.

QD: = �k (DFk-RPk)2 (8. 1)

Here RPk is the realized percentage for category k,
k=l .. 5. These percentages can be found in the columns
before the QD-column.

Test results on low cost structure for Split-up

Problem Costs Time (s) RP1 RP3 RP5 QD

1 66. 8 4 30.4 40. 6 29.0 1 . 5
2 21. 5 2 34.6 38 . 5 26. 9 33 . 0
3 27. 8 2 30. 3 39. 4 30. 3 0. 5
4 80.8 5 29. 8 40.4 29. 8 0. 2
5 39.8 2 31. 1 40.0 28.9 2.4
6 63.5 4 31. 3 38. 8 29. 9 3. 1
7 38. 8 2 31. 8 40.9 27. 3 11.3
8 7 7 .4 5 30.0 40.0 30.0 0 . 0
9 27. 8 2 30. 3 39.4 30. 3 0. 5
10 76.4 5 30.4 40 . 5 29. 1 1 . 2
11 17. 3 1 31 . 6 36. 8 31. 6 15 . 4
12 80.8 5 29.8 40. 4 29 . 8 0 . 2
13 38. 1 2 30.2 41. 9 27.9 8. 1

Total 656.8 41 - - - 7 7 . 4

Table 8 . 6 Test results on low cost structure for Direct

Problem Costs Time (s) RP1 RP3 RP5 QD

1 66 . 2 15 27.9 39.7 32 . 4 10.3
2 20.5 5 32 . 0 40.0 28 . 0 8.0
3 26 . 5 4 34 . 4 37.5 28 . 1 29 . 2
4 79 . 1 18 30.1 38 . 6 31 . 3 3.7
5 34 . 5 4 27 . 5 40 . 0 32 . 5 12.5
6 62 . 2 13 30.3 37 . 9 31. 8 7 . 7
7 34.4 4 30. 8 38.4 30. 8 3 . 8
8 74.9 17 29.5 38.5 32 . 0 6 . 5
9 26 . 5 4 34.4 37 . 5 28 . 1 29 . 2
10 75.1 18 30. 8 38 . 4 30.8 3.8
11 15.8 4 29. 4 41. 2 29.4 2.2
12 79.1 17 30 . 1 38 . 6 3 1 . 3 3 . 7
13 34 . 8 4 30 . 0 37 . 5 32 . 5 12.5

Total 629 . 6 127 - - - 133.1

From the tables 8 . 5 and 8 . 6 it can be concluded that the
Split-up approach comes closer to the desired percentages
and in less time than the Direct approach . The latter
however keeps a better eye on the costs .

8.2 High cost structure

In this cost structure the items 76 up to and including
224 have a cost of 1 . 5 and the other items all have a cost
of one . The desired percentages for the category division
are DF1-0 , DF2-S0 , DF3-0 , DF4-S0 and DF5-0 . The test
results can be found in the tables 8.7 up to 8 . 12
included.

The conclusions from the tables 8 . 7 , 8.8 , 8 . 9 and 8 . 10 are
similar to those in the low cost structure . Now Mindev
takes 7 seconds averagely , while the other methods require
153 to 214 seconds . From those methods again Subgradient
is best . The confidence intervals by TopS do not contain
the optimal values at five problems at least.

Concerning tables 8 . 11 and 8.12 I can say that again
Split -up comes closer to the desired percentages at less
time , but the Direct approach provides solutions at lower
costs.

43

Table 8. 7 Test results on high cost structure for Simplex

Problem Costs Time (s) Lowbound

1 92.0 129 91 . 546
2 24 . 0 88 22 . 826
3 31 . 0 222 29 . 949
4 105 . 0 246 104 . 416
5 39.0 197 38 . 571
6 74.5 178 7 3 . 452
7 38 . 0 180 36 . 812
8 104 . 0 139 103 . 679
9 31.0 169 29.949
10 104.0 207 103 . 679
11 21 . 0 59 20 . 619
12 105.0 260 104.416
13 39.0 121 38 . 571

Total 807 . 5 2195 798 . 485

Table 8. 8 Test results on high cost structure for Mindev

Problem Costs Time (s)

1 92 . 5 14
2 23 . 5 1
3 31 . 5 2
4 107 . 5 16
5 39 . 0 2
6 73 . 5 4
7 39 . 0 1
8 104 . 0 16
9 31 . 5 2
10 104 . 0 16
11 21 . 0 4
12 107 . 5 16
13 40 . 5 3

Total 815 . 0 97

44

Table 8 . 9 Test results on high cost structure for TopS

Problem Costs Time (s) Conf . int .

1 92 . 0 162 (92 . 0 92 . 0)
2 24 . 0 99 (24 . 0 24 . 0)
3 32 . 0 177 (32 . 0 32 . 0)
4 105 . 5 436 (105.5 105.5)
5 39.0 295 (39 . 0 39.0)
6 74 . 0 271 (74 . 0 74 . 0)
7 38 . 0 191 (38 . 0 38 . 0)
8 104 . 0 244 (104 . 0 104.0)
9 3 1 . 0 128 (31 . 0 31 . 0)
10 105.0 3 14 (105 . 0 105 . 0)
11 21 . 0 49 (21 . 0 21.0)
12 104 . 5 259 (104 . 5 104 . 5)
13 39 . 0 160 (37.0 39 . 0)

Total 809 . 0 2785 -

Table 8 . 10 Test results on high cost structure for Subgradient

Problem Costs Time (s) Lowbound

1 92 . 0 105 91 . 544
2 23 . 5 102 22.826
3 31 . 0 155 29 . 938
4 104 . 5 238 104 . 414
5 39 . 0 318 38 . 504
6 73 . 5 167 73 . 440
7 38 . 0 115 36 . 810
8 104 . 0 127 103 . 679
9 3 1 . 0 115 29 . 942
10 104 . 0 250 103 . 561
11 21.0 51 20 . 619
12 104 . 5 148 104 . 415
13 39 . 0 103 38 . 57 1

Total 805 . 0 1994 798.263

45

Table 8 . 11

Table 8 .12

46

Test results on high cost structure for Split-up

Problem Costs Time (s) RP2 RP4 QD

1 100.0 3 50. 0 50.0 0 . 0
2 25. 0 1 50 . 0 50.0 0.0
3 33. 0 1 50 . 0 50. 0 0. 0
4 116. 0 4 50 . 6 49.4 0 . 7
5 49. 0 1 48 . 9 51. 1 2 . 4
6 99 . 0 3 48 . 7 51. 3 3 . 4
7 49 . 0 1 48 . 9 51. 1 2. 4
8 115 . 0 4 50 . 0 50 . 0 0. 0
9 33.0 1 50 . 0 50.0 0.0
10 115.0 4 50. 0 50. 0 0. 0
11 23.0 1 47 . 6 52. 4 11. 5
12 116.0 4 50 . 6 49.4 0.7
13 49 . 5 1 48 . 9 51.1 2 . 4

Total 922 . 5 29 - - 23 . 5

Test results on high cost structure for Direct

Problem Costs Time (s) RP2 RP4 QD

1 99 . 0 8 49. 3 50. 7 1. 0
2 24.5 1 50 . 0 50.0 0 . 0
3 31 . 0 1 48 . 4 51. 6 5 . 1
4 116 . 0 9 50 . 6 49. 4 0 . 7
5 43 . 5 2 48. 8 51 . 2 2 . 9
6 97 . 0 6 49. 3 50.7 1 . 0
7 42 . 0 1 47 . 6 52.4 11 . 5
8 114 . 0 9 49 . 4 50.6 0 . 7
9 31.0 1 48. 4 51. 6 5 . 1
10 114.0 9 49. 4 50. 6 0.7
11 22.0 2 45 . 0 55 . 0 50.0
12 116. 0 9 50. 6 49.4 0 , 7
13 43 . 5 2 48.8 51 . 2 2 . 9

Total 893. 5 60 - - 82. 3

8 . 3 Random cost structure

In this random cost structure for all items the costs are
drawn from a Uniform distribution on (0.1 2. 1) . The
desired percentages are DF1-25 , DF2=25, DF3-25, DF4=25 and
DF5=0 . The test results can be found in tables 8. 13 up to
and including 8. 18.

Table 8 . 13 Test results on random cost structure for Simplex

Problem Costs Time (s) Lowbound

1 30.36 182 30 . 326
2 4.81 116 4.678
3 8.11 205 7.767
4 3 7.33 349 3 7.006
5 16 . 22 273 15 . 884
6 27 . 24 225 27 . 193
7 16 . 22 227 15 . 884
8 37 . 14 267 3 6 . 975
9 8. 11 159 7 . 767
10 37 . 14 243 3 6 . 975
11 3 . 70 7 1 3.547
12 37 . 33 243 37.006
13 16 . 22 200 15.884

Total 279.93 2760 276 . 892

Table 8 . 14 Test results on random cost structure for Mindev

Problem Costs Tirne (s)

1 31 . so 28
2 6 . 48 7
3 8 . 40 8
4 38.39 32
5 17 . 30 9
6 28 . 56 24
7 17 . 30 9
8 37 . 04 32
9 8 . 40 8
10 37. 04 32
11 4.38 6
12 38 . 39 32
13 17 . 30 9

Total 290. 48 236

47

Table 8 . 15

Table 8 . 16

48

Test results on random cost structure for TopS

Problem Costs Time (s) Conf. int.

1 30. 36 158 (30.36 30. 36)
2 4. 79 93 (4.79 4.79)
3 7 . 98 184 (7.71 7 . 98)
4 37.15 435 (37.15 37. 15)
5 16 . 25 305 (16. 16 16. 25)
6 27 . 24 258 (27.24 27. 24)
7 16. 30 2 11 (16. 30 16 . 30)
8 37 . 09 239 (37. 09 37.09)
9 7. 98 131 (7. 98 7. 98)
10 37. 09 298 (37 . 09 37 . 09)
11 3 . 70 43 (3.70 3. 70)
12 37 . 15 251 (37.15 37.15)
13 16. 25 177 (16 . 25 16. 2 5)

Total 279. 33 2783 -

Test results on random cost structure for Subgradient

Problem Costs Time (s) Lowbound

1 30. 36 89 30 . 326
2 4. 79 89 4. 678
3 8 . 11 122 7. 766
4 37. 33 209 37. 005
5 16. 22 183 15.881
6 27. 24 119 27. 193
7 16 . 22 113 15. 884
8 37 . 04 105 36. 972
9 8. 11 87 7. 767
10 37. 04 219 36. 960
11 3. 70 so 3. 547
12 37. 28 107 37. 006
13 16 . 22 95 15. 884

Total 279. 66 1587 276. 869

None of the tables 8 . 13 / 8. 16 enforces any changes in the
conclusions about the algorithms. Mindev is the fastest
with an average of 18 seconds, Subgradient requires 122
seconds, and Simplex and TopS take 212 and 2 14 seconds
respectively. The obtained costs hardly differ for the
slow methods and the confidence intervals by TopS now
certainly do not contain the optimal obj ective function
value at four problems.

Table 8 . 17

Table 8 . 18

Test results on random cost structure for Split-up

Prob Costs Time(s) RP1 RP2 RP3 RP4 QD

1 39 . 77 7 23 . 5 25.9 23 . 5 27 . 1 9 . 7
2 10 . 79 2 23.1 26.9 23 . 1 26 . 9 14 . 4
3 14.55 2 25.7 22 . 9 25 . 7 25 . 7 5 . 9
4 48.86 8 24 . 4 25 . 6 24 . 4 25 . 6 1 . 4
5 23 . 47 3 28 . 0 24 . 0 26 . 0 22 . 0 20 . 0
6 37 . 02 6 23 . 6 25 . 0 26.4 25 . 0 3 . 9
7 23 . 47 3 28.0 24.0 26 . 0 22.0 20 . 0
8 48 . 21 8 24 . 2 25 . 3 24 . 2 26 . 3 3 . 1
9 14 . 55 2 25 . 7 22 . 9 25 . 7 25 . 7 5 . 9
10 48 . 21 8 24 . 2 25 . 3 24 . 2 26 . 3 3 . 1
11 7 . 36 2 25 . 0 25 . 0 25 . 0 25 . 0 0 . 0
12 48 . 86 8 24 . 4 25 . 6 24 . 4 25 . 6 1.4
13 23 . 47 3 28.0 24 . 0 26 . 0 22 . 0 20 . 0

Tot 388 . 59 62 - - - - 108 . 8

Test results on random cost structure for Direct

Prob Costs Time(s) RP1 RP2 RP3 RP4 QD

1 37 . 74 31 22 . 5 26 . 3 26 . 2 25 . 0 9 . 4
2 6 . 13 8 28 . 0 24 . 0 24 . 0 24 . 0 12.0
3 9 . 80 8 21 . 2 24 . 2 27 . 3 27 . 3 25 . 7
4 47 . 04 35 23 . 3 25 . 6 25 . 6 25 . 5 3 . 9
5 18.94 11 21 . 3 27 . 7 23 . 4 27 . 6 30 . 3
6 34 . 90 26 25.0 25 . 0 26 . 4 23 . 6 3 . 9
7 18 . 94 11 21 . 3 27 . 7 23 . 4 27 . 6 30 . 3
8 46 . 31 34 22.5 25 . 8 27 . 0 24 . 7 11 . 0
9 9 . 80 8 21 . 2 24 . 2 27.3 27.3 25 . 7
10 46.31 35 22 . 5 25 . 8 27 . 0 24.7 11 . 0
11 5 . 00 6 26 . 3 21 . 1 31 . 6 21.0 76 . 5
12 47 . 04 35 23 . 3 25 . 6 25 . 6 25 . 5 3 . 9
13 18 . 94 10 21 . 3 27 . 7 23 . 4 27 . 6 30.3

Tot 346 . 89 258 - - - - 273 . 9

This also leads to the same conclusions as before . Split­
up is the fastest and gives better proportions , while
Direct provides solutions at lower costs .

49

Item need

so

9 Complexity of the algorithms

In this section I will make some remarks on the complexity
of the algorithms that were tested in the previous
section, in connection with the size of the item selection
problem. This size depends on the number of items in the
bank, n, and on the target information values, which have
a direct bearing upon the number of items required to
fulfil the information constraints.

Define the item need N as the number of items needed to
satisfy the information constraints. Now N will only be
known when an algorithm has solved (P), but that is
annoying for someone who wants to predict something about
the computation time before applying an algorithm.
Therefore it is necessary to have an estimate of N .

N is problem-dependent. It depends on the target
information values, the number of information points m and
the distance d between the first and the last information
point, i.e. d-Sm-81. Now if B- L i bi is the total target
information, then a good measure for N has proved to be:

N z B* (d+8) / (2*m) (9. 1)

Of course this formula can not be used for exact
calculations of N, since this also depends for instance on
the cost structure, but it gives an idea of the magnitude
of N, which is sufficient regarding the determination of
the complexities in this section. Therefore I will treat N
as a known quantity, since (9. 1) gives an adequate
estimate.

The number of information constraints m can be regarded as
a kind of a constant. It will always be in the range
{ l .. 7} , so when I need m in the complexity calculations I
will use the average value m - 4. Now the complexity of
the algorithms Simplex, Mindev, TopS and Subgradient will
be determined successively.

9. 1 Simplex

Theoretically this algorithm, that means the pure Simplex
part of it, has an exponential com

1
lexity. In practice

however it has a complexity of O (n).

9 . 2 Mindev

Stepwise I will go through the algorithm and determine the
complexity by counting the simple statements that have to
be executed . Hereby I make no distinction between p . e . an
addition or a multiplication . However I think it is
sufficient for getting a general idea of the complexity of
the algorithm .

Initialization : ½mn + n + m = n (½m + 1)
Selection proces : N* (4m + ½n) = ½nN
Backtrack step : ¼n2 + nm = ¼n2

Reporting : m + N = N

This yields for the entire algorithm :
n* (½m + 1 + ½N + ¼n) + N = ¼ (n2 + 2nN) , so the complexity
of Mindev is O (n2 + 2nN).

9,3 TopS

The same procedure as with Mindev gives :

Initialization : 2m + nm = run
Random selections : 3* [3m + 2n + N (2mn+3m) + ¼n2 + nm] =

= 6mnN + 3/4n2

After substitution of m-4 the total becomes :
4n + 24nN + 3/4n2 = 3/4n2 +24nN , so the complexity for
Tops is O (n2 + 32nN) .

9.4 Subgradient

For Subgradient stepwise determination gives :

Mindev start : ¼ (n2 + 2nN)
Initialization : nm + mn(rn+l) - mn (m+2)
Lowerbound procedure : f (m , N) * (2nm + 3m + n) =

= f (m, N)* (n(2m+l))
Greedy algorithm : 10* [N (n+2rn) + n (m+2)] = lOnN
Reporting : n (m+l)

Here f (m, N) represents the number of iterations in the
lowerbound procedure . I assume it is of O (mN) . In practice
f(m, N) - mN is sufficient, however this can change
drasticly if the criteria used in the decision boxes are
changed .

After substitution of m-4 and f (m, N)-mN the total becomes :
n* [¼n + lO½N + mN (2m+l) + m+l + m (m+2)] = n* (¼n + 46½N) ,
so the complexity of Subgradient is O (n2 + 186nN) .

51

5 2

9.5 Some final remarks on the determined complexities

There are two remarks to be made on the results of the
previous sections.

(i) Regarding the complexity of Subgradient and TopS, one
could think that TopS is a faster algorithm, which is in
contradiction with the test results of section 8. But
remember that these complexities give an idea of how
computation time increases when n and N increase . They can
not be seen as formulas that give the computation time for
the algorithm in any situation.

(ii) It can now be explained why the Split-up approach is
faster than the Direct approach. Suppose five categories
are used, then the complexities for Split - up and Direct
can be derived from the complexity of Mindev.

Direct : n2 + 2nN
Split-up: 5* [(l/5n)2 + 2*1/Sn*l/SN] - l/S* (n2 + 2nN)

So in this case the Direct approach will require five
times as much computation time as the Split-up approach.
Hence it follows that the more categories are used, the
faster the Split-up approach becomes relative to the
Direct approach.

More in general: if the principle of dividing problem (P)
into subproblems is used in the algorithms TopS,
Subgradient or Simplex, the computation time can be
reduced drastically. However in section 8 it can be seen
that this computation time reduction is at the expense of
solutions at higher costs, so this should only be tried in
situations where costs are not that important, like with
category division. It may be a nice subject for further
study.

10 Conclusions and recommendations

In this thesis several methods to solve the item selection
problem have been discussed. All these methods were
developed for problems with positive costs. Two of them
also had the possibility of selecting items according to a
certain specified category division. This last section
will be used for some final remrks on the described
algorithms and for a look into the future: what is there
still to be done?

The test results from section 8 have shown that problem
(P) from (2. 2) can be solved very close to optimal by the
heuristics Subgradient, TopS and the quasi-exact Simplex
method. This is done within a reasonable time. Subgradient
can be regarded as the best of those algorithms, since it
gives solutions at the lowest costs in the least time and
moreover provides a lowerbound on the optimal objective
function value which is almost as sharp as the exact
solution of the relaxed problem (RP) , i. e. the lowerbound
given by the Simplex method.

The lowerbounds given by TopS are disappointing. However
it is very well possible that those confidence intervals
are a failure simply because the number of independent
solutions, that is the number of random runs in the
algorithm, is not sufficient for a good estimate of the b·
parameter of the Weibull distribution. It is also possible
that the assumption of a Weibull distribution for the
objective function values does not suit the actual
situation, for one would expect that a lowerbound
procedure is in some way dependent of the heuristic used,
which is not the case in the TopS method. This can only be
discovered by testing the algorithm with a larger number
of random runs. However this will take quite a lot of
time, which makes such a method less competitive for
solving the item selection problem. Still this Tops
approach is very interesting, if only because of the fact
that the random runs provide better solutions than the
runs where just one criterion is used. I think the TopS
method deserves further study.

The two methods that deal with the category division
appear to perform well. The Split- up approach is the
fastest and reproduces the desired percentages best, but
the Direct approach provides solutions at lower costs . It
seems a matter of taste which method is to be preferred.
If however the solutions given by Direct or Split-up would
give unsatisfactory results concerning the costs, one can
always apply the principle of Split-up, i. e. the division
of problem (P) into subproblems , to a slower but more
accurate algorithm like Subgradient. In section 9.5 it was
shown that this may lead to solutions at low costs in a
more than reasonable time.

5 3

54

Now when looking at the place of the item selection
problem within the Test Service Systems (TSS), what should
still be done before that aspect of TSS is properly
attended to? Most of the needs will probably only be
discovered in the prototyping phase, but right now I can
spot two of them.

The first potential need is the possibility of specifying
a maximum number of items Imax one wants to have in a
test. Gademann [5] shows that with Simplex this problem
can be solved by adding to (P) the constraint:

n

j�l
xj <- Imax-2 (10. 1)

Here Imax-2 is taken instead of Imax in order to absorb
the rounding-off effect.

For the other methods the problem becomes more
complicated, but it may be solved by an interaction
between the user and his computer. If the resulting test
does not please him because of too many items, he should
lower the target information values so that the number of
items in the next test will be less t�an Imax. This
interaction will only perform well after some experience
of the user with TSS.

The second need is more urgent . It is the possibility of
working with logical restrictions. I already spoke of this
in section 4. 1. 3, where a suggestion of Gademann to
formulate this by means of a quadratic objective function
is rejected because the corresponding algorithm can not
work in practice yet. However the problem remains.

Verstralen [15] shows that logical restrictions can be
transformed into a set of linear equations in the (0, 1)­
variables Xj , j=l . . n. For instance the logical restriction
"if item 1 is in the test, then item 2 should not be in
the test and vice versa" can be transformed into the
equation :

x1 + x2 <- 1 (10. 2)

These equations can not be dealt with by Simplex, because
of the rounding- off effect. Suppose that the solution of
(RP) has x1-½ and x2-½, then rounding off would give x1=l
and x2=l, which would violate constraint (10.2).

A second problem is that a logical restriction with only
10 variables can lead to a set of 70 linear equations.
This makes it unlikely that problems with logical
restrictions can be solved exactly. Again an interaction
between user and computer can be the solution, but that
requires a lot of experience with TSS and besides, with
many logical restrictions it will be an endless task.
Therefore I think that the first priority for further
study should be on these logical restrictions.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10)

[12]

[13]

References

Balas E. and Ho A. , Set covering algorithms using cutting
planes, heuristics, and subgradient optimization : a
computational study , 1980 , Mathematical Programming 12 ,
37 - 60

Beasley J.E . , An algorithm for set covering problem , 1987 ,
European Journal of Operational Research 31 , 85-93

Boer A . H. B . de , Subgradientmethoden voor niet
differentieerbare konvexe minimaliseringsproblemen , 1987 ,
Master thesis Applied Mathematics , University of Twente ,
Enschede

Boomsma Y . , I tem selection by mathematical programming .
1986 , Bulletin nr . 47 , CITO , Arnhem

Gademann A . J . R . M . , Item selection using multiobjective
programming , 1987 , Master thesis Applied Mathematics ,
University of Twente , Enschede

Gavish B . and Pirkul H . , Zero - one integer programming with
few constraints: efficient branch- and bound algorithms ,
1985 , European Journal of Operational Research 22 , 35 -43

Golden B . L . and Alt F . B. , Interval estimation of a global
optimum for large combinatorial problems , 1979 , Naval
Research Logistics Quarterly 26 , 69-77

Gonsalvez D.J. , Hall N . G . , Rhee W.T.and Siferd S . P . ,
Heuristic solutions and confidence intervals for the
multicovering problem , 1987 , European Journal of
Operational Research 31 , 94-101

Harter H.L . and Moore A. , Maximum likelihood estimation of
the parameters of the Gamma and Weibull populations from
complete and from censored samples , 1965 , Technometrics 7 ,
639 - 643

Johnson N. L. and Ko tz S. , Continuous univariate
distributions-1 , 1970 , John Wiley and Sons Inc. , New York

Lord F . M . , Applications of item response theory to
practical testing . 1980 , Lawrence Erlbaum , Hillsdale , New
Jersey

Razoux Schul tz A . F . , Item selection using heuristics ,
1987 , Enschede

Syslo M . , Deo N . and Kowalik J . , Discrete optimization
algorithms , 1983 , Prentice Hall Inc . , Englewood Cliffs ,
New Jersey

55

[14]

[15)

[16]

56

Timminga E. , Geautomatiseerd toetsontwerp : Itemselectie
met behulp van binaire programmering, . 1985, Master thesis
Applied Educational Measurement, University of
Twente, Enschede

Verstralen H., Processing of Boolean functions in the
context of test construction, 1988, Preliminary draft OPD,
CITO, Arnhem

Verstralen H . , Verkenningen in geautomatiseerde
toetsconstructie, 1984, Internal Report, CITO, Arnhem

Appendix I

Appendix II

Appendix III

List of appendices

Problem file used at the experiments of section 8.

Item bank used at the experiments of section 8 .

Programming code of the algorithms developed in this
report.

These appendices can all be found in a separate volume.

57

