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Abstract 

Several techniques exist to automatically put together a test meeting a number of 
specifications. In an item bank, the items are stored with their characteristics. A test is 
constructed by selecting a set of items that fulfills the specifications set by the test 
assembler. Test assembly problems are often formulated in terms of a model consisting 
of restrictions and an objective to be maximized or minimized. A problem arises when it 
is impossible to construct a test from the item pool that meets all specifications, that is, 
when the model is not feasible. Several methods exist to handle these infeasibility 
problems. 

In this paper, test assembly models resulting from two practical testing programs 
were reconstructed to be infeasible. These models were analyzed using methods that 
either forced a solution (Goal programming, Multiple-Goal programming, Greedy 
Heuristic), that analyzed the causes (Relaxed and Ordered Deletion Algorithm, Integer 
Randomized Deletion Algorithm, Set Covering and Item Sampling), or that analyzed the 
causes and used this information to force a solution (Irreducible-Infeasible-Set Solver). 
Specialized methods like the Integer Randomized Deletion Algorithm, and the 
Irreducible-Infeasible-Set-Solver performed best. Recommendations about the use of 
different methods are given. 

Keywords: goal programming, infeasibility analysis, integer programming, test 
assembly. 
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1. Introduction 

Test construction is an important step in high stakes educational measurement. The 
purpose of test construction is to assemble tests from a pool of items that meet the 
specifications developed by test committees. Because of the importance the test results 
of an admission test, a final exam, or the SAT (Scholastic Aptitude Test) might have for 
the examinee's life, the test construction algorithms have to be developed carefully and 
quality control is necessary. In order to guarantee quality several Automated Test 
Assembly (ATA) models have been developed. 

Most ATA models are based on mathematical programming techniques. A 
commonly used objective is to measure the ability level of the examinees as precisely as 
possible, under restrictions defined by the test specifications. These restrictions might 
specify the content of the test, the item type, time limit, gender-neutral orientation of 
the items, minority orientation, or total word count. ATA models have been developed for 
Paper & Pencil tests (Adema, Boekkooi-Timminga, & Van der Linden, 1991, Armstrong, 
Jones, & Wang, 1995, Van der Linden, & Adema, 1998, Van der Linden & Boekkooi­
Timminga, 1989, Veldkamp, 2002), for Computerized Adaptive Tests (Stocking & 
Swanson, 1993, Van der Linden, 2000, Van der Linden & Reese, 1998, Veldkamp & Van 
der Linden, 2002), for Mastery Tests (Vos, 1999), and for Multi-Stage Tests (Luecht & 
Nungester, 1998,2000). 

All applications of ATA deal with Linear Programming (LP) models with binary 
decision variables x;, i= 1, ... , I, and a number of constraints, indicated by j =1, ... , J. 
Here the index i refers to items, and I is the total number of items available in the pool. 
The choice x; = 1 indicates that item i is included in the test, where X; = 0 describes the 
choice that it is not. In matrix vector notation, where a bold printed variable or 
parameter represents a vector or matrix, such a LP model can be written as follows 

Maximize c'x 

Subject to 

Ax = b 

X; E {0, 1}, i = 1, ... , I, X = (X;, ... , Xr) 

(1.1) 

(1.2) 

(1.3 ) 

where c is the objective coefficients vector, and C; represents the relative importance of 
item i with respect to the other items according to the objective function. The matrix of 
constants A has elements aii, i = 1, ... , I, and j = 1, ... , J, and b is the vector of 
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parameters bi, j = 1, ... , J. The parameters bi are called the bounds of their respective 

constraints. Decision variables are usually written at the left side of an inequality or 

equality sign, and the bounds at the right side. This general model will be used 

throughout this paper. 

When some of the constraints in 1.2 contradict each other no test can be 

constructed. The test assembly model is then said to be infeasible, and causes for this 

infeasibility have to be found. Several methods have been developed to analyze 

infeasibility in mathematical programming models (Chinneck, 1993, 1997; Chinneck & 

Dravnieks, 1991; Greenberg, 1987, 1992; Huitzing, in press a, in press b; Timminga, 

1998). The topic of this paper is to describe which approaches have been developed to 

deal with infeasible test assembly problems, and how they behave in practice for 

problems of large size. 

First, the problem of infeasibility is explained. Then, different methods for 

analyzing causes of infeasibility are introduced. Two test assembly problems illustrate the 

methods. Finally, the methods are discussed and recommendations about their use are 

given. 

2. Infeasibility in Linear Programming Test Assembly Models 

Disregarding typing errors in writing the demands into a mathematical model, there are 

two main reasons of infeasibility. The first is a contradiction between the demands. For 

example, wanting to assemble a test that consists of ten items, while also requesting 

that for the three specified content categories, say mathematics, geography and biology, 

at most three items are selected. The second main reason of infeasibility is a deficient 

item bank. As a very simple example, consider the previous test assembly model, where 

a test of ten items has to be assembled, containing at least three categories (and no 

constraints on the number of items of each category), while the item bank only has items 

on biology and mathematics. A deficient item bank appears in a mathematical model 

either as a contradiction between the number of decision variables and the constraint 

bounds, i.e., the item bank is too small, or as a contradiction between the coefficients in 

the constraints and the constraint bounds, i.e., the item bank cannot satisfy the specific 

item characteristic demands. In the first case it is clear that the item bank has to be 

extended, while in the second case, the quality of the items in the item bank is deficient. 

From a mathematical point of view, all types of infeasibility are of the same form, and 

are caused by a contradiction between one or several groups of constraints. 

In the short term, to solve infeasibility some constraints have to be violated, i.e., 

they have to be adjusted or deleted. This means that either the bound has to be relaxed, 
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or the coefficients in the constraint have to be adjusted. As a long-term strategy, more 
decision variables (i.e., items) have to be added to the model (i.e., the item bank). If, in 
the short term, a test has to be assembled anyhow, a feasible model has to be 'forced'. 
As the item characteristics, expressed as the elements of the matrix A, are usually 
considered as fixed, only adjusting the constraint bounds can force a feasible model. A 
small illustration is the following set of constraints: 

LX; = 3 (2.1) 
i=l 

x
1 

+ x
2 

+ x
3 

:;; 1 (2.2) 

x
4 

+ x
s + x

6 
:;; 1 (2.3) 

X; E {O, 1}, i = 1, ... , 6. (2.4) 

It is obvious that Constraints 2.1, 2.2 and 2.3 together are in conflict. Possibilities to 
force a feasible model include to enlarge the bound of either Constraint 2.2 or Constraint 
2.3 to 2, or to set the bound of Constraint 2.1 to 2. In those cases the original 
constraints are said to be violated. 

In practice most infeasibilities will be caused by an item bank deficiency. To repair 
the infeasibility, the item bank should be updated, i.e., expanded with new or better­
suited items. However, before that can be done, the causes of infeasibility should 
become clear. 

3 Theory of Infeasibility Analysis 

A first step in the analysis of infeasibility is to detect and pinpoint the causes. In the 
literature, there exist a number of concepts that can elucidate causes of infeasibility. An 
important definition is the following. An Irreducible Infeasible Set of constraints (IIS) 
(Chinneck & Dravnieks, 1991; Chinneck, 1997; Timminga, 1998; Huitzing, in press a) is 
a minimal set of constraints that together are infeasible, but for which every subset of 
constraints is feasible. Thus taking one or more constraints out of an IIS ensures that the 
remaining set of constraints is feasible again (for a proof see Chinneck & Dravnieks, 
1991). A small illustration at the end of this paragraph will perhaps clarify the 
mathematical formulation. An infeasible model can have several IISs, which can also 
overlap, i.e., a constraint can belong to more than one IIS. A Minimal Cardinality IIS Set 
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Cover (MCISC) (e.g., Amaldi, 1994; Chinneck, 1997, 2000; Huitzing, in press b) is set of 

constraints in which all IISs of the infeasible model are represented by at least one 

constraint. Removing even one constraint from a MCISC means that one or more IISs are 

not represented in the MCISC anymore. There can be several MCISCs in an infeasible 

model, but they all share the next feature. Removing a MCISC from an infeasible model 

makes the remaining set of constraints feasible again. This follows from the fact that 

removing a MCISC is the same as removing one or more constraints from every IIS in 

the infeasible model. Each MCISC has a complementary set of constraints, called a 

Maximum Feasible Set of constraints (MFS), which is a maximum number of constraints 

that together are still feasible, while adding another constraint (of the original infeasible 

model) would make the set infeasible again. 

To elucidate these concepts and their potential use in practice, we will present an 

example. Say we want a test that fulfills the following five demands 

(3.1) the test should contain not more than three items; 

(3.2) the test should contain two items on history; 

(3.3) the test should contain two items on mathematics; 

(3.4) the test should contain one item on geography; 

(3.5) in a test with an item on geography only one item on mathematics is allowed. 

Moreover, suppose that all items have one subject only, but that there are 

sufficient items on all subjects. The above model is infeasible. Already Demands 3.1, 3.2 

and 3.3 are together infeasible. Removing any of these three demands from the set {3.1, 

3.2, 3.3} makes the remaining set of two constraints feasible again. Thus, {3.1, 3.2, 

3.3} is an IIS. Another IIS is {3.3, 3.4, 3.5}. If we want to make the Model 3.1-3.5 

feasible again, we must remove a number of demands. Of course, a minimal number of 

demands to remove is preferred. From both IISs at least one demand must be removed, 

and 3.3 seem obvious choices. A MCISC is {3.3}, as it covers both IISs, and its 

complementary MFS is {3.1, 3.2, 3.4, 3.5}. 

4. Methods 

Different methods that are able to either bypass the infeasibility problem or analyze the 

causes are described in the literature. 
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4.1. Forcing methods 

Forcing methods force a solution to the infeasible model by violating the constraints. 

These methods result in a test, but the test does not meet all the specifications. Forcing 

methods are sometimes referred to as repairing methods. However, the term repairing is 

not ambiguous, as it also implies that true errors are really mended, while in fact a 

solution is forced by violating the constraints, therefore we prefer the term 'forcing 

methods'. 

4.2. Goal Programming Models 

While a standard LPTA model cannot give a solution in the case of infeasibility, Goal­

Programming (GP) models (Swanson & Stocking, 1993; Timminga, 1998) can help. One 

such model is the Weighted Deviations Model (WDM) (Swanson & Stocking, 1993; 

Stocking & Swanson, 1993; Stocking, Swanson & Pearlman, 1993). The general form of a 

goal programming is 

J J 

Minimize L V+i d+i + L v_i d-i 
j=l j=l 

Subject to 

Ax + d+ - d_ = b 

X; e {O, 1}, 

d+i, d _i � O, 

i = 1, ... , I, 

j = 1, ... , ], 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

where d+i and d-i are the amounts by which the constraint are violated positively or 

negatively, called the deviation variables, whose weighted sum has to be minimized (i.e., 

the goal function) and the non-negative coefficients V+i and v-i are the weights. In an 

optimal solution of a GP model, for every constraint j at most one of d+i and d_i will be 

positive when the bound is violated, i.e., for a '�' constraint j, d+i will be positive if 

constraint is violated, while in the case of a 's' d-i will be positive. For an equality 

constraint either d+i or d_i will be positive if the equality is not satisfied. The weights V+i 

and v_i represent the importance of not violating constraintj. 

4.3. Multi-Objective Goal Programming 

Adapting the constraints by means of a goal programming model results in a feasible 

region. However, sometimes the test assembler is not only interested in obtaining a set 
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of feasible solutions, but also has other wishes, such as, e.g., maximizing the test 

information function. This can be achieved by varying the coefficients V+i and v_i, usually 

by trial-and-error, or by adding a second objective function, 

Maximize c'x (4.5) 

which is the original objective function of the Model 1.1-1.4. Using a goal-programming 

model with two objective functions, also called a Multi-Objective Goal-Programming 

(MOGP) model (Nemhauser & Wolsey, 1988; Nering & Tucker, 1993; Veldkamp, 1999) , 

one has the following choices. Either solve the model using only Model 4.1-4.4, and when 

a feasible region has been forced by relaxing some of the constraints, solve the model 

again now with Equation 4.5 as objective function, or solve the goal programming model 

using a combination of the two objective functions, where each objective is given a 

weight representing its importance. The drawback of the first choice is that, after solving 

Model 4.1-4.4, the obtained feasible region often consists of one or a few feasible 

solutions only, which gives very little room for the second objective function. The 

shortcoming of the second choice is that combining the objective functions into one 

usually leads to larger violations of the original constraints bounds. In this paper multi­

objective goal-programming models apply a combination of the objective functions. 

4.4. Greedy Heuristics 

Most used in test assembly are greedy heuristics: start with an initial item and add a 

next best suited item according to the wishes of the test assembler until a certain 

prefixed number of items is reached. In the case of infeasibility, these heuristics 

systematically allow the constraints to be violated in a more or less controlled way. This 

is done by setting weights representing the cost of violating a constraint, and minimizing 

the sum of these costs when choosing a next item for the test, effectively introducing a 

goal function. For example, the WDM and the Normalized Weighted Absolute Deviation 

Heuristic (NWADH) (Luecht, 1998) are usually solved with greedy heuristics (the WDM 

can also be solved with a LP solver) . Both WDM and NWADH have successfully been used 

in test assembly for several years. However, while they do deliver a solution even if the 

model was infeasible, they do not focus on the causes of infeasibility, but allow constraint 

bounds to be relaxed 'in the case of need'. Moreover, they do not present the test 

assembler a tool to fix the causes for future tests. In this paper a modified version of the 

heuristic WDM will also be investigated. 
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The original objective function, which is to maximize the test information, is also a 
constraint in the WDM with Heuristic solver. Setting its bound as a very large number the 
Heuristic (while seeking to minimize the deficit between the value of the test information 
in the constraint and the constraint bound) maximizes the test information. 

s. Analyzing methods 

While GP models offer a forced solution in the case of infeasibility, they do not analyze its 
causes. Some methods described in the literature are more focused on finding causes of 
infeasibility such as IISs, MFSs or MCISCs. Information about the causes can help a test 
assembler to decide whether additional items have to be added to the item bank, or 
whether the test assembly model has to be reformulated. 

5.1. Deletion Algorithms IRDA and RODA 

An algorithm capable of distilling an 115 out of an infeasible LPTA model is the deletion 
algorithm (Chinneck & Dravnieks, 1991; Huitzing, in press a). The deletion algorithm 
works as follows. An arbitrarily ordered set of constraints is checked for feasibility. If the 
set is not feasible then the first constraint of the ordered set is temporarily excluded, and 
the remaining set is checked for feasibility. If this new set is feasible then the temporarily 
excluded constraint is restored in the set, otherwise it is definitively excluded. The next 
step is to temporarily remove the next constraint of the ordered set, check the remaining 
set for feasibility, and restore the constraint in the case of feasibility or delete in the case 
of infeasibility. This is done for all the constraints in the original ordered set. The 
remaining set of constraints is then an IIS. This algorithm is usually programmed in 
commercial software packages such as CPLEX (ILOG, 2001) to detect an US, and will be 
called the Relaxed and Ordered Deletion Algorithm (RODA). 

The RODA programmed in CPLEX only uses the so-called relaxed LP model, where 
all binary variables are relaxed into being real variables that can take values between O 
and 1. Usually integer LP models (i.e., the variables must take on integer values) are first 
solved for a relaxed version, and, by means of an algorithm (e.g., the branch-and-bound 
algorithm; Nemhauser & Wolsey, 1988; Nering & Tucker, 1993), integer values for the 
variables must be found. It is, however, possible that while the relaxed model is feasible, 
the integer model is not. A DA that only analyzes the relaxed version of the LPTA model 
will then fail. 

Because a deletion algorithm makes use of a given order in the set of constraints, 
running the deletion algorithm twice on the same set will always give the same result. 
However, an infeasible model can have a number of different IISs. Randomizing the 
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order of the constraints may yield a different IIS. A version of the deletion algorithm that 

first randomizes the order of constraints and respects the binary variables, is 

programmed in NuzLight (Huitzing, 2002), and will be called the Integer and Randomized 

Deletion Algorithm (IRDA). 

5.2. Set Covering and Item Sampling Method 

It was argued that a good tool for infeasibility analysis is the use of IISs. Although 

algorithms exist that are able to distil! an IIS out of an infeasible model, this can be quite 

a time-consuming job. Feng (1999) showed that another option is to sample a large 

number of points in the solution space, i.e., the vectors x, and using a set-covering 

model (Boneh, 1984; Papadimitriou & Steiglitz, 1982; Wolsey, 1998), to find one or more 

IISs. Huitzing (in press b) implemented the idea of item sampling and set covering 

(SCIS) to test assembly models and LPTA models in particular. Also, it was showed that 

SCIS can also be used to find MCISCs, and, probably most appealing to test assemblers, 

MFSs, i.e., the largest set of constraints of the original model that together is still 

feasible. The remaining set of constraints, after deleting an MFS in an infeasible model, 

form an MCISC, which can be solved by means of goal programming model. 

The first decision when using SCIS regards the sampling of the items. In LPTA the 

variables are usually binary, either an item is selected or not. Therefore, at each 

replication, a vector of zeros and ones of size I is sampled, where each one means that 

the corresponding item has been selected for the test, and a zero otherwise. Such a 

replication corresponds to a draw of a set of items from the item bank, i.e., a test. A test 

consisting of, say, 500 items out of an item bank of 1000 items when the test length is 

40 will not satisfy many constraints for that test, and will not give us much information. 

Therefore we set the probability that a variable gets the value one equal to the number 

of items demanded for the test divided by the number of items in the item bank, 

increasing the probability that the constraint representing the test length will be satisfied. 

The probability that the other constraints will be satisfied is now also higher. 

In the next step, this set of selected items is checked whether it satisfies the 

constraints of the LPTA model. If the set of selected items satisfies all constraints, we 

have a feasible test. But in the case of infeasibility this will not occur. One sample vector 

only represents one sampled set of selected items. But by sampling a large number of 

such sets of selected items, information on which constraints are never satisfied and 

which constraints are relatively easily satisfied can be obtained. The general form of a 

SCIS algorithm can now be given 
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1. Generate a large number of random points in {0,1}1 with the aim to cover all of 
the combinations. Any such point represents a set of selected items, i.e., a test; 

2. Check each test for all individual constraints : construct a matrix P where each row 
z represents a test, and each column J a constraint. If the test z does not satisfy 
constraint } then Piz = 0, otherwise 1. 

3. To find an IIS solve the following set covering problem, 

Min{eTy I Py � e, y binary} (5.1) 

where e is a vector with elements 1, and Yi = 1 if element j, j e {1, ... ,J}, is selected, 
otherwise it is 0. Supposing that all combinations have been sampled, the solution to 
Model 5.1 is minimal set of constraints that makes the whole model infeasible, which is a 
smallest cardinality IIS (i.e., a smallest IIS, where smallest refers to the number of 
constraints in the IIS). The solution may not be unique, as a number of smallest IISs 
may exist. 

The solution space is the set of all possible solutions, i .e., all possible 
combinations of selecting items from an item bank. Each constraint divides this solution 
space into two subspaces, i.e., one subspace where the constraint is satisfied and one 
where it is not. In theory the number of subspaces of a LPTA model with J constraints is 
2!. For example, a model of 100 constraints may have 1.26 1031 subspaces. Huitzing 
(submitted) showed that in practice this number is much lower. This is important 
because infeasibility is caused by a contradiction between constraints, and to be certain 
to find the causes (i.e. ,  the IISs) of the infeasibility, all subsets should_ be found. 

Regarding the first step of the SCIS, where it states, "sample with the aim to 
cover all subsets", some remarks are in place. In the SCIS, however, a subset is found 
by whether it contains a (sampled) combination of selected items (i.e., the vector of size 
I of ones and zeros). Some subsets created by the constraints may never be detected if 
they do not contain any integer coordinates. On the other hand, an item bank often has 
more items than constraints, and several distinct combinations of selecting items may lay 
in a same subset of the solution space (and thus do not give new information on the 
causes of infeasibility). Moreover, while sampling the 0-1 vectors representing the 
selected sets of items out of an item bank is relatively cheap in computer time, the set 
covering algorithm, i.e . ,  calculating the solution to Model 5 .1, can also take large 
amounts of computer time for larger matrices P .  Therefore not all combinations of 
selecting items from an item bank need to be sampled, but a 'large number with the aim 
to cover all combinations'. 
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The solutions of the SCIS algorithm, i.e. , the IISs, should be seen as indications of 
IISs. A rule of thumb is to start with 1000 times the number of items in the item bank as 
the number of replications. Then solve the Model 5.1 with the generated matrix P, and 
then check whether the found IIS is a true IIS. If its components, i.e. , the constraints, 
are feasible together, then start again (possibly with a higher number of replications). 

5.3. Combined 

In combined methods, the causes of infeasibil ity are analyzed and solved. In the first 
step an analyzing method is applied. In the second step, a solution to the cause is forces, 
based on an infeasibility measure. 

5.4. IIS-Solver 

A combined method focused on infeasibility caused by IISs, is the US-Solver (Huitzing, in 
press a). This heuristic works as follows. If a model is infeasible, an IIS is found by 
means of either IRDA or RODA, as explained in the previous section. Remember that in 
order to make an IIS feasible again, at least one bound must be relaxed. The !IS-Solver 
proceeds by calculating a so-called 'measure of infeasibility' for each constraint in the 
IIS, where the measure of infeasibility is a comparing tool to make a choice between 
constraints. Huitzing (in press a, see the section on 'Possible Loss Functions') shows that 
a good measure of infeasibility is the following one 

Wj ( L bj: ) / I bj l if bj * 0, 
z c, Z  

Wj ( L bj: ) / 8 
z ,, z  

(5.2) 

where wi � O are the weights of the constraints; O < <5 < miny e {l, .. . ,J} {by: by * O}; z is 
the index of the IIS and bi; is the amount by which a constraint must be relaxed (all 

constraints are actually rewritten as ' < '  or '�' constraints). To find bi;, Model 5.3-5. 6 is 

solved for each constraint in the IIS 

Min bi: 

s.t. aj X � bj for all j E IISz, j =I= iz 

a- x � b ·  + b ·  F lz lz lz 

X; E {0, l},  i = 1, ... , I, 

(5.3) 

(5.4) 
(5. 5) 

(5.6) 
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In the 11S-Solver only one constraint is relaxed at a time. The choice for the 

constraint to relax can be done automatically (e.g., by using 5.2) or by hand. Once the 

11S under inspection has been repaired, the whole model is solved again. If it is still 

infeasible, a next 11S is sought and repaired as before, until the whole model is feasible 

again. Then the US-Solver will solve the modified model with the original objective 

function. The US-Solver can also be set to respect hard constraints. 

6. Theoretical Evaluation of the Methods 

It is interesting to compare the different methods and state our expectations beforehand. 

Because the goals of forcing methods and analyzing methods differ, they will be dealt 

with separately. 

6.1. Forcing Methods 

Forcing methods patch up the infeasibility by relaxing the constraint bounds. Criteria 

must be chosen to compare the methods. Obvious choices are the number of violated 

constraints, the sum of constraint bound violations, the value of the original objective 

function (maximize the test information function), and the time needed to force a 

solution. Only looking at one of these criteria is not sufficient as they are interdependent. 

Obviously, by allowing all constraints to be violated with no penalty and maximizing the 

test information function, all items in the item bank will be selected, scoring high on the 

criterion of 'value of the original objective function'. On the other hand, this would result 

in high costs in terms of constraint bound violations and in terms of the number of 

constraints violated. 

When a goal-programming model is applied, the weighted sum of violations is 

minimized. Application of this method entirely focuses on constraints. Violation of 

constraints has to be minimized. In the Multi-Objective goal-programming model, the 

amount of information in the resulting test is also taken into account. 

The third method does not concentrate on how to model the problem, but on the 

algorithm applied for solving the model. When using a goal-programming model with a 

greedy heuristic all constraints are open to relaxation and a local search at each iteration 

for a next best item to add to the test takes place. But, what might have been a good 

decision an in earlier iteration, may have negative influence on later choices. The 

advantage of greedy heuristics lies in computer time needed to find a solution. However, 

the question remains whether they reach an optimal solution. 
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Four different criteria where introduced that might be used to compare the 
methods. The GP method is expected to result in smallest number of violations and 
smallest sum of constraint violations. The MOGP is expected to result in highest value of 
the TIF. The greedy heuristic is expected to result in smallest computation time. 

6.2. Analyzing Methods 

The RODA, the IRDA and the SCIS all search for IISs. While the RODA and the IRDA 
make use of a deletion algorithm in an infeasible model, the SCIS takes a probabilistic 
approach. 

We have already stated the drawback of the RODA, which applies the deletion 
algorithm to the relaxed LPTA model only. An infeasibility which is caused by the fact that 
the variables are integer will not be detected, which can be a serious drawback in the 
case of LPTA where the variables are binary. The reason it is used is that a relaxed LPTA 
model takes much less computer time than an integer LPTA model. IRDA does not suffer 
from these problems. However, for both RODA and IRDA it is a drawback that at each 
iteration when a constraint is temporarily dropped, the remaining set of constraints must 
be checked for feasibility, which is mathematically as difficult as solving a LP model. The 
necessary computer time when using RODA or IRDA can therefore rise considerably. 

When a SCIS is used, a Set Covering (SC) model must be solved to find an IIS. 
SC models can be very hard to solve (Papadimitriou & Steiglitz, 1982; Wolsey, 1998) and 
take much computer time. Moreover, because of the probabilistic nature of the SCIS, it is 
not guaranteed that an IIS will be found. However, sampling the items should take a 
matter of seconds with the right software, and one can start with lower number of 
replications and gradually increase the number of replications if no IIS is found. 

We expect the SCIS to perform better in terms of computer time, than the RODA 
and the IRDA. Moreover, we have some objections on whether the RODA will perform 
wel l  because of the integer nature of the variables in LPTA. 

In the Conclusion and Discussion we will consider our expectations of the methods 
and discuss their ach ievements. 

7. Numerical Examples 

The different methods were applied to two practical test assembly cases. Case 1 comes 
from PPON (Periodieke Peiling van het Onderwijsniveau; Periodical survey of educational 
level, CITO). PPON is a periodical assessment of the level of education in the 
Netherlands. It is comparable to the National Assessment of Education Program (NAEP) 
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in the USA. CITO (National Institute for Educational Measurement) in the Netherlands 
oversees this test, which is carried out for the Dutch Department of Education. PPON 
Biologie (PPON biology) measures whether students of the last year of the primary 
education meet certain standards set previously by a panel of experts, and is repeated 
every five years. 

Case 2 also comes from CITO. WISCAT-pabo (CITO) is an adaptive test for 
measuring deficiencies in Mathematical knowledge of pabo students. Pabo is the Dutch 
higher education for teachers for primary education. The test serves to assign the 
students to the different levels of a course. 

For both cases the item bank and a test assembly model were available. In 
practice these test assembly models are feasible, but for the purpose of this study the 
models were slightly altered to make them infeasible. 

7.1. Settings of methods in Comparison Study 

Three methods are available for forcing a solution. To apply these methods, the test 
assembly problems PPON Biology and WISCAT-pabo were transcribed into goal 
programming models. For every constraint, variables d+i and d_i were introduced that 
denote the amounts by which the constraint is violated positively or negatively. The 
forcing methods were implemented in Nuzlight (Huitzing, 2002), open source software 
developed at the University of Groningen. 

When the Goal Programming (GP) method is applied, the model is solved with a 
LP solver but without the original objective function, so as just to minimize the sum of 
violations. In Multi-Objective Goal programming (MOGP), the cases are solved using 
again a LP solver, but now the original objective function is included and has the same 
relative weight as the objective function of minimizing the sum of violations. The Greedy 
heuristic minimizes at each iteration the total additional unweighted sum of violations. In 
Nuzlight the Greedy Heuristic is programmed in the following way. Starting with zero 
items, the best item (with respect to the constraints) is found by means of a LP solver 
and is added to the test. The decision variable representing this item is then set to one in 
a new constraint. This is then repeated at each iteration until the desired number of 
items is attained. 

For analyzing the causes of infeasibility, three methods have been introduced. The 
Relaxed Ordered Deletion Algorithm (RODA) is implemented in CPLEX (ILOG, 2001), a 
commercial software package for solving mathematical programming problems. Both the 
Integer Randomized Deletion Algorithm (IRDA) and the Set Covering with Item Sampling 
(SCIS) method are implemented in Nuzlight. For the SCIS method the following settings 
were used. The SCIS was run each time with 10,000 replications and the probability of 
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selecting an item was set to the test length divided by the total number of items. In this 

way the average test length of the sampled tests was equal to the total test length. 

The 11S-Solver, the only method that analyzes infeasibility and forces a solution, 

uses a combination of the IRDA (all variables are integer) to find an 11S, and then the GP 

method to solve this 11S. If the model is not yet feasible, it repeats this process until a 

solution has been forced. The 11S-solver is also implemented in NuzLight. 

Case 1 

The PPON Biology 2001 for Grade 6 of primary education has an item bank of 417 items, 

of which 172 items are singletons, and 245 items are part of groups of two to fifteen 

items, and are called set-based items. The items have five domains. All items are 

dichotomous (i.e., scoring is either wrong or true), and are calibrated according to the 

one-parameter logistic model (OLPM), i.e., all items have an information function that is 

characterized by two parameters, a, the item discrimination and b, the difficulty of the 

item. 

A typical PPON biology test assembly model will have one constraint on the test 

length, three constraints on the target information function, five constraints on the 

domains of the items, four constraints balancing the number of set-based items, and 

about 255 constraints defining the item sets. Moreover, there will be a number of 

constraints on enemy sets, i.e., items which must not appear in a same test, e.g., 

because they contain clues to each other, and some constraints on minimal choices of 

items from the larger item sets. 

Two IISs were added to a problem. For two content constraints (Constraint Max1 1  

and Constraint Max12) referring to a same set of items, the upper bound and the lower 

bound were interchanged. As a result the lower bound was larger than the upper bound 

for that set of items. The second 11S resulted from a matrix specification error. Three 

enemy constraints (Constraints Max1 1_1, Max1 1_2 and Max11_3) were added to the 

model and the lower bound of content Constraint Max11  was increased. These four 

constraints resulted in the second 11S. 

The results of the comparison study are shown in Tables 1 and 2. For comparison 

purposes we give the value of the objective function (maximize TIF) of the original 

feasible model, which is 40.0593. To compare the different forcing methods, the four 

criteria introduced in the Theoretical Evaluation of Methods section are denoted in 

Table 1. 
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Table 1 .  Forcing Methods in PPON Case 

Method Violated Total TIF value 

constraints violation 

GP 2 3 16.7743 

MOGP 21 33 50.2756 

Greedy Heuristic 21 33 50.2756 

US-Solver 2 3 38.9149 

GP: Goal Programming model without the original objective function 

MOGP : Goal Programming model with the original objective function 

Total violation : sum of constraint bound violations 

Time 

1 second 

3 seconds 

16  seconds 

1 50 seconds 

TIF value : Sum of the values of Test Information Function (measured at threepoints) 

For GP, the method just violated two constraints (one constraint per US). 

Although this method provided some information about the causes of the infeasibility, it 

did not enable the test assembler all information to restore the problem. Moreover, the 

value of the Test Information Function (TIF), namely the original objective function to be 

maximized, was very low. 

When MOGP was applied to the infeasible model, it resulted in a solution that 

violated 21 constraints and found a maximal value for the Test Information Function. The 

Greedy Heuristic found the same results, so in Case 1 both the MOGP and the Greedy 

Heuristic did equally well. The necessary time to solve the model with the Greedy 

Heuristic is distorting, as in Nuzlight at each iteration of the heuristic a new model is 

solved with a LP solver. 

The US-Solver correctly identified the causes of infeasibility and proposed to 

modify two constraints. The resulting value objective function is very close to the 

objective value of the original problem. 

For the analyzing methods, the results are shown in Table 2. 
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Table 2 .  Analyzing Methods in PPON Case 

Method Detection Time 

Lower bound > Error in 

Upper bound Specifications 

RODA Detected Not detected 

IRDA Detected Detected 50 seconds 

SCIS Detected Detected 4,5 minute 

US-Solver Detected Detected 150 seconds 

RODA : Relaxed Ordered Deletion Algorithm as programmed in CPLEX 

IRDA : Integer Randomized Deletion Algorithm as programmed in NuzLight 

SCIS : Set Covering with Item Sampling method 

The US consisting of Constraints Max113 and Max114 was found by all three 

infeasibility detection methods. Once the infeasibility has been pinpointed down to two 

inconsistent constraints, it is easy for the test assembler to rectify the error. RODA 

proposed changing the value of the bound of Constraint Max l l, after which the relaxed 

model did become feasible. However, according to the model expert, this suggestion was 

not acceptable to test assemblers. 

Only the IRDA and the SCIS detected the 115 of Constraints Maxl l, Maxl l_l, 

Max11_2 and Max11_3. The RODA was unable to detect this second 115, even after 

following up its proposal of changing the bound of Constraint Maxl l  and eliminating the 

first 115. While the relaxed model had now become feasible, the binary model was still 

infeasible, but RODA offered no information about its causes. 

Because of the random nature of the SCIS and the IRDA, it is remarkable that 

they needed only two runs to detect both IISs. However, the time needed by SCIS is 

very high. This is due to the software, which is not professionally and efficiently 

programmed. Most of the computer time was spent on the sampling, exactly the part 

that should be fast to implement. 

Note also that the 115-Solver needed 150 seconds to find both 11S, but these 150 

seconds include fixing the IISs. 

Case 2 

The WISCAT-pabo item bank contained 557 items. The items are scored dichotomously, 

and calibrated with the OPLM. Four content domains have been specified that are divided 

i n  several sub-domains. The test length is 40 items. Instead of assembling an adaptive 

test, two parallel linear versions were assembled. The resulting test assembly model 

consisted of 823 constraints. To make the model infeasible, it was changed in the same 
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way as the previous model. The lower- and upper bound of a content constraint were 

interchanged. Besides, a matrix specification error was introduced. Therefore, three 

enemy constraints were added to the model. Together with the constraint on the lower 

bound in the first IIS, these four constraints result in the second IIS. 

The results for the comparison study are shown in Tables 3 and 4. The value of 

the objective function (maximize TIF) of the original feasible model is 3.10525*102 . 

Table 3. Forcing Methods in WISCAT-pabo case 

Method Violated Total TIF value 

constraints Violation 

GP 4 6 1 .41982*102 

MOGP 93 153 3.58534*102 

Greedy Heuristic 91 1 14 2.36484*102 

US-Solver 1 1 3.10525* 102 

GP : Goal Programming model without the original objective function 

MOGP : Goal Programming model with the original objective function 

Total violation : sum of constraint bound violations 

Time 

6 seconds 

3 seconds 

70 seconds 

10 minutes 

TIF value : Sum over both tests of the values of the Test Information Function (measured 

at five points) 

The Greedy Heuristic resulted in a solution that violated 91 constraints. For the GP 

the method violated four constraints. When the objective function was taken into 

account, MOGP violated 93 constraints, comparable to the Greedy Heuristic, but with a 

much higher objective function and also a much higher total sum of constraint violations. 

The !IS-Solver identified the IIS and proposed how to solve it, resulting in just 

one constraint violated. The US-solver resulted in a TIF of 3.10525*102, again 

outperforming all other methods. 
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Table 4. Analyzing Methods in WISCA T-pabo case 

Method Detection 

Lower bound 
> Upper bound 

RODA Detected 
IRDA Detected 
SCIS Detected 
US-Solver Detected 

Error in 
Specifications 
Not detected 
Detected 
Detected 
Detected 

Time 

9,5 minutes 
30 minutes 
10 minutes 

RODA : Relaxed Ordered Deletion Algorithm as programmed in CPLEX 
IRDA : Integer Randomized Deletion Algorithm as programmed in Nuzlight 
SCIS : Set Covering with Item Sampling method 

The RODA just identified the first error. Again the fact that it only used the 
relaxed model of Case 2 to search for an IIS was the reason it did not detect the second 
error. Moreover, after readjusting the first error it detected, it remained infeasible 
without giving any clues for the test assembler. For the IRDA, a remarkable result was 
obtained. It also found only one IIS. When the feasible model was altered, apparently 
one constraint became part of both errors. Although we did not realize it in advance, the 
combination of this writing error and error in the specifications matrix resulted into one 
IIS only. Thus, in retrospect, the RODA was even unable to detect the whole IIS. While 
the SCIS detected the IIS, it took a fair amount of computer time. 

Note that while the US-Solver found the only IIS and solved it. The US-solver 
needed 10 minutes to fix a solution, most of this time was actually necessary to detect 
the IISs with the IRDA (9,5 minutes). 

To see what would happen if another specification error was introduced, two more 
constraints were added, interacting with a third constraint in the model. In Tables 5 and 
6 the results are displayed, where we now speak of IISl, the IIS of the two errors 
introduced previously, and IIS2, the new error (which we took care not to interact with 
IIS1). The results are shown in Table 5 and Table 6. 
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Table 5. Forcing Methods in WISCAT-pabo Extended case 

Method Violated Total TIF value 

constraints Violation 

GP 5 7 1.43397*102 

MOGP 94 155 3.58534*102 

Greedy Heuristic 92 115 2.36484*102 

ISS Solver 2 3 3.12911 *102 

GP : Goal Programming model without the original objective function 

MOGP : Goal Programming model with the original objective function 

Total violation : sum of constraint bound violations 

TIF value : Sum over both tests of the values of the Test Information Function (measured 

at five points) 

Again the IIS-Solver did best in terms of TIF value versus the number of violated 

constraints. 

Table 6. Analyzing Methods in WISCAT-pabo Extended case 

Method 

RODA 

IRDA 

SCIS 

IIS-Solver 

Detection 

Lower bound 

> Upper bound 

Not Detected 

Detected 

Detected 

Detected 

Error in 

Specifications 

Not Detected 

Detected 

Detected 

Detected 

RODA : Relaxed Ordered Deletion Algorithm as programmed in CPLEX 

IRDA : Integer Randomized Deletion Algorithm as programmed in Nuzlight 

SCIS : Set Covering with Item Sampling method 

Also for this problem, the RODA was unable to find the second 115 because of its 

binary nature. 
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7.2 Implications of settings 

Hard and Soft Constraints 

One of the drawbacks of many presently used ATA models is the difficulty to control 

which constraints can be relaxed, and which should never be violated. In Goal 

Programming models such as the WDM the weights in Model 4.1-4.4 can guide this 

process, and large weights for d+i and d-i for constraint j will make it highly unlikely that 

it will be violated. However, this is not guaranteed. Hard constraints (Chinneck, 1997; 

Timminga, 1998; Huitzing, in press a) are defined as constraints that must be met, while 

so-called soft constraints are constraints that if necessary can be relaxed. 

If the original model, such as in Model 1.1-1.3, is feasible then there is no need to 

set any constraint as 'soft'. If the model is infeasible, then a priori all constraints should 

be considered for relaxation, such as in Model 4.1-4.4. By trial-and-error the weights for 

d+i and d_i can be set such that an acceptable test is found. In a situation where there is 

no time for repair, the test assembler can decide that some constraints should never run 

the risk of being violated, and set them as 'hard'. An example of a hard constraint is, 

e.g., the test length, and an example of a soft constraint is constraint referring to the IRT 

difficulty parameter values representing item difficulty, which are only estimates anyway . 

7 .3. Additional comparison GP and MOGP 

The main difference between GP and MOGP lies in the objective function. In GP 

the original objective function is not taken into acco·unt, while in MOGP it is included in 

the model. The weight of the objective function in both methods is zero for the GP 

method and 1 for the MOGP. It is interesting to see what would happen if we gradually 

increase the importance of the objective function, that is, if we gradually set the weight 

of the original objective function higher. In Figure 1 a graph is depicted with on the x­

axis the relative importance (0 to 100 percent) of the goal function 'Minimize Violations', 

where its complement is the relative importance (100 to O percent) of the original 

objective function 'Maximize TIF', and on the y-axis the value of the TIF.  Note that if the 

weight of the original objective function is zero we have the situation as in GP. 
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Comparison GP vs. MOGP 

600000 -...----..,,.-----------------,--------. 
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Minimize Violations 100 % 

Maximize TIF O % % 

Minimize Violations 0 

Minimize Violations - Maximize TIF 

I- Test Information Function I 

TIF:  Test Information Function • 1000 

Figure 1 .  Setting Weights on Conflicting Objective Functions 

In Figure 2, the two conflicting objectives are shown again. On the x-axis the sum 
of the constraint bound violations and on the other axis the value of the TIF are shown. 
An arrow below the axis shows to the direction of its objective function. A lower total sum 
of violations entails a lower TIF, and it is to the test assembler to make a choice here, 
when using a Multi-Objective Goal Programming method along the line shown in 
Figure 2. 

24 



Comparison GP vs. MOGP 
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Figure 2 .  Results of Conflicting Objective Functions 

5 0 

T wo t hings are not ewort hy. F irst not e t hat t he MOGP line does not go all t he way 

t o  t he origin of t he qu adrant .  The MOGP line never r eaches t he z er o  of t he valu e of 

violat ions becaus e t he model is inf eas ible: if we want t o  f orce a s olut ion, we must violat e  

a nu mber of const rai nts . Moreover , t he constr ai nt concer ning t he t est lengt h is s et as 

hard t hus , once we f orce a s olut ion, t here will always be a nu mber of s elect ed it ems , 

ensu ring t hat t he valu e of t he t est inf or mat ion fu nct ion will never be z ero t oo. S econd 

not e t hat t he MOGP line goes str aight u p  in valu e of t he TIF f or a s ame nu mber of 

constr aint violati ons . Indeed, at t he right end of t he MOGP line we have t he s itu at ion as 

in GP. T he original object ive valu e plays no r ole here. But adding t he origi nal object ive 

fu nct ion while giving a very lar ge r el at ive weight t o  not violat ing t he constr aint bou nds 

indu ces t he s olver t o  s ear ch f or a best s olut ion wit hin t he s et of f easi ble s olut ion def ined 

by f irst meet ing t he goal fu ncti on. This s oluti on is actu ally t he s oluti on f ou nd by t he 11S­

S olver , and by again changing t he r elat ive weights of t he or igi nal obj ect ive fu nct ion can 

als o be f ou nd by t he Greedy Heurist ic. 
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8. Conclusion and Discussion 

In the case of i nfeasibi l ity of test assembly models two choices a re at hand, either 

directly 'force' a sol ution, without knowing the causes of the infeasib i l ity, or fi rst find and 

analyze the causes of i nfeasibi l ity, and then repai r  these. However, in both choices some 

of the constraints must be violated . In this paper, it is  described how different methods 

that are developed to analyze and or dea l  with infeasibi l ity in test assembly models work 

in practice. 

Three forcing methods were appl ied. Goal Programming (GP) just focuses on 

violations of constraints. Multi-Objective Goal Programming (MOGP),  i ncluding the 

orig inal  objective function, and the Greedy Heuristic for solving the goal programming 

model are examples of methods where not only the violations m ust be kept to a 

min imum, but also where the value of the test i nformation function is taken i nto account. 

About differences in performance some expectations were formulated in the 

Theoretical Evaluation section . As expected, Goal Programming (GP) min imized the 

number of violations and the tota l sum of violations. The method was able to find causes 

of i nfeasibi l ity for both cases, and forced a sol ution by a min ima l  violation of the 

constra ints. MOGP was expected to result in the h ighest value for the TIF. For the PPON 

example,  the Greedy Heuristic performed as good as the MOGP. For the WISCAT 

exampl e, the MOGP performed best w . r.t. this criterion .  Our expectations about 

necessary computer ti me were not met. For the larger Case of WISCAT-pabo, the M OGP 

surpassed the Greedy Heuristic by a large extent. The Greedy Heuristic performed worst 

i nstead of best. Probably, th is is due the inefficient programming of the a lgorithm .  

Analyzing methods include the deletion algorithm (Chinneck & Dravnieks, 1991),  

and the Set Covering with Item Sampl ing (SCIS) method (Hu itzing,  i n  press b), which 

search for one or more Irreducible Infeasible Subsets (115) of constra ints. The deletion 

algorithm can be implemented in a determi nistic way, the Relaxed and  Ordered Deletion 

Algorithm (RODA) i mplemented in CPLEX (ILOG, 2001) ,  or a stochastic way, the Integer 

and Random Deletion Algorithm (IRDA) i mplemented in Nuzlight (Huitzing, 2002). 

As expected, IRDA outperformed RODA, because the latter only looked at the 

relaxed model ( i . e . ,  the binary var.iables are relaxed into taking val ues between zero and 

one). This greatly frustrated the search for IISs. The SCIS is a completely different 

method, based on enti rely different solving techniques. For the two cases at hand, the 

SCIS detected the IISs in the both Cases. To our disappointment the computer time 

needed to sample the tests was by far too high to be practical .  Again ,  this is  mostly due 

to the software that is not efficiently progra m med . 

One combined method was eva luated . The 11S-Solves fi rst analyzes the problem, 

and then forces a solution.  The results of the 115-Solver can be compared with both 

forcing and ana lyzing methods. The US-Solver performed as wel l  as, or even better than 
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the GP method when it comes to minimum number of violated constraints and minimum 
total violation. The resulting TIF value comes very close to the TIF value of the original 
models without infeasibility. However, the US-Solver needs much more time than the 
other forcing methods. When the US-Solver is compared with the analyzing methods it 
should be mentioned that the US-Solver builds on the results of IRDA. Since the IRDA 
was very successful in identifying USs, this method also performed well. Because of this, 
the US-Solver is recommended. It is applicable both for analyzing the model and for 
forcing a solution, besides it performed very well in the comparison study. 

However, these conclusions are drawn for two specific cases, and generalizations 
of these conclusions have to be made carefully. Also, all methods 'able to deal' with 
infeasibility do violate more or less the original bounds set by the test assembler, even if 
this is done in an automatic way embedded in the model, such as is the case for goal 
programming methods. However, not all methods are clear about how they violate 
constraints, other than that a weighted sum of the violations must be minimized. The 
problem then becomes how to set the weights of the constraints, which is a matter of 
trial-and-error. 

The original objective of the test assembler, such as maximizing the test 
information function on a certain scale, can influence the number of violated constraint. 
Moreover, using an overall approach instead of a heuristic can have advantages in terms 
of a smaller number of violations. If, instead of forcing methods, an analyzing method 
was chosen, the source of one of the infeasibilities, namely an upper bound larger than a 
lower bound for a same set of items caused by a typing error, could by easily identified 
and adjusted. 

All methods have drawbacks as well as advantages. Being faster, an important 
issue when a solution must be found in a real-time online examination, usually entails 
more unnecessary violations, and the more specific a method analyzes the infeasibility, 
the more computer time and interaction with the test assembler is needed. Which 
method is used depends thus on the goals of the test assembler or settings in which a 
test must be assembled. 
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