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Abstract 

Two indices for test quality are presented. Both are based on so-called classification 

matrices whose m rows are obtained as conditonal score distributions over m partitionings 

of the latent continuum. The first one is the permanent of this matrix; the second one is based 

on the observation that occasionally such classification matrices can be expressed as convex 

combinations of permutation matrices. 

Key words: permanent, convex sum of permutation matrices, conditional distribution. 
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Introduction 

In classical test theory, the KR2O can be seen as an index for test quality. It's 

advantage is that a single number summarizes a lot of 'information'; it's disadvantage is 

population dependency. Similarly for generalizability theory and generalizability coefficients. 

In Item Response Theory, test quality is commonly expressed by the test information function 

with it's well-known advantages. Test information has no global summarizing feature, 

however. It might therefore be of interest to have, alongside test information, an index of 

quality that summarizes a lot of 'information' into a single number. The purpose of this note 

is to present two suggestions for such index, one of more practical and one of more 

theoretical interest. The indices can only be interpreted in conjunction with a grading system, 

however. Since defining a grading scale on the latent continuum is common practice in many 

situations, especially in education, this is not seen as a disadvantage. Despite the appearances 

of the matrix from which both are derived (to be shown below), neither index is a measure 

of association nor of agreement. In fact, neither index is a statistic so concern about sampling 

distributions is unnecessary. The rows of the matrix from which both are derived are based 

on conditional distributions. As will be shown, the numerical values of the indices are 

completely determined by the width of categories defined on the latent ability continuum and 

test information. 

Assume as given an ability continuum, a partitioning of this continuum or of a part of 

it, a test consisting of !RT-calibrated items and known test information for this continuum 

or for the relevant part. The partitioning can, for example, take the form of an equal interval 

grading scale defined on the continuum or part of it. For each grade a conditional score 

distribution can be computed in the following manner. For the computation of the conditional 

distribution of the maximum likelihood estimator, given that 8 = 8* (with I as test 

information at 8*), use is made of the asymptotic property that it is N(8*, 1/1(0*)) distributed. 

Further, m points 8(i) are specified, each representing a latent class on the continuum. The 

border between classes i and i + 1 is assumed exactly between 8(i) and 8(i + 1). From this it 

follows that the proportion of students with true ability 8* obtaining a maximum likelihood 

estimate on the test lower than the upper boundary of class i can be approximated by 

I 

4> {(0; + 0
i+l

)/2 - 0*}/ 2 , 
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where <I> denotes the cumulative normal distribution. It is furthermore assumed, that the test 

consists of items that are very well calibrated, so that I at any point of the ability continuum 

can be seen as a fixed quantity. Doing so for each of m grades and writing the result as m 

rows of a matrix results in what will be called here an m x m classification matrix C. The 

rows of C are conditional score distributions. Matrix C is stochastic and as will be shown 

further on, sometimes even doubly stochastic (both rows and columns sum to one). 

First proposal for an index 

There is a little known function of a matrix, with some resemblance to the determinant 

of a matrix, that, in conjunction with extreme forms of matrix C produces a number that can 

be interpreted as a quality index for a test, given a partitioning, for example, a grading 

system. This function is the permanent of a matrix, written as per(C) for square matrices 

(although a more general definition applies to any rectangular matrix and is written as Per(C)) 

and is defined as follows: 

This notation should be read as follows. Regard all 1r = m! permutation matrices of order 

m. For each permutation matrix take the corresponding elements in C and multiply these 

elements. Next, summate over all permutations (see Mine, 1978). 

For two classification matrices C the value of the permanent is easily determined. The 

first case concerns the perfect test with error-free measurement; the second case concerns the 

worst possible test that does not discriminate at all (tests that allocate subjects systematically 

more frequently to improper grades than to the proper grades will be disregarded here). In 

an example with a grading system with three categories, these matrices look as follows: 

1 0 0 . 333 .333 .333 

0 1 0 and . 333 . 333 . 333 

0 0 1 . 333 .333 . 333 

It is clear that per(C) for a perfect test will always be 1 ,  since it is a function of the identity 

or first permuation matrix. So the (theoretical) maximum value of per(C) is 1 (per(C) raeches 
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a maximum for any permutation matrix; we are , however, only interested in classification 

matrices with dominant diagonal). A suggestion for a minimum value (although easily 

computed in the example above, it is obvious that the computational burden increases rapidly 

for larger matrices) can be derived from the van der Waerden conjecture for doubly 

stochastic matrices that states 

m! per(C) � 

.. 

with equality being obtained when all elements of C are equal to 1/m. (The conjecture was 

actually proven in the early eighties; for details, see Mine, 1988). Since the classification 

matrix for the worst possible test is not only stochastic but doubly stochastic, the van der 

Waerden result applies in this case. 

Normally, the classification matrices between these two extremes will have a dominant 

diagonal, where the diagonal elements are preceded (followed) by monotonically increasing 

(decreasing) elements. If matrix C happens to be doubly stochastic, the minimum value of 

per(C) is therefore known and is completely determined by m, the number of categories on 

the ability continuum. However, in practice C will usually be only row-stochastic and the van 

der Waerden conjecture does not apply directly. A very large number of classification 

matrices, however, will have values for per(C) that are above the van der Waerden 

minimum. Each matrix C that has a smallest diagonal element greater than the m-root of Min 

per(C) has of necessity a permanent greater than the minimum, since the product of the 

diagonal elements of C is already greater than this minimum. For 3-square matrices this 

lowest diagonal element is 0.605, being the cubic root of 0. 222222, the minimum of per(C) 

for 3-square doubly stochastic matrices; for 5-square matrices the minimum diagonal element 

should be 0.521 . These values are well within the reach of well-designed tests with sufficient 

test information in conjunction with the appropriate grade scale. It is conjectured, however, 

that the permanent of all row-stochastic matrices with dominant diagonal is greater than the 

van der Waerden minimum for doubly stochastic matrices of the same order (for 2-square 

matrices it can be proven; the proof is trivial). The conjecture is based on the following 

observation on the m! components of the permanent, each consisting of m fractions that are 

to be multiplied. First, regard the matrix filled with elements ( 1/m) and its permanent as a 

sum of ml products of m identical fractions (1 /m). Next change two elements of the first row 
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by subtracting something from one off-diagonal element and adding this to the diagonal 

element. Those components in which the diagonal element appears will increase while those 

in which the changed off-diagonal element appears will decrease by exactly the same amount. 

The permanent remains the same. Next, repeat this procedure for the second row. Again 

some components of the permanent will change but now the effects of aggregating higher 

fractions in some components in conjuntion with aggregating lower fraction's in some other 

components appears. Since within each component the fractions are multipled, the first effect 

is larger than the second effect and the permanent will incease. So for each stochastic matrix 

with at least two dominant diagonal cells it appears that the permanent is larger than the van 

der Waerden minimum for doubly stochastic matrices. No numerical counterexamples could 

be found. 

The permanent as index for test quality has some interesting properties. 

1. It is a summarizing index. Although low-order classification matrices can easily be 

compared by visual inspection, this is not the case for matrices of higher order. 

2. Since the rows of the classification matrix are derived from conditional distributions, 

the index is population independent. 

3. The ability to discriminate between tests increases with the quality of the tests. This 

can be easily seen if one realizes that the higher the value of the index, the more it will 

be determined by the product of the diagonal elements. The comparatively rapid 

increase of the product of higher fractions as compared to the product of lower 

fractions causes this effect. 

4. The index is a measure of how succesful the test is in ranking the students. For 

example, given a test and two grading systems with different degrees of coarsenes in 

partitioning the latent ability continuum, the coarser system will produce the higher 

value for the permanent of the corresponding classification matrix. The difference in 

minimum value of the permanent reflects the fact that for coarser grading systems, it 

is easier to present a correct ranking of subjects than for less coarser systems. Given 

a fixed number of categories, it is also influenced by changes in the width of the 

categories. The index is grading system dependent. (It is also conjectured, that given 

a test and a fixed number of categories on a specified part of the ability continuum, the 

permanent in the case of equal intervals will be larger than that of all cases of unequal 

intervals, at least in the case of uniform information function). 
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Second proposal for an index 

The case of equal interval partitioning and uniform test information opens another 

perspective on the ranking function of tests. Given the difficulty of obtaining exact uniform 

test information in practice, the following is, to that extent, of theoretical interest. With 

uniform test information, I in (1) is a constant. All class intervals are of equal size and the 

steps from one (}* to the next are also of equal size and equal to the class intervals. As can 

be checked, this leads to symmetry in the columns with respect to the corresponding rows, 

making the classification matrix under these conditions a doubly stochastic matrix. Note that 

no knowledge about the actual distribution of ability nor about the actual value of test 

information is necessary. Since C is doubly stochastic, a result known as the Birkhoff 

theorem (Mine, 1988) or the Birkhoff-von Neumann theorem (Syslo, Deo, & Kowalik, 1983, 

p.339) applies in this case. The theorem states the following: if an m-square matrix C is 

doubly stochastic it can be expressed as 

where the P's are m-square permutation matrices, the w's sum to 1 ,  all w's being positive 

and q < m!. 

To see this, define a bipartite graph G on matrix C with two subsets of nodes of equal 

cardinality m. The rows of C correspond to one subset of G and the columns of C correspond 

to the other subset of G. For every non-zero entry in C there is an edge in G; the weight of 

that edge is equal to the numerical value of the corresponding element in C. Next, find a 

perfect matching in G (a perfect matching is a set of pairwise disjoint edges covering all 

vertices). If C contains no empty cells, the maximum number of perfect matchings is m! (see 

Figure 1). 
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row column 

1 •---.86---• 1 

2 •-.67 

.13 .12 

�.02 .01 

.20 .21 

2 

1/ 
3 .78 • ---• 3 

Figure 1 .  Perfect matching in a bipartite graph. 

(Figure 1 is based on the following classification matrix, generated by the program Optimal 

Test Design; irregularities are due to the difficulty of obtaining exactly uniform test 

information given the bank used, and rounding in OTD): 

and gets grade 

a b C 

A .86 .13 .01 

C (d d ) 
B .12 . 67 . 21 

= eserves gra e 

C .0 2 .20 .78 

From Figure 1 it is easy to see that each perfect matching corresponds to a permutation 

matrix. It is also clear that given any set of five perfect matchings, the sixth one is 

determined, creating dependency. The weight of a perfect matching is the sum of the weights 

of its edges. Referring to figure 1 ,  the weight of the perfect matching {( 1 , 1 ), (2,2), (3,3)} 

is .86 + .67 + .78 = 2.31 . This perfect matching refers to the identity permutation matrix. 

Writing all m! permutation matrices in a certain order as, for example, below 

6 



100 

010 

001 

100 

001 

010 

0 1 0 

100 

0 0 1 

010 

001 

100 

001 

100 

010 

leads to equations as, starting with the first matrix, 

001 

0 1 0 

100 

3w1 + w2 + w3 + w6 = 2.31 . Doing so for all matrices results in 

3 1 1 0 0 1 Wl 
2.31 

1 3 0 1 1 0 
W2 1.27 

1 0 3 1 1 0 W3 1.03 

0 1 1 3 0 1 W4 0.36 

0 1 1 0 3 1 W5 0.3 3 

1 0 0 1 1 3 
w6 

0.70 

Two questions arise as regards (4). The first is: in how many ways can C be expressed in 

the form (4)? The second is: what is the least number {3(C) of 

permutation matrices whose convex combination equals C? According to Mine (1988), 

hardly anything is known about the first question. As regards the second question, several 

upper bounds have been presented (for details, see Mine, 1 988). The best one known is given 

by 

where h is the index of imprimitivity. It will be shown that for classification matrices h will 

always be equal to 1. Because C contains probabilities, there will be no zero entries in C 

(although the actual values can become vanishingly small of course). This implies that the 

directed graph D associated with C is strongly connected, which happens to be the case when 

there is a path in D connecting any pair of vertices. Since there is no zero pattern in C, this 

is always the case. A path is a connection of two vertices in D and a cycle is a path 

connecting a vertex with itself. The greatest common denominator of the lenghts of all cycles 

in D is called the index of imprimitivity of D. C is called irreducible if its associated D is 

strongly connected and the index of imprimitivity of an irreducible matrix is equal to that of 

the associated matrix D (see Mine, 1988, Chapter 4). Since D contains loops (cycles of 
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length 1), h for D and therefore for C is equal to 1. All this means that /3(C) cannot exceed 

(m - 1)2 + 1. 

For the numerical example of C presented above this means an upper bound of {3(C) 

= 5 or, in other words, C can be expressed as a combination of at most five permutation 

matrices. Choosing to set which w equal to O in the system of linear equations as presented 

above is guided by the following considerations. The choice should not affect diagonal 

elements nor, preferably, adjacent elements, since for regular classification matrices this is 

where most of the 'higher values' will be. The elements of the corresponding permutation 

matrix should have highest aggregate distance to the diagonal and the weight of the 

corresponding perfect matching ( or sum of the corresponding fractions in C)  should be 

lowest. These considerations lead to setting w5 = 0 and solving for the rest with the 

following result: 

100 100 010 010 001 001 . 8 6. 36.01 

.66 010 +.20 001 +.12 100 +.01 001 + 100 +.01 010 = .12. 67 . 21 

001 010 001 100 010 100 .02. 20. 78 

The interpretation is as follows: for this particular 3 -grade system, the test behaves as a 

perfect test in 66 percent of the cases; in 32 percent (. 20 + . 12) it causes first order 

permutations, or switching adjacent grades and in only 2 percent it causes higher order 

permutations or switching several grades simultaneously. Since the range of any w is in 

principle from O to 1, it is tempting to regard w corresponding to the identity permutation 

matrix as an index of test quality . In that case the lowest value in the diagonal of the 

classification matrix is the upper bound of this index. It is interesting that both indices 

presented in this note are related to permutations and therefore to one of the purposes of a 

test: it should rank subjects correctly. 
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