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Abstract 

The administration of tests via the computer allows the registra­

tion of response times along with the actual response. This paper 

describes a model that combines these two kinds of data to estimate a 

subject latent variable usually called mental speed, but more appropri­

ately called mental power. The model implies that the expected item 

score increases with invested time. Nevertheless, it allows for a de­

creasing expected item score with response time, which is sometimes 

found in experiments. This paradox is obtained by assuming that a 

subject not only stops working on a problem because of time pressure, 

but also when he has solved the problem. The model builds on a fa­

miliar framework of IRT models. An MML estimation procedure is 

developed, and model fit on the item level is evaluated using Lagrange 

multiplier tests. 

1 Introduction The administration of tests via the computer allows the registration of re­sponse times along with the actual response. This paper describes a model that combines these two kinds of data to estimate a subject latent variable known in the literature as mental speed, but more appropriately called mental 

power, because in the present context it is confronted with an item property that can be understood as resistance to solution. The item score reflects the insight the subject has gained about the presented problem within the 
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observed response time. Insight is represented by a latent variable called pre­cision that determines the item score distribution. Higher precision implies a higher expected item score. In this paper precision is not constant, but in general increases with response time. Mental power is defined as the increase of precision that a subject realizes per unit of time. As a result of greater the mental power a greater solution speed is realized. There are few places in the literature where the simultaneous analysis of speed and accuracy is discussed. Even the psychometric literature primarily focuses on response time distributions, without regard to the response quality (Scheiblechner, 1979, 1985; Van Breukelen, 1995,1997; Maris, 1993). An ex­ception is Verhelst, Verstralen, and Jansen (1997), who present an IRT model for mental power where the item scores and the total response time to the test are analyzed. The presumed absence of response times per item forced • some less appealing restrictions on the model. Firstly, it had to be assumed that the time distribution is equal for all items. Consequently, the model looses credibility in situations were items are not of comparable difficulty or length. Secondly, the response times per item were assumed to be gamma distributed. This assumption was introduced for reasons of mathematical el­egance, and not justified on substantial grounds. On the other hand, Storms and Delbeke (1992) demonstrate that the distributional assumptions on the response times are hardly relevant for other model characteristics. So, prol:r ably, even if this assumption would not pass empirical test, it will do little harm. Nevertheless, in the present study we assume that response time and quality are registered per item, and for each item a separate response time distribution is estimated. The conditional accuracy function (GAF) is defined as the probability of a correct response as a function of response time. The models by Roskam, and Verhelst a.o. do not allow CAFs to be decreasing. On the other hand, Dan­ders (1997) demonstrates that decreasing CAFs are a common phenomenon in practice. The present model was developed in order to accommodate both decreasing and increasing C AFs. Traditionally, (e.g. Pachella, 1974) a distinction is made between macro trade-off and micro trade-off. Macro trade-off refers to the overall time pres­sure, and relates to the expected item score conditional on the mean reaction time. Formally, 
£(Xl£(T)), (1) with T the random variable response time. On the other hand, micro trade­off refers to the expected item score in relation to the decision to stop working on a particular item. Formally, micro trade-off can be represented as 
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£(XIT). (2) All the models described by Pachella, based on feature detection theory, predict increasing precision with mean reaction time. However, the micro trade-off, that relates to the mean item score conditional on the reaction time of a particular subject may, under the Accumulator model, show a decreasing relation between precision and reaction time. The model for micro trade-off in this report uses item response times and item scores to estimate mental power. It is rooted in the IRT tradition and, in that sense, a continuation of the work of Roskam, Van Breukelen, and Verhelst, a.o. The model is developed for polytomous items in general, and special attention is given to the G AFs. It is a critical assumption in the present model that a subject can stop working on a problem for two reasons. He stops if he knows the correct an­swer to the item, or he stops if time pressure forces him to do so before a correct response is found. Therefore, the model is called the double hazard 
model (DHM). This assumption gives the model the property that, although we assume an increasing expected item score with invested time, a decreasing 
GAF may result. Not necessarily for all response times, however, because an item-person combination may show an increasing GAF for relatively fast responses, and a decreasing GAF for longer response times. This coincides with a common observation in educational evaluation. A student who recog­nizes the heart of the problem and quickly decides on an effective problem solving strategy has a high probability to solve the item within a relatively short time. His less lucky classmate, with equal mental power, may stumble on a less effective procedure, that not only takes longer, but is also likely to lead to an incorrect response. Nevertheless, also for this less lucky student it is not irrational or contradictory to state that a greater time investment in this problem increases his chances to better understand the problem and to produce a correct response. 
2 General Properties of the Model This section is about some general properties of the model with special at­tention to properties of the GAF. Consider a polytomous item with ordered categories j = 0, ... , J, where J will be referred to as the correct response. Let t denote the time ( e.g. in seconds) that has passed from the moment a subject starts working on the item. We assume that the precision tJv (t) of a subject v is increasing in t. This does not imply that the precision is 
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unbounded. There may be an asymptotic value, so that it is not certain that the item will be solved, even with unlimited time. Let element 7r j ( '!9 v ( t)) of the vector valued function 11:( '!9v(t)) (11:= 1r0, . .. , 1r J) express the probability that a subject with precision {)v (t) at time t scores in category j. The func­tional form of 11: and 1J v will not be specified until the next section. Here we discuss properties of the model that are independent of these specifications. Altough in some models '!9(t) may be bounded from above, we can still in general discuss the reals as the domain of {). Denote with f(n,<t,) the nth derivative of f w.r.t. a parameter q;. In the sequel the following assumptions will be needed: A-1 7r J( '19) is nondecreasing in {), and li!Il,9 __ .,.xi 7r J( {)) = 1. A-2 For n = 1, 2, 1r�n,19\,,J) exists, and lim19--->oo 1r�•19\,a) = 0. A-3 For n = 1, 2, 19(n, lntl(t) exists, and limt--->oo,a(n,lnt)(t) is bounded. A-1 and A-2 are technical assumptions, and do not restrict any reasonable choice of model. Indeed they are satisfied by all models for polytomous item scores that we know. A-3, however, is more restrictive. It implies, for instance, that the model {)( t) = a + btc is unacceptable, since its first derivative w.r.t. ln t would have no limit for large t. But the model '!9(t) = 

a + b ln t is allowed. The characters a, b, and c denote arbitrary constants, with b > 0, and c > 0. Denote with T F the response time as a random variable from some dis­tribution F . . The distribution that represents the time pressure as perceived by the subjects is denoted as W, that is 
W(t) = Pr(Tw < t). (3) Formally, a subject starts by drawing a time tw from W, works on the problem for at most tw time units, and chooses a response at time tw . But, if the subject has found the correct response before tw, he will stop working on the problem and responds in the correct category J. If he fails to solve the problem before time tw has elapsed he draws an incorrect response from the multinomial distribution 

. 1rj('l9(tw)) Pr(X=J;tw lX<J) = ('19( ))' (for jE{O, ... ,J-1}) . (4) 1- 1l"J • tw The probability that subjects with precision functlon '!9(t) respond correctly after time t is modeled by 1r J ( {) ( t)). If a subject responds correctly within 
4 



time t, he found the correct response at tor before. That is, the conditional distribution of T given the correct response is given by 
Pr(T:::; tlX = J) = 7rJ(i9(t)). (5) It follows that, formally, data generation in the DHM proceeds as follows: 1. Draw tw from W 2. Draw t1r from 1r J 3. If t1r :::; tw then the subject responds correctly at t = t1r 4. If t1r > tw then the subject draws his response from ( 4) at t = tw. We will now derive some general properties of the GAF under the DHM. First, the hazard function has to be introduced. Let F( t) denote a time distribution with density function f ( t). The ratio 

f(t) 
hp(t) = 1 - F(t) 

(6) 
is defined for F(t) < 1 and is called a hazard function. The hazard function gives the conditional probability that some event occurs at T = t given that it has not occurred yet. We adopt the convention that f = F', where the prime denotes differentiation w.r.t. ln t rather than t, unless stated otherwise. In the model for W, and in the models for .zr: and i9, introduced in the next section, differentiation w.r. t. ln t results in simpler formulas. In the DHM there are two time distributions W and 1r J, with correspond­ing hazards; hw(t) to stop at t as a result of time pressure, and h1r(t) to stop because a correct response is found. Under the DHM the GAF is defined by 

GAF(t) = Pr(X = JIT = t) = Pr(T1r :S Twl min {T1r , Tw} = t) (7) By definition this conditional probability is given by 
CAF(t) 

1r�(l - W) 1r�(l - W) + W'(l - 7rJ) 
h1r 

h1r + hw. 

(8) 
Differentiating the GAF w.r.t. ln t, we find that the GAF in de DHM is decreasing iff 
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That is iff (ln h1r )' < (ln hw )'. 
1r" 1r' -f- + 1 < (lnhw)'. 7r1 l - 1r1 

(9) 

(10) 
If we, like Van Breukelen (1989), select for W the Weibull distribution, expression (10) becomes elegantly simple. So let the distribution W = W(t) of Tw be the Weibull, and w = w(t) its derivative w.r.t. ln t, 

W(t) 1 - exp [ - (¼) 7] 
w(t) - ;; exp [- (¼) 7] = hw(t) (1 - W(t)) , 

with hazard function hw given by 
lnhw(t) = ln, -,ln,8 + ,ln t, 

(11) 

(12) where ,8 > 0 is a scale parameter and , > 0 a shape parameter. The larger , the more probability mass at the lower values of t, so I may be called a time pressure parameter. It follows that (ln hw )' = ,. Equation (10) implies that the C AF is decreasing iff 
1r" 1r' 
_I_ + J 
7r� 1 - 7r J 

(l- 1rJ)11 (l - 1r1)' -------<, (1- 1r1)' 1 - 7rJ 
(13) 

It is easily checked that under assumptions A-1 and A-2 lim,a ..... 00 of all three functions 1 - 1r1, (1 - 1r1)', and (1 - 1r1)" equals zero, and application of l'Hopital's rule shows that 
lim ( ( 1 - 7r J) II - ( 1 - 7r J )') 

= Q 
'19->oo (1- 7rJ)

1 1 - 7rJ Equation (14) implies that there exists a smallest {)d such that 
6 
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(15) 

Therefore, if there exists a td with 79(td) > 73d, then the GAF decreases for all t > td, because 79(t) is increasing in t. However, if one chooses a model for the precision function 79(t) that not necessarily increases without bound for t----+ oo, it is not certain that td exists, and the GAF may never be decreasing. 
3 A Parametric Model for 1r, and {)(t) In this section we discuss a specific functional form for zr, and 79 ( t). Let items i = 1, ... , I be presented to subject v, v = l, ... , V. After the items are administered we have the score vector ;fv = (Xvi, . . .  , Xv/ f, with 0 ::; xi ::; Ji , Ji > 0, and the response time vector fv = ( tv1, ... , tv1) T. The precision function is modeled by 

(16) where ev > 0, is a latent variable that represents the mental power of subject 
v. Also, of course, t > 0. Thus we have chosen a precision function that is strictly increasing in t and increases without bound. Note that if exp( 79) is taken as the precision function, e precisely gives the increase in precision per unit time. That is 

exp(79(t + 1))  - exp(t9(t)) = (t + 1) e - te = e, (17) conform the definition in the Introduction. Let ai > 0, and 'f}. = (rJiO, ... , rJiJ) 
-i ' be the parameters of item i. Then the probability 1r vij for v to score in category j (j E { 0, ... , Ji}) of item i at time t is modeled by 

The parameter ai determines the slope of the probability functions, and 'r/ij is a category parameter. To obtain an identified model set 'r/i0 = 0, for all i, £(/'i,) = 0, and Var (/'i,) = 1, where £(.) denotes expectation, and Var (.) variance. If 79v were a constant this model would be the Generalized Partial Credit Model (GPCM), (Muraki, 1992). Because here 79v is a function of t, it can be viewed as a generalization of the GPCM. 
7 



The time pressure hazard function was given earlier (Formula 12). Given 
the specifications in Formulas (16), and (18), the hazard function h1r(t) is 
given by: 

where 

with 

/ 0 ( ) 1r - = --1r = a-1r J- - r · viJ. 0 ln t viJ; i viJ; i vi , 

T vi = T vi ( t) = L j 1f vij ( t) , 
j 

(19) 

(20) 

(21) 

the expected score of v for item i at time t. For a binary item r vi(t) 
7r vn ( t) = 7r vi ( t), and Formula ( 19) takes the simple form 

(22) 

To obtain a simple likelihood function, and to obtain enough data to es­
timate with acceptable accuracy the parameters of the time pressure hazard, 
hw is assumed to depend only on the item index i. This implies that the 
time pressure is perceived equally among all subjects. 

Applying Formula (13), a decreasing GAF results iff 

J [2] 

a ( t) = i - r v i _ r vi < 'Yi 
1 - 1r v iJ Ji - r vi ai ' 

(23) 

where (tvi) is omitted to simplify the notation, and r��I (t) denotes k-th central 
moment of the item score at _time t. If t-+ 0, r, 1fviJ, and r l2l vanish, so that 
limt-+O a(t) = Ji. Although it is not in general true that a(t) is decreasing in t, 
because its derivative may take positive values, it has been proven above that 
there exists a smallest td, such that a(t) < � fort > td. This means that if 
limt_.0 a(t) = Ji > � then the GAF is initially increasing, and decreases for 
higher values oft. Indeed, some calculations show ( see e.g. Figure 3) that for 
a broad range of parameter values a(t) initially decreases smoothly towards 
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Figure 1: A Weibull, ?T J and the resulting GAF at K = 0 
zero until at very high values of t, outside the range of relevant values, it may take small values around zero, remaining well below normal values of � - So it makes sense to calculate a value tmax, for which a(tmax) = � - Note that tmax depends on K, because a(t) does. Examples of G AFs are shown in Figures 1 and 2. It is clear that the 
GAF at K = 2 rises higher and starts earlier to decline than at K = 0. In general, K is a location parameter of ?T J. Higher values of K shift the graph to the left , thereby increasing the probability that trr < tw, and thus that a correct response and a shorter time results. With higher time pressure, which corresponds to increasing 1, the GAF also declines earlier. Figure 3 gives an impression of the relation between a(t) , its derivative and the GAF for an arbitrary item with J = 3. As can be seen a(t) decreases smoothly towards zero. Note that Formula (23) does not depend on /3i , and depends on t only through tJ. The latter observation implies that one may solve numerically the equation implied by Formula (23) for tJ, the solution being say t)*. Then, using Formula (16) we have that 

(24) and so 
(25) 
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Figure 3: a(t) , a'(t) (left axis), and CAF(t) ( right axis) at K, = 2 
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For other values of K, we have 
(26) 

For a binary item T1:1 = 1r vi (1 - 1r vi) , and Formula (23) takes the simple form 
(27) 

which means that for binary items the GAF is always decreasing if Ii > a. Otherwise, the C AF is increasing up to a time 
(1 (a ·-')' ) ) n =.!..........!. - a ·K - rJ · 

-1 ai - Ii "Yi i i 

tmaxvi = 1T vi (---) = exp -�-�----
ai ai 

and decreasing afterwards. 
(28) 

All these properties are according to the model, and with unlimited obser­vations. However, even if trnaxvi > 0, in practice there will be no observations at t = 0 and immediately afterwards, the first observations occurring from 
tis ,  say. It may happen that tis > tmaxvi for all subjects. In that case only the decreasing part of their C AF ' s  is shown by the data. Conversely, if the last observations occur before trnax vi , the data only show the increasing part of the CAFs. If the observations occur around trnaxvi and the CAFs are relatively flat, the data may suggest time independent CAFs. Moreover, as already mentioned, trnaxvi depends on Kv , which means that observations have to be from a group with homogeneous K to possibly show a clear form of a C AF. Otherwise increasing and decreasing parts of C AFs tend to be pooled, which prevents a clear picture to emerge. In the following section an MML estimation procedure of the model pa­rameters is discussed. 
4 Estimation 

4.1 Iterative algorithms In this section an EM-algorithm (Dempster, a.o., 1977) for the MML-estimation of the logistic model parameters is developed. It will appear that the parame­ters of the time pressure distribution, whatever its choice, Weibull, lognormal, 
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etc. , can be separately estimated with the Newton Raphson algorithm. We 
start with the simultaneous likelihood for all model parameters. 

Consider K,v as missing data with density g . The data generating process 
as introduced in Section 2 together with g determine the complete loglike­
lihood of the response matrix ({fv , fv) and K,v . Let I =J; • I ( Xvi = Ji) be 
the indicator function that takes the value 1 if Xvi = Ji , and O otherwise. 
Likewise I<J; • I(xvi < Ji) - Take K,v = ln ev as the subject parameter, and 
denote the vector of model parameters as .6. = (.6.71" , -6.w) , with .6.71" the logistic 
item parameters, and -6.w the Weibull item parameters. The complete data 
loglikelihood is then given by 

(29) 

- L I<J; ln (Wi'll"vixvJ + I=J; ln ( (1 - Wi) 7l"�iJJ + ln g (K,v) 
i 

Using the last part of (11) , and (20) , and rearranging terms it is found that 

with 

- ln y1 (a , '.!l_; {fv , fv l K,v) + ln y2 (a; {fv ) + 
ln y3 (�, 1; {fv , fv) + ln g(K,v ) + D 

Y2v ( a ; {fv ) 

II ( 1 - Wi) (hwi )
I

<Ji 
i 

(31) 

and D a constant depending only on the data. The complete likelihood, 
therefore, factors into four factors , of which only the first and the last depend 
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on K. Notice in particular that the likelihood of the Weibull parameters of 
each item appear as a separate factor of the likelihood, while we did not use a 
property of the Weibull itself. This entails two conclusions. First the Weibull 
parameters can be estimated per item separately from the logistic parameters . 
Secondly, this result is independent of the Weibull, and would have been 
obtained with any other choice for the distribution for time pressure. 

The loglikelihood fwi of the Weibull parameters for item i is given by 

(32) 

which can be maximized by the Newton-Raphson algorithm. 
Concentrating only on the logistic item parameters �7n one may omit 

y3 from the likelihood. The marginal loglikelihood M trr of the logistic item 
parameters can then be written as 

Mf1r + C = L ln y2v + J ln yiv (�1r ; �v , fv l r;,)h(r;,l�v , .L)dr;,, (33) 
V 

where C is some constant, and h, the posterior distribution of K, is given by 

Yi (�v ; �1r l K , fv )g (r;,) 
J Yi (�v ; �1r l K , fv )g( K )dr;, 

(34) 

Ili 1rvix,,; (Ji - Tvi )1=J; g(r;,) -
f ITi 1r vix,,; ( Ji - T vi )1=J; g (r;, )dr;, . 

The function that is to be maximized iteratively in the EM-method, de­
rives from the posterior expected loglikelihood, and is given by 

(35) 
V 

with �; the parameter values from the previous iteration. The Appendix 
provides further details. 

4.2 Initial Values 

Here attention will be given to the problem of finding initial values for the 
iterative estimation algorithms for the Weibull and the logistic distributions. 
To simplify the notation we omit the item index. Let 
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-1 - :Z:::v ln tv nt  = ="---
V denote the mean over subjects of ln t. 

(36) 
First initial values for the logistic parameters are derived. Assuming that 

K, = 0, it follows from Formulas (16) , (??) , (18) , and (29) that for j < J 

N- + 0.5 -rJ i � ln 1 - j aln t 
No + 0.5 (37) 

where Ni denotes the number of subjects who responded in category j, and 0.5 is added to prevent division by zero. Similarly, for j = J we have that 
I NJ + 0.5 

J -1 -T/J � n J\r - a n t +  
HO + 0.5 

['y (ln t - ln ,B) + ln, - ln(J - x(exp(ln t)) - ln a) .  (38) 
It appears from calculations that the second part of Formula (38) does not have a great impact. So for practical purposes it may be neglected. The value of a does have a great impact, however. Fortunately, given initial values for !.J.., the EM-estimation procedure appears robust enough to cope with a common initial value for a like 1.0 for all items. Initial values for the Weibull parameters can be found as follows. Let 

(39) 
V 

V then equate the first derivatives of Formula (32) w.r.t. (,B, ,) to zero (see also the Appendix) , and substitute for ,e--r in the expression for ,. This yields 
,e--r 

N< (40) :Z:::v t-Y 
- 1  

:Z:::v t7 ln t Lt< - - -:Z:::v t-Y N< Now 
14 



S = LiJ,, ln t 
Ev n 

(41) 

is a weighted mean of ln t with higher weights for higher ln t. Therefore, S � ln t + c x sd1n t ,  for some constant c > 0, and sd1n t the standard deviation of In t. From some trials it appeared that c = 1.0 yields reasonably accurate estimates of (/3, 1). Using this approximation for S and Formula (40) first an initial value for I is calculated, and then, using the initial value for 1, the initial value for /3 is found. 
5 Testing the Model Model tests can be constructed using the framework of the Lagrange Mul­
tiplier (LM) test-statistic. An introduction to the LM-test within a larger context can be found in Buse (1982). The idea for the LM-test originates with Rao (1948), there called the 'score test', and with Aitchinson and Silvey (1958). An application within the context of IRT models can be found in Glas and Verhelst (1995), and Glas (1997, 1999). In general, to compute the LM-statistic restrictions on parameters are relaxed. For instance, one may for a certain item i release the restriction that o:i is equal for boys and girls, thereby replacing o:i with o:ib for the boys, and O:ig for the girls. The restric­tion states that o:ib = aig = ai. Let superscript T denote transposition, then the LM-test statistic can be expressed as 

(42) where the superscripts within parentheses denote order of differentiation with respect to the parameter-vector in the relaxed model, evaluated at the max­imum likelihood estimate of the restricted model. LM is x2-distributed with degrees of freedom equal to the number of relaxed restrictions. E.g. , in the example there is one released restriction aib = aig , and if LM for this re­striction is significant one may conclude that the data do not support it. To obtain an especially simple procedure for the calculation of the LM statistic one keeps all original parameters in the extended model, and changes the status of implicit (0 or 1) or explicit constants from constant to a variable parameter in the likelihood function. In general this is not the case. In the example above ai was replaced with aib , and aig , where the original ai disappeared from the model. In the sketched approach, one replaces o:i for instance by o:i + aib ,  and ai + aig. 
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Denote the original parameters by �' the U new parameters by '1/;, and the 
complete vector of original and new parameters by { = (�, '1/;). The likelihood 
function is then evaluated at the maximum likelihood estimate of �' and of 
'1/; at its restricted value (e.g. O\b = 0, and ai9 = 0). Because the likelihood 
is evaluated at the maximum likelihood estimates of �' the elements of the 
first derivative w.r.t. � are all equal to zero. Because � remains completely 
in the relaxed model this simplifies the computation. Select with F(�) the 
vector of elements of the first derivatives of M £ with respect to the elements 
of �- Likewise I(�, '1/;) selects the part of the observed information matrix 
I(= -Ml2l )  with the rows for �' and the columns for '1/J. Then 

LM('l/J) = F('l/;fw-1 F('l/;), (43) 

with 

(44) 

where I(�, �)-1 is already computed to obtain standard errors of the param­
eter estimates . If original parameters are replaced by new parameters by 
relaxation of restrictions, this simplification is not obtained. 

In case the LM-test shows that the model is violated f or a certain restric­
tion, one may evaluate the size of the misfit with the first Newton-Raphson 
(N-R) step of the new parameters, were the estimation continued after re­
leasing the restrictions. This first step is given by F( '1/; fw-1. 

As to the construction of the test-statistics we follow the framework 
for item-oriented test statistics developed by Glas (1999). Adapted to the 
present model the procedure runs as follows. Drop the restriction that for a 
certain item i some or all parameters �i are independent of mental power K, .  

Divide the subjects into groups g (g = 1 ,  ... , G) of homogeneous values for 
K, ,  and introduce new parameters '1/;. , so that the parameters for item i in 

-ig 

the unrestricted model are �i + '1/; .  , depending on group membership g. For 
-ig 

instance the model given in Formula (18) can be reformulated as 

(45) 

given that v is a member of mental power group g.  In the original model it 
was assumed that ai

9 = 'r/ijg = 0. 
Using a marginal model the EAP is commonly used as an estimate of 

the person parameter, and therefore indicates group membership . However, 
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to obtain a simple formulation of the likelihood for the unrestricted model the estimate must be independent of the response to item i .  Fortunately, the EAP can be cheaply obtained for each ;f(i) separately, where ;f(i) denotes the response vector ;£ without the response to item i. Using Formula (34) the posterior h( Kq I;£) can be approximated as 
h( Kq I;£) ,::j Wq fL f ( xi ; Kq) 

Eq Wq fL f(x.i ; Kq)  
(46) 

where wq (q = 1, . .. , Q) is the Gauss-Hermite weight at Kq . Now consider the Q-vector 'JI.. with values 
(47) 

then the posterior distribution of K at Kq given ;f(i) is given by 
(48) 

and the EAP(;£Ci) ) is found with 
EAP(;I;_(i) ) = Eq KqZiq

. 
Eq Ziq 

( 49) 

It is, of course, more simple when the group membership of respondents is given by a background variable like sex, or cultural environment. It is a disadvantage of the proposed formulation of the relaxed model 
(50) that an indeterminacy problem is introduced, because for some constant c, 
(51) Consequently, if the parameters ai, ail ,  ... , aiG are unrestricted the combina­tion is undetermined and the information matrix cannot be inverted unless a linear restriction S is imposed on (ai,ai), or, in order to let the original � untouched, a linear restriction T on ai suffices. We will take 
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L Ciig = L "'ijg = o. 
g g 

(52) 
This choice has the advantage that a new parameter step is calculated for each group, without having to recalculate an inverse of a different information matrix of original parameters for each item. Because ai is a scale parameter, a multiplicative correction a�9ai might seem more appropriate, and have a clearer interpretation across items. How­ever, the additive group parameters for ai introduced by Glas (1999) have the advantage that the derivatives w .r. t. ai and ai9 in the new model retain the same form for ai9 = 0 as the derivative w.r.t . ai in the original model. Both advantages can be obtained by introducing the reparameterization p = In a, with 

(53) and taking derivatives w.r.t. p. In the same vein we have for the Weibull parameters 

with 
L 'Yig = L ,eig = 0 

g g 

(55) 
The conditional probability for v to obtain response vector (�v , iv) on item i in the relaxed DHM given that EAP(�ti), rti)) classifies v into group g, denoted as EAP(��i), rti)) E g, is then given by 

P(�v , fv ; �v , �IEAP(�ii), rii)) E g) = P(��i)' rii); �v , �(i))P(xvi , tvi ; �v , t lEAP(�ii)' rii)) E g). Glas (1999) following Mislevy (1986) mentions that, for the purposes of LM-tests, the observed information matrix can be replaced by an approxi­mation of the Fisher information matrix. 
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(56) 
where 1!: = ( e, 1). Here follows another proof of this approximation. Proof: d�note a�; as 8i, and let £!11.f (�) denote the expectation of f (�) over the distribution of �- For .a general loglikelihood function f* ({; �) it holds that 

-£!f,8i8j£* - £!11.8/-* 8j£* 
� � L 8/-:8/: (57) 

V For a marginal loglikelihood M f �; �v) = £If, ( f �; �v) ) we have that 8iM f = 
£If, (8/,) . Substitution of Mf for f* in Formula (57) give Formula (56).■ In the present context, the greater generality of this proof allows to apply it not only to the marginal loglikelihood for the logistic parameters, but also to the ordinary loglikelihood for the Weibull parameters. Above, it was mentioned that 1(1, 1)-1 was already computed to obtain standard errors for the parameter estimates. It is of course tempting to use this result in the computation of the Langrange Multiplier tests. However, from some worked examples it _appeared that, using the approximation (56) for l('l/J, 1) ,  and l('l/J, 'lj;) in combination with 1(1, 1) , computed with the method of Louis (1982f it may happen that noninvertible matrices W result. This problem does not occur if the entire information matrix, including the part 1(1, 1) , is calculated using approximation (56). 
6 An Illustration An example of the results on a simulated data set analyzed with the DHM is shown in the tables below. The data were generated according to the DHM with 20 items with J = 3 in a complete design with 300 records. The distribution of "' was the standard normal. All items had the same Weibull parameters (/3, "f = 50, 0.80). The discrimination parameters were 0.3, 1.0, 1.5, distrubuted over the items in about equal amounts. The category pa­rameters were chosen so as to avoid low category frequencies. It turned out that 'T/ij = -½ai ln £Twi, with £Twi = ,Bir((% + 1)/'Yi), the expected re­sponse time from the Weibull distribution, was a proper choice. Two items 
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were excepted from this scheme. Via items 1 and 3 a model violation was introduced for which the LM-tests should be sensitive. We had a1 = 1.0 for 
K, < 0 and a1 = 2.0 for K, :2:· 0. For item 3 we had 13 = 0.6 for K, < 0, and 
13 = 1.2 for r., :2: 0. Table 1 shows some general statistics, like the mean response time of an item and its standard deviation, and the number of observations on an item and its categories. Table 2 displays some results of the parameter estimation. The number of mentioned iterations (60) only refers to the EM-algorithm for the logistic parameters. The Weibull parameters are estimated with a few Newton-Raphson iterations. The original values of the parameters used to generate the data are shown in the column headed Orig.Val. The col­umn headed FirstD contains the first derivatives of Q at the last iteration. TMax(0) gives the response time where the GAF has its modal value for r., = 0, and MnX gives the mean item score for r., = 0 at TMax(0). The first LM-statistic (LMStat) in the row labeled 'a' in Table 3, shows the LM-test statistic where only the constraint on the discrimination index is relaxed. The second LMStat is calculated relaxing all constraints of the logistic group parameters ( a9 , rJ ) of the item. The NR-step for the discrimination param-

-9 eter refers to a, not to p = In a. Therefore, with two groups we have that 'lj;1 = -'lj;2 for all parameters, and the sum over groups of the NR-step equals zero, except for a,  because the sum for p equals zero. Finally, Table 4 dis­plays the LM-statistics for the Weibull parameters in the same way as Table 3 for the logistic parameters. It appears from Table 2 that the parameter estimates are close to their original values as measured by their Standard Errors. Except, of course, for the model violations. Unexpectedly the estimate of a1 is even less than its original minimum value. This also has its impact on the estimates for '!]_1 in relation to their original values. As the Weibull estimates are indepen­dent of the logistic parameters, /3
1 

and 11 
are accurately estimated. The same insensitivity can be observed at item 3 but this time for the logistic parameter estimates, who are not affected by the model violation of 13 . The underestimation also holds for -y

3
, although less conspicuous. Its estimate barely raises above its lowest original value. Item 2 has a declining CAF for r., = 0 from the start, or almost from the start, because its tmax (0) < 0.5. One should realize that we did not choose a unit of time. Indeed, this is rather immaterial, except for the interpretation of tmax (0) with real data. As Formula (16) shows, a change of unit only adds a constant c to the precision parameter rJ,  which is compensated by adding -ajc  to 'f/1 . Table 3 shows that the model violation of a1 is very clearly detected 
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by the LM-test . The LM-test for only the restriction on a1 has a value 
of 129.9 with 1 degree of freedom, p= 0.00000. For the restrictions of all 
parameters of item 1 the value of the LM-test is slightly higher, indicating 
that the culprit must be the restriction on a19 . The model violation of 13 

is less clearly detected, but still shows a highly significant LM-test of 9.4 at 
two degrees of freedom, p= 0.009. This statistic is calculated simultaneously 
for the restrictions on both Weibull parameters. Therefore, the LM-statistic 
by itself cannot inform whether the restrictions on /339 or 139 or both are to 
be blamed. However, it can be inferred from the first derivatives per group, 
which are relatively high for 13

, that the restriction on 139 are the cause for a 
high LM-statistic for the Weibull parameters of item 3. The NR-step size for 
(33 may seem appreciable (17.03) . However, compared to its standard error 
(12 .51), its relative size (1 .36) is less than the relative size of the NR-step for 
13 (0. 10/0.05 = 2.0) . 

The LM-statistic in its present form necessitates to divide the respon­
dents into homogeneous mental power groups. When respondents incline to 
spend equal amounts of time on average on items, this division also produces 
homogeneous precision within groups. This results in unequal frequencies 
per category within groups, for instance in the low mental power group a 
higher frequency for low categories than for high categories. Especially if 

one decides to divide in more than two groups, the lower frequencies might 
affect the desired asymptotic behavior of the test statistics. 

Table 1 
Mean time and observations per item score 

Itld Mean time Sd time J N N per score 
1 24.6 7.6 3 300 69 24 37 170 
2 33.4 8.0 3 300 38 62 76 124 
3 18. 1 6.8 3 300 45 17 40 198 
4 26.3 7.5 3 300 37 51 80 132 
5 26.9 7.5 3 300 45 46 70 139 
6 18.2 6.5 3 300 45 36 44 175 
7 30.3  7.6 3 300 35 55 81 129 
8 25.7 7.4 3 300 33 44 69 154 
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Table 2 
Calibration results after 60 EM-iterations 

Itld Par N Orig.Val Estim. St.Err. FirstD TMax(O)/MnX 
1 {3 50.0 57.56 6.43 0.000 9.26 

'Y 0.80 0.79 0.05 -0.000 1 .62 
a 69 1 .0, 2.0 0.75 0.06 -0.009 

T/1 24 -3.03 -2.42 0.25 0.000 
772 37 -6.05 -3.88 0.27 0.000 
T/3 170 -9.08 -4.82 0.38 -0.002 

2 {3 50.0 55.04 5.00 0.000 <0.50 
'Y 0.80 0.83 0.05 -0.000 0.88 
a 38 0.3 0.32 0.02 -0.001 

T/1 62 -0.61 -0. 18 0.21 0.001 
T/2 76 -1 .21 -0.99 0.21 -0.000 
T/3 124 -1 .82 -1.77 0.24 -0.001 

3 {3 50.0 72. 13 12.51 0.000 17.51 
'Y 0.6, 1 .2 0.66 0.05 0.000 2.49 
a 45 1 .0 1.22 0.10 -0.012 

T/1 17 -2.02 -2. 10 0.35 0.001 
'f/2 40 -4.04 -4. 11  0.37 0.001 
'f/3 198 -6.06 -6.98 0.60 -0.003 

. . .  . . .  . . .  . . .  . . .  . . .  . . .  
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Itld Grp 
1 1 

2 

2 1 

. . .  . . .  

Itld Grp 
2 1 

2 

3 1 

2 

. . .  . . . 

Table 3 
LM-statistics for 2 homogeneous K-groups 

Logistic parameters 

Par N FirstD NR-step LM-stat DF 
a 

T/1 

T/2 

T/3 
a 

T/1 

T/2 

T/3 
a 

T/1 

T/2 
. . .  

58 
20 
26 
49 
11  
4 

11 
121 
25 
35 
38 
. . .  

-178.41 -0.33 129.93 
9.89 -0. 11  133.25 

11 .40 0.29 
-39.83 1 .02 
178.40 0.60 

-9.89 0. 11  
-11 .40 -0.29 
39.83 -1 .02 
-2.41 -0.03 0.088 
-1 .86 0.01 3.025 
0.25 0. 17 

. . .  . . .  . . .  

Table 4 
LM-statistics for 2 homogeneous K-groups 

Weibull parameters 

1 
4 

1 
4 

. . .  

Par N FirstD NR-Step LMStat DF 

{3 151 5.21 4.24 1 . 16 2 

'Y -5.73 -0.03 

{3 149 -5.21 -4.24 

'Y 5.73 0.03 

{3 158 -6.77 -17.03 9.44 2 

'Y -21.54 -0. 10 

{3 142 6.77 17.03 

'Y 21.54 0.10 
. . .  . . .  . . .  . . .  . . .  . . .  
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P (x2>L) 
0.00000 
0.00000 

0.76029 
0.55635 

. . .  

P(x2>L) 
0.56694 

0.00898 

. . .  



7 Discussion 

From Formulas (18) and (16) it appears that the value of !l.. depends on the response times. The longer the response times for item i, the lower (the more negative) the estimates of '!J..i · This may seem an undesirable property for an item parameter. However, a reparameterization of the model may better emphasize the item parameters as a property of the item, just as independent of the response time as the subject parameter for mental power. Let <Pij be defined by 
then 

fi (Xvi = j) ex: exp(jaJ}v + 'T/ij) 
= exp(jai (ln ev + ln tvi - ln </>ij)) 
- (� ·) ja; 
- tvi <Pij 

(58) 
(59) 

shows that P,.i can be viewed as a scaling vector, that determines the impact of ev with the advancement of time on the propensity-change of the cate­gories of i. It, therefore, does not seem less reasonable to assume that this scaling property is sample invariant than to assume that the item parameters in precision models like the Rasch model are sample invariant. This repa­rameterization also supports the choice for the name 'power' parameter for e = exp(K), because, as a physical analogue, it can be seen as the amount of energy per unit of time that has to be spent against the item-resistance vector p_ to effect a certain propensity change. The concept of 'speed' is a result of this confrontation, but is not itself represented in Formula (59). It is a critical assumption in the DHM that if a person responds correctly, his response time is drawn from his 1r 1, and is shorter than his draw from the Weibull of the item. On the other hand, if he does not respond correctly, his 1r 1 is assumed to be censored by the Weibull. This assumption creates much simplicity because it is known whether the Weibull was censored by 
1r 1 or not, and vice versa. It depends on this assumption that the param­eters of the Weibull, or any other time distribution, appear in a separate factor of the likelihood. Moreover, on first sight it might appear that one could also attribute a positive probability p(t) of a correct response when the response time is drawn from the Weibull. However, not only the known 
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censoring is lost, but one also has to introduce a new function 9vi (t) < 1rviJ(t) (9vi (t) + p(t) = 1rviJ (t)) that describes the probability to enter the correct state. Consequently, there are compelling reasons to adhere to this assump­tion. Finally, I want to spend some remarks on the relative value of mental power measurement. When all students follow more or less the same route towards the solution of a problem, power is undoubtedly a valuable ability worthy of professional evaluation. However, this condition is not always ful­filled. For instance, in solving high school physics problems, some students are very quick in correctly applying hardly understood formulas to superfi­cially understood problems. Unfortunately, too often a successful strategy in the realm of school physics. Others, with a more thorough and concep­tual understanding of physics may take more time to understand and solve these same problems. In a case like this, sheer uncritical power measurement would disadvantage the latter students, and, perhaps, unjustifiably convince some not to pursue a career in physics because of lack of talent. Therefore, I want to emphasize that results of power measurement should always be interpreted with due care and criticism. 
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8 Appendix: EM-Estimation in the Double 

Hazard Model The normal distribution family is chosen as the population distribution g( . )  Integration is numerically approximated by Gauss-Hermite quadrature 
(60) 

where Xq , and wq are calculated with a routine published in Press a.o. (1992, C, p. 154). Let Kq (q = 1, . . . , Q) be the Gauss-Hermite points associated with g( . )  of the previous iteration, and hvq = h(Kq ; .1!:* l.f.v , fv) the Gauss-Hermite weight of the posterior density at Kq given .f.v and iv evaluated at 1!:* 1rvijq = 1ri (Xvi = i lKq, tvi) the probability of response j to item i at Kq given response time tvi ,  evaluated at 1J:. Further, we define 

dij = dvijq = j - Tviq [2J ( ) _ '°' d2 T viq X - L....,k 7r vikq vikq 
{2 = In a 

5ij I=Ji = I(xvi = Ji) I<Ji = I(xvi < Ji) N< = Lv f<J) Lt< = Lv I<Ji ln t 

the expected score of item i at Kq given response time tvi the deviation from the mean 
the variance of the score of item i at Kq given response time tvi 
the prior distribution of {2 = In a µ; the mean of {2 from the previous iteration, a-� is provided by the user 
Kroneckers fJ = 1 if i = j ,  0 otherwise The index function for correct responses The index function for incorrect responses The number of incorrect responses ( on i) Sum of ln t on incorrect responses 
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To structure the derivations, the following formulas are useful, where the item index i is omitted. First on the logistic part. 
I 

7T' v:z:q 

8 

8{] 

In 7T'v:z:q 

8 

8{] 'T
vq 

8 
(21 

8{] 'T vq 

8 
-8 

ln 7T'v:z:q 
'fJk 
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-8 'T

vq 
'fJk 

� (2] 
8 'T vq 

'fJk 

-

-

-

-

-
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-
8 

7T'v:z: (tq) = - 7T'v:z:qdv:z:q 
t tq 

aiJvqdv:z:q 

aiJ-r(2] 
vq 

i} L . d3 _ iJ (31 a vq 1T'1vq vjq - a 
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j 

Ok:z: - 7T' fvkq 
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next on the Weibull part 
hw (t) -In hw (t) -

-

Y3 
-

-

8 
13

-,.., -
8 In /3 

_8_ - /3-,.., -8 ln 'Y 
a 

--fY -8 ln 1 

'Y ( t ) 'Y 

/3,.., t'Y = ,  
� In, -,In /3 + ,In t 

t ln,+ ')' ln � - L (�) ,.., + L I< In hw 
V V 

-f3-'Y L t'Y + (In, -, ln /3) N< + ,Lt< 

,,13-'Y 

'Y 13-,.., In /3 

,t,.., In t 

(61) 

(62) 

Especially the estimates of a are sensitive to chance capitalization. There­fore, a normal prior distribution N(µe, a�) for {] = In a is introduced, with µe the mean of the current estimates of {], and a� the prior variance. The 
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estimation of (2 = ln a instead of a, prevents divergence of the estimation 
algorithm as a result of oscillation between positive and negative values of 
a, or overshooting of the N ewton-Raphson algorithm in the maximization 
step, and it enforces positive estimates. This last property may be viewed 
as a disadvantage. One has to be aware that an estimate of a close to zero 
may be indicative of an item with negative discrimination. The estimation 
accuracy for the other parameters will, in general, be high enough that a not 
too strict prior distribution will be overruled by the data. 

Now we have that 

Q(-", g) ss � ln y,, (a) + � ( � ln y1, (-"l1<,) + ln g(1<,)) h,, {63) 

'I;J=Ji(}i + L (L ln 1Tvixvi + I=Ji ln dviJq + ln g(Kq)) hvq · 
vi v,q i 

The first and second derivatives of Q( . ,  .) are given below, where the item 
index, and sometimes other obvious indices are omitted. The part between 
{}* is added where appropriate and refers to the prior distribution on (2. 

a 

fJ ln ,B 
In y3 -

a 

fJ lwy 
In y3 -

L I=Ji : e +  L hvq (: ln ?Tvxq + I=Ji :  ln dJ) 
V (} vq (2 (} 

N, + a � h,, fJ,, (d," - I-,, t) = N, + Q, 

NJ + Qe { - (}i ;�
µe } * 

Nk - L hvq1Tvkq ( 1 + J=J; :k
) = Nk - Qk 

vq J 

'Y (,e--r L t'Y - N<) 

(64) 

N < + 1 [ Lt< - ,3--r L t'Y In t + ln ,B (,e--r L t'Y - N <) ]  

N< + ,  [Lt< - ,e--r L t'Y in t + ,-1 ln ,B 0 1� ,B
ln y3] 
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(:JQ a2 Q aear,k a2 Q ar,kar,1 
(a!S ln y, 

a2 8 ln 18 ln /3  ln y3 

-

[ ( [3] ( [2] ) 2) l { 1 } * Qe - a2 � h-192 7 12] + I=Ji :J + :J - a-� -a L h-t91rk [ dk + 1;�; ( d� + (k - J) :[

:
l

) ]  vq 

L ( I-J· ( k - J) )  -8k!Qk + 
vq 

h7rk1fl 1 + d/ dk - di � 
-,213--r I: tJ 

V 

& ! /3 ln y3 + Cl' /J-0 [�);: In t. - ln /3 �);] 

(65) 

(a!J ln y, - _a_ l - N  + 213--r [ ln f3 Lv tJ ln tv - Lv tJ (ln t)2 + ] a 1n I n Y3 < 1 ln /3 ( - ln /3 Lv tJ + Lv tJ ln tv ) • 

8 
a:._ Q as given above does not seem symmetrical in k and l .  However 

1/1cv•1l 

which is clearly symmetrical in k and l .  The estimation algorithm proceeds iteratively. Each iteration consists of an E-step and an M-step. In the E-step the derivatives of Q are calculated, and in the M-step the estimates of the parameters are improved by one Newton-Raphson step. The asymptotic standard errors of estimation are calculated by finding the matrix of second derivatives of M£ with the method of Louis (1982). 
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