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Abstract 
The DA-T Gibbs sampler is proposed by Maris and Maris (2002) as a Bayesian esti­
mation method for a wide variety of item response theory models. The present paper 
provides an expository account of the DA-T Gibbs sampler for the two-parameter 
logistic model. It further presents two applications that are of independent interest. 
The first concerns the estimation of classical test theory reliability. The second ap­
plication is that the DA-T Gibbs sampler for the 2PL may be used to build Gibbs 
samplers for a wider class of item response theory models. 
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1. Introduction 
Let Ypi = 1 denote the event that person p gives the correct answer to item i, 

and 0p his or her ability. Assume that there exists a latent response variable Xpi 

such that person p solves item i if Xpi is larger than a threshold 8i . That is, 

It is seen that the probability of a correct response depends on the threshold of the 
item as well as the ability of the respondent. The probability P(Ypi = lj0p) is called 
the Item Response Function (IRF). 

Under the two-parameter logistic {2PL) model (Birnbaum, 1968), Xpi is assumed 
to follow a logistic distribution with mean ai0p and scale parameter /3 = 1 so that 

P(Xpi > 8il0p, ai, 8i) = 1-: (xpi > 8i)f(xpi l0p, ai)dxpi 

-1= ( . 1..) exp(xpi - ai0p) d . - Xpi > Ui 2 Xpi -= [1 + exp (xpi - ai0p)] 
exp( ai0p - 8i) 1 + exp(ai0p - 8i) 

(1) 

where (xpi > 6J denotes an indicator variable that is one if xpi > 8i, and zero other­
wise. If the latent response variable Xpi is assumed to follow a normal distribution, 
we obtain what is known as the two-parameter normal ogive (2ND) model. 

The discrimination parameter ai determines how fast the probability of a correct 
answer changes as a function of ability. It is seen in Figure 1 that the IRFs of different 
items may cross if their discrimination parameters differ. If ai is positive (negative), 
the probability of answering correctly is an increasing ( decreasing) function of ability. 
Here, we allow both positive and negative values. It will be demonstrated below 
that it is easy to restrict the discrimination parameters to positive values. The 
Rasch model (Rasch, 1980) is a special case of the 2PL where all items have a 
discrimination parameter equal to one. 
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FIGURE 1. 

IRFs for two 2PL items with different parameters. 

As it stands, the 2PL is unidentifiable. Specifically, 
exp(a;0; - 8;) P(Ypi = ll0p, ai, 8i) = 1 + exp(atO; _ ot) 

where 
e* = 0p - C 

P d ' 

4 5 

and c and d are arbitrary constants. To deal with this indeterminacy we arbitrarily 
set a1 = 1, and 81 = 0. This means that the item parameters must be interpreted 
relative to the first item. 

The main purpose of this paper is to provide an expository account of Bayesian 
estimation of the 2PL focussing on the DA-T Gibbs sampler developed by Maris 
and Maris (2002). We provide references for further reading. 

The outline of the paper is as follows. In the sections 2 to 4 we provide an expos­
itory account of the DA-T Gibbs sampler. Two new applications that go beyond the 
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estimation of the 2PL are discussed in Section 5. In paragraph 5.1, we demonstrate 
how the DA-T Gibbs sampler may be used to obtain an estimate of classical test 
theory reliability. In paragraphs 5.2 and 5.3, we demonstrate how the Gibbs sampler 
for the 2PL may be used to build Gibbs samplers for a wider class of models suited 
for polytomous items. The paper is concluded with a discussion in Section 6. 

2. Gibbs Sampling 
Let A = (A1, . . .  , Am), m > 2, denote a vector of parameters. In Bayesian 

statistics, the unknown parameters are considered random variables. Bayes theorem 
states that the posterior density ( the posterior, for short) of A given the observed 
data y is given by 

f(AIY) = 
f(yj��(A) 

where f(yj..\) denotes the likelihood function, and f(y) the marginal likelihood func­
tion. The prior density f(A) (prior, for short) expresses substantive knowledge con­
cerning the parameters prior to data collection. In Bayesian statistics, all inferences 
about the parameters are based upon the posterior. 

The Gibbs sampler is an iterative procedure to generate parameter values 
A (o), ..\ (l), ... from the posterior. The first n generated values are discarded and the 
rest is considered to be a dependent and identically distributed ( did} sample from 
the posterior. This means that 
1. The distribution of A(n+i) given the data is the posterior for all j > 0. 
2. Conditional upon the data, A (n+i) is not independent of A (n+i) for ( i =I j). 
We will now discuss how the Gibbs sampler works and why. Alternative explanations 
can be found, for instance, in Casella and George (1992), Tanner (1996), or Ross 
(2003). The reader is referred to Tierney (1994) for a more rigorous explanation. 



4 

First 

parameter 

First 
parameter 

Second 

FIGURE 2. 

Schematic representation of two iterations of the Gibbs sampler with two parameters 

2.1. How 

The procedure starts by choosing an initial value A(o). Then, in each successive 
iteration, individual parameters are sampled independently from their so-called full 
conditional distribution. The order in which the parameters are sampled is arbitrary. 

The full conditional distribution is the distribution given the observed data and 
("+1) the current value of all other parameters. Specifically, A,/ (for k = 1, . . .  , m) is 

drawn from a density f(Ak lA�k, y), where 
, (j) = (, (j+l) , (j+l) , (j) , (j)) /\_k - /\1 , • • • , /\k-1 , Ak+l • • • , Am 

To determine, up to a constant, the full conditional distribution of a parameter 
Ak one may write down the density f(Ak , A�k, y) and remove all factors that are 
unrelated to Ak . 

An informal illustration is provided by Figure 2. The closed curve indicates the 
support of a two dimensional posterior; that is, the region containing possible values 
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FIGURE 3. 

Plot of sampled values against iterations. 

of the parameters. The solid lines indicate the support of the full conditionals, and 

the crosses are simulated values. It is seen that the Gibbs sampler "walks"through 

the support of the posterior along horizontal and vertical lines. Note further that 

every region in the support can be reached. 

With a did sample from the posterior we may use the Monte Carlo (MC) method 

to calculate an unbiased estimate of the posterior expectation of any function g( >., y): 

I g(>., y)J(>.iy)d>. � �8 � g(>.(j) ' y) 
J 

where n8 denotes the number of sampled values. That is, we approximate the expec-

tation by the sample mean. The posterior probability that a parameter is smaller or 

equal to a constant t, for example, is estimated by 

The variance of the estimator of the posterior expectation can be estimated by the 
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variance over independent replications of the Gibbs sampler. 

Unfortunately, there is no established way to determine an appropriate value for 
n. One option is to look at plots of .,\ (l), .,\ (2), . . . against iterations for a number of 
independent replications. An illustration with four independent replications is given 
in Figure 3. If, after n iterations, the values appear to fluctuate around a common 
stationary value, this may be taken as circumstantial evidence that n is large enough. 
In Figure 3, the plots appear to stabilize after about 1200 iterations. However, there 
is no way to be sure since we do not know what will happen after 5000 iterations. 
Other ways to assess the required number of iterations are discussed by Gelman and 
Rubin (1992). 

2.2. Why 

Let { A (n), n 2:: 0} denote a Markov chain. A Markov chain is a stochastic process 
such that each value depends only on its immediate predecessor; that is, for n > 0, 

The Gibbs sampler is a procedure to simulate a realization of a Markov chain. Figure 
3 shows 5000 realizations of a Markov chain. 

In general, to simulate one realization of a Markov chain we do as follows: 
1. Choose .,\ (o). 

2. For n = l, 2, ... draw _,\(n) from f(..\l..\(n-l)). 
It is seen that the behaviour of the chain depends on the distribution of A given its 
previous value. This distribution is often called a transition kernel. 

Suppose we intent to construct a Markov chain such that the marginal distri­
bution of A (n) converges to the posterior distribution if n increases. This requires 
that: 
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1. The posterior is the invariant distribution. 

2. The chain is irreducible. 

Invariance means that if ,\ (o) is drawn from the posterior, then all subsequent 

values are also draws from the posterior. Suppose, for ease of presentation, that there 

are two parameters. The argument for the general case follows by mathematical 

induction. The posterior density is 

To sample from the posterior, we draw ,\�1) from the marginal posterior distribution 

and then >.11) from the distribution conditional upon ,\�1
). Note that the latter is a 

full conditional as defined in the previous paragraph. 

We now set up a Markov chain to draw >.�1) from the marginal posterior distribu­

tion. Convergence is faster if the dependence between subsequent values is weaker. 

We set up a chain with a weak form of dependence known as e xchangeability. Specif­

ically, we ensure that A�1
) and A�0

) are independent conditional upon Aio). That is, 

J(>.�0),>.�1)IY) = / f(,\�0)l>-i0l,y)J(>.�1)1>.i0),y)J(>.i0)1Y)d>.i0) 

Furthermore, it one integrates f ( >.�0), >.�1
) jy) with respect to ,\�o) ( or >.�1)), it is seen 

that A�o) and A�1 ) have the same marginal distribution; that is, the marginal poste­

rior. It follows that the transition kernel of our chain equals 

Thus, to produce a value ,\�1
) from the posterior distribution we may use the method 

of composition (Tanner, 1996, section 3.3.2) as follows: 
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1. Draw ).1°) from the posterior. 
2. Draw Aio) from the full conditional J(>.1 !>.1°), y). 
3. Draw ).11

) from the full conditional J(>.2 !Aio), y). 
It is seen that this procedure is a Gibbs sampler starting with a draw from the 
posterior. 

With ).11
) drawn from the marginal posterior, we then draw >.1°) from the full 

conditional f(A1 i>-11
), y) and repeat the process with >.11

) replacing ).1°). Schemat­
ically, the sampling procedure may be depicted as in Figure 4 where the values 
generated by the Gibbs sampler are drawn inside a rectangle. It can be shown that 
these values are the realization of a Markov chain whose invariant distribution is, 
by construction, the posterior. There is no need to generate the values outside the 
rectangle. 

A. (0) 
2 

-----

l 
A. (0) 

1 

A,(1) 
A,(1) 

1 2 

l 
-------

A,(1) 

A,(2) A,(2) 
2 

-------

l 
etc. 

FIGURE 4. 

Schematic picture of sampling procedure 

Irreducibility refers to the fact that it must be possible to reach each region 
in the support of the posterior must be reached. That this requirement is met is 
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illustrated in Figure 2. 

In the previous section we stated that for some value n, ,\ (n+l), ,\ (n+2), ... can 
be considered a did sample from the posterior. We see that it is more correct to 
state that ,\ (n+l), ,\ (n+2), ... are approximately a did sample from the posterior. The 
approximation improves if n increases. 

3. A Brief History of the DA-T Gibbs Sampler 
Coni:;ider the simple situation where there is only one person who took a test 

consisting of two Rasch items. We will use this unrealistically small example merely 
to illustrate the basic principles and explain how the DA-T Gibbs sampler emerged 
as a variant of the Gibbs sampler. It is arbitrarily assumed that the parameters are 
sampled in the order: 0, 61 , 62 . 

Consider the full conditional of 0. The posterior is proportional to 

J(0, 6, y) = f(yl0, 6)J(0, 6) 
= P(Yi = Y1 IB, 61)P(½ = Y210, 62)f(O)f(61)f(62) 

The last equality was established under two assumptions: 

1. The parameters are a priori independent. 
2. A person responds independently to different items. This assumption is called 

Local Independence (LI). 
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Ignoring all terms unrelated to 0 it is found that: 

(2) 

To our knowledge, f(0!8(j) , y) is not a familiar density but it is seen from (2) that 
it is a member of the exponential family. Although there are general algorithms to 
generate samples from any exponential family distribution, such algorithms require 
time and expertise to implement and may not be very efficient (Devroye, 1986). 
Other possibilities are discussed by Gilks and Wild (1992), or Chib and Greenberg 
(1995). We consider DA-Gibbs sampling. 

The abbreviation DA stand for Data Augmentation. DA means that latent data 
is added as a parameter which, in some applications, results in simpler full .condi­
tional distributions (e.g., Tanner, 1996, chapter 5) . In the present case, we include 
the latent response variables X = (X1 , X2) as a parameter and consider the following 
DA posterior 

f(0, 8, x !y) ex J(0, 8, x, y) 
= J(y!x, 8)J(x\0)f(0)f(81)f(82) 

To find the full conditional of 0 we delete all factors that are unrelated to 0. This 
gives: 

f(0lx, y) ex f(xl0)f(0) 
= f(x1 !0)f(x2 !0)f(0) (3) 

Especially, when it is easy to sample from the prior distribution we would like the 
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product f(x1 1 0)f(x2 10)f(0) in (3) to be of the same functional form. This occurs for 
the 2NO model (Albert, 1998) . Specifically, if f(xil0) (i = 1, 2) and f(0) are normal 
densities, 

It follows that the full conditional of 0 is a normal distribution. Under the Rasch 
model (or the 2PL) , f(x il0) is logistic. Unfortunately, it is a fact that the product 
Tii J(xil0)f (0) is not a logistic function. Not even if the prior of 0 is a logistic distri­
bution. In fact, it is not a well-known density or even a member of the exponential 
family. Maris and Maris (2002) show that a transformation of the latent data may 
provide a solution. 

The T in DA-T Gibbs stands for Transformation; the latent responses are trans­
formed in such a way that all parameters are removed from their distribution. As 
an illustration, we will derive the full conditional distribution of 0 in three steps: 
First, note that the probability density function f (ylx, 8) is an indicator function; 
f(ylx, 8) = 1 if the observed responses match with the latent data, and f(yjx, 8) = 0 
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otherwise. For example, 

P(Yj_ = 1, Y; = Dix, c5) = (x1 > c51) (x2 :S c52) 
= f 1 if x1 > 51 and x2 «; 52 

l O otherwise . 
It is then readily seen that f(0, c5, x, y) is equal to 

Second, let Zi = Xi - 0 denote the standardized latent response variables. It follows 
that Xi = zi + 0 and it is readily found that f(0, c5, z, y) is 

where 

It is seen that standardization of the latent response variables has removed the 
person parameter from the density of the latent data. Third, deleting all factors 
unrelated to 0 we readily find that 

( c5p) - Zij+l) < 0 :S (5�j) - Z�j+l)) f (0) 
( c5�j) - Z�j+l) < 0 '.S c5p) - Zij+l)) f (0) 

It is seen that the full conditional of 0 is the truncated prior distribution.1 That is, 
1It was implicitly assumed that the transformed latent responses are sampled first , followed by 

the ability parameters. 



a distribution with a density of the form 

(l < 0 ::;  h)J(0) 
fih f(0)d0 
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where l and h are called truncation const ants. The same is true for the other full 

conditional distributions but there is no need to derive them here as we proceed 

with the DA-T Gibbs sampler for the 2PL. 

4. The DA-T Gibbs Sampler for the 2PL 

4 .1 .  The Prior 

For our present purpose, it is convenient to assume that : 

1. The parameters are a priori independent . 

f(0, 6, a) = II f(0p) II f(6i)f(ai) 

2. All prior distributions are logistic. 

p i 
(4) 

The choice of prior is essentially subjective and researchers are free to choose any 

prior distribution that they see fit. In any event, the effect of the prior on the poste­

rior diminishes if more data are observed, provided the parameters are identifiable. 

If the value of a parameter is undetermined, no amount of data will diminish our 

uncertainty beyond the prior assumptions (see Dawid, 1979). 

4-2. The Full Condition als 

The DA posterior of the 2PL is proportional to 

J(0, 6, a, x, y) = J(ylx, b")J(x l0, b", a)f(0, 6, a) , 
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where 

and 

f(ylx, 8) = II II f(Ypilxpi, 8i) 
p i 

= II II (xpi > 8i)Ypi (xpi < 8i)I-yp; p i 

p i 

It is seen that we assume persons to be independent of one another. Combining 
terms, we find that f(0, 8, a, x, y) is equal to 

If we apply the transformation Zpi = Xpi - ai0p we find that the DA-T posterior 
f(0, 8, a, z ly) ex f(0, 8, a, z, y) , and f(0, 8, a, z, y) equals 

II Il(zpi + ai0p > 8i)Ypi (zpi + ai0p ::; 8i) I-yp; [ 
exp(zt) )]2f(0, 8, a) p i 1 + exp • Zpi 

To determine the full conditionals we delete all terms unrelated to the parameter 
of interest. Thus, it is seen that each of the full conditionals is the truncated prior 
distribution. 
1. The full conditional of Zpi is a logistic distribution with support 

2. The full conditional of 8i (i > 1) is a logistic distribution with support 
IT (8i < Zpi + ai0p)Yp; (8i 2: Zpi + ai0p) I-yp; p 



3. The full conditional of ai (i > 1) is a logistic distribution with support 
IT (ai0p > 8i - Zpi)Y'pi (ai0p � 8i - Zpi)

l
-Ypi 

p 

4. The full conditional of 0P is a logistic distribution with support 
IT (0pai > 8i - Zpi)Ypi (0pai � 6i - Zpi)

l-yp; 
i 
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Each of the support regions is given as the product of indicator functions. In 
the ensuing section we discuss how the deal with them. For notational convenience, 
we have deleted the superscripts. The superscripts indicated the order in which the 
parameters are sampled. It is not essential that they are given since the order in 
which the parameters are sampled is arbitrary. 

4 -3. Calculating the Truncation Constants 
The support of each of the full conditionals is seen to be a product of indicator 

functions of the following form: 
(5) 

where either lJ = -ao or hJ = oo. Hence, each term (lJ < Ai < hJ) restricts the 
range of Ai to a half open interval extending to either plus or minus infinity. Their 
product is the intersection of these intervals ranging from maxj {lj} to minj {hJ} ­
Thus, maxj {lJ } and mini {hi} are the truncation constants for the full conditional. 

The support for 6i : The support for 6i is a product of indicator functions over 
persons. We see that 
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and 

The support of ai : Note that 

where 

(a -0 > {J. - z · )Ypi ("' -0 < �- - z · ) 1-Ypi i p i pi '--"i p _ Ui pi 

= 1  
(tpi < ai < oo )Ypi (-oo < ai � tpi) l-yp; if 0p > 0 
(-oo < ai < t

pi
)Ypi (tpi � ai < oo) l-yp; if 0p < 0 

(6) 

(7) 
The indicator functions depend on the sign of 0P because we divide by 0p on both 
sides of the inequality sign in (6). The support for ai is a product over persons. If 
0p > 0, 

If 0P < 0, then 

if Ypi = 1 

if Ypi = 1 
if Ypi = 0 

l t and hp = � pi 

I 00 l 

if Ypi = 1 
if Ypi = 0 

if Ypi = 1 
if Ypi = 0 

The support of 0P : Calculating the support for 0P is very similar to calculating 
the support of ai . First, note that 

= {  
l 

(t* · < 0 < oo) Ypi (-oo < 0 < t* -) I-yp; 
pi P P - pi 

(-00 < 0 < t* -) Ypi (t* .  < 0 < oo) l-yp; 
P pi pi - P  
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where 

(8) 
Thus, the indicator functions depend on the sign of ai . Now, we have a product over 
items. If ai > 0, then 

( : t *. li = { pi 

t -oo 
If ai < 0, 

( 
I 
I - 00  li = � 
I t* l pi 

if Ypi = l 
if Ypi = 0 

if Ypi = l 
if Ypi = 0 

and 

and 

I if Ypi = l I 00 hi = { 
I t* if Ypi = 0 l pi 

( : t *. if Ypi = l hi = � '[YI, 

I 00 if Ypi = 0 l 
In practice, we consider each interval in (5) separately and increase ( decrease) the 

lower bound (upper bound) of the intersection, each time we encounter an interval 
with a higher lower bound (lower upper bound) : This is illustrated with the following 
psuedo-code to determine the truncation constants for the full conditional of Bp : 

l = -oo 
h =  oo 
FOR i = 1 to the number of items 

IF Ypi = 0 

IF Ypi = l 

END 

IF tpi < h and ai > 0 then h = tpi 

IF tpi > l and ai < 0 then l = tpi 

IF tpi > l and ai > 0 then l = tpi 

IF tpi < h and ai < 0 then h = tpi 
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It is important that none of the intersections is empty, otherwise we have a full 
conditional with empty support and the Gibbs sampler stops. For later references 
this is stated as a proposition. 
Proposition 1. In the 2PL, none of the full conditionals can have an empty support. 

Proof. For any parameter values at the jth iteration, we generate latent data such 
that 

This means that at this point we are at a point inside the support of the posterior. 
Then, we draw, say, bi from 

f(bi l rest) ex ( 9(z�{+1) + a}i)0;/> > bi)Y"i (z�+I) + a}i)o�) :S: bi) 1-Yvi) f(bi) 

Since, the term within brackets is one for bi = b}i), it follows that the support of the 
full conditional is not empty. The same is true for the other parameters. □ 

An informal illustration is given in Figure 2. 
4.4. Sampling from a Truncated Logistic Distribution 

As a starting point, we suppose that the reader is able to simulate from a uniform 
(0, 1) distribution and we shall use the term random numbers to mean independent 
random variables from this distribution. 

Let X denote a random variable with continuous distribution function F such 
that p-1 is computable. We can simulate X by simulating a random number u and 
then setting x = p-1 ( u). This is called the inversion method. 

In the standard logistic distribution 
F(x) = Expit(x) = 1 exp(xl ) + exp x 



and 
F-1 (u) = Logit(u) = log (-u-) 1 - u  

19 

The variance of the standard logistic distribution is equal to ½7r2 and its mean is 
equal to zero. If we desire a variance ½7r2,B2 , and a mean µ we calculate ,B Logit(u)+µ. 

It is straightforward to adapt the inversion method to sample from a truncated 
distribution. The distribution of a truncated random variable l < X < h is given by 

F(x) - F(l) 
Ftr(t) = 

F(h) - F(l) 

and 

It follows that 

gives a simulated value from a truncated logistic distribution. 
Figure 5 illustrates how the procedure works. Basically, we produce a random 

number u that is then transformed to u* in the interval from F(l) to F(h) . The 
corresponding value p-1 (u*) is a realization of the truncated variable. 

4.5. Handling Incomplete Designs 

In applications, the design of the study is often incomplete. This means that 
only a subset of the available items is administered to each person, and no responses 
are observed for items that were not administered. As an illustration we have drawn 
an incomplete design in Figure 6. The rectangles indicate which items where admin­
istered to which persons. 

To adapt the Gibbs sampler to handle data collected in an incomplete design 
we need only ignore, for each person, the items that were not administered. To this 
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F(h) 

u• = u ( F(h) - F(I) ) + F(I) 

F(I) 

h 

FIGURE 5 .  

Simulating from a truncated distribution 

aim it is useful to construct a matrix d whose entries indicate which items where 
administered to each of the persons in the sample. Entry dpi equals 1 if item i was 
administered to person p and zero otherwise (see Figure 6). The Gibbs sampler is 
unchanged except that nothing is done for person p and item i if dpi = 0. 

4. 6. Sampling Under Restrictions 

Researchers often hold prior ideas about the parameters that take the form of 
order restrictions on the parameters. They may, for instance, believe that item 1 is 
easier than item 2. In general, such restrictions are added to the range restrictions 
of the full conditionals. 

Suppose, for example, that we add the restriction that a2 > 0. Then 
f(y, .x) = J(yl-X)f(-X) (a2 > o) 

and the full conditional of a2 is: 



Persons 

Items 

d . = 0  pi 

[] ,=='--------. 

□ 
FIGURE 6. 

□ 
Schematic picture of an incomplete design 

Order restrictions among parameters are handled in the same way. 
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Restrictions may take many forms. Suppose, for example, that a researcher desire 
to estimate under the restriction that certain parameters take only integer values. 
In that case one simply chooses a discrete prior for these parameter. 

4. 7. A DA- T  Gibbs Sampler for the Hierarchical 2PL 

We now consider the hierarchical 2PL. The hierarchical model derives its name 
from the fact that a hierarchical structure is imposed upon the person parameters. 
That is, the person parameters are assumed to be a random sample from a particular 
distribution. This 2PL is formally equivalent to the marginal 2PL. 

For our present purpose we assume that the person parameters are a random 
sample from a logistic distribution with mean µ9 and scale parameter /39 > 0 .  That 
1s, 
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The subscript gp denotes the population to which person p belongs, where subscript 
g denotes the population. For example, g = l may denote girls, and g = 2 boys. 

In the hierarchical case, f(0p) in (4) is replaced by 

where f(µ9P)f ({39p) denotes the prior density of the hyperparameters. In order to re­
move the hyperparameters from the distribution of 'r/p, and into the range restriction, 
we define the transformation 

Applying this transformation gives the DA-T posterior 
f(8, a,rJ, µ, {3 1y) ex 

( I} IJ (zpi + ai ( 'r}p{39P + µ9P ) > 8i)Ypi (zpi + ai ( 'r}p{39P + µ9P ) S 8if-Ypi) 
( I} IJ f(zpi)f(rJp)) f(8)f(a) ( I] f(µ9)f({39 )) 

The resulting DA-T Gibbs sampler is only marginally different from the DA-T Gibbs 
sampler for the non-hierarchical 2PL. 

5. Applications 
5. 1. Calculating Classical Test Theory Reliability 

Consider a test with N1 items that was administered to NP persons that are a 
simple random sample from some population. For our present purpose we will not 
explicitley distinguish between the items and the test and the random variable Y 

denotes an item or test score. It is assumed that the distribution of Y is defined by 
an IRT model; in this case the 2PL. Let Ay denote the parameter that characterizes 
the test or the item. The item or test parameters are random variables, each with 
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any suitable prior distribution. The population is assumed to have density function 
f ( 0 I ,\0) and the person parameters are assumed to be an i. i. d. sample from the 
postulated population distribution. Note that discrete and continuous variables are 
not explicitly distinguished. 

The true score of a person with parameter 0 is defined as the expectation 
E[Y l0, Ay] .  The reliability of Y, p}, is defined as the proportion of true score vari­
ation in the population. That is, 

2 (,\) = 
Var(E[Yl0, ,\y]) Py Var(Y) ' 

where ,\ =  (-\y , ,\0) .  Under the assumption that the IRT model holds, the reliability 
is a function of ,\. 

Lord and Novick ( 1968) consider the following thought experiment, albeit in 
different wording: Draw a 0 from the population and generate two independent 
responses y and y *  to the same item. The joint distribution of these responses is 

f(y, y* I-\) = j f(yl0, -\y )f(y* l0, Ay )f(0l-\o)d0 , (9) 
where f(y l0, ,\y) = f(y* l0, Ay ). Equation 9 states that the response variables are 
exchangeable and henceforth they will be called exchangeable replications. The re­
liability of Y equals the correlation between exchangeable replications of Y. That 
is, 

p}(-\) = Corr(Y, Y* I-\) 
(e.g., Bechger, Maris, Verstralen, & Beguin, 2003). 

The variable Y need not be a continuous test score, and in practice it usually 
isn't . For example, 
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1. If Y is a discrete test score 

2 (-X) _ E[YY* J-X] - (E[YI-X] )2 

Pv - E[Y2 1-X] - (E[Yj-X] )2 
2. If Y = 1 if item i is answered correct and 0 if the answer was incorrect: 

2 (.\) = 
P(Y = 1 ,  Y* = l J-X) - [P(Y = l l-X)]2 

Pv P(Y = l J-X) (1 - P(Y = l J-X)] 
is the reliability of item i. It also equals the pairwise coefficient H of two ex­
changeable replications (Loevinger, 1948; Mokken, 1971; 1997). 

3. If Y indicates whether a test score is above a certain threshold, p}(-X) equals 
Cohen's r;, (Cohen, 1960; Bechger, et al. , 2003, proposition 2). 

4. If Y equals an estimate of ability, p}(-X) is the reliability of the estimated abilities. 
We assume that "nature" has provided us with an identical and independently 

distributed (i.i.d.) sample x of size NP from P(X) . The data matrix x contains all 
information that we have about the items and the persons. The objective is to use 
x to estimate the reliability of Y under the assumption that the 2PL holds: If we 
know the parameters, p} can be computed as accurately as desired (e.g. , Bechger, 
et al., 2003). If there is uncertainty about the parameters the following sampling 
algorithm may be used to generate the empirical distribution of the reliability given 
the postulated IRT model: 
1. Draw ,\* from the posterior, f(-Xlx), of ,\ given the observed data. 
2. For r = 1, . . .  , n,  draw two exchangeable replications: 

Draw 0* from f(0J.\0) 

Draw Yr and y; ,  independently from f (y I 0* , Ay) .  

3. Calculate the correlation between (y1, . . .  , Yn) and (y� ,  . . .  , y�) . 

The value of n can be taken very large so that the correlation is determined exactly. 
Generating ,\ * , is conveniently done using the DA-T Gibbs sampler. The number 
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of >. * 's drawn determines the accuracy of the empirical distribution. The mean of 

the correlations may be taken as a point estimate of reliability and the standard 

deviation as its standard error. Note that the procedure assures that the point 

estimate is always between 0 and 1 .  

Besides calculating reliability, there are other useful things that one might do 

with a large number of exchangeable replications. Suppose, for instance, that c is 

the minimal required score to pass an examination. To estimate the probability of 

inconsistent classification one could look at the proportion of generated values where 

Yr < c and y; > c, or Yr > c and y; < c. 

As an illustration we apply this procedure to a data set consisting of 300 re­

sponses to five dichotomous geometrical analogy items that was published by Rost 

(1996). We use the DA-T Gibbs sampler for the hierarchical Rasch model to gen­

erate (item and population) parameters from the posterior.2 The estimated item 

reliabilities where: 

0.390(0.057) 0.397(0.053) 0.40(0.050) 0.392(0.048) 0.380(0.049) 

with standard errors given within parenthesis. The reliability of the summed item 

responses was estimated to be 0. 756(0.025) . A plot of the empirical distribution 

function of the summed responses, and a histogram with a superimposed normal 

density are shown in Figure 7. To illustrate additional possibilities of the proposed 

procedure it was calculated that 39%(1 .64) of the respondents may be expected to 

get the same test score on two identical testing occasions. Note that, if we keep ).* 

fixed, we obtain the same results that Bechger, et al. (2003) obtained using numerical 

integration. What these authors could not do was quantify the uncertainty involved. 

It is seen that this is very easy using MCMC methods. 

2Earlier analyses with this data set revealed that the Rasch model fits satisfactorily (Rost, 

1996, chapter 5; see also Bechger, Verstralen & Verhelst , 2002) .  
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Distribution of test reliability. 

5.2. 2PL Mixture IRT Models 

A 2PL Mixture Model (2PLMM) is the name that we have chosen for an IRT 
model that can be written as: 

9 

where S = (S1 , . . . , Sk) denotes discrete latent item responses. It is assumed that: 
1. Ypi lS = s, follows a multinomial distribution. 
2- P(S = s 1 0, As) equals the likelihood of k locally independent 2PL items; As con­

tains the parameters of these items. 
3. 0 may be multi-dimensional. 
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2PLMMs are defined by restrictions on the distribution of Ypi given S = s.  

Consider, for example, the three-parameter logistic model (3PL), which is often used 
in the American literature. In the 3PL, k = 1, and S = 1 if a person knows the 
correct answer and S = 0 if he doesn't know the answer. Consequently, 

where Ayls is called a guessing parameter. In latent response models (Maris, 1995), 0 
is multi-dimensional but the probabilities P(Ypi = jlS = s) are known and equal to 
zero or one. An example is the conjunctive Rasch model (see Maris & Maris, 2002, 
section 2.3.2). 

The DA-T Gibbs sampler for the 2PL can be used to build a Gibbs sampler for 
any 2PLMM. Specifically, at each iteration we draw a sample from the posterior 

f (0, A, s ly) ex f(0, A, s, y) 

in three steps: 
1. Generate latent discrete item responses from f(s l0, A, y) . Due to LI, this step 

entails generating independent responses to each of the k items for each of the 
persons. 

2. Generate 0 and A8 from f(0, As l s) using the DA-T Gibbs sampler. 
3. Generate Ayls from f(Ayis l s ,  y) . 

Usually, step 3 is either very simple or unnecessary. It is especially simple if the prior 
of Ayls is a truncated Dirichlet distribution, because then its full conditional is also 
a truncated Dirichlet distribution. In the 3PL, for instance, the full conditional of 
the quessing parameter is a then a truncated beta distribution. In latent response 
models, step 3 is unnecessary because Ayls is known. 
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We will not discuss the 2PLMM in full generality but illustrate with two fur­

ther examples how a DA-T Gibbs sampler can be constructed in practice. In both 
example, step 3 is uncessary but can be used to extend the models. 
5.2. 1 .  The Nedelsky Model for Ability Measurement 

Consider a multiple-choice (MC) item i with Ji + 1 options arbitrarily indexed 
0, 1, . . .  , Ji . For convenience, 0 indexes the correct alternative. The other Ji answers 
are incorrect. The Nedelsky Model (NM) is based upon the idea that a person re­
sponds to a MC question by first eliminating the incorrect answers he recognizes as 
wrong and then guesses at random from the remaining answers. 

The probability that wrong answer j is recognized as wrong by a respondent 
with ability 0 is modelled as a 2PL. That is, for j = 1, . . .  , Ji , 

where Sij denotes a random variable that indicates whether alternative j is rec­
ognized to be wrong. Thus, we may think of each distractor as a dichtomous 2PL 
item where a correct answer is produced if the distractor is seen to be wrong. The 
parameter oij now represents the threshold that must be passed to recognize that 
option j of item i is wrong. 

Define a latent subset Si by the vector (0, Sil , . . .  , SiJJ - Assuming independence 
among the options given 0, the probability that a subject with ability 0 chooses any 
latent subset si is given by 

P(S i = sil0) = IT exp(ai0 - Oij )
sij 

i=l 1 + exp( ai0 - oij) 

exp ( aiOst - Ef�1 SijOij) 
- .l· Ilj�l [1 + exp(ai0 - Oij ) ]  

where st Ef�1 Sij denotes the number of distractors that are recognized as wrong. 
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It is seen that P(Si = si l 0) is the likelihood of Ji independent 2PL items. 
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Once a latent subset is chosen, a respondent guesses at random from the re­
maining answers. Thus, the conditional probability of responding with option j to 
item i ,  given latent subset si, is given by: 

where ��!:0 ( 1  - sih) = Ji + 1 - st denotes the number of alternatives to choose 
from. 

Combining the two stages of the response process, we find that the conditional 
probability of choosing option j with item i is equal to 

Figure 8 shows a plot of these probabilities for an item with five categories. Four 
properties of the NM are readily seen: 
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1. lim0-+-oo P(¾ = Jl0) = Ji

�I , for j = 0, . . .  , Ji . 
2. P(¾ = 010) is an increasing function of 0 and lim0-+oo P(¾ = 010) = 1. 
3. The probability of a correct response is always larger than the probability of a 

distractor. 
Note that if an item has only two answer categories; wrong and correct, the NM 
equals the 3PL with the guessing parameter in this model fixed at ½. A more detailed 
discussion of the NM can be found in Bechger, Maris, Verstralen, and Verhelst 
(2004) . 

We will now derive a DA-T Gibbs sampler for the NM. First, we introduce some 
notation. Let y denote a data matrix with responses of NP persons to NI items; 
Ypi = j if the option j was chosen by respondent p. Similarly, let s contains latent 
subsets Sip , where Sip denotes the latent subset of respondent p with the ith item. 
The vector 0 contains NP abilities and the vector 8 the parameters of NI items. The 
vector 8i = ( ai , 8il , . . .  , 8iJJ contains the parameters of the ith item. 

The posterior of the NM model is 
J(0, 8ly) = }: J(0, 8, sly) , 

We proceed by drawing a sample from 
f(0, 8, sly) ex f(0, 8, s, y) 

and then ignore the latent subsets. It is seen that the latent subsets are the discrete 
latent item responses in this model. We consider two full conditionals; f(0, 8ly, s) = 

f(0, 8 1s) , and f(sl0, 8, y). The Gibbs sampler proceeds by repeating the following 
two steps: 
1. Draw latent subsets from f(s 10, 8, y) . 
2. Draw 0 and 8 from f(0, 8 1s). 



Using LI and Bayes theorem it is seen that, 
f(slO 8 y) = f (yls)f (s 10, 8) ' ' f(yl0, 8) 

_ TIP Tii P(ypilsip) P(Bip lBp, oi) 
TIP Tii P(ypi 10p, 8i) 

= II II P(ypilsip)P(sipl0p, 8i) 
p i Es; P(ypilsi)P(sil0p, 8i) 

= II II P(sip l0p, 8i, ypi) 
p i 
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Hence, sampling from J(s10, 8, y) entails independently drawing Np x N1 latent sub­
sets Sip with probabilities: 

P( · IB 8 _ ·) = P(ypi lsJ)P(sJ l8p, 8i) 
83 p, i, y'[YI, Es; P(ypi lsi)P(si l0p, 8i) 

for each of the possible subset Sj , j = 1 ,  . . .  , 2J; , where 
P(ypilsi)P(sJl0p, 8i) ex ;, -( 5i(Yr,i) ) exp (ai0sj - 'E Sjkdik) 

Eh.=o 1 - sih k=I 

To this aim, one makes a list of subsets, calculates the probabilities P(si l0p, 8i, Ypi) , 
and chooses a random subset from the list (see Appendix). 

The density f(0, 8 1 s) is the posterior density of the 2PL model when the subsets 
are considered data. This means that we may use the DA-T Gibbs sampler for 
the 2PL model in the second step considering the generated latent subsets as item 
responses. 

Note that the NM has many parameters and hence a large number of persons 
is required to estimate the item parameters with reasonable precision. As an il­
lustration we provide, in Figure 9, recovery plots of true values against estimated 
posterior means, for a (small) data set with 20 tri-chotomous items and 200 persons. 
It is seen that recovery is not particularly good. With 100 items and 3000 persons, 
the recovery of the item parameters was satisfactorily. As illustrated with Figure 10, 
the recovery of the person parameters still leaves to be desired. 
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FIGURE 9.  

A typical recovery plot for an analysis with 20 items and 200 persons. The parameter values that 

where used to generate the data are on the horizontal axes. The estimated posterior means are on 

the vertical axes. 

5.2. 2. A Nedelsky Model for Opinion Measurement 

Consider a MC item i with Ji+l  options that are arbitrarily indexed 1 ,  2, . . .  , Ji+ 

1. Now, we assume that the options refer to statements that are presented to the 
respondent; options 1 to Ji express an opinion while the last option allows the 
respondents to express that they agree with none of the options. Respondents are 
allowed to choose more than one option. The Ji + l option may, for instance, state 
"no opinion" . In practice, it is not necessary to present this option. If we assume that 
persons refuse to answer when they agree to none of the options, missing responses 
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Recovery plot of person parameters for an analysis with the NM with 100 items and 3000 persons. 

may be coded as responses in the no opinion category. Thus, respondents are allowed 
to choose one or more options, or none of the options. 

Similar to the NM, the solution process is assumed to consist of two stages. In 
the first stage, a respondent decides to which options he agrees. In the second stage, 
the respondent chooses his response randomly from the options he agrees to. We 
will now describe the two stages. 

Let Ei = (Eil, . . .  , EiJi) represent a latent opinion; Eih = 1 if a respondent 
agrees to option h of item i, and zero otherwise. It is assumed that 

It is seen that Eij is modelled as a latent 2PL item. The person parameter 0P 

should now be interpreted as the respondent's attitude, and the parameter 8ij as the 
difficulty to agree with option j of item i .  The symbol dij denotes a constant that 
is either + 1 or -1. If dij = 1, the probability to agree with an option is increasing 
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in 0p, and if dij = -1 this probability is decreasing. 

Suppose, for example, that 0P represents the respondent's political orientation 
ranging from left to right. Assume further that item i inquires which of a list of 
candidates a respondent would choose for president. It is reasonable to assume that 
the probability to choose a left-wing candidate decreases as 0P moves to the right, 
while the probability to choose a right-wing candidate increases. Hence, we would 
set dij to one if j is a right-wing candidate, and to minus one if j denotes a left-wing 
candidate. 

Assuming LI, the probability that a subject with attitude 0P chooses any latent 
opinion ei is given by the likelihood of Ji independent items; that is, 

where et = Lt eif denotes the number of options endorsed, and di = Lj eijdij · 

Let the random variable Sij indicate whether option j is considered, and define 
Si by the vector (Sil, . . . , SiJi+l) - As in the NM for ability measurement, we refer to 
Si as a latent subset. The difference is that, here, Sij = 1 if the jth option was in 
the subset, and there is no correct alternative. It is assumed that, 

(10) 
For the first Ji options, Sij = eij , which implies that alternative j is taken into 
consideration if ej = l and the respondent agrees with the option. For the last 
option, SiJi+I = l if and only if all eif are zero and the respondent holds no opinion, 
otherwise SiJi+I equal zero. It follows from (10) that 

J P(Eii = 1 10) for j $ Ji P(Sii = 1 10) = l l TT1 P(Eif = 010) for j = Ji + 1 
Note that there is a one-one correspondence between latent opinions and latent 
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subsets. Specifically, si = (ei, -y), where 'Y = 1 if ei = 0, and zero otherwise. When 
Ji = 3, for instance, 

0 0 0 0 0 0 1 

1 0 0 1 0 0 0 

0 1 0 0 1 0 0 

0 0 1 0 0 1 0 ei = {:} Si =  
1 0 1 1 0 0 

1 0 1 1 0 1 0 
0 1 1 0 1 1 0 
1 1 1 1 1 1 0 

Once a latent subset is chosen, a respondent guesses at random from the options 
in the subset. Thus, the conditional probability of responding with option j to item 
i ,  given latent subset si, is given by : 

where � = j denotes the event that the respondent chooses option j, and Efi! Bih 

is the number of options in the subset. Note that, 

Combining the two stages of the answer process, we find that the conditional 
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probability of choosing option j with item i is equal to 

P(Y; = i l0) = L P(Y; = j, Si = sil0) 
Si 

= L P(Y; = i lSi = si)P(Si = sd0) 
Si 

{( 'Ee - ·e ·7"0 'EJ�i P(Ei = eil0) for j ::; Ji 
= • •  • h=I Cjh 

l IT, P(Eif = O J0) for j = Ji + 1 
The penultimate equality can be established because there is a one-one correspon­
dence between opinions and subsets. It is seen that the subsets were merely intro­
duced to develop the model but are no longer needed. 

The Gibbs sampler for the present model is only superficially different from that 
of the NM for ability measurement. Let the vector e contain latent opinions eip, 
where eip denotes the latent opinion of respondent p with the ith item. To produce 
a sample from f(O, 8, ejy) we repeate the following two steps: 
1. Draw latent opinions from f(el0, 8, y). 
2. Draw 0 and 8 from f(O, 8Je) . 
Similar to the NM for ability measurement, it is found that 

f(el0, 8, y) = IT IT P(eip l0p, 8i, Yp i) , 
p i 

and sampling from f(el0, 8, y) entails independently drawing NP x N1 latent opinions. 
Specifically, eip is drawn from the set of possible latent opinions such that each 
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possible opinion ek is has probability P(ek l0p, 8i, ypi) to be drawn. If ypi < Ji + 1 :  

If ypi = Ji + 1, ej is O with probability 1 .  Thus, i f  Ypi < Ji + 1 we draw any of the 
opinions where ek(Ypi) = 1. If Ypi = Ji + 1, the latent opinion is the zero vector. 

As before, f(0, 8le) is seen to be the posterior density of the 2PL model when 
the latent opinions are considered data so that we may use the DA-T Gibbs samples 
for the 2PL in this step. Since there is no discrimination parameter in this case, 
there is no need to sample discrimination parameters; ai is fixed at minus one or 
plus one. 

6. Discussion 
In this lengthy research report we have given an expository account of tl�e DA-T 

Gibbs sampler for the 2PL. Our focus has been on Gibbs sampling. As a consequence, 
a number of important issues related to the theory and practice of Bayesian statistics 
where ignored or only mentioned in passing. As a courtesy to the reader, we mention 
a few of these issues and provide references where more information can be obtained. 
1. Parameter estimation. Here, we mentioned posterior means as point estimates 

but there are other possibilities such as the posterior mode which is more eas­
ily determined with an EM-algorithm (Dempster, Laird, & Rubin, 1973) . As an 
interval estimate, Baysians often report a the highest posterior density region. 
That is, the smallest region of the parameter space which contains a particular 
percentage of the mass of the posterior distribution. Calculation of highest poste­
rior density regions is discussed, for example, by Tanner (1993, section 2.5) ,  and 
Chen, Shao, and Ibrahim (2000). 
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Situation 1 :  

Situation 2: 
disjoint inter­
section 

Situation 3: 
empty inter­
section 

FIGURE 11.  

Three possible situations involving range restrictions. 

2. Bayesian evaluation of model fit. There are three common ways to determine 
model fit: 

Bayes factors: See Kass and Raftery (1995) 
Prior predictive checks: See Box (1983) 
Posterior predictive checks: See Rubin (1984) 

3. The definition and importance of identifiability in Baysian statistics is discussed 
by Dawid (1979). 
The most intricate aspect of the DA-T Gibbs sampler is the determination of 

the support of the full conditionals. In Figure 11  we have illustrated three situations 
that may occur: 
1. The intersection is a single interval. 
2. The intersection consists of a number of disjoint intervals. 
3. The intersection is empty. 
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Here, we have implicitely made a number of decisions to ensure that we are in 
the first situation. It is not always that easy. Suppose, for instance, that we had 
parameterized the 2PL in the more common way as follows: 

Then, we would sometimes encounter the second situation. For example, the support 
for the full conditional of ai is now 

It is seen that the restriction depends on the sign of both ai , and Zpi. Furthermore, 
as illustrated in Figure 12, the intervals may be disjoint for persons where Ypi = 0 
and persons where ypi = 1. 
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The DA-T Gibbs sampler has three advantages over alternative methods as 

the EM-algorithm. The main advantage is that it facilitates testing of restrictions 
involving multiple parameters. For example, to determine whether 81 < 82 < 83 we 
simply calculate the proportion of the sampled threshold parameters where this is 
the case. If this proportion is high, it is likely that the hypothesis holds. Second, 
the method is easy to program. Third, once one has a firm understanding of the 
idea underpinning the DA-T Gibbs sampler, it is quite easy to develop DA-T Gibbs 
samplers for other IRT models provided these models can be written as models 
with continuous latent responses (see Maris & Maris, 2002 for further examples). 
For models with discrete latent responses, however, it is usually easy to develop a 
DA-Gibbs sampler. 

A disadvantage of Gibbs sampling is that it can be very time-consuming, de­
pending on the complexity and size of the analysis. If one needs to do la!'ge-scale 
analyses on a regular basis it is worthwhile to spend some time programming a faster 
estimation algorithm. 
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8. Appendix 

8. 1 .  Draw latent Subsets or latent Opinions from a List 

In practice, the number of answer alternatives is at most 8 and the set of possible 
opinions or subsets is small enough to be hard coded in the software. Thus, we have 
a list of objects and we must choose at random one of the objects. Each object on 
the list has a probability Pi to be chosen such that Li Pi = 1. The probabilities were 
given in the text. 

Let U denote a random number; that is, U is distributed uniformly on (0, 1) so 
that 

P (�P; < U < tP;) � p, 

This means that, if we generate a random number u, and choose the set labelled i if 
i-1 i L Pi < u < L Pi 
j=l j=l 

the probability to choose i is Pi · In practice, this is done as follows: 
1. Generate u. Set sm = h = 0. 
2. Set h =  h + 1, and sm = E�=I Pi· 
3. If u < sm choose set i and stop. Otherwise go to 2. 

8.2. Generating Data from a 2PL 

Let Pie denote the probability to answer correct to item i. Generating a response 
to item i proceeds as follows: 
1. Generate a random number u 
2. if u ::S Pie the answer is correct, otherwise it is incorrect. 
To generate responses to N1 items we simply repeat this N1 times. 
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