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Abstract 

A disadvantage of the application of the Rasch Model (RM) or the Partial 

Credit Model (PCM) is that one may be forced to omit the best discriminating 

items from an item bank to attain acceptable model fit. A solution to this 

problem is offered by the family of One Parameter Logistic Models (OPLM). OPLM 

opens the possibility to model differently discriminating items on one latent 

scale, without sacrificing sufficient statistics and conditional maximum 

likelihood estimation. The preservation of these valuable properties of the RM 

and the PCM is achieved by avoiding to estimate discrimination indices by 

treating them as known integer constants. Although a dedicated least squares 

algorithm helps the user to quickly find appropriate values for the 

discrimination indices, he is in principle burdened with the responsibility for 

them. 

This paper explores how much the user gains by adopting an OPLM approach 

in terms of the probability of misclassifying a student with a certain latent 

parameter value. Although the exploration is restricted to binary scored items, 

several perspectives are considered. These are scoring (weighted vs. 

unweighted), test construction (use of discrimination indices or not) and 

calibration (use of OPLM or the RM). Moreover, to elucidate the practical 

relevancy of the investigation, a real item bank at the elementary school level 

is used. It turns out that when OPLM is fully used for calibration and test 

construction the application of raw scores in stead of weighted scores causes 

only a minor loss of accuracy. However, appreciable losses in accuracy are 

incurred if the test is constructed with disregard of the discrimination 

indices and even more so when the RM is used as the measurement model. 

Key words: Logistic IRT models, Scoring, Test construction, Measurement 

accuracy. 





Introduction 

Until the development of the One Parameter Logistic Model (OPLM, see 

below), the psychometric practitioner had to choose between the Rasch Model 

(RM), or the Partial Credit Model (PCM) for multicategory items, and the 

Birnbaum Model (BM) for IRT item analysis. With the RM (and the PCM) he ran the 

risk of having to abandon the best discriminating items, and the BM is 

contaminated with severe problems in parameter estimation. By treating 

discrimination indices not as parameters to be estimated, but as known integer 

constants, the application of OPLM allows him to keep items of various 

discriminating power in the same calibrated item pool without running into 

estimation problems. The idea to consider discrimination indices as known 

constants is new in psychometric models and sounds as an unbearably harsh 

burden on the shoulders of the practitioner. Although new in psychometrics, in 

other fields of social science modelling like factor analysis it is common for 

the user to specify the dimensionality of the solution and in LISREL the user 

typically has to provide a host of restrictions and other model specifications. 

However, like in factor analysis with its elbow heuristic for the 

dimensionality, the doctrine of known constants is not applied in its pristine 

theoretical severity. The practitioner is offered the assistance of a dedicated 

least squares algorithm to provide him with reasonably good values for the 

discrimination indices. The estimation in OPLM can, therefore, be viewed as a 

two stage procedure. The first stage is a 'quick and dirty' method without 

statistical testing, where all unknown parameters, including the discrimination 

indices and person parameters, are simultaneously fitted. The second stage 

treats the discrimination indices from the first stage, rounded to the nearest 

integer, as known constants and estimates the item parameters by CML or MML. 

Elaborate practice at Cito has shown that most times item test statistics 

indicate that just a few discrimination indices need to be adapted by one point 

in a direction as shown by these same statistics. 

Nevertheless, the practitioner has to bear the responsibility for the 

discrimination indices, and, therefore, it makes sense to investigate what 
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psychometric benefits are his reward in addition to saving the best 

discriminating items. 

OPLM as a Formal Model 

In OPLM the probability for student k of gaining a score j on item i with 

mi as its maximum score and ai as its discrimination index (a positive integer) 

is given by the expression: 

m1 

1 + L exp (ai (d8k - 'lid)) 
d=l 

ai e: { 1, 2, .... } . (1) 

If all discrimination indices ai are equal then (1) reduces to the PCM, and if, 

moreover, all mi are set to one, the RM is obtained. Therefore, it is not 

difficult to infer from (1) that OPLM is a generalisation of the RM and the PCM 

as well. A comprehensive introduction to the model, the statistical tests, and 

applications can be found in Verhelst a. o. (1991). 

The investigation reported in this article is focused on the gain in 

measurement accuracy by having the discrimination indices vary over the small 

positive integers in stead of restricting them to be equal as in the Rasch 

Model. Therefore, to avoid distracting complexity, the current application of 

OPLM is restricted to binary items. Consequently, (1) may here be simplified 

to: 

ai e { 1, 2 , .... } , (2) 

the RM enriched with discrimination indices. 

It follows from formulas (1) and (2) that the set of discrimination 

indices {ai, i=l, 2 . .. ) must also be interpreted as a scaling factor. 

Multiplication of the discrimination indices by an arbitrary factor c can be 

compensated for by dividing person and item parameters by the same factor c. 

This indeterminacy introduces a problem in interpreting the latent parameters. 
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Therefore, to support a consistent interpretation, we will sometimes refer to a 

'standard' scale with a unit called 'standit'. This is defined to be the scale 

where the geometric mean (we deal with a multiplicative factor, not an additive 

one) of the discrimination indices equals 1, like in the RM. The standard scale 

is obtained by multiplication of the latent parameters by the geometric mean of 

the discrimination indices, and by division of the discrimination indices by 

this same number. In the standard scale the discrimination indices are, of 

course, not restricted to be integers. 

Method of Investigation 

The key concept of this investigation is a misclassification function. For 

a certain measurement condition to decide whether the ability of a student does 

exceed a prespecified level, the misclassification function gives the 

probability of the wrong decision. Six conditions will be compared which are 

combinations of the following aspects: 

1. Calibration of the item bank with OPLM vs. RM 

2. Decision based on weighted vs. raw score 

3. For OPLM: test construction with or without regard of discrimination indices 

4. For RM: Calibration of the entire item bank or of a more Rasch homogeneous 

subset. 

Aspect 3 needs some clarification: An optimum test of length k for deciding 

whether the latent parameter of a student exceeds a certain level 90 contains 

the first k items from the ordered item bank according to information at 80, 

the item with highest information first (Verstralen & Verhelst, 1991) . If the 

discrimination indices are neglected in calculating the information, the 

optimum test contains the k items with difficulty parameter closest to 80 • With 

regard to this third aspect one might wonder for whatever reason one would 

choose to construct a test with neglect of discrimination indices, after taking 

the trouble of calibration under OPLM. The reason is that optimal test 

construction, in general, tends to use preferably high discriminating items, 

leaving the greater part of an item bank unused. One way of overcoming this is 

to proceed as described in aspect 3, and to construct tests using psychometric 
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information exclusively on the difficulty of items. By preserving the optimal 

test construction only for really important educational decisions, one 

safeguards the value of the better discriminating items from erosion by 

unnecessary frequent use. 

These four aspects generate the scheme of test conditions as given in 

Table 1. 

TABLE 1 

Six test conditions to compare measurement accuracy 

Con- Aero- Item bank Discr. Indices in score 
dition nym Calibration Test Construction 

1 ODW OPLM Yes Weighted 
ODR I I I I Raw 
ONW I I No Weighted 

4 ONR I I I I Raw 
RNR RM 

I I I I 

HNR Homogeneous RM I I I I 

When the RM is applied there obviously is no choice in using discrimination 

indices in test construction or scoring. 

Because we value to give an impression of measurement accuracy under 

practical measurement conditions a real 'item bank' is used. The complete item 

bank contains 245 items on Reading Comprehension at the elementary school level 

(Staphorsius, a.o., 1991). An artificial item bank or a series of artificial 

item banks would have been, perhaps, more apt to highlight relations between, 

for instance, variability in discrimination indices and measurement accuracy. 

However, because the connection with real measurement conditions would have 

been obscure, the relevancy of the investigation would have been difficult to 

assess. 

For the calculation of the misclassification functions OPLM is considered 

the model 'that truly reflects reality. Therefore, whatever the test condition 

the misclassification functions are calculated with parameter values estimated 

within OPLM. This special treatment of OPLM will easily elicit the criticism 

that this choice, by itself, will give OPLM the upperhand concerning 

measurement accuracy. However, in contradistinction to the Rasch model, also in 
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the more homogeneous condition 6 (HNR) , OPLM fits the data quite well: Although 

a lot of observations were involved (12, 000 students) OPLM could not be 

rejected on a statistical basis (5% level) . Moreover, the estimation errors of 

the parameters are small: 0. 006 through 0. 025. Their size on the standard scale 

is obtained by multiplication with 4. 5: 0. 027 through 0. 113. These estimation 

errors are so small that substitution of the parameter estimates for their true 

values, which are not known, could not be expec+ -� to cause a notable 

difference in the misclassification functions. 

After the first fitting stage the discrimination indices are taken to 

range from 2 through 9, with the distribution given in Table 2. 

TABLE 2 

Distribution of discrimination indices in the item bank 

Discr. Index 2 

Frequency 6 

Geometric Mean 

3 

27 

4 

82 

5 

74 

4. 55 = 1/0. 22 

6 7 8 

40 12 3 

9 

l 

For test condition 6 (HNR) , the more homogeneous Rasch bank, only the 

items with discrimination indices 4, 5 and 6 are retained, 196 in total. The 

complete item bank, and this subset as well, are calibrated separately under 

the Rasch model. 

To initially avoid the equating problem between OPLM and the RM it is 

easiest to start with the psychometrically optimal test condition l (ODW) . 

First the complete item bank with 245 items is calibrated with OPLM. 

Three decision levels 8 01 (i = 1, 2, 3) are chosen: at -l, o, and l standit. 

Because the geometric mean of the discrimination indices in this bank is 

, l/0. 22, these values have to be transformed to -0. 22, o, and 0. 22. For each of 

them the same procedure is followed. Take, for instance, 8 01 = -0. 22. Because 

the 'item bank' we employ is relatively small compared to the size a real item 

bank is supposed to have, a test of only 16 items is constructed with optimal 

decision accuracy at this value of the latent trait. This amounts to selecting 
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the 16 most informative items at 801• To get tests of more customary length 

these 16 items are taken two or four times to generate tests of 32 and 64 items 

resp. For such a test the expected weighted score w01 
at 801 is calculated. If a 

student with latent parameter 8 earns a score equal to or larger than the 

criterion score w01 
he passes the exam else he fails. Whether this decision is 

correct depends on 8 being larger resp. smaller than 801 • 

Now consider a test from the item bank with k items. Let x denote a 

response pattern with k elements: x1 = 1 if the response to item i is correct 

else x1 = o. To compute the probability of an incorrect decision based on the 

weighted score w its distribution given 8 is calculated by sWDJ11ation over all 

response patterns x that give rise to the same weighted score w, as shown in 

( 3) : 

P(wl8) = L IlP;1(l-pJ
1-x1. 

Ix: (x,Al = wl i 

(3) 

Here (� 1�) - LX
i
a

i denotes the inner product of the vectors� and�• and p1 
i�l 

equals the probability of a correct response to item i given 8 as expressed by 

(2). Summation in ( 3) is done over exactly those response patterns x E {O, l} k 

for which the inner product with a equals w. 

To indicate the way in which these probabilities are calculated, we 

introduce the following notation: Let 6 E Rk be a vector of reals, and� E Nk a 

vector of nonnegative integer weights, both of dimension k. Then define: 

Yw Cd, .d) is called the basic combinatorial function of order w. Now, 

let 31 = exp(a1 (8 -11 1)), then we have from (3) and (4): 

P(wl8) = 

where a denotes the vector with discrimination indices. 
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The probability of misclassification for 8 < 8
01 is given by the sum of 

the probabilities (3) for all scores w > round (w
01 + 1) plus an interpolated 

part of the probability for w = round (w01). Round (. ) denotes the function that 

yields the nearest integer of its argument. The additional interpolated part 

equals round (w
01) + 0.5 - w

01• It results from a so called 'correction for 

continuity' when the •continuous' scores are supposed to be uniformly 

distributed in the unit interval [w-o. s,w+0. 5) around their observed integer 

value w. If all scores are considered continuous and uniformly distributed in 

the unit intervals around their observed nearest integer values, with total 

probability for the unit interval as given by (3), the above argument can be 

stated in a simpler way: The probability of misclassification given that 

8 < 8
01 equals the integral of the conditional density given 8 of the scores 

w > w01• Denote the value of this integral by SP, then, if 8 � 8
01 the 

probability of misclassification is, of course, given by 1 - SP (see Figure 1). 

40�%---------------------, 

30 

20 

10 

0 

Scores 

Figure 1. The darker area represents the probability of misclassification for 

8 < 8
01 . 

7 



Calculation of the probabilities of misclassification for a closely spaced 

series of values for 8 in a relevant range around 801 gives an impression of 

the misclassification function. We chose 41 values in the interval 

[801 - 0. 25,0 01 + 0,25], which, for this item bank, is equivalent to about 2.25 

standits. To be able to display possible discontinuities at 801 , this value is 

represented by two values, one slightly smaller and one slightly larger than 

The second test condition (ODR) differs from the first (ODW) in that the 

unweighted raw score r is used instead of the weighted score w to decide pass 

or fail. The criterion score r01 is the expected raw score at 0 01• The 

conditional distribution of raw scores given 8 is calculated very much like 

(5), the difference being that this time summation is done over all response 

patterns that give rise to the same raw score r: 

P(rl8) = Yr (Q, .1.) 
(6) 

where 1 denotes the k-dimensional vector of l 's. 

Test conditions 3 and 4 (ONW, ONR) only differ from the first two by tests 

with less information at the decision level, which is expected to result in 

less accurate measurement around that level. 

For the Rasch test conditions 5 and 6 (RNR, HNR), however, there is the 

problem of how to link a Rasch scale with an OPLM scale. We could start with 

the practical situation of just having a Rasch calibrated item bank and 

decision levels �01 at -1.0, 0. 0 and 1.0 legit, or standit, which is equivalent 

in this case. For these decision levels optimal tests can be constructed in the 

Rasch Model, and their criterion scores r01 can be calculated. Given the items 

and a value 8* of the latent variable the conditional raw score distribution 

can be calculated in OPLM. Consequently the two probabilities of scoring lower 

or higher than the critical score are known. However, because there is as yet 

no decision level in OPLM, it is not known to which of the two classes 8* 

belongs, and, therefore, which of the two probabilities represents the 

probability of misclassification. This problem can be resolved by taking as 
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decision levels latent values 901 in OPLM with the same average probability 

correct on the common items as �01 at the Rasch scales: 

(i=l,2,3), (7) 

where j ranges over the common items in the OPLM bank and the particular Rasch 

bank. Needless to say that P ( �) is calculated within the Rasch framework and 

P ( 9) within OPLM. 

However, for the simultaneous presentation of the OPLM and Rasch 

misclassification functions it is preferable to have the same OPLM decision 

levels for all conditions. Therefore, equation (7) will be solved in the other 

direction: 901 in OPLM are considered known (-0. 22, o.o and 0. 22), and (7) will 

be solved for �01 in the Rasch model. This will result in decision levels for 

the Rasch conditions that slightly deviate from -1. 0, o.o and -1. 0, as shown 

below. 

Results 

Before presenting results on decision accuracy, first some data on the 

item banks and on the constructed 16 item tests. For the Rasch Model conditions 

5 and 6 (RNR, HNR) the just mentioned �01 are: 

TABLE 3 

Decision levels for the two Rasch Model conditions RNR and HNR 

Condition 

5 RNR 

6 HNR 

Level 1 2 3 

-1. 0223 0. 0134 1. 0384 

-1.0607 -0. 0028 1.0539 

As was to be expected the decision levels are about -1, o, and 1 resp. 

The discrimination indices, difficulty parameters, and critical scores of 

the 16 item tests of the four OPLM conditions are shown in Table 4. 
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TABLE 4 

Data on the tests with 16 items under OPLM conditions 

0 p L M Standard Scale 

Cond Disc Diff Disc Diff WO ro 

ODW/R 

1/2- 6.94(.90) -0. 15 (. 06) 1. 53(. 20) -0.67(.27) 40. 98(111) 6. 03 

0 7. 06(. 75) -0.04(. 08) 1. 55 ( .16) -0.19(.35) 64. 93(113) 9.13 

+ 6. 25(. 43) 0. 17 (. 07) 1. 38(.10) 0.79(. 30) 57. 69(100) 9.14 

ONW/R 

3/4- 4. 88(1.76) -o. 22 (. 02) 1. 07(. 39) -o. 98 (. 08) 37. 85(78) 7. 85 

0 4. 75(1. 52) -0.00(. 01) 1. 05(. 34) -o. 01 (. 06) 38. 64(76) 8.09 

+ 4. 94(0.83) 0.21(. 03) 1. 09 ( . 18) 0.97(.12) 40.03(79) 8. 11 

The first column in Table 4 gives the test conditions for which the test 

applies. For instance, 1/2- indicates test conditions 1 and 2 (ODW/R 

construction in OPLM with information maximisation at the decision level) at 

the negative decision level (80 = -0. 22) . The next column contains the means 

and, between () the standard deviations of the discrimination indices used in 

the OPLM calibration. Then, the mean and standard deviation of the item 

parameters as estimated by OPLM. The next two columns give the same information 

but rescaled to the standard scale by correcting for the geometric mean 

(1/0. 22) of the di�crimination indices in the bank. Under w0 the critical 

weighted scores are displayed, and between () the maximum weighted scores. The 

Column labelled r0 contains the critical raw scores. The maximum raw score 

equals 16 in every case and is, therefore, omitted. It appears from Table 4 

that for conditions 1 and 2 (ODW, ODR) the difficulty of the tests at 80 

deviates from 50% correct. Especially at 80 = -0.22 the test is rather 

difficult, while at the other two levels the tests are relatively easy. 

Table 5 shows the same data as given in Table 4, but now for the 16 item 

tests constructed under the two Rasch model conditions (RNR, HNR) , except for 

some changes to the last columns. Under 'Rasch Diff' the item parameters are 

given as estimated under the Rasch model for the relevant item banks. Moreover, 
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in addition to the critical scores as calculated in the Rasch model in column 

r0, the column labelled E(rl8 0) shows the expected score at the decision level 

for the assumed 'reality' in OPLM. Note that r0 equals E (rl�0) in the Rasch 

model. 

TABLE 5 

Data on the tests with 16 items under Rasch conditions 

0 p L M standard Scale R A s C H 

Cond Disc Diff Disc Diff Diff ro E(rl8 0) 

RNR 

5 5.31(1.2 6) -o. 21 (. 05) 1.17(.23) -0.94(.2 5) -1.04(.08) 8.07 7.48 

0 4.69(1.10) 0.00(.03) 1.03(.24) 0.02(.12) 0.01(.09) 8.03 7.88 

+ 4.38(1.32) o. 21 (. 05) 0.96(.29) 0.96(.23) 1.05(.10) 7.96 7.95 

HNR 

6 5.19(0.81) -o. 21 (. 05) 1. 14 ( .18) -0.96(.21) -1.0 6(.13) 7.98 7.71 

0 4.75(0.75) -0.00(.02) 1. 05 ( .17) -0.01(.10) -0.03(.10) 8.09 8.04 

+ 4.81(0.73) 0.23(.03) 1.06(.16) 1. 05 ( .13) 1.09(.11) 7.84 7.78 

Because of calibration errors the r
01 

in the Rasch model may differ 

somewhat from the expected scores in OPLM at the corresponding 8
01• 

Table 5 

shows that this effect of deviant calibration is most remarkable for condition 

5 (RNR) at the negative decision level, where there is almost a difference of 

0.6 in the expected scores under OPLM and the Rasch model. This deviance does 

not reappear in condition 6 (HNR) with the more homogeneous item bank, where 

Rasch calibration is expected to be more satisfactory. 

For the discussion of the misclassification functions we will focus on 

decision level 803 = 0.22 and the long test of 64 items. Conspicuous deviant 

, properties of the other decision levels and test length will be given 

additional attention. 

The graph of the misclassification function of test condition 1 (ODW), the 

optimal test condition with calibration by OPLM, item selection on the basis of 
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the information at the decision level 803 , and using weighted scores, is shown 

in Figure 2 . 
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Figure 2. Misclassification function for test condition 1 (ODW) and the long 

test (64 items) at decision level 803 
= 0. 22. 

Figure 2 clearly shows that the probability of misclassification at values 

of 8 very near 803 is about 50%, as is reasonably to be expected. However, 

especially for the two regions at some distance from 8
03 

the probabilities of 

misclassification are interesting. and there we have to look for relevant 

differences with the five nonoptimal test conditions. These differences are 

graphically displayed in Figure 3. The number tags represent the test 

conditions 2 through 6. The right top at 8rt = 0. 26 reaches 8.3%, indicating 

that 8. 3% more students with ability around art may undeservedly pass the test 

if condition 5 (RNR) applies as compared to condition 1 (0DW) . The optimal test 

condition passes only 16. 5% incorrectly against 24.8% for condition 5 (RNR) at 

8rt' at 4. 5 x 0.04 = 0. 18 standit from the decision level. 
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Figure 3. The differences between the misclassification functions of the 

nonoptimal conditions 2 through 6 (ODR through HNR) with the optimal condition 

1 (ODW) for the long test at decision level 9
03 

= 0.22. 

A conspicuous property of the short test conditions at the same positive 

decision level is the asymmetry of the difference curve for condition 2, 

although the absolute percentages are relatively small (±2%). This is shown in 

Figure 4. 
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Figure 4. The difference functions for the short tests at the positive decision 

level. Note the asymmetries of the difference functions. 

Because the misclassification function of condition 2 (ODR) appears almost 

perfectly symmetrical, the asymmetry of the difference curve proves to be 

caused by the asymmetry of the misclassification function of condition 1 (ODW) . 

This asymmetry can be interpreted as the result of somewhat positively skewed 

conditional distributions of the weighted score for values of 0 around 0 03 • For 

instance, at 0 = 0 03 about 52% of the conditional weighted score distribution 

falls below its mean w03 = 57. 69. This means that for a value of 0 just below 

0 03 48% is misclassified, while for a value of 0 just above 0 03 52% is 

misclassified. However, if we look at the results for the long test in Figure 

3, the asymmetry is reversed, and less conspicuous as well. Considering that 

the long test is just four times the same 16 items, that were taken two times 

for the short test, these asymmetries must be considered as rather arbitrary 

effects. The reason is probably the rather hectic, though not irregular, shape 

of the conditional score distributions. As an example, the conditional weighted 
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score distribution of the 32 item test given that 8 = 0. 22 is shown in Figure 

5. The large differences in probability between closely spaced weighted scores 

is caused by the fact that they may differ greatly in the number of response 

patterns that produce them. To illustrate this the probabilities x 100 and the 

number of possible response patterns x 10-6 of the scores 110 through 122, at 

the centre of the distribution are given in Table 6. 

TABLE 6 

The centre of the conditional weighted score distribution at 8
03 

w 110 lll 112 113 114 115 116 117 118 119 120 121 122 

t 0. 36 0. 44 1. 84 4. 11 4. 77 2. 63 0. 55 0. 27 1. 36 3. 59 4.91 3. 18 0. 76 

#pat 22 73 137 140 76 21 12 41 92 110 70 22 6 

There are, for instance, 21900692 possible response patterns that give rise to 

weighted score 110 in a 32 item test with 24 discrimination indices equal to 6 

and 8 equal to 7. The two rows are, of course, not exactly·parallel, because 

the first is conditional on 8, but the numbers of possible patterns heavily 

influences the conditional score distribution. 
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Figure 5, The number of response patterns per weighted score in a 32 item test 

with 24  discrimination indices equal to 6 and 8 equal to 7, 

Worth noting further is that conditions 2 and 4 (ODR, ONR) , with the raw 

score, incur only a minor loss in decision accuracy in comparison with their 

weighted score equivalents 1 and 3 (ODW, ONW) resp. For the long tests at Brt 

condition 2 (ODR) misclassifies only 0.3% mo!e than condition 1 (ODW) , and 

condition 4 (ONR) also only 0.3% more than condition 3 (ONW) . 

The decision accuracy is, however, appreciably diminished (>4%) by test 

construction without the use of discrimination indices. Of all the conditions, 

calibration and construction under the Rasch model of the complete item bank 

clearly performs worst. Selecting the more homogeneous subset yields a slight 

improvemen't, but does not match the OPLM conditions, not even those conditions 

where discrimination indices are neglected in test construction. 

The other decision levels and test length, in principle show the same 

picture, except that the shift effect, the result of the hectic conditional 

weighted score distributions, may be reversed from left to right. A dramatic 
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shift effect can be observed for the two test lengths at the negative decision 

level 801 = -0. 22. Here, the cause is not primarily to be found in slightly 

asymmetric conditional score distributions of condition 1 (0DW) , but in the 

Rasch calibration errors that cause the deviation between expected raw scores 

in the RM and OPLM, as shown in Table 5. According to the OPLM-reality both 

expected scores around the decision level in conditions 5, and 6, (RNR, HNR) 

are appreciably less than their respective criterion scores. This results in a 

very low probability of misclassification for values of 8 a little less than 

801 , and for values of 8 a little greater than 801 
this must be paid for by a 

relatively high misclassification probability. For instance with the long 64 

item test 40%, and 30% for conditions 5 and 6 resp. against only 15% for 

condition 1 at 8 = 0. 16. See Figure 6 for the difference curves of the long 

tests at the negative decision levels. That the asymmetry of condition 1 (ODW) 

plays only a minor role here, is evidenced by the flat form of the difference 

curve for condition 2 (ODR) . The important point here is that the effects of 

calibration errors in the Rasch model cannot be controled, and therefore add to 

the uncertainty about the quality of decisions made under the Rasch model. This 

uncertainty must be added to the reported measurement errors that assume that 

the model fits the data well. 
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Figure 6. Difference functions for the long test conditions at the negative 

decision level, The large asymmetry for the Rasch conditions is the result of 

calibration errors caused by the unappropriateness of the Rasch model for the 

given data. 

Conclusion 

The above analysis shows �hat the choice of IRT model may influence the 

measurement accuracy of a test. Particularly in condition 5 (RNR) , where the 

Rasch model was used most inappropriately, without the prior selection of a 

more homogeneous item subset, an appreciably larger percentage of students 

passes or fails the exam unwarranted, than if OPLM was used as the IRT model . 

The choice of the model by itself determines to a large extent the amount of 

injustice that is accepted. But also condition 6 (HNR) , where the Rasch model 

is more appropriately used, at �he cost of a fair amount of precious items, 

shows only a slight improvement over condition 5, and still produces an 

unnecessary, because easily avoidable, percentage of incorrect and unjust 

decisions that may harm individual careers or society. 
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If the use of weighted scores would pose a problem or be prone to errors, 

as in hand scoring, only a minor loss in accuracy is incurred by the use of raw 

scores, provided that the test is constructed with full use of the OPLM 

calibration results. However, even this minor accuracy loss may have a 

substantial effect on the value of the classical reliability coefficient. For a 

moderately reliable test of 47 items we witnessed an increase from 0. 61 to 

0.68, and increases of about 0. 04 are common for moderate reliabilities. 

A disadvantage of optimal test construction is that preferably highly 

discriminating items are selected. This may quickly damage the value of an item 

bank by too frequent use of the same small subset of items. Therefore, it is 

recommended when an item bank is used for decisions of various importance, to 

restrict optimal test design for the really important decisions. Test 

construction for less consequential decisions should then be carried out with 

disregard of the discrimination indices of the items. It is expected that the 

loss of accuracy here is more than compensated for by the increased quality of 

decisive tests. OPLM calibration enables one to make deliberate choices in the 

discussed respects, which certainly must be regarded as a valuable reward for 

choosing a more complicated model than the Rasch model. 
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