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Abstract 

Computerized adaptive tests (CATs) were originally developed to obtain an efficient 
estimate of an examinee's ability. For classification problems, applications of the 
Sequential Probability Ratio Test (Wald, 1947) have been shown to be a promising 
alternative for testing algorithms which are based on statistical estimation. However, 
the method of item selection currently being used in these algorithms, which use 
statistical testing to infer on the examinees, is either random or based on a criterion 
which is related to optimizing estimates of examinees (maximum (Fisher) information). 
In this study, an item selection method based on Kullback-Leibler information is 
presented, which is theoretically more suitable for statistical testing problems and which 
can improve the testing algorithm for classification problems. 

Simulation studies were conducted for two- and three-way classification problems, 
in which item selection based on Fisher information and Kullback-Leibler information 
were compared. The results of these studies showed that the performance of the testing 
algorithms with Kullback-Leibler information-based item selection are sometimes better 
and never worse than algorithms with Fisher information-based item selection. 
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Introduction 

Efficient estimation of the ability of an examinee is often the purpose .of computerized 
adaptive testing (CAT). But, if the goal of testing is to classify examinees in a limited 
number of categories, for example, pass/fail decisions on an exam or decisions 
regarding placement in courses on different levels, CATs can make use of algorithms 
that are based on statistical testing rather than statistical estimation. Studies by Reckase 
(1983), Lewis and Sheenan (1990), and Spray and Reckase (1994, 1996), for decisions 
in two categories, and Eggen and Straetmans (1996), for decisions in three categories, 
have shown that the Sequential Probability Ratio Test (SPRT) (Wald, 1947) can be 
successfully applied in adaptive testing using an item response theory (IRT) calibrated 
item bank. 

An important part of a CAT algorithm is the item selection procedure, which 
determines, during testing, the choice of the items which are administered. In current 
adaptive tests using statistical testing in the algorithm, item selection is based on a 
criterion which is closely related to statistical estimation. Items are selected that 
maximize the item Fisher information, which means the item will be chosen that 
minimizes the expected contribution of an item to the standard error of the ability 
estimate of an examinee. In this article, item selection procedures will be proposed that 
are based on Kullback-Leibler information (Cover & Thomas, 1991). It will be shown 
that the item Kullback-Leibler information expresses the expected contribution of an 
item to the discriminatory power between two hypotheses. Conceptually, K-L 
information fits the statistical testing algorithm more closely than Fisher information. 
One of the questions addressed in this article is whether using K-L information has a 
positive impact on the performance of the adaptive tests with statistical testing for 
decision problems with two categories and with three categories. Bayesian item 
selection criteria are also in use in adaptive testing with estimation. These criteria, 
recently discussed by Van der Linden ( 1996), will not be considered in this article. 

The first part of the article is an overview of the SPRT application in problems with 
two and three categories. Next, item selection based on both Fisher and Kullback­
Leibler information will be presented. Finally, a comparison of the item selection 
procedures for both the two- and three- category problem will be made on the basis of 
simulation studies with an operational item bank. 
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Sequential Testing in the Testing Algorithm 

In testing algorithms of adaptive tests, the likelihood function of an examinee's ability, 
0, plays a central role in the inference on the examinee. Assuming that an IRT 
calibrated item bank is available, that is, the parameters of the items can be considered 
to be known, and given the scores on k items ( x i , i = 1, .. . , k) , this function is 

k k 

Lk(O; x" . . .  ,xk ) = L/0; !) = II L(O; xi ) = II p/Of;(l -p/O)tx;. 
i=I i-1 

( 1)  

In this likelihood function, p/0), the probability of answering item i correctly, is the 
item response function belonging to an IRT model. In this paper, the two-parameter 
logistic (2-PL) model is used: 

(2) 

The response to an item xi is either correct (1) or incorrect (0). The probability of a 
correct response increases with the latent ability O and depends on two. item 
characteristics: the difficulty parameter, b 1 , and the discrimination parameter, a i . 

In traditional adaptive tests, the ability is estimated after each item by maximizing 
the likelihood function with respect to 0 . When statistical testing rather than estimation 
is used in the testing algorithm, the likelihood function is used somewhat differently, 
which will become clear in the following description of the statistical testing procedure. 

Classification in Two Categories 
On the latent ability scale, a decision or cutting point 0

0 
between, for example, a 

master and non-master, or between an examinee who passes and an examinee who fails 
on an exam, is given. A small region on both sides of this point, a so-called 
indifference zone, is selected. The width of these regions, although they could differ 
from each other, is taken to be o . The indifference interval expresses the fact that, 
owing to measurement errors, making the right decision about examinees very near the 
cutting point can never be guaranteed. One could also say that the interval expresses the 
indifference of an examiner of the classification of the examinees who are that near to 
the cutting point. 
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Next, the statistical hypotheses are formulated: 

(3) 

Acceptable decision error rates are specified as follows: 

P(accept HO I HO is true) > 1 - a, and P(accept HO I Hl is true) ::::;; (3, (4) 

in which a and (3 are small constants. The test meeting these decision error rates can 
be carried out using the SPRT (Wald, 1947). The test statistic used is the ratio between 
the values of the likelihood function (Equation 1) under the alternative hypothesis and 
the null hypothesis: 

L (0 • x) 
LR (,!) = 

k 2 ' -

k L/0, ;�) 
(5) 

It will be clear that high values of this ratio indicate the examinee is more likely to have 
an ability above the cutting point, and small values support the decision that the 
examinee is below the cutting point. That is, the test meets the error rates if the 
following procedure is used: 

Continue sampling if: (6) 

accept HO if: (7) 

reject HO if: (8) 

Equation 6 is called the critical inequality of the test. It can easily be shown that if the 
2-PL model (Equation 2) is used, the critical inequal,ity of this test can be written as 
follows: 

(9) 
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In Equation 9, 

(10) 

which only depends on the item parameters and on constants in the statistical testing 
procedure, 0

1 
and 0

2
, that are chosen beforehand. The evaluation of the critical 

inequality is quite easy because it involves only the observed weighted score and known 
constants. Note that because 0

2 
> 0

1
, q/0

2) I q/0
1
) < 1 and thus Cko, o, < 0. 

Furthermore, if the indifference interval 2o = 0
2 

- 0
1 

increases, the width of the critical 
interval gets smaller, which indicates that shorter tests can be used to make a decision. 

Although Wald (1947) has shown that eventually a decision will be taken with 
probability 1 with the SPRT, in practice, a maximum test length, kmax, is usually 
specified. At this test length, a forced decision is taken. In that case, the most obvious 
decision is taken: HO is rejected if the test statistic is larger than the midpoint of the 
critical inequality interval; otherwise it is accepted. 

Classification in Three Categories 
The above testing procedure is readily generalized to cases of classification in one of 
three categories. In this case, there are two cutting points, 0

1 
and 02 , and three 

different levels of ability are distinguished. See Figure 1. 

Decision 

Level 1 Level 2 Level 3 

I J I J I I J I J I 011 01 012 021 02 022 

Figure 1 

Schematic representation of the classification problem with three categories 
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After selecting the indifference zones, all taken to be o , two pairs of hypotheses are 
formulated: 

HO_l: 0 � 0
11 

= 0
1 

- o (level 1) H0_2: 0 � 021 
= 0

2 
- o (lower than 3) (11) 

Hl_l: 0 > 0
12 

= 0
1 

+ o (higher than l); H1_2: 0 ;;::= 022 = 0
2 

+ o (level 3). (12) 

The SPRT test described in the preceding section is applied for each pair of hypotheses. 
In the specification of the acceptable decision errors, as in Equation 4, the small 
constants a1 and {3

1
, a

2 
and {3

2
, respectively are used. 

If the 2-PL model is used, the critical inequalities of the tests are 

(13) 

(14) 

It can easily be checked that a (In q; (0 + o)) I (q; (0 - 8)) I a0 < 0 fm all 0, which means 
it is decreasing in 0 . A consequence of this is that the lower bound of test 1, L

1 
, can 

never be larger than the upper bound of test 2, U2 . So, by combining the decisions of 
the simultaneously applied two SPRTs, unequivocal decisions can be made in the three­
way classification problem. 
Decisions based on a combination of two SPRTs: 

decision test 1 

decision test 2 1 2 or 3 

1 or 2 1 2 

3 impossible 3 
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This generalization of the SPRT, known as Sobel and Wald's (1949) combination 
procedure, performs as well as Armitage's ( 1950) combination procedure, which is 
applied by Spray ( 1993) for classification in three and even k categories. 

The procedure for the combined test with the 2-PL model is as follows: 
k take decision 1 if L a,x1 $; L1; 1-1 

k take decision 2 if ul � :Eaixi $; L1; i=l 
k 

take decision 3 if :E·a1x1 � U1; i-1 
continue testing if else. 

A sketch of the procedure is given in Figure 2: 

0 
0 

28 

24 

20 

(I) 16 

Cl 12 
'cii 

8 

4 

o
'---.L._--=-------'-------'------�-----

o 10 20 

number of items 

Figure 2 

30 

Sketch of the statistical test procedure with three levels 

40 

( 15) 

(16) 

( 17) 

(18) 

Note that, of course, L1 < U1 and L2 < U1 , but it generally requires some items before 
U2 < L1 can be true and decision 2 can be taken. 

8 



Item Selection 

In the testing algorithm, the item selection procedure chooses items from the item bank. 
In connection with the use of the SPRT, random selection is a possibility, but it is well 
known that the efficiency is much greater when a maximum information selection 
strategy is applied (see, for example, Eggen & Straetmans, 1996). Information usually 
means Fisher information which will be described first . 

In adaptive testing in which the aim is estimating the ability of an examinee and items 
are selected to have maximum information at the current ability estimate, Chang and 
Ying (1996) introduced an item information measure which is not based on Fisher 
information but on Kullback-Leibler information (K-L information). In this section, an 
information measure will be introduced that is also based on Kullback-Leibler 
information but which is more suitable to be used in connection with adaptive testing 
with the statistical testing with the SPRT. 

Some item selection procedures for both Fisher information and Kullback-Leibler 
information will be given for both the two- and three-categories problem. 

Fisher Information 
Current maximum information item selection procedures are almost all based on the 
Fisher item information, which for an item i is defined as 

(19) 

In the 2-PL, the expression is given by 

(20) 

For a test consisting of k items, the test information is the sum of the information of 
the items in the test: 1 (0) = E1=i 1; (0).  Selecting items with maximum information 
maximizes the contribution to the test information. The usefulness of this is readily 
understood if an estimate of the ability of an examinee is wanted, especially when the 
maximum likelihood estimator (MLE) is used. In this case, Ok , the MLE after taking 
k items, follows from max IJ L(0; x) and the standard error of this estimator is 

8 i=l 

estimated by se (Ok) = 1 / J1cek) . So, it can be seen that by selecting items having 
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maximum information, the contribution to the decrease of the standard error is greatest. 
Furthermore, from the definition in Equation 19, it can be seen that maximizing the 
information is the same as maximizing the contribution of an item to the expected 
relative rate of change of the likelihood function. As Chang and Ying (1996) point out, 
the greater this change rate at a given value of 0 , the better it can be distinguished from 
points near to this value, and the better this value can be estimated. 

Some selection procedures based on Fisher information 
Fl In adaptive tests in which the examinee's ability is to be estimated, the most 

popular item selection method is to select the item that has maximum 
information at the current ability estimate: 
Select the item i for which: max I /o k) . 

i F2 Spray and Reckase ( 1994) have shown that in a classification problem 'with two 
categories for which the SPRT procedure is being used, it is more efficient to 
select the items which have maximum information at the cutting point 0

0 
rather 

than at the current ability estimate: 
Select the item i for which: max I/00) .  

i F3 In a three-way classification problem for which the generalized SPRT described 
in the preceding section is being used, an alternative selection method could be 
to select the item which maximizes the information at the cutting point nearest 
to the current estimate: 
Determine min(I 0

1 
- Ok I, I 0

2 
- Ok I) and choose the item with maximum 

information at the cutting point with the minimum. 
F4 For the three-way classification problem with the SPRT in which no use is made 

of estimates of abilities, Eggen and Straetmans (1996) propose selecting the item 
which maximizes the information at the cutting point corresponding to the 
midpoint of the critical inequality interval which is closest to the current 
examinee's score. If the 2-PL is the IRT model, the midpoints follow from the 
Equations 19  and 20; after determining the minimum of 
I Li afi - (U

1 + L,) 12 I and I Li aixi - (U
1 + L1) 12 I , the item with 

maximum information at the corresponding cutting point will be selected. 

Kullback-Leibler Information 
The item selection methods described in the preceding section all use a criterion related 
to Fisher information that has a strong relation to optimizing estimates. Although these 
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selection methods can also be used in adaptive testing with the SPRT, one could wonder 
whether making use of Fisher information is optimal in this case. An alternative could 
be to base the item selection process on the relative entropy or Kullback-Leibler 
information (Cover & Thomas, 1991), which is an information concept as strongly 
related to statistical testing as Fisher information is to statistical estimation. The relative 
entropy is a measure of the discrepancy between two distributions: 

K(f1 I I !0 ) = z;, log (21) 

which is the expected information in x for discrimination between the two hypotheses 
HO: f (x) = f

0 
(x) and Hl: f (x) = f

1 
(x). The larger this information, the more efficient 

the statistical test will be. 
The definition in Equation 21 can be directly applied to the SPRT application in 

adaptive testing : HO is the hypothesis that we have a distribution (likelihood) with 
parameter value O = 0

1 
and under Hl the distribution has parameter O = 02 . And 

(22) 

is the Kullback-Leibler test information (k items), which can be written as the sum of 
the Kullback-Leibler information of the items: 

(23) 

The K-L item information K/02 1 1  01 ) is defined for any pair 02 and 01 and is a 
positive real number and, consequently , an eligible item information index. The 
usefulness of applying an item selection procedure based on maximum K-L information 
can be understood, since this procedure will maximize the contribution to the K-L test 
information. When the K-L test information is maximized, it is expected that the 
difference between the likelihood under both hypotheses is maximized, which is, in 
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turn, expected to minimize the number of items needed to take a decision because the 
test statistic is the likelihood ratio (see Equation 5). 

K-L information is also the basis for an index proposed by Chang and Ying (1996) 
for estimation problems as a more global information index in contrast to the local 
Fisher information. They consider, for any 0 ,  the K-L item information to the true 
ability 0

0
: K i (00 1 1  0), which is then, of course, a function of 0 . They define their 

information index which is used in item selection as an integral of this function over an 
interval depending on the current MLE, Ok , and a expression, ok , which is decreasing 
in the number of items ( k) :  

Ii, + �, 

Ki (ok ) = f K/ok 1 1 o ) do .  
e. -�. 

(24) 

Chang and Ying's (1996) claim is that their information measure is a good alternative, 
especially in the beginning of the test, when the ability of an examinee is poorly 
estimated. It should be noted that information indices like the one given in Equation 24, 
but then based on Fisher information, were also proposed by Veerkamp and Berger 
(1997). But, because these indices are not expected to be useful alternatives for item 
selection in the case of the SPRT, they will not be discussed further in this article . 

If an IRT model for dichotomously scored items is used, the K-L item information 
index can be written as: 

(25) 

which with the 2-PL model specializes to : 

(26) 

Note that the index is linear in the discrimination parameter, whereas the Fisher item 
information is quadratic in ai , which means that the weight of the discrimination 
parameter in the selection is less, which can be favorable in the beginning of the test. 
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If the K-L information is computed in 0
2 

= 0
0 

+ o and 0
1 

= 0
0 

- o ,  Equation 26 
becomes 

which is a monotone increasing function of o . This means that for any fixed item i , 
the K-L item information increases if the width of the indifference zones increases. This 
property illustrates that the K-L item information expresses the contribution of an item 
to contribute to the capability to distinguishing between two hypotheses, which is larger 
when o is larger. However, this property does not imply that the order of the item K-L 
information over items is the same for each o . 

Some selection procedures based on K-L information 
Kl In the case of a classification problem in two categories, the K-L item 

information can be used directly in a straightforward way in item selection. The 
K-L item information will be computed in two points symmetric around the 
cutting point: 
Select the item i for which: max K; (00 + o 1 1  00 - o) . 

i K2 In the three-way classification for K-L item selection, there are more 
possibilities. One possibility is to select the item which maximizes the K-L 
information at two fixed points. Possible choices are (see Figure 1) :  
a. K; (0

2 1 I I 0
12 ) , b. K; (02 I I 0

1 ) and c. K;(0
22 

j j 0
1 1

) ,  which have in common that 
the items will be selected with maximum information to distinguish between two 
hypotheses. This may cause a problem, because a decision in one of three 
categories is needed. 

K3 One way to deal with this problem is, as with Fisher information (see F3 
before), is to look for the nearest cutting point and to select the items with 
maximum K-L information around this cutting point. The nearest cutting point 
is, as in F4, determined without estimation by comparison of the score with the 
midpoints of the critical intervals of the tests. 

K4 An alternative approach is to look more precisely at the progress of hypothesis 
testing: as long as none of the pairs of hypotheses have led to a decision, items 
are chosen with maximum K-L information between the two cutting points 0

1 
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and 02 ; if one of the pairs of hypotheses has led to a decision while the other 
has not, items will be chosen which have maximum K-L information around the 
cutting point corresponding to the test which has not yet led to a decision. If the 
2-PL model is used, the following selection procedure is used : 

if: L aixi � u
l 

: 

i=l 

if: L a;X; � L
2

: 
i=l 

(28) 

(29) 

(30) 

A small variation on this procedure could be made in case no decision has been 
taken yet: instead of the expression in Equation 30, a narrower interval is 
chosen:, 

(31) 

Comparison of Item Selection Procedures 

The performance of the item selection procedures were compared by means of a 
simulation study drawing on an operational item bank. The bank contains 250 
mathematics items which are used in adult education to place students in one of three 
course levels and to measure progress at these levels. The items were calibrated with 
the 2-PL model. On the scale fixed by restrictions on the item parameters, the 
distribution of the ability 0 in the population was estimated to be normal with a mean 
of .294 and a standard deviation of .522. More details on the scaling can be found in 
Eggen and Straetmans (1996). 

The simulations were conducted as follows. An ability of a simulee 0v was randomly 
drawn from N(.294, . 522). Three relatively easy starting items were selected; 
subsequent items were selected using one of the item selection methods. The simulee's 
response to an item was generated according to the IRT model and this procedure was 
repeated for N = 5000 simulees. For varying decision error rates, the item selection 
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procedures were compared on the mean number of items required to make a decision 
and the classification accuracy, the percentages of correct decisions. 

Classification in Two Categories 
The cutting point in the simulation was 0

0 
= . 1 , and the maximum test length was: 

kmax = 40 . The procedure was conducted for three different errot rates: a= {3 were 
.05, . 075 and . 1  and varying indifference zone: . 1  :s; o :s; .23,  in steps of .01. 

The following item selection procedures were compared: 
Fl Maximum Fisher information at the current estimate. 
F2 Maximum Fisher information at the cutting point. 
Kla Maximum K-L information at 8

1 
= .05 and 8

2 
= . 15 .  

Klb Maximum K-L information at 0
1 
= .00 and 0

2 
= .20.  

Klc Maximum K-L information at 8
1 
= -. 05 and 8

2 
= .25 .  

The results for a typical indifference zone o = . 15 are given in Table 1. 

Table 1 
Mean number of required items and percentage of correct decisions in a 

decision problem with one cutting point 0
0 

= . 1  and with o = . 15 

Selection method 

F l  F2 Kla  Klb  Klc 

Error rate k % k % k % k % k % 

a=/3 = . 05 16 .0 95 .6  16 .3  94 .7  16 . 1 95 .4 16 . 3  94 .6  15 . 9  95 .5 

a=/3 = . 075 14 .9  95.0 14.0 95.2 13 .9  94. 8  1 3 . 9  95 .2 1 3 . 9  95 .6  

a=/3 = . 10 13 .2  94 .9  12 .7  94 . 8  1 3 .2 94. 8  12 .7  95 .3  12 .9  94. 8  

Most notable is that there are almost no differences in Table 1. For the three error rates 
and all five item selection methods, the percentage of correct decisions are about 95 % . 

A consistent difference between these error rates over selection methods can be seen 
in the mean number of required items: the lower the rates, the more items are needed. 
There are hardly any differences between the three variants of K-L information 
selection. There seems to be a slight tendency , at least when the error rates are . 07 5 
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and . 10 ,  for the selection of items with maximum Fisher information at the cutting point 

(F2) to be better than the selection of items with maximum Fisher information at the 

current estimate (Fl ) .  This is in line with the findings of Spray and Reckase ( 1996) . 

Furthermore, K-L information selection (Kl) seems to be as good as selecting with 

maximum Fisher information at the cutting point (F2) . 

These results are also found if the indifference zone o is varied . The results for 

a = {3 ::: . 1  for the three selection procedures F l ,  F2 and Kl are given in Figures 3 

and 4 .  

"' 
C 
0 

·;;; 
·u 

97 

96 
F 1  

. . . . .,. . . .  F2 
·- ·--- -•· K1 

� 95 • 

N 94 
C 

Q) n. 

93 

,, .  

.. 

92 .__.,__ __ __._ ___ .,__ __ __,_ ___ .,__ __ __._ __ ____, 
0 . 1 0  0 .12 0 . 14  0.1 7  0.1 9  0.21 0.23 

0 

Figure 3 

Percentage correct decisions for three item selection procedures 
in the two category problem as a function of o 
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22 

20 -

1 8  -

16  -

1 4  -

12 

10 

8 

6 
0.1 0  0.12 0 . 14  0.1 7  0. 1 9  0.21 0.23 

Ii 

Figure 4 

Mean number of required items for three item selection procedures 
in the two category problem as a function of o 

A slight decrease in the percentages of correct decisions with increasing o is seen in 

Figure 3 ,  but there are hardly differences between the item selection methods . 

Figure 4 shows that, as expected, the mean number of items required decreases as 

the indifference zone increases for all three selection procedures . Furthermore, it can 

be seen that the K-L information item selection and maximum Fisher information 

selection at the cutting point is as good as and, from o > . 12 ,  a bit better than 

selection r1ith Fisher information at the current estimate . 

Classification in Three Categories 
The cutting points in the simulation were 0 0 = - . 1 3  and 0 0 = . 3 3 , and the maximum 

test length was : kmax = 25 . The procedure was conducted for three different sets of 

error rates : a1 = (32 = 2(31 = 2a2 were .05 , .075 , and . 1 .  Halving (31 and a2 compared 

to (32 and a
1 

has the effect that it is expected that all three decisions will have the same 

error rate . The width of the indifference zones was also varied : . 10 $; o $; . 20 , in 

steps of .01 . No o larger than .2  was considered, as the zones of both hypotheses 

would then overlap . 
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The following item selection procedures were compared: 
Fl Maximum Fisher information at the current estimate. 
F3 Maximum Fisher information at the cutting point nearest to the current estimate. 
F4 Maximum Fisher information at the nearest cutting point. 
K2a Maximum K-L information at 0

1 
= -0.03 and 02 = 0.23 . 

K2b Maximum K-L information at 0
1 
= -0. 13 and 0

2 
= 0. 33 . 

K2c Maximum K-L information at 0
1 
= -0.23 and 0

2 
= 0.43 . 

K3 Maximum K-L information at the nearest cutting point. 
K4a Maximum K-L information at varying points: Equations 28, 29, and 30. 
K4b Maximum K-L information at varying points: Equations 28, 29, and 31 .  

The results for o = . 13 are given in Table 2.  I t  is  seen that for every selection 
method, there is an expected decrease in the mean number of required items if the 
acceptable error rates are increased. Increasing the error rates has little effect on the 
percentages of correct decisions. 

Table 2 
Mean number of required items and percentage of correct decisions in a 

decision problem with two cutting points 0
1 

::: -. 13 , 02 :=: • 33 and with o :=: . 13 

error rates 

.05 .075 . l 

selection k % k % k % 

Fl 16.7 89 .9 15 .6  89.2 14.6 89 . 1  

F3 2 1 .8 87.0 20.5  87 .7 19 .4 87 .4 

F4 16 .8  89.6 15 .6  90 .0 14.3 88.5 

K2a 1 8 .7 89.5 17 .4 89.5 16 .3  88.  l 

K2b 18 .4  88.4 17.0 88.0 16 .3  88 . 6  

K2c 18 .7  87.9 17 . 1  88 .2 16 .4 88 .6  

K3 16 .8  90. 1 15 .3  89.2 14.2 89.4 

K4a 17 .0 89 .2 15 .6  89.2 14.4 89.4 

K4b 17 .0 89 .2 15 .5 89.7 14.2 89. l 
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A comparison of the selection methods shows that the differences between them are 
consistent over the different error rates . Next, it is noted that with the K-L selection 
methods K2 and K4, varying the exact pair of points between which the K-L 
information is computed has no impact on the performance of the adaptive test. Clearly, 
the worst performing selection method is the one in which items are selected with 
maximum Fisher information at the cutting point nearest to the current estimate (F3). 
It needs more items and has a lower percentage of decisions. This finding, confirming 
those of Eggen and Straetmans ( 1996), may be explained by the fact that the current 
estimate of the ability, especially in the beginning of the test , is so inexact that it is 
sometimes nearer to the wrong cutting point than the cutting nearest to the true value 
of the ability . It is also clear that in decision problems with three categories, item 
selection which maximizes the K-L information at two fixed points (K2) is worse than 
other methods. There seem to be four (Fl, F4, K3, K4) selection methods in the three­
category problem that perform almost equally well. 
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Figure 5 
Percentage correct decisions for six item selection procedures 

in the two category problem as a function of o 
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Figure 6 
Mean number of required items for six item selection procedures 

in the two category problem as a function of o 

In Figures 5 and 6, the simulation results are shown as a function of the indifference 
zone. The results mentioned before are independent of the width of the indifference 
zone. In Figure 5, there are systematically lower percentages of correct decisions if the 
selection is based on maximizing the Fisher information at the cutting point nearest to 
the current estimate (F3). In Figure 6, the expected decrease in the mean number of 
required items with increasing o is again seen for all selection methods. On this aspect, 
the F3 method and the K2 methods ( choosing items with maximum K-L information at 
two fixed points), clearly performed worse than the other four methods. Of these four 
methods, selecting items which maximum Fisher information at the current estimate 
(Fl), with some indifference zones o ,  needs, on average, slightly more items than the 
K4, F3, and K3 methods, which could be a reason to prefer one of these methods of 
item selection. Of these three methods, F4 and K3 have in common the way the nearest 
cutting point is sought: the current weighted score (in the 2-PL) is compared with the 
midpoints of the critical interval of the two tests. This is an ad hoe criterion which is 
not based on a clear concept. Nevertheless, the performance of these selection methods 
is as good as the conceptually better grounded K4 selection method . 
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Conclusion 

The results of the present study indicate that when the sequential probability ratio test 
is applied in adaptive testing, item selection methods can be defined which are based 
on an information concept which has a natural relation with hypothesis testing. These 
item selection methods are based on Kullback-Leibler information or relative entropy, 
which expresses the power of an item to discriminate between two hypotheses. For 
decision problems in two and three categories, item selection methods based on K-L 
information were given as an alternative for item selection methods which are based on 
the 'estimation-related' Fisher information. 

The comparison of the performance of the item selection methods in the decision 
problem with two categories, showed there was no difference between maximizing K-L 
information around the cutting point and maximizing Fisher information at the cutting 
point, but both are slightly better than maximizing Fisher information at the current 
estimate of an examinee . In the decision problem with three categories, one of the best 
performing item selection methods was the selection method which maximizes the K-L 
information between two varying hypotheses. The hypotheses to be considered depend 
on the progress of the testing thus far: if testing one of the two pairs of hypotheses has 
led to a decision, items are chosen with maximum information at the other pair of 
hypotheses; if none has reached a decision, the information is maximized between the 
two pairs of hypotheses. 

In SPRT adaptive testing item selection based on the conceptually strongly related K­
L information is generally preferred to Fisher information-based methods. In both the 
two- and three-category decision problem, the item selection based on K-L information 
never performed worse and sometimes better than Fisher information-based selection 
in the simulation study. Moreover, in some of the Fisher information-based item 
selection methods, an estimate of the current ability is needed. This is never the case 
in K-L information item selection which is computationally much easier. 
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