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Chapter 1

Introduction

In the social and behavioral sciences, researchers commonly use tests and

questionnaires to measure attributes such as cognitive abilities including aspects

of intelligence, personality traits, and attitudes. Measurement of these

attributes is liable to more random measurement error than measurement of, for

example, temperature or distance and also to systematic but undesirable

influences, such as social desirability, tiredness, and cheating. Consequently, a

single item does not provide a reliable and valid measurement of the attribute

and researchers have to construct multiple items to control for random

measurement error and to cover different aspects of the attribute well. The

responses to the items contain information about the attribute that a researcher

intends to measure. If the items have been constructed adequately, test takers

with a higher attribute score (e.g., being more verbally intelligent, more

extravert, or having a more positive attitude towards euthanasia) are expected

to score higher on an item than test takers with lower attribute scores.

Researchers are predominantly interested in the positions of test takers on

the scale for the attribute of interest rather than their scores on single items.

Psychometric measurement models summarize a pattern of item scores into a

score on a latent variable that represents the attribute. In validity research,

researchers have to evaluate whether the latent variable is a valid representation

of the attribute of interest and whether the latent variable covers all relevant

aspects of the attribute. Measurement models restrict the relation of the item

scores and the latent variable. A general class of measurement models is item

1
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response theory (IRT; Embretson & Reise, 2000; Van der Linden & Hambleton,

1997). The evaluation of the nonparametric IRT model known as the monotone

homogeneity model (Mokken, 1971; Molenaar, 1997) in real data is the central

theme of this study. The monotone homogeneity model is also known as the

unidimensional monotone latent variable model (Holland & Rosenbaum, 1986).

Three assumptions define the monotone homogeneity model:

unidimensionality, local independence, and monotonicity. The unidimensionality

assumption posits that the items in the test measure only one latent variable.

This assumption reflects the ideal that items should measure one attribute so as

to simplify the test performance’s interpretation. The local independence

assumption posits that the unidimensional latent variable is the only source of

association between the items, so that the multivariate, distribution of the item

scores conditional on the latent variable equals the product of the univariate,

conditional distributions. The local independence assumption implies that for

test takers with the same score on the latent variable, the item scores are

independent, hence local independence. In combination with unidimensionality,

local independence ascertains that the test measures one latent variable and

nothing else. The monotonicity assumption encompasses the intuitively

appealing idea that the expected item score is a monotone nondecreasing

function of the latent variable. This means that as the latent-variable value

increases, for each item the expected score remains the same or increases.

Many well-known parametric IRT models assume unidimensionality and

local independence and assume a parametric function such as the logistic to

describe the relation between the expected item score and the latent variable.

These parametric IRT models are special cases of the nonparametric monotone

homogeneity model that only restricts the relation between the expected item

score and the latent variable to be nondecreasing. Examples of parametric IRT

models for dichotomous items are the Rasch model (Rasch, 1960), the

2-parameter logistic model and the 3-parameter logistic model (Birnbaum,

1968), and examples of parametric IRT models for polytomous items are the

partial credit model (Masters, 1982), and the graded response model

(Samejima, 1969). The parametric IRT models reject items that have monotone

relations with the latent variable that are not logistic. Because the monotone

homogeneity model is less stringent with respect to the relation between the
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item scores and the latent variable, if different models could select items from a

large pool then the monotone homogeneity model would select more items than

parametric IRT models that are special cases of the former model. Including

many items in a scale may be considered to be a desirable property of a

measurement model. Moreover, because the unidimensional parametric IRT

models are special cases of the monotone homogeneity model, assessment of the

fit of the monotone homogeneity model to the data also provides information

about a parametric model’s data fit.

An important question is how the latent variable can summarize a person’s

pattern of item scores. The monotone homogeneity model justifies the use of

the easily interpretable total score, which is the unweighed sum of the item

scores, as an ordinal estimator of the latent variable. Thus, test takers with a

higher total score on average have a higher score on the latent variable than test

takers with a lower total score. Grayson (1988; also, Huynh, 1994) showed that

the ordering of the latent variable by the total score holds for dichotomous

items, but Hemker, Sijtsma, Molenaar, and Junker (1997) proved that for

polytomous items the total score strictly is not an ordinal estimator of the

latent variable. However, Van der Ark (2005) demonstrated that violations of

ordinal measurement of the latent variable are rare. Moreover, Van der Ark and

Bergsma (2010) proved that for polytomous items a weaker form of the ordering

of the latent variable by the total score holds. Hence, the monotone

homogeneity model suffices as a measurement model when the measurement

purpose requires ordinal measurement, for example, to identify the most capable

applicants in personnel selection (ranking of total scores) or patients who need a

particular treatment more than others (dichotomization of the total-score scale).

This thesis discusses methods that use observable consequences of the

monotone homogeneity model to assess the fit of the model to the data and the

measurement quality of items. Observable consequences provide necessary but

not sufficient conditions for the measurement model. Hence, observable

consequences are particularly useful to investigate whether one or more items

are inconsistent with the monotone homogeneity model. The property of

conditional association (Holland & Rosenbaum, 1986; Rosenbaum, 1984) defines

a large set of observable consequences of the monotone homogeneity model. Let

the set of all items under consideration be partitioned into two disjoint sets of
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items. One set contains the items for which covariances are computed and the

other set divides the total group of test takers in one or more subgroups.

Conditional association implies that all covariances between any two

nondecreasing functions of the items in the first set are nonnegative for any

subgroup based on any function of the items in the second set. For example, the

covariance between two item scores from the first set conditional on the total

score on the items in the second set must be nonnegative. Because the number

of partitionings of all items into two sets, the number of nondecreasing functions

of the first item set, and the number of functions of the second item set are

large even for a small number of items, conditional association can be

specialized by means of a large number of special cases

Mokken scale analysis (Mokken, 1971, chap. 5; Sijtsma & Molenaar, 2002,

chap. 5) is a nonparametric IRT method that uses special cases of conditional

association to investigate the fit of the monotone homogeneity model. Mokken

scale analysis evaluates two normed covariances that have values between 0 and

1 given that the monotone homogeneity model is the correct model; the normed

covariance between two items, known as the Hij coefficient, and the normed

covariance between item j and the total score on the other items excluding item

j, known as the Hj coefficient. Then, a scale (Mokken, 1971, p. 184) is defined

by two criteria: (1) for all item pairs (i, j), Hij > 0 (formally, Mokken, 1971, p.

184, used ρij > 0, where ρ is the product-moment correlation), and (2) for all

items j, Hj ≥ c, where c is a user-specified lower bound (by default c = .3).

Strictly, the monotone homogeneity model implies that the Hj values are

nonnegative; that is, 0 ≤ Hj ≤ 1. Hence, a positive lower bound c is not

necessary for a set of items to be consistent with the monotone homogeneity

model. However, it is desirable that the items have sufficient discrimination

power (Van der Ark, Croon, & Sijtsma, 2008); that is, the items should

distinguish test takers scoring relatively low on the latent variable and test

takers scoring relatively high on the latent variable. Because an Hj value

reflects the relation between the item score and the total score ordinally

representing the latent variable (Van Abswoude, Van der Ark, & Sijtsma, 2004),

a higher lower bound c expresses the minimally required measurement quality of

the items. In addition to the Hij and Hj coefficients, the total-scalability

coefficient H expresses the accuracy by which the total score orders test takers
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on the latent variable. Mokken (1971, p. 185) provided practical rules of thumb

for interpreting H values: H < .3 means that the set of items is unscalable;

.3 ≤ H < .4 means the scale is weak; .4 ≤ H < .5 means the scale is medium;

and H ≥ .5 means the scale is strong.

An automated item selection procedure (Mokken, 1971, pp. 190-192) is

available to partition a set of items into one or more Mokken scales. The

automated item selection procedure is a bottom-up algorithm; that is, it starts

with two items and adds items one by one as long as the criteria for a scale are

satisfied. The procedure first selects the two items from the set that have the

highest, significantly positive Hij value, and in each subsequent item selection

step the procedure adds the item for which Hj ≥ c and which has the highest H

value with respect to the already selected items. The procedure stops the

selection of the first scale when all items are selected or when the unselected

items do not satisfy the Mokken scale criteria with respect to the selected items.

Then, if possible, from the unselected items the procedure selects a second scale,

then a third scale, and so on. The automated selection of items finishes when

fewer than two items remain unselected or when the unselected items do not

satisfy the Mokken scale criteria (Mokken, 1971, pp. 190-192; Sijtsma &

Molenaar, 2002, pp. 71-72). Alternatively, if researchers have prior beliefs about

which items belong in the same scale, they can investigate their beliefs by

computing the Hij, Hj, and H coefficients for each cluster of items to determine

whether the items indeed form a scale based on the criteria that Hij > 0 and

Hj ≥ c, and use H to interpret the strength of the scale (Mokken, 1971, pp.

189-190).

In this thesis, we discuss methods that use observable consequences of the

monotone homogeneity model to evaluate the fit of the monotone homogeneity

model to the data collected by means of a test or a questionnaire in a sample

drawn from a particular population. We proposed an alternative formalization of

the automated item selection procedure for Mokken scale analysis, investigated

a new procedure using conditional covariances for the identification of locally

independent item sets, determined the minimally required sample size for item

selection in Mokken scale analysis, and applied the nonparametric IRT methods

to psychological data from two different questionnaires frequently used in the

context of clinical, health, and medical psychology.
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1.1 Outline of the thesis

In Chapter 2, we proposed a genetic algorithm as an alternative for the

bottom-up item selection method used in Mokken scale analysis. Mokken’s

automated item selection procedure has two problems: due to its bottom-up

formulation, the procedure sometimes selects items that are inconsistent with

the definition of a Mokken scale, and the bottom-up selection procedure may

result in a local maximum with respect to Mokken’s (1971) objective of

partitioning items into one or more scales. In this study, we compared the

performance of Mokken’s bottom-up procedure and the genetic algorithm with

respect to Mokken’s scaling objective, and applied both versions of Mokken’s

automated item selection method to the communality items of the Adjective

Checklist (Gough & Heilbrun, 1980).

In Chapter 3, we applied Mokken scale analysis to the Type-D Scale 14

(Denollet, 2000, 2005), a psychological questionnaire measuring the personality

traits of negative affectivity and social inhibition. Previous studies obtained

three different factor models describing the internal structure of the Type-D

Scale 14. We used Mokken’s automated item selection procedure, its

genetic-algorithm version, exploratory factor analysis, and confirmatory factor

analysis to investigate which of the three factor models best described the

internal structure of the Type-D Scale 14.

In Chapter 4, we evaluated the dimensionality of the Hospital Anxiety and

Depression Scale (Zigmond & Snaith, 1983). Recent studies criticized the

Hospital Anxiety and Depression Scale because the dimensionality results

seemed to depend heavily on the statistical method used and the population

investigated. We showed that Mokken scale analysis can explain why the

statistical methods obtain different dimensionality results and used Mokken

scale analysis to identify items that are inconsistent with the monotone

homogeneity model.

In Chapter 5, we investigated minimum sample-size requirements for the use

of the bottom-up item selection procedure and its genetic-algorithm version in

Mokken scale analysis. We determined which factors affect the minimally required

sample size for accurate automated item selection in Mokken scale analysis and

whether the minimally required sample size differed for the two versions of the
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automated item selection procedure.

In Chapter 6, we used three special cases of conditional association to assess

the fit of the monotone homogeneity model to test and questionnaire data. Thus

IRT theorists largely ignored the potential of conditional association for model-

fit assessment. In this study, we combined three special cases of conditional

association into a procedure for the identification of locally independent item

sets, compared the new procedure with automated item selection in Mokken

scale analysis and DETECT with respect to their potential to identify violations

of local independence and monotonicity, and applied the new procedure to the

Type D Scale 14.

In Chapter 7, we discussed future research that the results obtained in this

PhD thesis suggested, and the ideas that came up during the research but for

which time needed to put them into action ran out.
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Chapter 2

Comparing Optimization

Algorithms for Item Selection in

Mokken Scale Analysis∗

Abstract

Mokken scale analysis uses an automated bottom-up stepwise item selection

procedure that suffers from two problems. First, when selected during the

procedure items satisfy the scaling conditions but they may fail to do so after

the scale has been completed. Second, the procedure is approximate and thus

may not produce the optimal item partitioning. This study investigates a

variation on Mokken’s item selection procedure, which alleviates the first

problem, and proposes a genetic algorithm, which alleviates both problems. The

genetic algorithm is an approximation to checking all possible partitionings. A

simulation study shows that the genetic algorithm leads to better scaling results

than the other two procedures.

∗This chapter has been accepted for publication as: Straat, J. H., Van der Ark, L. A., &

Sijtsma, K. (in press). Comparing optimization algorithms for item selection in Mokken scale

analysis. Journal of Classification.

9
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2.1 Introduction

Tests and questionnaires — tests, for short — are used as measurement

instruments in psychological, educational, sociological, marketing, and medical

and health research. The aim is to measure the respondents’ level on a scale for

the attribute of interest, such as introversion (psychology), arithmetic ability

(education), religiosity (sociology), service-quality demands (marketing), and

health-related quality of life (medicine and health). To constitute a scale, the

items in the test must meet the requirements of a measurement model

(Section 2.2). Most measurement models assume a unidimensional scale, which

facilitates the interpretation of the measurements.

Measurements may be used for making decisions about individual

respondents, for example, in job selection and clinical assessment, for ordering

or classifying respondents, or for comparing group means or correlating the

scale scores with other interesting variables. The degree to which these

measurement applications are successful is determined by the quality of the

items and the number of items, denoted J . Tests that are used for making

decisions about individuals require a large number of items to have enough

measurement precision — that is, a relatively small standard error of

measurement for the true score or a small standard error for the latent variable

— and tests that are used in research that only addresses group characteristics

may contain fewer items (Mellenbergh, 1996).

Item quality is often related to the degree to which an item can precisely

distinguish respondents with low measurement values from respondents with

high measurement values. Items that distinguish more sharply are said to have

higher discrimination. The degree to which the whole test rather than the

individual items distinguishes respondents depends on the test length; given

fixed item discrimination, the longer the test, the more accurately the scale

distinguishes respondents. The total score is the sum of the scores on the J

individual items in the test, and it is often used for measuring the respondents.

If item discrimination is high, then fewer items are needed to obtain a precise

total score but Emons, Sijtsma, and Meijer (2007) showed that when fewer

well-discriminating items are used one still needs a relatively large number of

items to make precise individual decisions.
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For the development of a new test, researchers usually start by creating a

large pool of items that they believe contains enough items that are good

indicators of the attribute. In general, several of the items may cover the

intended attribute well but other items may also cover other attributes or

different aspects of the same attribute, and a dimensionality analysis of the test

data is done to remove the deviating items or divide the whole item pool in

different clusters. Exploratory dimensionality methods are factor analysis and

principal component analysis for continuous item scores and cluster techniques

tailored to the discreteness of the item scores. Typically, the clustered items

range from weak to strong discrimination. The purpose of Mokken scale

analysis (Mokken, 1971; Sijtsma & Molenaar, 2002), which is central in this

study, is to select as many sufficiently-discriminating items as possible in each

cluster. The researcher defines what (s)he considers “sufficient” discrimination.

Items that have sufficient discrimination relative to a total score that estimates

a latent variable or a conglomerate of latent variables measure much in common

and tend to be unidimensional. Deviations from unidimensionality expressed by

local dependence within a cluster are rare (Straat, Van der Ark, & Sijtsma,

2012a).

Mokken scale analysis is used in almost all measurement areas in which

researchers construct stand-alone tests and questionnaires for ordinal

measurement. An exception is large-scale educational testing in which equating

of different scales is paramount. Researchers prefer using parametric item

response theory (IRT) models that allow metric scales for this purpose.

Mokken scale analysis includes a sequential clustering algorithm (Hemker,

Sijtsma, & Molenaar, 1995; Mokken, 1971, pp. 191-193), which is known as the

automated item selection procedure (AISP; Sijtsma & Molenaar, 2002, chap. 5).

AISP aims at selecting from a given pool of items the largest subset of items that

measure the same attribute and satisfy particular scaling criteria (Mokken, 1971,

pp. 189-190). Such an item subset is a Mokken scale. The idea is that a test

should contain as many sufficient-quality items as possible. Items left unselected

may measure a different attribute, and AISP next tries finding the largest second

Mokken scale in the set of remaining items, then a largest third Mokken scale,

et cetera. Thus, AISP partitions a given set of items into mutually exclusive,

unidimensional clusters that contain sufficiently-discriminating items.
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Interestingly, AISP does not precisely formalize Mokken’s goal of selecting as

many sufficiently-discriminating items as possible in each cluster, so that

sometimes item clusters have a different composition (Mokken, 1971, p. 193;

Sijtsma & Molenaar, 2002, chap. 5). We propose a procedure that explicitly

formalizes Mokken’s goal, and thus is expected to produce better results than

AISP. In addition, AISP selects items one by one in consecutive steps, so that

an item that is selected in the beginning of the procedure may no longer satisfy

the formal criteria for inclusion later on when other items also have been

selected (Mokken, 1971, p. 193; Sijtsma & Molenaar, 2002, chap. 5). Mokken

suggested that the researcher should exclude such misfitting items afterwards.

The newly proposed procedure does not have the problem of selecting items

that show misfit in hindsight. Moreover, we propose a version of AISP that

guarantees that the end result does not contain misfitting items.

Other dimensionality methods also partition a given set of items into

unidimensional clusters but use different definitions of dimensionality, different

algorithms for finding the dimensionality, and different criteria for deciding on

the final solution. Moreover, they ignore item discrimination. Examples are

DETECT (Zhang, 2007; Zhang & Stout, 1999a, 1999b), which finds subsets of

items that are locally independent within subsets but locally dependent between

subsets, and HCA/CCPROX (Roussos, Stout, & Marden, 1998), which is a

hierarchical cluster analysis method that uses a proximity measure based on

conditional covariances for finding a limited number of locally optimal item

clusters approximating local independence within clusters and local dependence

between clusters. DIMTEST (Nandakumar & Stout, 1993) can be used to test

the unidimensionality of the separate dimensions identified by DETECT or

HCA/CCPROX. Van Abswoude, Van der Ark, & Sijtsma (2004), Balàsz,

Hidegkuti, & De Boeck (2006), and Van Abswoude, Vermunt, & Hemker (2007)

studied these and other item selection methods. Hattie (1985) and Tate (2003)

discuss multiple methods for investigating test-data dimensionality for many

different IRT models.

This paper is organized as follows. In Section 2.2, we discuss nonparametric

IRT and AISP. In Section 2.3, we introduce an objective function for item selection

methods which formalizes the ideas of Mokken, and use this objective function to

define alternatives for AISP, which are a modified AISP and a genetic algorithm
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(Michalewicz, 1996). In Section 2.4, we use a simulation study to compare AISP,

the modified AISP, and the genetic algorithm. In Section 2.5, we apply the three

item selection methods to real test data.

2.2 Mokken’s Nonparametric Item Response

Theory

2.2.1 Monotone Homogeneity Model

Mokken (1971, chap. 4) proposed the monotone homogeneity model (MHM) for

dichotomously scored items. The MHM is defined by the assumptions of a

unidimensional latent variable denoted θ, local independence of the J item score

variables Xj (j = 1, . . . , J) given θ, and monotonicity of the expected item score

as a function of θ (Mokken & Lewis, 1982; Sijtsma and Molenaar, 2002, pp.

18-20). This function is the item response function. Let the sum score X+ be

defined as X+ =
∑J

j=1 Xj. Grayson (1988) showed that the MHM implies that

X+ stochastically orders θ. Thus, sum score X+ can be used for ordering

persons on θ. This result justifies the use of the sum score X+ (Sijtsma &

Molenaar, 2002, p. 22). For polytomous items, Hemker, Sijtsma, Molenaar, &

Junker (1997) proved that, theoretically, X+ sometimes fails to stochastically

order θ, but Van der Ark (2005) found that violations of stochastic ordering are

rare if the number of items exceeds 5, and Van der Ark and Bergsma (2010)

proved that for polytomous items a weaker form of stochastic ordering holds.

Fit of the MHM to the data can be investigated in several ways (Sijtsma &

Meijer, 2007). Mokken (1971, pp. 182-184) proposed to use scalability coefficients

for selecting items and assessing the quality of the scale. These coefficients are

discussed next.

Scalability Coefficients

Let the covariance between two items Xi and Xj be denoted by Cov(Xi, Xj),

and the maximum covariance given marginal item-score distributions by
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Covmax(Xi, Xj). The scalability coefficient Hij for item pairs is defined as

Hij =
Cov(Xi, Xj)

Covmax(Xi, Xj)
.

Coefficient Hij is the normed covariance between items i and j, which has the

desirable property that its maximum equals 1 irrespective of the item-score

distributions.

For each item j, we define a rest score R(j) = X+ −Xj. Then, coefficient Hj

for individual items is defined as

Hj =
Cov(Xj, R(j))

Covmax(Xj, R(j))
.

Similar to sum score X+, rest score R(j) is an ordinal estimator of θ (Junker,

1991), and one may argue that Hj reflects the association of item j with latent

variable θ: the higher Hj, the stronger the association. Hence, coefficient Hj

may be interpreted as index of item discrimination in a group characterized by a

particular distribution of the sum score X+ or the rest score R(j) (Mokken, Lewis,

& Sijtsma, 1986).

Coefficient H is a weighted average of the J coefficients Hj (Mokken & Lewis,

1982), and is defined as

H =

∑J
j=1 Cov(Xj, R(j))∑J

j=1Covmax(Xj, R(j))
.

Coefficient H expresses the accuracy by which sum score X+ orders persons on

θ. Mokken (1971, pp. 148-153) proved that, given the MHM, 0 ≤ Hij ≤ 1,

0 ≤ Hj ≤ 1, and 0 ≤ H ≤ 1, and he (ibid, p. 185) provided practical rules

of thumb for interpreting H values: H < 0.3 means that the set of items is

unscalable; 0.3 ≤ H < 0.4 means a weak scale; 0.4 ≤ H < 0.5 a medium scale;

and 0.5 ≤ H ≤ 1 a strong scale.

Definition of a Mokken Scale

Mokken (1971, p. 184; Sijtsma & Molenaar, 2002, p. 68) defined a scale as a

set of items satisfying two criteria: (1) for all item pairs, the product-moment

correlation is positive; that is, for all (i, j) pairs, ρij > 0, and (2) for a user-

specified positive value of c, for all items j, scalability coefficient Hj ≥ c. By
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default, c = 0.3, but researchers are free to choose different values for c so as to

express the item quality they prefer. Items satisfying the two criteria by definition

constitute a “Mokken scale”. The MHM implies Criterion 1 but, given the bounds

for coefficient Hj, the MHM implies Criterion 2 only if c = 0 (Sijtsma & Molenaar,

2002, pp. 58-59). Thus, any positive Hj is consistent with the model, and the

reason to require a higher positive c value is that under the MHM such values

imply a higher discrimination power (Van der Ark, Croon, & Sijtsma, 2008).

Highly discriminating items are desirable in a test because they contribute to

a reliable ordering of persons on latent variable θ by means of X+. Finally, if

Hj ≥ c for all j, then H ≥ c (Sijtsma & Molenaar, 2002, p. 58, Eq. 4.9).

Automated Item Selection Procedure

Based on the definition of a scale, AISP partitions J items into one or more

Mokken scales, and possibly one or more items that are left unscalable. The first

step of AISP is to select from all item pairs (i, j) the pair (i.e., the start set)

with the greatest Hij value that is significantly greater than 0 and exceeds lower

bound c. Suppose, at a given step in AISP, Js items (Js ≥ 2) have been selected.

In the next step, from the unselected items the (Js + 1)st item is selected if it:

(1) correlates positively with each of the Js selected items (Criterion 1); (2) has

an HJs+1 coefficient with respect to the Js selected items that is significantly

greater than 0 and also exceeds lower bound c (Criterion 2); and (3) produces

the greatest H value with the Js selected items, given all candidate items for

selection. An item satisfying these criteria is selected, and this step is repeated

for the J −Js− 1 unselected items. AISP stops when there are no items left that

satisfy the three criteria. If at least two items remain after the formation of the

first scale, AISP tries to construct a second scale from these items, then a third

scale, and so on. AISP terminates when no more than one item is left, or when

the items left do not satisfy the scaling criteria.

AISP always produces a partitioning. However, because it is a bottom-up

algorithm, which selects an item only once without the possibility of revoking

the assignment later on, AISP does not consider all possible partitionings. In

practice, AISP may find a first scale that is smaller than one or more subsequent

scales; for example, see Sijtsma and Molenaar (2002, p. 84). In this study, we

arbitrarily considered the longest scale found by AISP as the first scale, the second
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longest scale as the second scale, and so on. Mokken’s (1971, p. 190) objective

was to select as many items as possible into the first scale, then as many items

as possible into the second scale, and so on. If this result was attained, we had

found the optimal partitioning.

2.3 New Item Selection Methods

2.3.1 Objective Function

First, we introduce some notation. Often a set of J items can be partitioned

in different ways into one or more Mokken scales. The total set of different

partitionings into Mokken scales (and for each partitioning, possibly unscalable

items) is denoted M. From this set we seek the partitioning that best represents

Mokken’s objective. For a particular partitioning from M, a scale indicator vector

denoted v = (v1, ..., vJ) describes the partitioning of the items, such that vj = 0

denotes that item j was unscalable, vj = 1 that item j was assigned to the first

scale, vj = 2 that item j was assigned to the second scale, and so on. Let set

M contain F partitionings, which are indexed f , so that f = 1, . . . , F . Within

a partitioning, the number of Mokken scales is denoted Kf (Kf ≤ J
2
). Mokken

scales in partitioning f are indexed k, so that k = 1, . . . , Kf , and the number of

items in scale k is denoted by Jfk.

Following Mokken’s intention, given the definition of a scale, the first selected

cluster contains the maximum number of items; if items remain unselected, the

second cluster contains the maximum number of items; and so on, until there

are no items left that constitute a Mokken scale. Hence, for partitioning f the

objective function should reflect that one extra item in scale k is more important

than any number of items in the subsequent shorter scales k+ 1 through Kf . An

objective function satisfying this requirement, and to be used for the evaluation

of partitioning f , is

O(vf ) =

Kf∑
k=1

J−k × Jfk. (2.1)

Objective function O(vf ) weights the number of items in scale k, Jfk, by J−k,

and then adds these products. Because the scales are ordered by the number

of items they contain, O(vf ) assigns the greatest weight, J−1, to the scale with
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the largest number of items, the second greatest weight, J−2, to the scale with

the second largest number of items, and so on. The argument of the objective

function, vf , does not appear on the right-hand side of Equation 2.1 but Kf , J ,

and Jfk are functions of vf , which renders vf a valid argument. By definition,

O(vf ) = 0 if one or more scales in partitioning f do not satisfy the criteria of a

Mokken scale. In Appendix 1, we prove that the objective function O(vf ) indeed

realizes Mokken’s intention.

The global maximum for a particular data set is described by the scale

indicator vector vf that yields the highest possible value for objective function

O(vf ), and hence is defined as argmaxO(vf ). The partitioning that represents

the global maximum is denoted by v∗.

2.3.2 Modification of AISP

The AISP is a bottom-up algorithm, so that the scale(s) produced by AISP may

contain one or more items for which Hj < c (i.e., a violation of Criterion 2; see

also Sijtsma & Molenaar, 2002, pp. 79-80). We propose an adjusted version of

AISP that does not have this problem. This version is denoted AISP-modified,

and was modelled after stepwise regression analysis. It allows item j to leave the

scale after a new item has been selected and, as a result of that, Hj has dropped

below lower bound c.

2.3.3 Genetic Algorithm

We used a genetic algorithm (GA; R package mokken, version 2.0 and beyond; Van

der Ark, 2007), which evaluates several partitionings simultaneously throughout

the procedure. GA maximizes the objective function subject to the side condition

that each selected cluster is a Mokken scale. Thus, the end result consists of scales

that are consistent with the definition of a Mokken scale without necessarily

having the highest H values possible but scales have maximum length according

to the objective function. This is consistent with Mokken’s definition of a scale.

GA starts with an initial set of P randomly chosen partitionings, indexed p (p =

1, ..., P ) and denoted by v1(0), ...,vP (0). Partitionings v1(0), ...,vP (0) constitute the

initial population, which is denoted by P0. The subscript between parentheses in

vp(t) indicates the population obtained at iteration t, and t = 0 indicates the 0th
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iteration resulting in P0.

The probability that the global maximum v∗ is included in P0 is small when

J is large because P is generally much smaller than the number of partitionings

F in set M. Therefore, GA mimics an evolutionary process to find v∗. The

partitionings of P0 are changed in an iterative process such that after a large

number of iterations, denoted by T , implying a large number of changes, at least

one partitioning vp(T ) approaches v∗. Appendix 2 discusses the details of GA.

As an aside, we compared GA with an algorithm that examined all possible

partitionings for limited numbers of items, and found that GA yielded the same

solution and was always faster.

2.4 Comparing Three Item Selection Methods

We did a simulation study to compare AISP, AISP-modified, and GA with

respect to (1) the frequency in which local maxima are found; and (2) the

degree to which each procedure retrieves the true dimensionality in the data.

Even though imposing restrictions on item quality may stand in the way of an

optimal dimensionality retrieval, it is of interest to know to what degree the

procedures can do this for particular design choices.

2.4.1 Method

Simulation Model

A two-dimensional graded response model (GRM; Samejima, 1969) was used for

data simulation. Let item j have scores 0, . . . ,m. A two-dimensional latent

variable, θ = (θ1, θ2), explains the association between the item scores. The item

difficulty parameters are δj1, . . . , δjm, and the item discrimination parameters are

(αj1, αj2). The two-dimensional GRM gives the probability of a score of at least

x (x = 1, . . . ,m) by means of

P (Xj ≥ x| θ) =
exp[

∑2
l=1 αjl(θl − δjx)]

1 + exp[
∑2

l=1 αjl(θl − δjx)]
.
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Design of the Study

The next four characteristics were fixed: (1) number of latent variables: 2; (2)

sample size: N = 1, 000; (3) lower bound: c = 0.3; and (4) number of replications

in each design cell: # repl. = 100 (Table 2.1). A pilot study showed that

the number of items J , the range of item difficulty parameters δ, and the item

discrimination parameters α affected the frequency with which local maxima were

found. These three factors and three other factors were varied as follows (Table

2.1).

Table 2.1: Fixed Design Characteristics and Independent Variables

Fixed characteristics Value

Number of θs 2

Sample size 1,000

Lower bound c 0.3

Number of replications 100

Independent variables Levels

Correlation between θs 0, 0.35, 0.7, 1

Item format 2, 5

Test length 10, 20, 40

Range of δ [-1.5,1.5], [-3,3]

Mean item discrimination 1, 1.25, 1.5

Item selection procedure AISP, AISP-modified, GA

Correlation between latent variables. Latent variables had a bivariate standard

normal distribution. The correlation between the latent variables was either

0 (zero correlation), 0.35 (medium correlation), 0.7 (strong correlation), and 1

(unidimensional latent variable). We simulated a simple structure. The first half

of the items had discrimination parameters αj1 = αj and αj2 = 0, and the second

half had discrimination parameters αj1 = 0 and αj2 = αj.

Item format. Items were either dichotomous (m + 1 = 2) or polytomous

(m+ 1 = 5).

Test length. The number of items was either 10, 20, or 40. We expected

that more local maxima were found as J increased, because more items lead
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to more and longer scales thus increasing the probability of finding suboptimal

partitionings.

Range of item difficulty parameters. Item difficulties δ were drawn from a

continuous uniform distribution on an interval equal to either [−1.5, 1.5] or [−3, 3];

choices were loosely based on Thissen and Wainer (1982).

Item discrimination. Item discrimination parameters were drawn from a

normal distribution with mean 1, 1.25, or 1.5, and a standard deviation equal to

0.1 (Mokken et al., 1986). A pilot study showed that in combination with a

standard normal θ, these α values produced ample suboptimal partitionings but

lower and higher values were not effective because either no items were selected

(all Hj � c) or all items were selected (all Hj � c), respectively. Mean 1 might

be too low for having good quality of measurement but we emphasize that some

measurement areas may typically be characterized by items having modest

discrimination (e.g., inductive reasoning; de Koning, Sijtsma & Hamers, 2003).

Choosing a lower bound smaller than c = 0.3 accommodates this situation.

Item selection procedure. AISP, AISP-modified and GA were included.

Appendix 2 provides the optimal choices for the quantities that influence the

efficiency of the algorithm.

Item selection procedure was a within-subject variable, and the other five

independent variables were between-subject variables. Thus, AISP,

AISP-modified, and GA were used to evaluate each data set.

The first dependent variable was the frequency with which an item selection

procedure finds the best partitioning, abbreviated best partitioning and defined

as follows. For a simulated data set, the partitioning vf that produced the

highest O(vf ) value out of the three values obtained for each of the item

selection procedures is the best partitioning. This need not be the global

maximum. For each data set we recorded for each item selection procedure

whether it resulted in the best partitioning (Y = 1) or not (Y = 0).

AISP-modified and GA by definition produce Mokken scales but AISP may fail

because after completion of the procedure Hj < c for one or more items, thus

violating the second criterion for inclusion in a scale. Following Mokken (1971,

p. 193), we removed such items “by hand” so that partitionings resulting from

AISP also constituted Mokken scales.

We used best partitioning (i.e., variable Y ) in a logistic regression on the
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design factors. Effect sizes on best partitioning per procedure were expressed

by a transformation (Tabachnick & Fidell, 2007, p. 463) of an odds ratio into

Cohen’s (1988, p. 281) η2, using

η2 =
[ln(odds ratio)/1.81]2

[ln(odds ratio)/1.81]2 + 4
.

For categorical predictor variables this is a useful transformation for interpreting

the effect size of logistic regression coefficients. Guidelines for interpretation are

(Cohen, 1988, pp. 284-288): η2 < 0.01 is a negligible effect; 0.01 ≤ η2 < 0.06 a

small effect; 0.06 ≤ η2 < 0.14 a medium effect; and 0.14 ≥ η2 a large effect.

The second dependent variable quantifies whether GA outperforms AISP

(Y = 1) or not (Y = 0) with respect to finding the true dimensionality. True

dimensionality meant either all items are in one scale (ρ = 1) or the first half of

the items is in one scale and the second half in the other scale (ρ < 1). This

variable was operationalized using MIN (Van der Ark & Sijtsma, 2005), which

expresses the degree to which the item selection procedure misrepresented the

true dimensionality. The MIN value counted the number of items incorrectly

assigned, either to the wrong scale or no scale at all. For each data set, we

recorded whether the MIN value of GA was smaller than the MIN value of

AISP (Y = 1) or not (Y = 0). We used Y in a logistic regression on the design

factors. The same measure of effect size was used as for the first dependent

variable.

2.4.2 Results

The results for ρ = 0.35 and ρ = 0.7 were similar to the results for ρ = 0. Results

for ρ = 0.35 and ρ = 0.7 were included in the statistical analyses but not tabulated

to prevent tables from becoming very large. Table 2.2 shows for all conditions the

frequency that AISP, AISP-modified, and GA found the best partitioning. GA

always performed at least as well as AISP and AISP-modified, in particular when

α = 1 and α = 1.25, and in many cells differences are large. For α = 1.5, AISP,

AISP-modified, and GA almost always produced a partitioning with the same

objective function value, thus performing equally well. Only for 243 out of 14, 400

data sets (i.e., 1.7%) did AISP and AISP-modified find different partitionings.

Because their results were so similar, we report only logistic regression results for
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AISP. GA almost always found the best partitioning; hence, logistic regression

did not yield interesting results.

Logistic Regression Effects on Best Partitioning

For AISP, Table 2.3 shows main effects and important two-way interaction effects

on best partitioning. Logistic regression produced the effects for the conditions

with α = 1 and α = 1.25. A forward selection procedure (Miller, 2002, pp. 39-42)

was used to add possible main and interaction effects. The Hosmer-Lemeshow

(Hosmer & Lemeshow, 1989) statistic showed that the resulting logistic regression

model fitted acceptably given the large sample size (χ2 = 16.136, df = 8, p = .04).

All effects were significant, and varied from small to large. Only the medium and

large effects are discussed.

As concerns main effects, the probability of finding the best partitioning

decreased as the correlation between the latent traits increased; for

unidimensional data (ρ = 1) the effect was medium (η2 = 0.158). The

probability of finding the best partitioning was larger for polytomous items than

dichotomous items (η2 = 0.245), and decreased as test length increased

(η2 = 0.272 for J = 20 and η2 = 0.604 for J = 40). Four 2-way interactions

involved item discrimination. As α increased from 1 to 1.25, the main effects of

item format (η2 = 0.135), test length (η2 = 0.069 for J = 20 and η2 = 0.351 for

J = 40), range of δ (η2 = 0.080), and correlation (ρ = 1; η2 = 0.092) were

weaker.

Logistic Regression Effects on Misrepresentation of True

Dimensionality

Table 2.4 shows the average MIN value over 100 replications in each design cell.

When interpreting the entries, it is most important to realize again that all three

methods counter-balance finding unidimensional scales with selecting items for

which Hj ≥ c. Hence, for lower bound c = 0.3, item discrimination αj = 1

produces many wrong item assignments (first, second, and third panels), whereas

for αj = 1.5 assignment is almost flawless (seventh, eighth, and ninth panels).

If c were lowered, thus accepting lower item quality, all table entries would go

down, and if c were raised all entries would go up. Thus, Table 2.4 shows (1) that
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Table 2.2: Number of Replications Out of 100 in Which the Best Partitioning

was Found in Each of 216 Design Cells (AISP-m Stands for AISP-modified).

Unidimensional Two dimensional

α1 J m+ 1 Range of δ AISP AISP-m GA AISP AISP-m GA

1 10 2 [-1.5,1.5] 54 55 99 82 82 99

[-3,3] 46 46 86 70 72 84

10 5 [-1.5,1.5] 86 86 99 100 100 99

[-3,3] 80 80 98 96 96 100

20 2 [-1.5,1.5] 17 19 100 43 43 98

[-3,3] 8 8 98 26 27 86

20 5 [-1.5,1.5] 66 66 99 86 86 99

[-3,3] 40 38 98 61 62 99

40 2 [-1.5,1.5] 2 2 98 3 3 98

[-3,3] 0 0 100 1 1 99

40 5 [-1.5,1.5] 15 17 99 44 45 100

[-3,3] 4 6 98 18 18 100

1.25 10 2 [-1.5,1.5] 71 73 100 83 83 100

[-3,3] 76 79 97 85 85 93

10 5 [-1.5,1.5] 86 86 100 87 87 99

[-3,3] 85 85 100 90 90 100

20 2 [-1.5,1.5] 52 53 99 59 62 98

[-3,3] 58 61 93 48 49 93

20 5 [-1.5,1.5] 65 67 100 69 71 99

[-3,3] 75 75 99 81 84 97

40 2 [-1.5,1.5] 40 41 96 38 41 97

[-3,3] 43 44 90 46 49 86

40 5 [-1.5,1.5] 45 47 100 56 58 100

[-3,3] 57 60 99 64 70 98

1.5 10 2 [-1.5,1.5] 99 99 100 99 99 100

[-3,3] 94 96 98 96 96 98

10 5 [-1.5,1.5] 100 100 100 100 100 100

[-3,3] 100 100 100 100 100 100

20 2 [-1.5,1.5] 100 100 100 100 100 100

[-3,3] 95 96 99 98 99 99

20 5 [-1.5,1.5] 100 100 100 100 100 100

[-3,3] 100 100 100 100 100 100

40 2 [-1.5,1.5] 100 100 100 100 100 100

[-3,3] 82 82 100 86 91 99

40 5 [-1.5,1.5] 100 100 100 100 100 100

[-3,3] 100 100 100 100 100 100
1 α = average value of discrimination parameters.
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Table 2.3: Effects on Number of Replications in Which AISP Found Best

Partitioning.

Effect1 β SE η2

Main effects

Intercept 1.909

Discrimination -0.465 0.177 0.016

Test length

- J = 20 -2.214 0.155 0.272

- J = 40 -4.467 0.180 0.604

Item format 2.063 0.130 0.245

Range of δ -1.060 0.161 0.079

Correlation

- ρ = 0.35 -0.307 0.220 0.007

- ρ = 0.7 -0.585 0.216 0.025

- ρ = 1 -1.568 0.210 0.158

Interaction effects

Discr. × Test length

- J = 20 0.983 0.132 0.069

- J = 40 2.660 0.160 0.351

Discr. × Item format -1.432 0.133 0.135

Discr. × Range of δ 1.070 0.216 0.080

Discr. × Correlation

- ρ = 0.35 0.169 0.207 0.002

- ρ = 0.7 -0.310 0.208 0.007

- ρ = 1 1.154 0.206 0.092

All effects were significant; p < 0.001.
1 Reference categories were α = 1, J = 10, m = 1, range of δ = [−1.5, 1.5], and ρ = 0.

indeed the methods react as predicted to the design features but also (2) which

method obtains the best results with respect to finding true dimensionality. The

results are the following.

AISP and AISP-modified often resulted in the same partitioning. When the

methods did not result in the same partitioning, AISP represented true

dimensionality better than AISP-modified. In general, the partitioning GA

obtained represented the true dimensionality best.

We performed a logistic regression to model the probability of finding a



25

Table 2.4: Average MIN values over 100 Replications in Each of 216 Design

Cells (AISP-m stands for AISP-modified).

Unidimensional Two dimensional

α1 J m+ 1 Range of δ AISP AISP-m GA AISP AISP-m GA

1 10 2 [-1.5,1.5] 7.04 7.10 6.86 6.17 6.18 6.13

[-3,3] 6.35 6.45 6.02 5.10 5.17 4.98

10 5 [-1.5,1.5] 7.94 7.93 7.89 7.26 7.26 7.26

[-3,3] 7.42 7.44 7.35 6.68 6.68 6.65

20 2 [-1.5,1.5] 16.10 16.21 15.52 14.73 14.76 14.30

[-3,3] 13.89 14.17 12.86 12.52 12.64 11.74

20 5 [-1.5,1.5] 17.35 17.35 17.09 16.02 16.01 15.98

[-3,3] 15.77 15.83 15.25 14.83 14.85 14.62

40 2 [-1.5,1.5] 33.80 33.91 32.34 31.85 31.98 30.39

[-3,3] 29.67 30.01 27.93 27.99 28.45 26.03

40 5 [-1.5,1.5] 35.69 35.70 35.00 34.27 34.28 33.89

[-3,3] 33.27 33.27 32.07 32.06 32.13 31.17

1.25 10 2 [-1.5,1.5] 2.40 2.54 2.33 2.71 2.72 2.55

[-3,3] 1.68 1.89 1.70 2.08 2.72 2.03

10 5 [-1.5,1.5] 2.24 2.28 2.15 2.10 2.12 2.05

[-3,3] 1.10 1.18 1.13 1.53 1.62 1.50

20 2 [-1.5,1.5] 4.47 4.60 4.28 4.53 4.66 4.22

[-3,3] 3.04 3.34 3.01 3.65 4.04 3.54

20 5 [-1.5,1.5] 3.86 3.93 3.82 4.42 4.50 4.27

[-3,3] 1.88 2.03 1.93 2.24 2.38 2.28

40 2 [-1.5,1.5] 8.08 8.21 7.95 8.67 8.88 8.40

[-3,3] 6.28 6.67 6.32 6.21 6.72 6.29

40 5 [-1.5,1.5] 8.23 8.36 8.20 7.35 7.49 7.39

[-3,3] 3.94 4.05 3.93 3.91 4.18 4.03

1.5 10 2 [-1.5,1.5] 0.07 0.07 0.07 0.21 0.21 0.21

[-3,3] 0.46 0.48 0.42 0.72 0.75 0.69

10 5 [-1.5,1.5] 0 0 0 0 0 0

[-3,3] 0.01 0.01 0.01 0.01 0.01 0.01

20 2 [-1.5,1.5] 0.02 0.02 0.02 0.05 0.05 0.05

[-3,3] 0.31 0.36 0.33 0.64 0.71 0.71

20 5 [-1.5,1.5] 0 0 0 0 0 0

[-3,3] 0 0 0 0 0 0

40 2 [-1.5,1.5] 0.02 0.02 0.02 0.07 0.07 0.07

[-3,3] 0.92 0.98 0.80 1.44 1.25 1.09

40 5 [-1.5,1.5] 0.01 0.01 0.01 0.01 0.01 0.01

[-3,3] 0.01 0.01 0.01 0.01 0.01 0.01
1 α = average value of discrimination parameters.
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Table 2.5: Effect of Design Factors on GA Representing the True Dimensionality

Better Than AISP (Score 1) or Otherwise (Score 0).

Effect1 β SE η2

Main effects

Intercept -3.200

Discrimination 0.707 0.185 0.026

Test length

- J = 20 1.909 0.176 0.218

- J = 40 3.446 0.177 0.476

Item format -1.629 0.121 0.168

Range of δ 0.871 0.116 0.055

Correlation

- ρ = 0.35 0.619 0.228 0.028

- ρ = 0.7 1.012 0.217 0.072

- ρ = 1 1.499 0.219 0.146

Interaction effects

Discr. × Test length

- J = 20 -1.120 0.151 0.087

- J = 40 -2.759 0.156 0.367

Discr. × Range of δ -1.132 0.111 0.089

All effects were significant; p < 0.001.
1 Reference categories were α = 1, J = 10, m = 1, range of δ = [−1.5, 1.5], and ρ = 0.

partitioning using GA that better represented the true dimensionality than the

partitioning found by AISP. Because GA and AISP performed equally well for

α = 1.5, we only did the regression analyses for α = 1 and α = 1.25. Table 2.5

shows the logistic regression main effects and important 2-way interaction

effects on whether GA produced a smaller MIN value than AISP (i.e., Y = 1

vs. Y = 0) for α = 1 and α = 1.25. A forward selection procedure (Miller, 2002,

pp. 39-42) was used to add possible main and interaction effects. However, the

Hosmer-Lemeshow statistic showed that the logistic regression model did not fit

well (χ2 = 25.620, df = 8, p = .001). All effects were significant and varied from

small to large. Only the medium and large effects are discussed.

Three large and medium main effects were found. The probability of Y = 1

was greater for dichotomous items than polytomous items (η2 = 0.168), and
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increased as correlation (η2 = 0.072 for ρ = 0.7; η2 = 0.146 for ρ = 1) and test

length (η2 = 0.218 for J = 20; η2 = 0.476 for J = 40) increased. Two interaction

effect involved item discrimination. As α increased from 1 to 1.25, the main

effect of test length decreased (η2 = 0.087 and η2 = 0.367, respectively) and the

probability of Y = 1 decreased for range of δ (η2 = 0.089).

2.5 Real Data Example

To study the partitionings produced by AISP and GA (c = 0.3), we used data

433 respondents provided who answered the first ten items of the Dutch

translation of the Adjective Checklist (Gough & Heilbrun, 1980). The ten

items 2.6 measure the trait communality. Communality may be interpreted as a

response style rather than a personality trait. The scale consists of items that

are either extremely popular or extremely unpopular. For example, the item

“cruel” is extremely unpopular as a self-descriptive adjective. The unpopular

items (indicated by an asterisk) were reversely coded. Respondents that have a

high score on communality are particularly good at giving responses that are

commonly accepted. This phenomenon is called satisficing (Krosnik, 1991).

Each item consisted of an adjective, and respondents used five ordered answer

categories to express the degree to which the adjective applied to them.

Table 2.6 shows that AISP produced two 4-item scales, whereas GA found

one 7-item scale. Both AISP and GA did not select the items unintelligent*

and unscrupulous*. The main difference was that AISP selected the adjective

honest as the third item in the first 4-item scale, whereas GA left this item

out of the longer 7-item scale. The detailed results for the first scale are that

AISP first selected dependable and reliable (Hdependable,reliable = 0.72), then honest

(Hhonest = 0.54), and last deceitful (Hdeceitful* = 0.31). The example shows neatly

that AISP selected the third item due to its highest Hj value with respect to the

start pair but the GA result shows that this locally optimal decision leads to a

suboptimal final result.



28

Table 2.6: AISP and GA Results for Communality Items from Adjective Check

List.

Communality AISP GA

reliable 1 1

honest 1 0

unscrupulous∗ 0 0

deceitful∗ 1 1

unintelligent∗ 0 0

obnoxious∗ 2 1

thankless∗ 2 1

unfriendly∗ 2 1

dependable 1 1

cruel∗ 2 1
∗ = reversely coded items

2.6 Discussion

GA found the best partitioning more often than AISP and AISP-modified. AISP

and AISP-modified usually found the same partitionings. GA and AISP found

the true dimensionality of the data more often than AISP-modified, and GA beat

AISP but not always. In general, GA seems to be the best method for automated

item selection in the context of Mokken scale analysis. Table 2.7 provides an

overview of the advantages and the disadvantages of AISP, AISP-modified, and

GA. Evaluation criteria are ordered by importance given Mokken’s objectives

of item selection. An option could be to start GA with the AISP solution but

some trials showed that this did not improve results compared to starting with a

random partitioning of the item set.

First, AISP-modified and GA were developed such that a violation of

Criterion 2 (Hj ≥ c > 0) is impossible. Second, GA finds the global maximum

more easily than AISP and AISP-modified because GA is a stochastic

algorithm, which moves the population away from local optima using convenient

choices for the quantities that influence the efficiency of the algorithm; see

Appendix 2. In contrast to GA, AISP and AISP-modified are deterministic,

always producing the same partitioning in a particular data set, making it
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Table 2.7: Evaluation Criteria for AISP, AISP-modified, and GA.

Item Selection Procedure

AISP AISP-modified GA

All items satisfy

the Mokken scale - + +

criteria

Procedure is able to

find the global maximum - - +

for any data set

The item selection

procedure is best - - +

capable of finding

the true dimensionality

Insight in the

item selection + + -

process

Reasonable

computation time + + -

impossible to fix selection errors. In the simulation study, we found effects of

item format, item discrimination, test length, range of δ and correlation

between θs on the probability that AISP found a local maximum. These effects

are probably due to several Hjs that were close to c, which caused AISP to

more likely find a local maximum. Our results show that GA outperforms AISP

especially when the item-scalability coefficients Hj are close to the lower bound

c. This result has an important consequence. Hemker, Sijtsma, and Molenaar

(1995; also see Sijtsma and Molenaar, 2002, pp. 80-82) advocated investigating

the dimensionality structure of an item set by conducting Mokken scale analysis

for several increasing values of c; for example c = 0, 0.1, 0.2, 0.3, and 0.4. When

following this method, one of the investigated lower bounds is almost surely

close to the values of some of the item-scalability coefficients Hj and this is

likely to produce a local maximum. Hence, for the Hemker et al. (1995)

method, GA is always preferred over AISP.

Third, GA more often found the true dimensionality than AISP and

AISP-modified. Thus, GA found better partitionings with respect to the
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objective function and these partitionings better represented the true

dimensionality. Fourth, because AISP and AISP-modified are deterministic,

they provide exact insight in the item selection process. The genetic algorithm

generates a huge number of random processes, which do not provide intelligible

information on item quality. Sometimes, AISP finds a better partitioning than

GA. We recommend to include both AISP and GA in the same software

package (see Van der Ark, 2007), use the same objective function for both, and

adopt the solution that generated the highest objective function value. Next, for

each Mokken scale resulting from the best partitioning algorithm the scalability

coefficients and model assumptions should be investigated. Fifth, for the default

setting for 40 items GA takes approximately 15 minutes to complete.

Computation time increases as test length increases but computers are rapidly

becoming faster, so that this problem may be obsolete before long.

Appendix 1

Suppose that two partitionings, v1 and v2, have the same number of items in the

first k − 1 scales; that is, J1i = J2i for i = 1, . . . , k − 1. Henceforth, i is used as

scale index. Further, suppose that v1 has a items more in scale k than v2; that

is, J1k = J2k + a. Finally, suppose that nothing is known about the remaining

scales k + 1, k + 2, .... The function values of v1 and v2 are

O(v1) =
k−1∑
i=1

J−iJ1i + J−kJ1k +

K1∑
i=k+1

J−iJ1i (2a)

and

O(v2) =
k−1∑
i=1

J−iJ1i + J−k(J1k − a) +

K2∑
i=k+1

J−iJ2i. (2b)

Under these conditions, the smallest possible value of O(v1) should always exceed

the largest possible value of O(v2); this is what we prove next.

The sums on the right-hand sides in equations 2a and 2b with respect to the

first k−1 scales are equal and are replaced by symbol Ak−1. The minimum value

of O(v1) is obtained if there are no scalable items left after scale k; that is, if∑K1

i=k+1 J
−iJ1i = 0. The maximum value of O(v2) is obtained for a = 1; that

is, a minimal difference is obtained between v1 and v2 in the kth scale; and if
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all items that remain after scale k have been selected in the (k + 1)st scale (i.e.,∑K2

i=k+1 J2i), which then receives the greatest possible weight, J−(k+1). It may

be noted that this maximum value of O(v2) is an upper bound, because scale

k + 1 cannot contain more items than scale k (i.e., given a = 1, we have that

J2(k+1) ≤ J2k = J1k − 1); so, no more than J1k − 1 items can in fact receive

the greatest weight, J−(k+1). This reduces equations 2a and 2b for the minimum

value of O(v1) and the maximum value of O(v2) to

O(v1) = Ak−1 + J−kJ1k (3a)

and

O(v2) ≤ Ak−1 + J−k(J1k − 1) + J−(k+1)

K2∑
i=k+1

J2i. (3b)

It follows from equations 3a and 3b that

O(v1)−O(v2) ≥ J−kJ1k −

[
J−k(J1k − 1) + J−(k+1)

K2∑
i=k+1

J2i

]

= J−k − J−(k+1)

K2∑
i=k+1

J2i. (4)

The difference between O(v1) and O(v2) is positive if

J−k > J−(k+1)

K2∑
i=k+1

J2i. (5)

The right-hand side and the left-hand side of Equation 5 are equal if
K2∑

i=k+1

J2i = J .

Because some items have already been selected in scale k, it is always true that
K2∑

i=k+1

J2i < J and, therefore, Equation 5 is always true. This result completes the

proof.

Appendix 2

The first iteration entails selection, crossover, and mutation of P0, which yields

population P1 = v1(1), ...,vP (1). In iteration t, population
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Pt−1 = v1(t−1), ...,vP (t−1) is changed into population Pt = v1(t), ...,vP (t). Across

the iterations, the partitioning yielding the largest value of the objective

function is saved and used as the best partitioning. There is no guarantee that a

genetic algorithm finds the global optimum but an increase in T and P

produces an increase in the number of partitionings being evaluated and hence a

higher probability of finding the global maximum.

The details of GA are the following. We discuss the steps in iteration 0 (i.e.,

steps 1 and 2) and the steps taken in each of the next iterations (i.e., steps 3

through 8). We also discuss the specific configuration of GA that we use in

the present study. Table 2.8 provides an example of the process. The initial

population and the first iteration of GA are described in Table 2.8 using P = 4,

J = 6, and c = 0.3. Let Kmax denote the maximum number of scales that

can be selected from J items, πcross the probability of a partitioning from the

population to be selected for a crossover, and πmutate the probability that an item

in a partitioning in the population mutates.

Step 1: Initial population. Integers are randomly drawn from a discrete

uniform distribution in the interval [1, Kmax] and assigned to each item j of

each partitioning in the initial population. Table 2.8 (part 1a) shows a possible

population consisting of random partitionings.

Step 2: Reparation and evaluation of the initial population. If the partitionings

in the initial population do not satisfy the definition of a scale, the partitionings

are repaired. In this reparation process, items that violate Criterion 2 (Hj ≥ c)

are removed. If the definition of a scale still is not satisfied, items that violate

Criterion 1 (ρij > 0) are removed. Finally, for each partitioning in the initial

population, P0, objective function value O(vp(0)) is computed. Table 2.8 (part

1b) shows an example of an initial population.

Step 3: Selecting partitionings. From population Pt−1, P partitionings are

randomly drawn with replacement from a multinomial distribution with

probabilities

πp(t−1) =
O(vp(t−1))∑P
p=1 O(vp(t−1))

, p = 1, ..., P.

For t = 1, Table 2.8 (part 1b, last column) shows the probabilities of being

selected from population P0 into population P1. In general, the partitionings

that are selected for the next population are denoted vsp(t) (e.g., Table 2.8, part
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Table 2.8: Example of GA. Numbers Having Changed Relative to the Former

Subtable are in Bold Face.

Part 1: Initial population

1a: Random partitionings 1b: Repaired partitionings

Partitioning Item number Partitioning Item number O(vp(0)) πp(0)
1 2 3 4 5 6 1 2 3 4 5 6

1 1 1 1 3 2 2 v1(0) 1 1 1 0 2 2 0.556 0.311

2 3 2 2 1 3 1 v2(0) 0 1 1 0 0 0 0.333 0.186

3 2 2 1 1 3 3 v3(0) 2 2 1 1 3 3 0.398 0.223

4 2 3 2 2 2 2 v4(0) 1 0 1 1 0 0 0.5 0.280

Part 2: An example of a possible first iteration

2a: Selected partitionings 2b: Crossover of partitionings

Partitioning Item number Partitioning Item number

1 2 3 4 5 6 1 2 3 4 5 6

vs
1(1)

1 0 1 1 0 0 vc
1(1)

1 0 1 1 0 0

vs
2(1)

1 1 1 0 2 2 vc
2(1)

1 2 1 1 3 2

vs
3(1)

2 2 1 1 3 3 vc
3(1)

2 1 1 0 2 3

vs
4(1)

1 1 1 0 2 2 vc
4(1)

1 1 1 0 2 2

2c: Mutation of partitionings 2d: Repaired partitionings

Partitioning Item number Partitioning Item number O(vp(1)) πp(1)
1 2 3 4 5 6 1 2 3 4 5 6

vm
1(1)

2 0 1 1 0 0 v1(1) 0 0 1 1 0 0 0.333 0.187

vm
2(1)

1 2 3 1 3 2 v2(1) 1 0 2 1 2 0 0.389 0.219

vm
3(1)

2 1 1 0 2 3 v3(1) 0 1 1 0 0 0 0.333 0.187

vm
4(1)

1 1 1 1 2 2 v4(1) 1 1 1 1 2 2 0.722 0.406
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2a).

Step 4: Crossovers. The exchange of a subvector of partitioning vsp(t) with

the corresponding subvector of partitioning vsq(t) is called a crossover. Each of

the P partitionings vsp(t) has a probability πcross of being selected for a crossover

with another partitioning. The partitionings that are selected for a crossover are

divided into pairs (vsp(t),v
s
q(t)). For each pair of partitionings (vsp(t),v

s
q(t)), two

random numbers a and b are drawn from a discrete uniform distribution in the

interval [1, J ]. The starting point of the subvector of vsp(t) is denoted by a and

the end point by b. This subvector of vsp(t) is then exchanged with the

corresponding subvector of vsq(t). If a < b, (vsp(t)a, ..., v
s
p(t)b) is exchanged with

(vsq(t)a, ..., v
s
q(t)b); if a = b, vsp(t)a is exchanged with vsq(t)a; and if a > b,

(vsp(t)1, ..., v
s
p(t)b) and (vsp(t)a, ..., v

s
p(t)J) are exchanged with (vsq(t)1, ..., v

s
q(t)b) and

(vsq(t)a, ..., v
s
q(t)J), respectively. After crossover, the partitionings are denoted

vcp(t). Table 2.8 (part 2b) shows examples of partitionings after crossover, where

vs2(1) and vs3(1) were selected, and a = 2 and b = 5.

Step 5: Mutations. Mutation entails the random assignment of an item to

another scale. Because the correct number of scales is unknown a priori, in this

step a random process determines whether an additional scale Kf + 1 is formed

in addition to the Kf existing scales. The item is assigned to either one of the

Kf existing scales or the new scale Kf + 1. Table 2.8 (part 2c) shows examples

of mutations.

Step 6: Reparation and evaluation of population t. Partitionings in

population t that do not satisfy the definition of a scale are repaired. Items

violating Criterion 2 are removed. If the definition of a scale is still dissatisfied,

items that violate Criterion 1 are removed. Finally, for each partitioning in Pt,

objective function value O(vp(t)) is computed. Table 2.8 (part 2d) shows an

example of the population after the first iteration.

Step 7: Storage of the best partitioning. Let vbest(t) denote the best partitioning

found in iteration t, and let vbest denote the best partitioning found in the first

t − 1 iterations. At the end of iteration t, if O(vbest(t) ) > O(vbest), then the best

partitioning of Pt is also the best partitioning of all former populations, and it

is stored as the new best partitioning; that is, vbest becomes vbest(t) . If O(vbest(t) ) ≤
O(vbest), then vbest remains unchanged. In the latter case, it is ascertained that

vbest is contained in Pt by replacing the worst partitioning of Pt with respect to
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O(vp(t)) by vbest. This procedure, which always saves the best partitioning from

the population, provides an example of an elitist model (Michalewicz, 1994, p.

61).

Step 8: Convergence of GA. GA stops when O(vbest) has not changed for Q

iterations. The literature does not provide a value for Q; hence, the researcher

must specify this value.

We did a pilot study to find convenient values of P , πcross, πmutate, and Q for

which GA most often found the global maximum. We found that P = 20 may

be considered to represent a sufficiently large population size for GA to perform

well. This was the value used in this study. The pilot study also showed that for

P = 20, the combination of πcross = .5 and πmutate = .1 resulted most often in the

global maximum. Hence, these values were used in this study. The choice of Q

was less straightforward. The pilot study showed that for J = 10, Q = 10, 000 is

a reasonable choice, and that for J = 20 and J = 40, Q should at least be equal

to 100,000 and 1,000,000, respectively. Hence, if J doubles, Q increases with a

factor equal to 10. These results were used in the simulation study reported in

this article.
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Chapter 3

Multi-method analysis of the

internal structure of the Type D

Scale-14 (DS14)∗†

Abstract

The Type D Scale-14 (DS14) measures distressed (also, Type D) personality by
assessing the medium-level trait negative affectivity that encompasses the low-level
traits dysphoria, anxiety, and irritability, and the medium-level trait social inhibition
that encompasses low-level traits social discomfort, reticence, and lack of social poise.
The literature discusses three different structural models of the DS14. The goal of
this study was to investigate which of the three models best describes the internal
structure of the DS14. We used three methods to investigate the internal structure of
the DS14 items using data collected in representative samples from the Dutch general
population (N = 3, 181). The methods were exploratory factor analysis, confirmatory
factor analysis, and Mokken scale analysis. Exploratory factor analysis suggested a
two-factor structure without evidence of the low-level factors, and the other two
methods showed evidence of a three-level structure including the low-level factors. A
two-factor model with correlated errors for items defining low-level traits adequately
describes the data. The results support the three-level hierarchical model as a
conceptual model for Type D personality, and support the interpretation of DS14
scores on item subsets representing medium-level traits and low-level traits.

∗This chapter has been published as: Straat, J. H., Van der Ark, L. A., & Sijtsma, K.

(2012). Multi-method analysis of the internal structure of the Type D Scale-14 (DS14). Journal

of Psychosomatic Research, 72, 258-265
†Acknowledgements: We thank Wobbe Zijlstra for making available an SPSS version of the

DS14 data and Johan Denollet for critical comments on a previous draft of this chapter.
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3.1 Introduction

Distressed personality (Denollet, 2000; Denollet, Schiffer, & Spek, 2010; Kupper

& Denollet, 2007), Type D for short, is a psychological risk factor for morbidity

and mortality in patients suffering from cardiovascular disease (De Jonge et al.,

2007; Kupper & Denollet, 2007; O’Dell, Masters, Spielmans, & Maisto, 2011).

Type D is a hierarchically structured (Reise, Waller, & Comrey, 2000) personality

construct. The general Type D trait represents the high level of the hierarchy

(Figure 3.1). At the medium level, two traits drive behavior: Negative affectivity

(NA) involves the experience of negative emotions across time and situations,

and social inhibition (SI) the suppression of emotions in social interaction. The

inhibition to express negative emotions in social interactions—that is, high levels

of both NA and SI—defines Type D. At the low level of the hierarchy, feelings

of dysphoria, anxious apprehension, and irritability drive NA, and discomfort

in social situations, reticence, and lack of social poise drive SI (Denollet 2005;

Emons, Meijer, & Denollet, 2007).

Type D is much debated. Ferguson et al. (2012; also, Coyne et al. 2011;

Grande et al. 2011) concluded that distressed personality more likely is a

continuum reflecting degree than the more widely accepted categorization of

individuals into Type D or non Type-D. Their position supports the three-level

model as a theoretical candidate for the explanation of distressed personality.

We compared the three-level model with a two-level model excluding the

subtraits level and another two-level model allowing correlated errors to obtain

better model fit.

Other controversies with respect to Type D are the following. Coyne et al.

(2011) and Grande et al.(2011) did not find support that cardiac patients with

Type D had a greater mortality risk, thus contradicting previous research

(Aquarius et al. 2009; Schiffer, Smith, Pedersen, Widdershoven, & Denollet,

2011). Dannemann et al. (2010) concluded that Type D classification is

unstable among cardiac patients before and after surgery. Williams, Curren,

and Bruce (2011) concluded that Type D and alexithymia are correlated but

separate traits but Grande, Glaesmer, and Roth (2010) found that the SI scale

does not distinguish shyness and introversion. Hence, there are doubts about

SI’s uniqueness.
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Type D

Negative

affectivity

Social

inhibition

Dysphoria
Anxious

apprehension
Irritability Reticence

Discomfort

in social

situations

Lack of

social poise

Figure 3.1: Hierarchy of the Type D construct.

The item structure of the Type D Scale-14 (DS14; Denollet et al, 2010) reflects

the theoretical three-level hierarchy, and uses 14 items to assess Type D, NA (7

items) and SI (7 items), and the NA and SI subtrait triplets (Table 3.1). Different

item subsets from the two seven-item sets assess the two low-level subtrait triplets.

Each item statement is assessed on five ordered categories, scored 0 through 4.

The NA-scale and the SI-scale yield two total scores, and if both scores are at least

10 points, the patient is diagnosed Type D (Emons et al., 2007). Thus, following

the hypothesis that inhibition to express negative emotions in social interaction

defines Type D, patients scoring in excess of particular cutoffs on both scales

are diagnosed Type D. The dichotomy into Type D and non Type-D serves the

practical purpose to determine a diagnosis.

Confirmatory factor analysis (CFA) of DS14 data revealed three different

internal item structures, two of which suggest doubt about the correctness of

the theoretical three-level hierarchy; see Figure 3.2. The “Two-factor Model”

represents a two-level hierarchy with NA and SI factors that distinguish the
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NA-scale and the SI-scale, but ignores the theoretical subtrait triplet structure

(Grande, Romppel, Glaesmer, Petrowski, & Herrmann-Lingen, 2010; Lim et al.,

2011; Spindler, Kruse, Zwisler, & Pedersen, 2009; Yu, Thompson, Yu, Pedersen

& Denollet, 2010). The model does not explicitly incorporate a higher-order

factor for modeling Type D but allows the two factors to correlate, thus

suggesting an explanatory higher-order factor. The magnitude of the correlation

between the factors suggests the degree to which a higher-order factor is

plausible. The “Adapted Two-Factor Model” is based on modification indices of

the Grande, Romppel, et al. (2010) Two-Factor Model, allowing cross-loadings

and correlated error terms. The “Subtraits Model” (Svansdottir et al., 2011;

Zohar, Denollet, Lev Ari, & Cloninger, 2011) represents the three-level

hierarchy by means of a factor structure with positively correlated error terms

that model the low-level subtraits and positively correlated factor scores that

model the high-level Type D. The question is whether a careful analysis of DS14

data can provide more conclusive evidence of which theoretical model for the

Type D construct is correct.

The goal of this study was to use three psychometric methods for assessing

internal structure to compare the three factorial models for the DS14. The three

methods provide different statistical perspectives. The methods are exploratory

factor analysis (EFA), CFA and Mokken scale analysis (MSA; Mokken, 1971;

Sijtsma & Molenaar, 2002); see Emons, Sijtsma, and Pedersen (2012) for a similar

internal-structure study of the Hospital Anxiety and Depression Scale (HADS;

Zigmond & Snaith, 1983).

The outline of this article is as follows. First, we discuss research that used

EFA and CFA to study the internal structure of the DS14. Second, we discuss

MSA and how MSA may lead to results different from EFA and CFA. Third, we

discuss the internal structure of the DS14 suggested by EFA, CFA, and MSA.

Fourth, we discuss consequences of the results for the Type D structure and the

practical use of the DS14.

3.2 Factor Analysis Results for Type D

Traditionally, EFA was the common method for assessing the internal structure

of the DS14 in various populations (Denollet, 2005; Bergvik, Sørlie, Wynn, &
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Model I: The Two-Factor Model

NA SI

N1 N2 N3 N4 N5 N6 N7 S1 S2 S3 S4 S5 S6 S7

eN1 eN2 eN3 eN4 eN5 eN6 eN7 eS1 eS2 eS3 eS4 eS5 eS6 eS7

Model II: The Adapted Two-Factor Model

NA SI

N1 N2 N3 N4 N5 N6 N7 S1 S2 S3 S4 S5 S6 S7

eN1 eN2 eN3 eN4 eN5 eN6 eN7 eS1 eS2 eS3 eS4 eS5 eS6 eS7

Model III: The Subtraits Model

NA SI

N1 N2 N3 N4 N5 N6 N7 S1 S2 S3 S4 S5 S6 S7

eN1 eN2 eN3 eN4 eN5 eN6 eN7 eS1 eS2 eS3 eS4 eS5 eS6 eS7

Figure 3.2: A graphical representation of the three models investigated with

CFA.
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Sexton, 2010; Hausteiner, Klupsch, Emeny, Baumert, & Ladwig, 2010). Recently,

CFA has become more popular (Grande, Romppel, et al., 2010; Svansdottir et

al., 2011; Zohar et al., 2011). MSA in combination with EFA and CFA was used

to analyze the Addiction Severity Index (Alterman, Cacciola, Habing, & Lynch,

2007), the HADS (Emons et al., 2012), the Minnesota Multiphasic Personality

Inventory (Meijer & Baneke, 2004), and the Self-Concealment Scale (Wismeijer,

Sijtsma, Van Assen, & Vingerhoets, 2008). We discuss studies that used EFA

and CFA to assess the internal structure of the DS14.

3.2.1 Exploratory Factor Analysis

Denollet (2005), Svansdottir et al. (2011), Zohar et al. (2011), Bergvik et al.

(2010), Hausteiner et al. (2010), and Yu, Zhang, and Liu (2008) used EFA to

assess the internal structure of the DS14. EFA extracts the number of factors

and the factor loadings from the data (Bollen, 1989, p. 228). Two rules

determine the number of factors. The first rule equates the number of factors to

the number of eigenvalues exceeding 1 but is vulnerable to chance

capitalization, which leads to overestimation of the number of factors. Horn

(1965) and Reise et al. (2000) proposed parallel analysis to correct for the

overestimation. Parallel analysis compares the eigenvalues with eigenvalues

generated from artificial data sets based on a multivariate normal distribution

with zero correlation between the items, and maintains the eigenvalues that are

“significantly” larger than 1. The second rule selects the eigenvalues to the left

of the elbow in the scree plot (Reise et al., 2000) but decisions may be difficult

if a sharp elbow does not appear.

The six studies concluded that a two-factor structure best described the data.

Denollet (2005) found an interpretable, orthogonal two-factor structure, in which

Item 6 (Table 3.1) had a cross-loading on the NA-scale. In a cardiovascular-

patient group, Yu et al. (2008) found a cross-loading of Item 7 on the SI-scale,

and in a control group they found cross-loadings of items 6, 10, and 14 on the

NA-scale and items 7 and 13 on the SI-scale. Bergvik et al. (2010) found cross-

loadings for items 6, 10, and 11 on the NA-scale but Zohar et al. (2011) and

Hausteiner et al. (2010) did not find cross-loadings. Svansdottir et al. (2011)

obtained an interpretable, oblique two-factor structure without cross-loadings
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larger than 0.30. The improved fit of the factor model after oblique rotation

tentatively suggests that a higher-order factor explains the correlation between

the factors. This is the “Two-Factor Model”.

3.2.2 Confirmatory Factor Analysis

Four studies used CFA to test the DS14 two-factor structure found in previous

EFA analyses. Table 3.2 shows three fit indices used in the four studies; the root

mean square error of approximation (RMSEA), the Tucker-Lewis index [TLI; also

known as non-normed fit index (NNFI)], and the comparative fit index (CFI). A

model fits the data if RMSEA < 0.08, TLI > 0.90, and CFI > 0.90 (Bentler,

1989; Browne & Cudeck, 1993). CFI is an incremental fit index, which compares

the fit of the specified model to a nested baseline model (Hu & Bentler, 1999)

but does not provide information about absolute fit. Except for CFI = 0.98

(Spindler et al., 2009), the other fit indices reported in the four studies produced

similar conclusions. Because the four studies were unclear about the models they

compared, one cannot meaningfully compare the CFI values.

Table 3.2: Fit Indices for the Two-Factor Model Using CFA.

Study RMSEA TLI CFI

Grande, Romppel, et al. (2010) 0.09 0.89 0.91

Lim et al. (2011) 0.08 0.90 0.92

Spindler et al.(2009) 0.08 - 0.98

Yu et al. (2010) 0.08 0.91 0.93

Note: RMSEA is root mean square error of approximation, TLI is Tucker-Lewis

index, and CFI is comparative fit index.

Hu and Bentler (1999) suggested that misspecified factor models are accepted

too easily, and proposed to use the model selection criteria RMSEA < 0.06,

TLI > 0.95, and CFI > 0.95. Grande, Romppel, et al. (2010) used these rules,

but the other three studies used the traditional rules. Grande, Romppel, et al.

(2010) rejected the Two-Factor Model. Using the new rules, Yu et al. (2010) and

Lim et al. (2011) would have found that the fit of the Two-Factor Model was

inadequate, whereas Spindler et al. (2009) might have raised doubts about the

fit of the Two-Factor Model.
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Grande, Romppel, et al. (2010) used modification indices to obtain an

acceptably fitting model. The resulting model (RMSEA = 0.06, TLI = 0.96,

CFI = 0.97) allowed cross-loadings for items 3 and 6 on the NA-factor and for

Item 7 on the SI-factor, and correlations between the error terms of items 1 and

3, items 10 and 11, and items 2 and 5. This is the “Adapted Two-Factor

Model”. Modification indices are often used to obtain a model that fits the

sample data without theoretical justification, thus inducing chance

capitalization (Bollen, 1989, pp. 296 and 304).

Svansdottir et al. (2011) used CFA to investigate the three-level Type D

model. This is the “Subtraits Model”. The authors allowed correlating factors

and correlating error terms of items representing low-level traits. This produced

acceptable fit (RMSEA = 0.06 and CFI = 0.95). Zohar et al. (2011)

investigated the Subtraits Model assuming zero correlation between NA and SI

factors. This two-level model excludes a Type D personality trait, but produced

worse fit (RMSEA = 0.07 and CFI = 0.94).

3.3 Mokken Scale Analysis

MSA evaluates whether a set of items is consistent with the monotone

homogeneity model (Mokken & Lewis, 1982; Sijtsma & Molenaar, 2002; Van

Schuur, 2011) and thus constitutes a scale. A scale consistent with the

monotone homogeneity model allows the ordering of persons by means of their

total scores (Sijtsma & Molenaar, 2002, pp. 22-23). Because the DS14 uses total

scores for the NA and SI scales, it is important to investigate whether the

monotone homogeneity model is consistent with the data so as to justify the use

of total scores.

The monotone homogeneity model is based on three assumptions.

Unidimensionality and local independence together define the total score to

reflect one trait. Within the context of CFA, unidimensionality means that all

items load on the same factor and local independence means that the error

terms are uncorrelated. The monotonicity assumption defines the regression of

the mean item score on the scale score, also known as the latent variable, to be

monotone nondecreasing. The regression is better known as the item response

function (Sijtsma & Molenaar, 2002). Monotonicity can be investigated by
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inspecting whether the regression of the mean score of item j on the total score

on the items except item j is a nondecreasing function (Sijtsma & Molenaar,

2002).

For item j, the item scalability coefficient Hj (Sijtsma & Molenaar, 2002)

reflects the strength of the relationship of the item with the scale score based

on the total score on J − 1 selected items except item j. Under the monotone

homogeneity model, Hj values vary between 0 and 1. Higher Hj values imply

that the item better discriminates low scale scores and high scale scores. MSA

defines a scale consisting of J items as follows: (1) all inter-item correlations

are positive; that is, for items j and k, and correlation ρ, ρjk > 0, for all item

pairs; and (2) for a value c between 0 and 1 chosen by the researcher, all item

scalability coefficients are at least as large as c; that is, Hj ≥ c > 0, for all items.

By default MSA uses c = 0.3 but researchers may choose a different value thus

defining what they consider minimally acceptable discrimination. Additionally, a

total-scalability coefficient H is provided with a guideline for the discrimination

power of the whole scale (Mokken, 1971, p. 185): if 0.3 ≤ H < 0.4, the scale is

weak; if 0.4 ≤ H < 0.5, the scale is moderate; if H ≥ 0.5 the scale is strong; and

if H < 0.3 the items are unscalable.

For MSA, two computationally different item selection methods (Straat, Van

der Ark, & Sijtsma, in press) select as many items for which Hj ≥ c as possible

into the same scale. The automated item selection procedure (AISP; Sijtsma &

Molenaar, 2002, chap. 5) starts with the two best-scalable items and adds items

one by one until no items remain that satisfy the criterion of Hj > c. Items are

chosen such that in each selection step total-scalability coefficient H is maximized.

From items remaining unselected, AISP selects as many as possible into a second

scale, and so on. Finally, items may be left unscalable. Because in each step

one item is selected, AISP considers a limited number of item combinations and

the optimal scale may not be found. The genetic algorithm (GA; Straat et al.,

in press) seeks the optimal scale by smartly finding its way through all possible

item subsets without having to consider each scale separately. AISP and GA may

produce somewhat different scales, especially when items have Hj coefficients

close to c (Straat et al., in press).

One could argue that the choice of lower bound c is arbitrary but running AISP

and GA for different c values neutralizes this criticism. Sijtsma and Molenaar
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(2002, pp. 80-82) recommended investigating the internal structure of an item

set by running AISP for c = 0 and using increments of 0.05 until, say, c = 0.55.

We used GA similarly. Across different AISP and GA analysis, as c increases the

pattern of item clusters found suggests the internal structure of the item set. For

example, if for Type D only the high-level trait and the two medium-level traits

are active, then (a) for low c values, as all items are driven by the Type D trait

they are all selected in one scale; (b) for higher c values, items that are also driven

by the NA trait are selected in one scale and items also driven by SI in another

scale; and (c) for the highest c values AISP and GA break down the NA and SI

scales as the items do not have anything in common anymore that produces even

higher Hjs. If also the low-level traits are active, (a) and (b) produce the same

results but (c) for the highest c values smaller scales are found, each reflecting a

low-level trait.

MSA has two advantages over EFA and CFA (Emons et al., 2012; Wismeijer

et al., 2008). First, MSA requires monotone nondecreasing relationships between

items and the latent variable but EFA and CFA assume linear relationships,

which is more restrictive. Thus, MSA facilitates a better fit to the data. Second,

MSA is explicitly suited for discrete item scores such as the DS14 item scores.

EFA and CFA assume that item scores are continuous and normally distributed

for statistical testing (Bollen, 1989, p. 418) and for determining the number of

factors (Tabachnick & Fidell, 2007, p. 613) but real item scores are discrete and

by definition nonnormal. Several authors (e.g., Bernstein & Teng, 1989; Dolan,

1994; Olsson, 1979) investigated this misfit and concluded that for fewer than

seven ordered item scores factor analysis may produce artifactual factors (so-

called difficulty factors (McDonald & Ahlawat, 1974), biased factor loadings, and

inflated chi-square statistics (Dolan, 1994; Lubke & Muthén, 2004). A possible

solution for these problems is to use polychoric correlations.

3.4 Method

3.4.1 Participants

A local ethics committee at Tilburg University (protocol number: 2006/1101)

approved of this study. The sample consisted of 3,181 participants from the
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Dutch general population. Two gender levels and six age levels (20-29, ..., 60-

69, 70-80) served as stratification criteria, and quota sampling produced twelve

equal-sized groups. Research assistants approached participants personally or by

phone, explained the study’s purpose, handed over an informed consent form and

a questionnaire, and participants returned both in closed envelopes to the research

assistants (October 1, 2006—December 15, 2008). Returned questionnaires were

coded by number for purposes of data collection tracking but were otherwise

anonymous. Two-way imputation (Bernaards & Sijtsma, 2000; Van Ginkel, Van

der Ark, & Sijtsma, 2007) was used to estimate missing item scores (0.39 %).

3.4.2 Analyses

Exploratory Factor Analysis

We used SPSS version 18 for EFA on product-moment correlations and polychoric

correlations. Parallel analysis used 1,000 random data sets to determine the

number of factors. Oblimin rotation was used to obtain an interpretable factor

structure. We interpreted all factor loadings exceeding 0.3 (Tabachnick & Fidell,

2007, p. 649). Factor correlations greater than 0.4 were considered tentative

support for a higher-order factor representing Type D. Cronbach’s alpha was

used to assess reliability.

Confirmatory Factor Analysis

We used AMOS version 19 for CFA on product-moment correlations and

polychoric correlations. The Two-Factor Model, the Adapted Two-Factor

Model, and the Subtraits Model were fitted; see Figure 3.2. Model fit was

evaluated using the χ2-statistic (Bollen, 1989, pp. 263-269) and RMSEA, TLI,

and CFI. For CFI, we compared the fit of the models relative to an

independence model. Factor correlations greater than 0.4 tentatively suggested

a higher-order factor representing Type D.

Mokken Scale Analysis

We used the R package mokken (Van der Ark, 2007) for MSA, including AISP and

GA, and a procedure to investigate manifest monotonicity. To investigate the the
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internal structure of the DS14, AISP and GA were run for c = 0.00, 0.05, . . . 0.80

(maximum c = 0.80 rather than c = 0.55 so as not to miss the hierarchical

data structure). Manifest monotonicity was investigated separately for the NA-

scale and the SI-scale. Local decreases of item response functions were tested for

significance.

3.5 Results

3.5.1 Exploratory Factor Analysis

EFA produced the same internal-structure results for both kinds of correlations;

hence, we report results for product-moment correlations. Figure 3.3 shows a line

connecting squares, which is the scree plot for the real data, and a line connecting

circles, which is the scree plot for the average of the 1,000 random data sets. Two

factors lie above the straight line. Oblimin rotation of the two-factor solution

yielded factors that correlated 0.38. The factor loadings (Table 3.3, EFA heading)

suggested the factors could be interpreted as NA factor (Cronbach’s alpha =

0.86) and SI factor (Cronbach’s alpha = 0.87). Consistent with Svansdottir et al.

(2011), cross-loadings were absent.

3.5.2 Confirmatory Factor Analysis

Again, we report product-moment correlation results. Table 3.3 (CFA columns)

shows the factor structure and the model-fit indices for the three estimated

models, and Table 3.4 shows the correlations between the error terms. The

three model-fit indices suggested that the Two-Factor Model did not fit well.

The Adapted Two-Factor Model and the Subtraits Model showed acceptable fit.

For the latter model the RMSEA was smaller and the TLI and CFI-values were

larger (Table 3.3); hence, the Subtraits Model fitted best. The correlation

between the factors was .51, tentatively suggesting evidence for a higher-order

factor. The Adapted Two-Factor Model was defined by allowing three

cross-loadings and three correlated error terms (Figure 3.2) but only three

modifications improved the model fit. They were the cross-loading of item S1 on

the NA factor (Table 3.3), the correlated error terms between item S4 and item
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Figure 3.3: Results from parallel analysis for determining the number of factors

representing the items of the DS14.

S5, and correlated error terms between item S6 and item S7 (Table 3.4). The

other three modifications affected the model-fit indices (not tabulated) only

marginally (changes were smaller than 0.005).

The Subtraits Model incorporated correlated error terms between items that

together defined a low-level trait (Table 3.4). Three correlations (between items

N1 and N2, N2 and N3, and S1 and S2) were so small that fixing them at zero left

the values of the fit indices unchanged. Furthermore, the correlations (< 0.20)

between the error terms of items S1 and S3, and S2 and S3 were too small to

be meaningful. The remaining five error terms (items N1 and N3, N4 and N5,

N6 and N7, S4 and S5, and S6 and S7) correlated high enough to considerably

improve model fit.
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Table 3.4: Error Correlations for Three CFA Models.

Correlation Two-Factor Adapted Two-Factor Subtraits

Model Model Model

r(eN1, eN2) - - 0.08

r(eN1, eN3) - - 0.22

r(eN2, eN3) - - 0.10

r(eN4, eN6) - 0.11 -

r(eN4, eN5) - - 0.25

r(eN6, eN7) - - 0.22

r(eS1, eS2) - - 0.01

r(eS1, eS3) - - -0.09

r(eS2, eS3) - - 0.11

r(eS4, eS5) - 0.32 0.37

r(eS6, eS7) - 0.29 0.41

Note: A hyphen means that a correlated error term was fixed to zero. Not all

correlations between error terms are shown. The correlations that are not in the

table were fixed to zero.

3.5.3 Mokken Scale Analysis

All items satisfied the monotonicity assumption. Table 3.5 shows AISP and GA

results for c values that produced a change in the composition of the scales but not

for other c values. For low c values until c = 0.30 almost all items were assigned

to one Type-D scale. At c = 0.40 the items were separated into two scales

identifiable as NA-scale and SI-scale. For both scales, total-scale H coefficients

were 0.51. As c further increased, the two scales scattered into several smaller

scales that were each consistent with a low-level trait from the Subtraits Model.

For the NA-scale, AISP and GA identified the low-level scale irritability (AISP

at c = 0.50; GA at c = 0.55). GA found the subscales interpretable as anxious

apprehension at c = 0.50, irritability at c = 0.55, and dysphoria at c = 0.60. The

SI-scale scattered into subscales at higher values of c. AISP found the subscales

interpretable as reticence at c = 0.50, lack of social poise at c = 0.60, and items

S2 and S3 of discomfort in social situations at c = 0.60. GA produced all three

low-level scales at c = 0.55.
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3.6 Discussion

Table 3.6 summarizes the results EFA, CFA, and MSA produced. CFA and MSA

were more sensitive to the low-level scales than EFA. CFA showed an acceptable

fit for the Adapted Two-Factor Model and the Subtraits Model, but for both

models several effects were small. The Adapted Two-Factor Model is data driven

and does not contribute to understanding the low-level traits in the DS14, whereas

the Subtraits Model allows for the investigation of the proposed low-level scales.

The good fit of the Subtraits Model supports the existence of the three-level

structure. However, the hierarchical structure of the DS14 suggests that the error

terms in the Subtraits Model are positively correlated, but the results in Table 3.4

showed that for low-level scales dysphoria and discomfort in social situations

some correlated error terms were almost zero. This discrepancy suggests that

the CFA results do not fully support the existence of dysphoria and discomfort

in social situations. MSA provided additional evidence for the Subtraits Model.

For default value c = 0.3, MSA produced one scale including 13 of the 14 items.

For c = 0.4, MSA produced the strong NA and SI scales. For higher c, the scales

scattered into smaller scales. Each of the six low-level traits was represented by

one of the smaller scales found using higher c values.

Each method has its own strengths and is sensitive to different aspects of the

internal structure of the DS14. The method versatility supported the Subtraits

Model. The results of this study justify the use of the DS14 for assessment at

three levels. At the high level, the DS14 assesses Type D as a psychological

risk factor for morbidity and mortality in patients suffering from cardiovascular

disease. At the medium level, researchers may use the questionnaire to assess

NA and SI and to investigate how these traits interact to increase the risk for

morbidity and mortality. At the low level, the traits NA and SI may be further

scrutinized into the low-level traits. Researchers can investigate whether some

of these traits affect the morbidity and mortality in cardiovascular patients more

severely than others.

MSA and factor analysis may find different results with respect to the internal

structure of the DS14 in other countries and clinical populations. For future

research of the internal structure of the DS14 in different populations, we advise

to use CFA for investigating the fit of the Subtraits Model and to use MSA
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Table 3.6: Comparison of the Low-Level Structure From the Three Methods.

Low-level Item Item

Subscale Scale Position Label EFA CFA MSA

NA Dysphoria 4 N1 - 1 1

Dysphoria 7 N2 - - 1

Dysphoria 13 N3 - 1 1

Anx Appr 2 N4 - 2 2

Anx Appr 12 N5 - 2 2

Irritability 5 N6 - 3 3

Irritability 9 N7 - 3 3

SI Discomfort 6 S1 - - 4

Discomfort 8 S2 - - 4

Discomfort 14 S3 - - 4

Reticence 10 S4 - 4 5

Reticence 11 S5 - 4 5

Lack Soc P 1 S6 - 5 6

Lack Soc P 3 S7 - 5 6

Note: Anx Appr = Anxious apprehension; Lack Soc P = Lack of social poise. For

each method: Items having the same digit were found to be in the same low-level

cluster. suggesting that the items represent a single low-level trait. A hyphen

means that the item was not included in the low-level structure.

because (a) CFA was not conclusive about the choice between the Adapted Two-

Factor Model and the Subtraits Model and (b) CFA did not identify all low-level

scales.

The debate whether or not Type D is a single personality trait or originates

from the interaction between NA and SI requires additional research. Our study

supports the three-level model of distressed personality including Type D as the

model’s high-level trait. To reach a conclusive verdict about Type D requires

the further development of the theory of Type D. This entails studying the

cognitive and affective processes typical of the distressed personality, not only

through correlational studies but also by means of experimentation including

psychological and biological variables, and the way these processes affect

morbidity and mortality in patients suffering from cardiovascular disease. A

well-founded theory provides more explanatory power for relationships that are

found to exist between Type D and relevant outcome variables such as
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life-expectancy and quality-of-life variables. We believe thus far Type D

research has relied too much on correlational studies and has neglected theory

development.



Chapter 4

Methodological Artifacts in

Dimensionality Assessment of the

Hospital Anxiety and Depression

Scale (HADS)∗ †

Abstract

The Hospital Anxiety and Depression Scale (HADS) is a brief, self-administered questionnaire
for the assessment of anxiety and depression in hospital patients. A recent review discussed
the disagreement among different studies with respect to the dimensionality structure of the
HADS, and concluded that the HADS must be abandoned. Our study argues that this
disagreement is mainly due to a methodological artifact, and that the HADS needs revision
rather than abandonment. We used Mokken scale analysis (MSA) to investigate the
dimensionality structure of the 14 HADS items in a representative sample from the Dutch
non-clinical population (N = 3, 643) and compared the dimensionality structure to results
Emons, Sijtsma, and Pedersen (2012) obtained in a Dutch cardiac-patients sample. We
demonstrated how MSA can retrieve either one scale, two subscales, or three subscales, and
that the result depends on the data structure but also on choices the researcher makes. Two
5-item scales for anxiety and depression seemed adequate. Four HADS items constituted a
weak scale and contributed little to reliable measurement. MSA supported a 2-level
hierarchical structure for ten HADS items, and suggested that four items should be discarded.
At the first level, MSA suggested that ten items constitute one psychological distress scale;
and at the second level MSA suggested an anxiety subscale (5 items) and a depression
subscale (5 items). We argued that several psychometric methods only show one level of a
hierarchical structure and that users of psychometric methods are often unaware of this
phenomenon and miss information about other levels. In addition, we argued that a theory
about the attribute may guide the researcher but that well-tested theories are often absent.

∗This chapter has been submitted for publication.
†Acknowledgements: We thank Susanne Pedersen for providing the data.
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4.1 Introduction

The Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983;

Caci, Bayle, Dossios, Robert, & Boyer, 2003) is a brief, self-administered

questionnaire for the assessment of the presence and the severity of anxiety and

depression in physically ill patients. The HADS consists of two 7-item scales,

one measuring anxiety and the other depression (Table 4.1). Somatic indicators

of anxiety and depression are not part of the HADS because physical illness

may interfere with somatic symptoms (Moorey et al., 1991). For the

classification of individuals as anxious or depressed, researchers use the total

scores on the 7-item Anxiety and Depression scales (Brennan, Worrall-Davies,

McMillan, Gilbody, & House, 2010).

Table 4.1: Item Labels and Item Contents of the Hospital Anxiety and Depression

Scale.

Item label Item content

A1 I feel tense or wound up

A2 I get a sort of frightened feeling as if something awful is about to happen

A3 Worrying thoughts go through my mind

A4 I can sit at ease and feel relaxed

A5 I get a sort of frightened feeling like butterflies in my stomach

A6 I feel restless as if I have to be on the move

A7 I get sudden feelings of panic

D1 I still enjoy the things I used to enjoy

D2 I can laugh and see the sunny side of things

D3 I feel cheerful

D4 I feel as if I am slowed down

D5 I have lost interest in my appearance

D6 I look forward with enjoyment to things

D7 I can enjoy a good book or radio or TV program

Two literature reviews (Bjelland, Dahl, Tangen Haug, & Neckelmann, 2002;

Herrmann, 1997) considered the HADS to be a psychometrically sound,

2-dimensional questionnaire for measuring anxiety and depression. More

recently, Cosco, Doyle, Ward, and McGee (2012) found that many studies failed
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to replicate the HADS’ expected 2-dimensional structure and, moreover,

disagreed with the dimensionality structure of the HADS. Coyne and Van

Sonderen (2012) concluded from this result that the HADS should be

abandoned.

We discern three methodological reasons that help to better understand why

so much disagreement exists with respect to the dimensionality structure of the

HADS. First, different psychometric methods that are used to investigate the

dimensionality structure of a set of items may produce different results. The

reason is that different methods provide different perspectives on the data

structure, select and amplify different aspects of the data structure, and

produce different dimensionality structures. Second, the use of a particular

method requires the user to make particular choices, and different choices may

produce different dimensionality results. Third, in addition to a method effect,

due to different psychological processes different populations and samples drawn

from the populations may produce different dimensionality results (Cosco,

Doyle, Ward, et al., 2012). We provide examples of each effect.

Examples of different methods producing different results for the HADS, are

Rasch-model analysis (Rasch, 1960), which predominantly produced a 14-item

psychological-distress scale (Gibbons et al., 2011; Pallant & Tennant, 2007);

exploratory factor analysis, which usually confirmed the expected 2-dimensional

structure; and confirmatory factor analysis that was used to test the expected

2-dimensional HADS structure, but often found support for a 3-dimensional

structure, while different studies assigned different items to different factors

(Caci et al., 2003; Dunbar, Ford, Hunt, & Der, 2000; Friedman, Samuelian,

Lancrenon, Even, & Chiarelli, 2001).

Examples of subjective choices researchers have to make when they use one

particular method are: For Rasch-model analysis, the goodness-of fit tests one

uses to assess the fit of the model to the data (Molenaar, 1983; Glas & Verhelst,

1995); for exploratory factor analysis, the rotation method and the number of

factors to be rotated (Reise, Waller, & Comrey, 2000); and for confirmatory factor

analysis, the goodness-of-fit indices to be used and the model modifications to be

executed based on statistical modification indices (Hu & Bentler, 1999).

Examples of population effect and sample effect are: A 2-dimensional

structure that fitted best for non-clinical subjects, a 3-dimensional structure
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that fitted best for cardiac patients, and a varying dimensionality structure

ranging from one to four dimensions in different cancer patient groups (Cosco,

Doyle, Ward, et al., 2012).

Cosco, Doyle, Ward, et al. (2012) recommended using Mokken scale analysis

(MSA; Mokken, 1971; Sijtsma & Molenaar, 2002) to study the HADS

dimensionality structure. MSA is a scaling method that can be used for the

assessment of Likert-items (Emons, Sijtsma & Pedersen, 2012; Straat, Van der

Ark, & Sijtsma, 2012b; Wismeijer, Sijtsma, Van Assen, & Vingerhoets, 2008).

MSA is a more flexible dimensionality assessment method than Rasch-model

analysis, exploratory factor analysis, and confirmatory factor analysis. In a

sample of Dutch cardiac patients, Emons et al. (2012) used MSA to study the

dimensionality structure of the HADS. The authors used MSA in combination

with exploratory factor analysis and confirmatory factor analysis, and found

support for the Caci et al. (2003) 3-factor model in which items A1, A2, A3,

A5, and A7 constitute a 5-item Anxiety scale, items D1, D2, D3, D4, and D6 a

5-item Depression scale, and items A4, A6, and D7 a 3-item Restlessness scale;

Item D5 was unscalable. Based on MSA in a sample of Irish cardiac patients,

Cosco, Doyle, Watson, Ward, and McGee (2012) concluded that one dimension

best described the HADS dimensionality structure.

Coyne and Van Sonderen (2012) noticed that the highly varying results for

the HADS dimensionality structure imply that the HADS is not dependable for

the assessment of anxiety and depression in hospital patients. They concluded

that the HADS must be abandoned in favor of instruments with a clearer

dimensionality structure. In this study, we used MSA to provide evidence that

the different dimensionality-structure results for the HADS probably are a

methodological artifact, which may be explained from the HADS’ hierarchical

structure. Moreover, we identified four items having low measurement quality

that may be removed from the HADS. The resulting ten HADS items constitute

a strong basis for a revision of the questionnaire. Because previous studies (e.g.,

Andrea et al., 2004; Hunt-Shanks, Blanchard, Reid, Fortier, & Cappelli, 2010;

Martin, Thompson, & Barth, 2008; Mykletun, Stordal, & Dahl, 2001) found

different dimensionality structures in samples from a non-clinical population

and a cardiac-patients population, we compared MSA results for samples from

both populations so as to explain why studies investigating different populations
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produce different dimensionality-structure results.

This chapter contains the following information. First, we discuss the HADS’

hierarchical dimensionality structure, which is also frequently found with other

attributes (e.g., Straat et al., 2012b). Second, we use MSA to study the HADS’

hierarchical structure in a sample from a non-clinical population and compare

the results to MSA results Emons et al. (2012) obtained from a sample of cardiac

patients. Third, we discuss the relation of the MSA results to previous findings

from Rasch-model analysis, exploratory factor analysis, and confirmatory factor

analysis. Finally, we discuss the consequences of the MSA results for the use of

the HADS.

4.2 Hierarchical Structure of Psychological

Attributes

Psychological attributes often have a hierarchical structure (Reise, Waller, &

Comrey, 2000). In response to Coyne and Van Sonderen (2012), Norton, Sacker,

and Done (2012) also made this point, based on the argument that researchers

using the same dimensionality-assessment method usually found the same

dimensionality structures for the HADS but researchers using different methods

found different dimensionality structures. Their point thus is that different

methods find different levels of the hierarchy but that the hierarchy does not

become apparent when one does not use different methods or when one uses one

method but fails to implement different modes of using the method. An

example is the following: We assume that a hierarchical attribute structure is

reflected in the structure of the item scores that constitute the data. A

plausible structure would be that all items correlate positively but that several

clusters contain items that correlate higher with one another than with the

items from other clusters. This structure could suggest two levels, one on which

the common denominator of all items is described and another on which the the

different item clusters are identified. If clusters contain sub-clusters of items

that share variance that other items do not share, one might even discern a

third level.

How do different psychometric methods deal with the data structure just
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described? Rasch-model analysis has the Rasch model, which is a unidimensional

scaling model, as the criterion for assessing the structure of the items. Given the

formal prevalence for unidimensionality, a Rasch-model analysis tends to provide

information on which items to retain in the scale and which items to remove but

the end result tends to be one scale and one or more items that are not in the scale.

The method thus tends to identify only the first level of the hierarchy. Meijer,

Sijtsma, and Smid (1990) and De Koning, Sijtsma, and Hamers (2002) provided

rather complex methodologies for identifying data multidimensionality using the

Rasch-model analysis. Exploratory factor analysis is a typical dimensionality-

reduction method that focuses on identifying a number of dimensions that each

attract a number of distinct items and explain a reasonable amount of variance

in the item scores. Unlike the Rasch-model analysis, exploratory factor analysis

thus tends to identify the second level of the hierarchy. Like the Rasch-model

analysis, confirmatory factor analysis is a confirmatory method and the researcher

defines the dimensionality structure that serves as the hypothesis to be tested.

The identification of the dimensionality structure that best reproduces the inter-

item correlations yields the best model-data fit and this may entail preference for

the third level in our example.

MSA is particularly useful to evaluate the different levels of the hierarchical

structure. The researcher has to specify a numerical scaling criterion that

controls the level at which the hierarchical structure is assessed. Usually,

researchers rely on a default option that computer programs provide but

Sijtsma and Molenaar (2002, chap. 5) recommend to try a range of criterion

values. In the example, the lowest criterion values would produce one scale that

includes most or all items, higher criterion values would produce the

second-level subscales, and still higher criterion values would produce small

sub-subscales whereas many items would not be included in scales anymore.

Even higher criterion values would lead to the conclusion that the item set is

unscalable. Thus, dimensionality assessment methods such as the Rasch-model

method and exploratory and confirmatory factor analysis may find different

dimensionality structures, but MSA may well find the hierarchy that the other

methods miss. The hierarchical structure implies that there is not one “true”

dimensionality but that the dimensionality depends on the level at which the

hierarchy is assessed.
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This was just one example, but different sets of outcomes are possible,

depending on the structure of the attribute. For example, three cluster of items

may exist such that within clusters inter-item correlations have approximately

the same magnitude and between clusters inter-item correlations are zero.

Rasch-model analysis will produce gross misfit and suggest to reject two thirds

of the items and retain one short scale representing one cluster by

approximation. Exploratory factor analysis will likely find the 3-cluster

structure. Confirmatory factor analysis will likely produce that the three-factor

solution with the items loading on the appropriate factors is the best-fitting

model. For increasing criterion values MSA will continuously find the correct

solution until suddenly all items appear unscalable.

4.3 Method

4.3.1 Participants

For the non-clinical sample, 3,708 Dutch participants were approached and 3643

(98.2 %) participants filled out the HADS. Two gender levels and six age levels

(20-29, ..., 60-69, 70-80 years) served as stratification criteria, and quota

sampling produced twelve equally sized groups. A local ethics committee at

Tilburg University (protocol number: 2006/1101) approved this study. Research

assistants approached participants personally or by phone. After having been

explained the study’s purpose, participants received an informed consent form

and a questionnaire, and participants returned both documents in closed

envelopes to the research assistants (between October 1, 2006—December 15,

2008). Returned questionnaires were coded by number for purposes of data

collection tracking but were otherwise anonymous.

The sample consisted of 50% men. The mean age was equal to 50.12 and

the standard deviation was equal to 16.31. For 68 respondents, one to three

item scores were missing. Two-way imputation (Bernaards & Sijtsma, 2000; Van

Ginkel, Van der Ark, & Sijtsma, 2007) was used to replace missing item scores

by estimated scores.
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4.3.2 Statistical Analyses

Mokken Scale Analysis

MSA assesses the fit of a measurement model known as the monotone

homogeneity model (Mokken, 1971; Sijtsma & Molenaar, 2002; Sijtsma &

Meijer, 2007). First, the monotone homogeneity model assumes a single

attribute, such as anxiety or depression, to capture the associations between the

item scores; that is, the items do not measure any other attribute in common.

Second, the monotone homogeneity model assumes a monotone nondecreasing

relation between the scores on an item and the attribute. The first assumption

ensures that the items measure only one attribute rather than a conglomerate of

attributes that hinders a straightforward interpretation of test performance.

The second assumption reflects the idea that the higher one scores on the

attribute scale, the higher one is expected to score on each of the items in the

test that are indicators of the attribute. Mokken (1971, chap. 4) and Sijtsma

and Molenaar (2002, chaps. 2-5) provide technical details about the monotone

homogeneity model. Let the total score be defined as the sum of the J item

scores in the test. Then, if the data are consistent with the monotone

homogeneity model, individuals with a higher total score are expected to also

score higher on the attribute (Grayson, 1988; Van der Ark, 2005). Hence, a

monotone homogeneity model that fits the anxiety-item data provides a

justification for the use of the total score as a measure of anxiety; likewise for

depression.

MSA uses item scalability coefficient Hj, which expresses the strength of the

relation between the scores on item j and the attribute the total score measures

(Van Abswoude, Van der Ark, & Sijtsma, 2004). A high Hj value implies that

the item distinguishes well between low scores on the attribute and high scores

on the attribute. Given the monotone homogeneity model, it can be shown that

0 ≤ Hj ≤ 1. MSA aims at obtaining scales consisting of items with Hj values

exceeding a lower bound c (default c = .3). The researcher can specify lower

bound c to reflect the minimum required strength of the relation of an item

with the attribute for the item to be admitted to the scale. Items for which

Hj < c are not admitted to the scale. The total-scale coefficient H reflects

the discrimination power of the total scale. Mokken, Lewis, and Sijtsma (1986)
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suggested that H expresses the accuracy of a person ordering by means of the

total score. Mokken (1971, pp. 148-153) suggested that .30 ≤ H < .40 defines a

weak scale, .40 ≤ H < .50 a medium scale, and H ≥ 0.50 a strong scale; H < .3

means that items are unscalable.

An automated item selection procedure (Straat, Van der Ark, & Sijtsma, in

press) that is part of MSA partitions a set of items, such as the 14 HADS items,

into one or more scales if the data permit. The two requirements for a scale are

that (1) all inter-item correlations are positive and (2) each Hj value exceeds

lower bound c; that is, Hj ≥ c (Mokken, 1971, p. 184; Sijtsma & Molenaar,

2002, p. 68). The automated item selection procedure (Mokken, 1971; pp. 190-

193) is a bottom-up algorithm that starts with the two items i and j that have

the highest, significantly positive Hij value that exceeds lower bound c. In each

consecutive step, the procedure adds one item that correlates positively with the

already selected items, which has an Hj value that exceeds c, and that produces

the highest H value with the items already selected in the previous steps, given

all possible items that are candidates for selection in the present step. The item

selection proceeds until there are no items left that satisfy the requirements for

inclusion in the scale. If items remain unselected, from these items the procedure

may select a second scale, a third scale, and so on, until there are no items left

or the items left are unscalable.

Sometimes the procedure selects an item that after completion of the

procedure does not satisfy the scale requirements anymore due to the items

selected later in the procedure. Another problem is that the procedure does not

always find the best possible partitioning. The first problem is circumvented

and the second problem is almost always circumvented by the use of a genetic

algorithm (Straat et al., in press) that obtains only partitionings that satisfy

the scale requirements.

Lower bounds c serve as the criterion values that can be varied to study

different levels of the hierarchical structure of a psychological attribute. We used

the methodology that Hemker, Sijtsma, and Molenaar (1995; also, see Sijtsma &

Molenaar, 2002, chap. 5) recommended to find different dimensionality structures,

and that entails running the automated item selection procedure several times,

starting with minimum c = 0, in each next run using a lower bound c that has

increased by 0.05, and terminating with c = 0.60 or higher. We used R package
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mokken (Van der Ark, 2007) to run the automated item selection procedure and

the genetic-algorithm version. To investigate the dimensionality of the HADS,

both item selection procedures were run for c = 0.00, 0.05, . . . , 0.60.

Item scalability coefficient Hj expresses the strength of the relationship of

the item and the attribute but does not provide information on whether the

relation between item j and the attribute measured by the total score on the

items except item j, also called the rest score, is nondecreasing (including item

j in the total score would produce an artifact; Junker & Sijtsma, 2000). The

relationship between the item score and the rest score is locally decreasing if an

increase of the rest score produces a decrease of the expected item score along a

small range of rest scores. This decrease violates the monotonicity assumption of

the monotone homogeneity model. We investigated for each item j whether the

mean item score is a nondecreasing function of the rest score (Junker & Sijtsma,

2000). We used the R package mokken (Van der Ark, 2007) to investigate the

monotonicity assumption for a single 14-item HADS scale, the 7-item Anxiety

and Depression scales, and the three scales of the Caci et al. (2003) model.

Reliability

We used four methods to estimate the total-score reliability (Sijtsma, 2009). They

were coefficient α, coefficient λ2 (both computed using R package mokken; Van

der Ark, 2007), the greatest lower bound to the reliability (glb; computed using

R package psych; Revelle, 2012), and the Molenaar-Sijtsma method (Van der

Ark, Van der Palm, & Sijtsma, 2011; computed using R package mokken; Van

der Ark, 2007). Methods α, λ2, and glb are lower bounds to the total-score

reliability. Their mutual relationship is: α ≤ λ2 ≤ glb. Coefficient α is the

most frequently used estimate, but λ2 and glb provide estimates closer to the

population total-score reliability and may be preferred over α (Sijtsma, 2009).

The Molenaar-Sijtsma method was developed in the context of MSA and is a

reliability estimator with smaller bias than α and λ2 (Sijtsma & Molenaar, 2002,

p. 110; Van der Ark et al., 2011). We computed the reliability estimates for

a unidimensional scale containing all 14 HADS items, the 7-item Anxiety and

Depression scales, and the three scales of the Caci et al. (2003) model.
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4.4 Results

4.4.1 Mokken Scale Analysis

For each lower bound c, the automated item selection procedure and its genetic-

algorithm version yielded the same item partitionings. Table 4.2 shows the item

partitionings for lower bounds c equal to 0, .3, and .45; other c-values did not

provide additional information. For c = 0, all items were selected in one scale.

At lower bound c = .3, the automated item selection procedure produced a single

scale containing 11 items. Items A6, D5, and D7 were unscalable. For higher

c values, the automated item selection procedure found two distinct scales that

resembled the shortened Anxiety and Depression scales of the Caci et al. (2003)

3-factor model. Based on this result, we used confirmatory MSA and computed

the Hj and the H coefficients for the a priori identified Anxiety, Depression, and

Restlessness scales (Table 4.2). Given that two out of three restlessness items had

Hj < .3, the restlessness items were unscalable; hence, here only a 5-item Anxiety

scale and a 5-item Depression scale were obtained. In none of the investigated

scales – the 14-item scale, the 7-item Anxiety and Depression scales, and the

three Caci et al. (2003) scales – did we find violations of monotonicity.

4.4.2 Reliability

Table 4.3 shows the four reliability estimates for the models with one 14-item

scale, two 7-item scales measuring anxiety and depression, and the three scales

based on the Caci et al. (2003) model. The 14-item scale had the highest

reliability, and the 5-item Anxiety and Depression scales had higher α, λ2, and

MS than the 7-item Anxiety and Depression scales. The glb of the 5-item

Anxiety scale was approximately equal to the glb of the 7-item Anxiety scale

and the glb for the 5-item Depression scale was higher than the glb for the

7-item Depression scale. Hence, the reliability estimates suggest that items A4

and A6 do not contribute to the reliable measurement of anxiety and items D5

and D7 do not contribute to the reliable measurement of depression.
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Table 4.2: Results from Exploratory and Confirmatory Mokken Scale Analysis

in the Non-Clinical Sample.

Exploratory MSA Confirmatory MSA

c = 0 c = .3 c = .45

Item label Scale 1 Scale 2 Anx Depr Restl

A1 .37 .42 .51 .51

A2 .35 .40 .52 .52

A3 .37 .44 .56 .56

A4 .33 .38 .38

A5 .34 .34 .48 .48

A6 .26 .29

A7 .34 .38 .49 .49

D1 .34 .38 .50 .49

D2 .38 .43 .52 .52

D3 .36 .40 .46 .44

D4 .39 .43 .49 .47

D5 .17

D6 .30 .32 .45

D7 .23 .29

H .32 .39 .51 .49 .51 .47 .32

Note: Anx = Anxiety scale, Depr = Depression scale, and Restl = Restlessness scale.

4.4.3 Comparing the Non-Clinical and Cardiac-Patients

Populations

Table 4.4 shows the exploratory and confirmatory MSA results that Emons et

al. (2012) obtained. For exploratory MSA, the scales in the non-clinical sample

(Table 4.2) and the cardiac-patients sample (Table 4.4) were comparable but

for the cardiac-patients sample, the dimensionality structure remained intact for

higher values of lower bound c. For confirmatory MSA, the Hj and H coefficients

were also higher in the cardiac-patients sample than in the non-clinical sample.

As a result, the Anxiety scale and the Depression scale are stronger scales in

the cardiac-patients sample than in the non-clinical sample, and the Restlessness

scale satisfied the Mokken scale criteria at the default lower bound of .3 in the

cardiac-patients sample but not in the non-clinical sample.
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Table 4.3: Coefficients α, λ2, the glb, and the Molenaar-Sijtsma Method for One

Scale, Two Scales, and Three Scales (Non-Clinical Sample).

α λ2 glb MS

One scale .832 .836 .873 .840

Two scales

Anxiety (7-item) .773 .776 .823 .784

Depression (7-item) .735 .739 .752 .734

Three scales

Anxiety (5-item) .780 .783 .801 .796

Depression (5-item) .762 .766 .800 .771

Restlessness (3-item) .560 .565 .634 .559

Note: glb is the greatest lower bound.

4.5 Discussion

Figure 4.1 summarizes the MSA results with respect to the HADS’ hierarchical

structure and shows the levels of the hierarchical structure that are consistent

with previous Rasch-model analysis results and factor analysis results. Since

all inter-item correlations were positive, for c = 0 all 14 items were selected in

one scale. At the next level, ten items constituted a single general psychological

distress scale. Items A4, A6, D5, and D7 had Hj < c, and were not selected. At

higher levels, five items constituted an anxiety scale and five items constituted a

depression scale. Items A4 and A6 were excluded from the original 7-item Anxiety

scale and items D5 and D7 were excluded from the original 7-item Depression

scale. The reliability of the 5-item anxiety and depression scales was higher than

of their 7-item versions. Hence, the reliability estimates confirmed the lower

measurement quality of the four items.

Researchers using Rasch-model analysis (Gibbons et al., 2011; Pallant &

Tennant, 2007) reported the 14-item general psychological-distress scale that

MSA found for lower bound c-values close to 0. Moreover, fit assessment of the

Rasch model showed evidence of the anxiety and depression scales, but did not

reveal the low measurement quality of the items A4, A6, D5, and D7 (Gibbons

et al., 2011; Pallant & Tennant, 2007). A problem of the Rasch model is that it

assumes that all items relate to the attribute scale to the same degree, and not
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Table 4.4: Exploratory and Confirmatory Mokken Scale Analysis Results for a

Cardiac-Patients Sample (Adapted from Emons, Sijtsma, & Pedersen, 2012, Tables

1 and 5)

Exploratory MSA Confirmatory MSA

c = 0 c = .4 c = .5

Item label Scale 1 Scale 2 Scale 1 Scale 2 Anx Depr Restl

A1 .47 .51 .58 .58

A2 .41 .45 .62 .62

A3 .45 .50 .61 .61

A4 .38 .47 .45

A5 .40 .45 .53 .53

A6 .28 .38

A7 .43 .48 .62 .62

D1 .41 .46 .59 .60

D2 .46 .51 .61 .56

D3 .44 .50 .57 .53

D4 .43 .48 .51 .48

D5 .32 .39

D6 .39 .43 .58 .54

D7 .31 .47 .39

H .39 .48 .47 .59 .57 .59 .51 .40

all goodness-of-fit research may be able to pinpoint this cause of misfit (e.g.,

Molenaar, 1983; Glas & Verhelst, 1995). Alternatively, one may choose fitting

the 2-parameter logistic item response model (Birnbaum, 1968), which assumes

that different items relate to the attribute scale to different degrees, and thus

may distinguish items relating relatively weakly to the scale from items relating

stronger to the scale.

Exploratory factor analysis (e.g., Andrea et al., 2004; Mykletun et al., 2001)

yielded a 2-factor solution in which all items with index A loaded on the

Anxiety factor and all items with index D loaded on the Depression factor.

Hence, exploratory factor analysis included the low-quality items in the factors,

but MSA excluded the items from the two scales because for these items

Hj < c. In confirmatory factor analysis (e.g., Hunt-Shanks et al., 2010; Martin

et al., 2008), the fit indices were sensitive to the misfit of the low-quality items
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A1 A2 A3 A5 A7 D1 D2 D3 D4 D6 A4 A6 D7 D5

Figure 4.1: Graphical representation of the hierarchical structure of the HADS

identified by MSA.

A4, A6, D5, and D7 and, as a result, a third factor had to be defined to obtain

an acceptably fitting model. Emons et al. (2012) showed that the three item

clusters from the Caci et al. (2003) 3-factor model were consistent with the

three scales found in a cardiac-patients sample. The main difference between

the exploratory and the confirmatory factor analysis results was that

confirmatory factor analysis identified the low-quality items by a misfitting

two-factor model.

In non-clinical samples, in which researchers (e.g., Mykletun et al., 2001;

Andrea et al., 2004) found a 2-dimensional structure and in cardiac-patients

samples, researchers (e.g., Hunt-Shanks et al., 2010; Martin et al., 2008) found a

3-dimensional structure. The dimensionality structure of the data was

comparable in the non-clinical sample and the cardiac-patients sample.

However, we found that the Hj and the H values were lower in the non-clinical

sample than in the cardiac-patients sample. In the non-clinical sample, the Hj

values of the items constituting the Restlessness scale were lower than 0.3 and,

as a result, the items did not satisfy the item-selection criteria. In the

cardiac-patients sample, confirmatory Mokken scale analysis identified the

Restlessness scale of the Caci et al. (2003) 3-factor model. Hence, MSA

confirmed a 2-dimensional structure in the non-clinical sample due to low item

scalability, and a 3-dimensional structure in the cardiac-patients sample.
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Zigmond and Snaith (1983) did not intend the HADS to measure

restlessness in addition to anxiety and depression. Except the four Restlessness

items, different dimensionality assessment methods used in different populations

produce dimensionality results for the ten items that are consistent. An

important question is whether the four Restlessness items cover important

aspects of anxiety and depression. This question is difficult to answer. Like

many questionnaires, the HADS is not the operationalization of a well-tested

theory of anxiety and depression from which substantive arguments for the

inclusion or exclusion of particular items were derived. Sijtsma (2012, in press)

argued that in the absence of a well-tested theory about the attribute of

interest, researchers can only rely on psychometric methods to decide about the

dimensionality structure of their item sets. As a result, psychometric rather

than theoretical arguments are highly dominant, perhaps too dominant, in

instrument construction.

The HADS lacks a well-developed theoretical foundation, and as a result the

items used predominantly define anxiety and depression instead of the other

way around. A well-established theory about anxiety and depression should

guide the operationalization into items that constitute the measurement

instrument (Sijtsma, 2012, in press). The absence of a well-established theory

and the resulting heavy reliance of researchers on psychometric methods for

dimensionality assessment that each emphasize different levels of the

hierarchical HADS structure, together explain the disagreement among different

studies about the dimensionality structure of the HADS. MSA better reveals

the hierarchy in a dimensionality structure than any of the other methods, and

also provides a higher level of awareness with respect to the possibility that

different dimensionality structures can be part of the same hierarchy. The

HADS can have a future but needs to be based on better established and tested

anxiety and depression theories. The two 5-item subscales can be an excellent

basis for a novel HADS whereas the four Restlessness items may be discarded.



Chapter 5

Minimum Sample Size

Requirements for Mokken Scale

Analysis∗

Abstract

An automated item selection procedure in Mokken scale analysis partitions a

set of items into one or more Mokken scales, if possible. Two algorithms are

available that pursue the same goal of selecting Mokken scales of maximum

length: Mokken’s original automated item selection procedure (AISP) and a

genetic algorithm (GA). Minimum sample size requirements for Mokken scale

analysis have not yet been established. In practical scale construction reported

in the literature, we found that researchers used sample sizes ranging from 133

to 15,022 respondents. We investigated the effect of sample size on the

assignment of items to the correct scales. Using a misclassification of 5% as a

criterion, we found that Mokken scale analysis minimally required 250 to 500

respondents when item quality was high and 1250 to 1750 respondents when

item quality was low.

∗This chapter has been submitted for publication.
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5.1 Introduction

For Mokken scale analysis (MSA; Mokken, 1971; Sijtsma & Molenaar, 2002; Van

Schuur, 2011), minimum sample size requirements to obtain stable item selection

results are unknown. Researchers use an automated item selection method to

partition a set of items into one or more scales, if possible, of maximum length.

A literature search of recent applications of MSA revealed that sample sizes for

MSA ranged from 133 (Adler & Brodin, 2011) to 15,022 respondents (Prince et

al., 2010). For N = 15, 022, sample fluctuations are probably negligible, but for

N = 133 sample fluctuations may be considerable. Researchers have a limited

amount of time and finances to collect data (Hedeker, Gibbons, & Waternaux,

1999), but they also wish to replicate their findings in future studies (Jackson,

2003) and to have adequate statistical power for finding the effects they are

interested in (Hedeker et al., 1999). In this study, we investigated minimum

sample size requirements for two item selection methods in MSA that pursue the

same goal using different algorithms.

Many studies investigated the minimally required sample size for other

statistical methods such as regression analysis (e.g., Cohen, 1988; Green, 1991),

factor analysis (e.g., Guadagnoli & Velicer, 1988; MacCallum, Widaman,

Preacher, & Hong , 2002; Mundfrom, Shaw, & Ke, 2005; Velicer & Fava, 1998),

multilevel analysis (e.g., Cohen, 2005; Hedeker et al., 1999; Snijders & Bosker,

1993), structural equation modeling (e.g., Bentler & Yuan, 1999; Jackson,

2003), and item response theory (e.g., Chuah, Drasgow, & Leucht, 2006;

Hambleton & Jones, 1994; Hulin, Lissak, & Drasgow, 1982; Reise & Yu, 1990),

but not for MSA. These studies investigated the sample size that is minimally

required to have unbiased and precise parameter estimates. For MSA,

parameter estimation is not of main interest, but researchers wish to know

whether items are correctly partitioned into scales. To evaluate the similarity of

two partitionings, previous studies used the indices Per Element Accuracy

(PEA; Hogarty, Hines, Kromrey, Ferron, & Mumford, 2005), and the minimum

number of items to be moved to another scale for two partitionings to be equal

(MIN ; Van der Ark & Sijtsma, 2005). PEA and MIN suggest the extent to

which items are assigned to the correct scales.

This paper is organized as follows. First, we discuss the monotone
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homogeneity model (Mokken, 1971; Sijtsma & Molenaar, 2002). Second, we

discuss two automated item selection methods for MSA. Third, we study the

minimally required sample size to find the correct partitioning of items. Fourth,

we give recommendations to researchers about minimum sample sizes required

for item selection in MSA.

5.2 Monotone Homogeneity Model

The monotone homogeneity model (MHM; Mokken, 1971, chap. 4; Sijtsma &

Molenaar, 2002; Van Schuur, 2011) is defined by three assumptions: The latent

variable θ is unidimensional, the J item score variables Xj (j = 1, . . . , J) are

locally independent given θ, and each expected item score is a monotone

nondecreasing function of θ. These functions are called item response functions.

Grayson (1988) proved that for a set of dichotomously scored items the MHM

implies that the sum score on the J items, denoted X+ =
∑

j Xj, stochastically

orders people on θ, and thus can be used for ordinal person measurement. Van

der Ark (2005) used a simulation study to demonstrate that a set of

polytomously scored items consistent with the MHM can also be used for

ordering persons.

Like the MHM, many parametric IRT models also assume unidimensionality

and local independence but require parametric restrictions on the item response

functions. Hemker, Van der Ark, and Sijtsma (2001) showed that the polytomous-

item MHM encompasses well-known parametric IRT models such as the graded

response model (Samejima, 1969) and the partial credit model (Masters, 1982).

IRT models for dichotomous item scores such as the Rasch (1960) model and the

2-parameter logistic model (Birnbaum, 1968) are also special cases of the MHM.

Next, we discuss two automated item selection methods in MSA that can be used

to partition items into clusters that satisfy the definition of a Mokken scale and

approximate the requirements of the MHM.

5.2.1 Mokken Scale Analysis

Let Cov(Xj, Xk) denote the covariance between two items j and k, let

Covmax(Xj, Xk) denote the maximum covariance between these items given
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their marginal item-score distributions, and let rest score R(j) denote the total

score on J − 1 items excluding item j; that is, R(j) = X+ − Xj. Then, the

scalability coefficient for an item pair (j, k) is defined as

Hjk =
Cov(Xj, Xk)

Covmax(Xj, Xk)
;

the scalability coefficient for item j is defined as

Hj =
Cov(Xj, R(j))

Covmax(Xj, R(j))
;

and the scalability coefficient for the total scale is defined as

H =

∑J
j=1 Cov(Xj, R(j))∑J

j=1Covmax(Xj, R(j))
.

A set of items forms a Mokken scale (Sijtsma & Molenaar, 2002, pp. 67-69)

if (1) all inter-item correlations are positive and (2) all coefficients Hj exceed a

user-specified, positive lower bound c. Items that do not satisfy the criteria are

defined to be unscalable. The requirements of the MHM and the definition of

a Mokken scale do not coincide. The MHM implies the first criterion (Holland

& Rosenbaum, 1986), but only implies the second criterion for c = 0 (Sijtsma

& Molenaar, 2002, pp. 58-59). In practice, one requires a higher positive lower

bound c (by default equal to .30) because higher values of coefficient Hj imply

better item discrimination (Van der Ark, Croon, & Sijtsma, 2008). Automated

item selection methods may be applied to partition J items into one or more

Mokken scales, and possibly one or more items that may be unscalable (Mokken,

1971; Straat, Van der Ark, & Sijtsma, in press). Because the requirements of

the MHM and the definition of a Mokken scale do not coincide, researchers are

recommended to check afterwards whether the item response functions of selected

items are monotone. Experience has shown that the discrepancy between Mokken

scales and MHM requirements are often small in real-data analysis (e.g., Sijtsma,

Emons, Bouwmeester, Nykliček, & Roorda, 2008; Straat, Van der Ark, & Sijtsma,

2012a; Wismeijer, Sijtsma, Van Assen, & Vingerhoets, 2008).

The objective of MSA’s automated item selection methods is to select a first

Mokken scale containing as many items as possible, then from the unselected

items, if any, to select a second Mokken scale containing as many items as
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possible, and so on until there are no items left or until items remain that are

unscalable (Mokken, 1971; Straat et al., in press). The R package mokken (Van

der Ark, 2007) contains two item selection algorithms that pursue this

objective. One algorithm is the automated item selection procedure (AISP;

Sijtsma & Molenaar, 2002) and the other is the genetic algorithm (GA; Straat

et al., in press). We briefly describe the two item selection procedures. For a

more extensive description, see Straat et al. (in press).

Automated Item Selection Procedure

AISP is a bottom-up item selection procedure. AISP starts with selecting from all
1
2
J(J − 1) item pairs the item pair with the largest Hjk value that is significantly

larger than 0 and exceeds lower bound c. Subsequently, AISP adds a third item

to the scale that (a) correlates positively with the selected items j and k, (b) has

an Hj coefficient with respect to the already selected items that is significantly

larger than 0 and exceeds lower bound c, and (c) produces the largest H coefficient

with the already selected items j and k among all unselected items that satisfy

criteria (a) and (b). This step is repeated for a fourth item, a fifth item, and

so on, until there are no items left that satisfy the criteria (a) and (b). If items

remain unselected, AISP tries to construct a second scale from the unselected

items, then a third scale, and so on, until there are no items left or the items left

are unscalable.

Genetic Algorithm

GA has the same goal as AISP, but unlike the AISP bottom-up procedure GA

mimics an evolutionary process to search among all possible partitionings the

partitioning that satisfies MSA’s scaling objective (Straat et al., in press). First,

GA generates random partitionings and evaluates each partitioning with respect

to the scaling objective. Second, the better a partitioning represents the scaling

objective, the more likely it is that the partitioning is selected in a new, second

population of partitionings that is drawn with replacement from the first

population. Crossovers and mutations are applied to the partitionings in the

second population, such that some of these partitionings become different from

the original partitionings of the first population. Next, GA evaluates the
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partitionings in the second population and produces a third population

following the same rules that were used to produce the second population. After

the formation of each population, GA records which partitioning was the best

partitioning until the most recent population. If the best partitioning remains

the same after a pre-specified number of populations, this partitioning is

reported as the final partitioning.

5.3 Method

Due to lack of an analytical method for deriving the minimally required sample

size for MSA, we used a simulation study to investigate the minimally required

sample size in two stages. In the first stage, we studied the effect of sample size

(16 levels, ranging from 50 to 3,500) on the correct assignment of items to scales.

In the second stage, we searched for the minimally required sample sizes to obtain

at least 80%, 90%, 95%, and 99% correct item assignment.

We also included independent variables in our design that may interact with

the effect of sample size on the correct assignment of items. In exploratory

factor analysis, Hogarty et al. (2005) found that besides sample size, size of the

factor loadings, test length, and correlation between factors may have an effect

on correctly assigning items to scales based on the outcome of the exploratory

factor analysis. Hence, we varied the same design characteristics, but we used

size of the Hj values instead of size of the factor loadings.

5.3.1 Simulation Model

For the data simulation, we assumed a test consisting of J items each with five

ordered answer categories scored x = 0, . . . , 4. A two-dimensional version of the

graded response model (De Ayala, 1994) was used for data simulation. Let

θ = (θ1, θ2) be the vector containing two latent variables. Let δjx (j = 1, . . . , J ;

x = 1, . . . , 4) be the difficulty parameter of item j and category x, and let

αj = (αj1, αj2) be the vector of discrimination parameters for item j. The

two-dimensional graded response model describes the probability of obtaining a
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score of at least x on item j, given θ,

P (Xj ≥ x|θ) =
exp[αj1(θ1 − δjx) + αj2(θ2 − δjx)]

1 + exp[αj1(θ1 − δjx) + αj2(θ2 − δjx)]
.

5.3.2 Design

Six design characteristics were fixed in the design of the simulation study: (1) the

distribution of the latent variables was bivariate standard normal; (2) the number

of latent variables equalled 2; (3) the number of answer categories equalled 5; (4)

lower bound c equalled the default value of .3; (5) the number of replications in

each design cell equalled 100; and (6) the location parameters of the J items were

spaced equidistantly, such that location parameters of item j equalled (−1.5 +
j−1
J−1

,−1.0 + j−1
J−1

,−0.5 + j−1
J−1

, 0.0 + j−1
J−1

).

Sample size. We investigated 16 different sample sizes (50, 100, 250, 500, 750,

1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250, and 3500). A pilot

study showed that sample sizes larger than 3,500 AISP and GA produced stable

partitionings. Thus, studying larger sample sizes did not seem necessary.

Hj value. A higher item discrimination causes a higher Hj value (De Koning,

Sijtsma, & Hamers, 2002). We chose the discrimination parameters such that

we obtained conditions with Hj values exceeding .20, .30, or .40 (Table 5.1).

One condition had all Hjs approximately equal to .22 (α = 1), one condition

had all Hjs approximately equal to .32 (α = 1.3), and one condition had all Hj

approximately equal to .42 (α = 1.6).

Table 5.1: Range of Hj Values.

Test length

α 5 10 20

1 .219-.230 .218-.229 .216-.227

1.3 .320-.335 .319-.333 .316-.330

1.6 .414-.430 .412-.430 .411-.428

Test length. We investigated short tests containing 10 items and long tests

containing 20 items.

Correlation between latent variables. We chose three values for the correlation

between the latent variables: weak (r(θ1, θ2) = .3), strong r(θ1, θ2) = .6), and
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perfect (r(θ1, θ2) = 1.0) resulting in one effective latent variable. For weakly

and strongly correlated latent variables, we simulated data assuming a simple

structure with αj1 > 0 and αj2 = 0 for the odd-numbered items, and αj1 = 0 and

αj2 > 0 for the even-numbered items.

Item selection procedure. We used AISP and GA to analyze each data set.

We used the R package mokken (Van der Ark, 2007) to run AISP and GA.

5.3.3 Dependent variable

PEA and MIN are indices for evaluating a partitioning of a set of items in one or

more scales by comparing the obtained partitioning with a baseline partitioning.

PEA is defined as the proportion of items that is classified in agreement with

the baseline partitioning. Thus, PEA is the proportion of correctly classified

items. MIN is defined as the number of items to be moved from one scale to

another scale to retain the baseline partitioning. Thus, MIN counts the number

of misclassified items. Dividing MIN by the test length yields the proportion

of misclassified items, which obviously is the complement of the proportion of

correctly classified items; hence, PEA = 1 − MIN
J

. Proportions, such as PEA,

are easier to compare between different test length than counts, such as MIN ,

because proportions are independent of test length. Hence, we used PEA as the

dependent variable in the first stage of the study.

To obtain baseline partitionings, we determined for each condition the ”true”

partitioning by simulating one data set containing 1,000,000 observations. The

baseline partitionings were the following. For Hj ≈ .22, all items were unscalable;

for Hj ≈ .32 and Hj ≈ .42, the “true” partitioning depended on the correlation

between the latent variables. If the latent variables had perfect correlation (i.e.,

r(θ1, θ2) = 1), the “true” partitioning was that the item selection algorithms

assigned all items to one scale. If the latent variables had a correlation of .3 or

.6, the item selection algorithms assigned the odd-numbered items to one scale

and the even-numbered items to a another scale.

In the first stage, we computed in each condition PEA as the proportion of

items in agreement with the “true” partitioning. The proportions were based

on the product of the number of items and the number of replications. Hence,

for J = 10 we used 1,000 item classifications and for J = 20 we used 2,000
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item classifications to obtain stable estimates of the proportions. In the Results

section, we report the results from the second stage consisting of the minimally

required sample size for different PEA values. Because the literature does not

provide guidelines for the interpretation of PEA, we based values of PEA on

typical values for Type-I error rates in hypothesis testing (.20, .10, .05, and

.01). Type-I error rates refer to wrong decisions, whereas PEA refers to correct

decisions. Hence, we used values equal to 1 - Type-I error rates (i.e., .80, .90, .95,

and .99). We evaluated the minimally required sample size for mediocre PEA

(at least 80% of the items correctly classified), adequate PEA (at least 90% of

the items correctly classified), good PEA (at least 95% of the items correctly

classified), and excellent PEA (at least 99% of the items correctly classified).

We realize that the labels are arbitrary, but we believe that the labels facilitate

interpretation of the results.

5.4 Results

The Appendix shows the PEA for each combination of sample size, Hj value,

test length and correlation between the latent variables. From the results in the

Appendix, we derived the minimally required sample sizes for the four

pre-specified levels of PEA (Table 5.2). The results for AISP and GA were

almost equal except for the condition with strongly correlated latent variables

(i.e., r(θ1, θ2) = .6) and highly discriminating items (i.e., Hj ≈ .42). In these

conditions, GA obtained one scale containing all items instead of two scales,

each containing J
2

items. Hence, PEA for GA was approximately .5 for all

sample sizes because J
2

items were correctly assigned to the scale and the other
J
2

items were incorrectly assigned to the same scale. In Table 5.2 we only report

the minimally required sample sizes for AISP.

The minimally required sample size for different levels of PEA mainly

depended on the Hj values. If the Hj values were approximately .22 or .32,

larger sample sizes were needed for at least an adequate PEA than if Hj values

were .42. For H ≈ .22, the sample size should be at least 750 to 1000 to

produce at least mediocre PEA, at least 1000 to 1250 to produce at least

adequate PEA, at least 1250 to 2000 to produce at least good PEA, and at

least 2750 to 3500 for excellent PEA. For Hj ≈ .32, the sample size should be
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Table 5.2: Minimum Sample Size Requirements for MSA (AISP and GA) for

Four Different Levels of PEA.

Per element accuracy

Hj r(θ1, θ2) J Mediocre Adequate Good Excellent

.22 .3 10 750 1000 1250 2500

20 750 1250 1750 3000

.6 10 500 1000 1250 2750

20 750 1250 1500 2750

1.0 10 1000 1250 2000 3250

20 1000 1750 2000 3500

.32 .3 10 250 750 1500 3500

20 250 750 1500 3500

.6 10 500 750 1500 3000

20 250 750 1250 3000

1.0 10 250 750 1250 3000

20 250 750 1500 2750

.42 .3 10 50 50 250 250

20 50 50 250 250

.6 10 250 250 500 750

20 250 250 500 750

1.0 10 50 50 250 250

20 50 50 250 250

Note: Per element accuracy is called mediocre if higher than .80, adequate if higher than .90,

good if higher than .95, and excellent if higher than .99.

at least 250 to produce at least mediocre PEA, at least 750 to produce at least

adequate PEA, at least 1250 to 1500 to produce at least good PEA, and at

least 3000 to 3500 for excellent PEA. For H ≈ .42, the sample size should be at

least 50 to 250 to produce at least mediocre to adequate PEA, at least 250 to

500 to produce at least good PEA, and at least 250 to 750 for excellent PEA.

The results showed that the minimally required sample size was larger if theHj

values were close to lower bound .3 (i.e., Hj ≈ .32). We investigated whether this

result could be generalized to the other Hj values (i.e., Hj ≈ .22 and Hj ≈ .42)

close to lower bounds .2 and .4, respectively. We found that the results for

Hj ≈ .22 with c = .2 and Hj ≈ .42 with c = .4 were similar to the results for

Hj ≈ .32 with c = .3 (reported in Table 5.2).
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5.5 Discussion

We found that the minimally required sample size for item selection in MSA

depends on the Hj values relative to lower bound c. For high-quality items with

Hj values exceeding lower bound c, MSA rarely misclassifies items if the sample

size is at least 250. Test constructors knowing their craft well develop tests based

on a well-founded theory and thoroughly think about items that are qualitatively

good indicators of the construct of interest. Using the item selection procedures

in MSA to partition the set of items into one or more Mokken scales, they easily

find the correct partitionings. Hence, test constructors should put additional

effort in the construction of good items.

The effect of the difference between Hj values and lower bound c on the

minimally required sample size is comparable to the effect of the effect size on

the minimally required sample size for t-tests, F -tests in analyses of variance

and F -tests and t-tests in regression analyses. The larger the difference between

the “true” effect and the effect expressed in the null-hypothesis, the smaller the

minimally required sample size to find a significant effect. In MSA, the lower

bound c is the effect under the null-hypothesis. The larger the difference between

the “true” Hj and the “null” c, the smaller the required sample size to assign the

item to the correct scale.

In practice, researchers like to know whether the sample size was sufficiently

large to find the correct partitionings given the differences between Hj values

and lower bound c. Researchers may consult the standard errors of the Hj values

(Kuijpers, Van der Ark, & Croon, 2012), which are available in the R package

mokken. The standard errors can be used for constructing confidence intervals

for the Hj values so as to check whether lower bound c lies within the confidence

intervals.

Minimally required sample sizes have already been established for

exploratory factor analysis. For exploratory factor analysis, the determination

of the minimally required sample size is a complex interplay between the size of

the factor loadings and the number of items per factor. The effects of test

length and number of latent variables on the minimally required sample size

were negligible for MSA. The decision rule for the minimally required sample

size for item selection in MSA is easier: For high-quality items, MSA performs
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well with small sample sizes.

Appendix: Results from Investigation of PEA

Table 5.3: Per Element Accuracy Results for AISP.

Hj ≈ .22 Hj ≈ .32 Hj ≈ .42

r(θ1, θ2) r(θ1, θ2) r(θ1, θ2)

J N .3 .6 1.0 .3 .6 1.0 .3 .6 1.0

10 50 0.22 0.23 0.37 0.62 0.48 0.72 0.90 0.65 0.93

100 0.49 0.45 0.34 0.76 0.71 0.77 0.94 0.78 0.94

250 0.66 0.67 0.50 0.82 0.79 0.81 0.99 0.92 1.00

500 0.79 0.81 0.70 0.85 0.87 0.88 1.00 0.97 1.00

750 0.87 0.87 0.79 0.91 0.90 0.91 1.00 0.99 1.00

1000 0.93 0.92 0.87 0.92 0.90 0.93 1.00 1.00 1.00

1250 0.96 0.95 0.90 0.94 0.94 0.95 1.00 1.00 1.00

1500 0.96 0.97 0.93 0.95 0.95 0.96 1.00 1.00 1.00

1750 0.97 0.98 0.94 0.96 0.95 0.96 1.00 1.00 1.00

2000 0.98 0.98 0.96 0.96 0.96 0.95 1.00 1.00 1.00

2250 0.98 0.98 0.96 0.97 0.96 0.98 1.00 1.00 1.00

2500 0.99 0.98 0.97 0.97 0.97 0.98 1.00 1.00 1.00

2750 1.00 0.99 0.98 0.97 0.98 0.98 1.00 1.00 1.00

3000 1.00 1.00 0.98 0.97 0.98 0.99 1.00 1.00 1.00

3250 1.00 1.00 0.99 0.98 0.98 0.99 1.00 1.00 1.00

3500 1.00 1.00 0.99 0.99 0.99 0.99 1.00 1.00 1.00

20 50 0.24 0.22 0.36 0.69 0.57 0.77 0.91 0.66 0.94

100 0.49 0.45 0.34 0.76 0.71 0.77 0.94 0.78 0.94

250 0.53 0.49 0.40 0.81 0.80 0.84 0.99 0.93 1.00

500 0.70 0.69 0.60 0.85 0.86 0.88 1.00 0.98 1.00

750 0.80 0.80 0.72 0.91 0.90 0.93 1.00 0.99 1.00

1000 0.88 0.87 0.81 0.93 0.92 0.93 1.00 1.00 1.00

1250 0.91 0.93 0.86 0.93 0.95 0.94 1.00 1.00 1.00

1500 0.94 0.95 0.89 0.95 0.94 0.96 1.00 1.00 1.00

1750 0.96 0.96 0.92 0.97 0.95 0.96 1.00 1.00 1.00

2000 0.97 0.97 0.95 0.97 0.97 0.97 1.00 1.00 1.00

2250 0.97 0.97 0.96 0.98 0.97 0.98 1.00 1.00 1.00

2500 0.98 0.98 0.96 0.97 0.97 0.98 1.00 1.00 1.00

2750 0.98 0.99 0.97 0.98 0.98 0.99 1.00 1.00 1.00

3000 0.99 0.99 0.98 0.98 0.99 0.99 1.00 1.00 1.00

3250 0.99 0.99 0.98 0.98 0.99 0.99 1.00 1.00 1.00

3500 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00

Note: N is sample size. J is number of items. r(θ1, θ2) is the correlation between the latent variables.



Chapter 6

Using Conditional Association to

Identify Locally Independent

Item Sets∗

Abstract

The ordinal, unidimensional monotone latent variable model assumes local

independence, unidimensionality, and monotonicity, and implies the observable

property of conditional association. We specialized conditional association into

three useful observable consequences and implemented them in a new

procedure. The new procedure aims at identifying items that are locally

dependent, removing those items from the initial item set, and producing a

subset of items that is consistent with the assumption of local independence.

We compared the new procedure with the scaling procedures DETECT and

Mokken scale analysis, and found that the new procedure produced larger item

sets consistent with the unidimensional monotone latent variable model.

∗This chapter has been submitted for publication.
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6.1 Introduction

The unidimensional monotone latent variable model (UMLVM; Holland &

Rosenbaum, 1986; also, see Hemker, Sijtsma, Molenaar, & Junker, 1997;

Molenaar, 1997) is a general IRT model that is based on three assumptions.

Before we discuss the three assumptions, we introduce notation and definitions.

Let j be an item subscript, Xj a polytomous item-score variable adopting

discrete, ordered scores x = 0, . . . m, J the number of items in the test, and θ

the latent variable the items measure. The total score on the J items equals

X+ =
∑J

j=1Xj and has realization x+ = 0, . . . ,mJ . For dichotomous items,

which may be considered a special case of polytomous items scored x = 0, 1, the

total score runs from 0 to J . Using this notation, the three assumptions of the

UMLVM are:

1. Unidimensionality: latent variable θ is unidimensional;

2. Local independence: item scores are independent conditional on θ;

P (X1 = x1, . . . , XJ = xJ |θ) =
J∏
j=1

P (Xj = xj|θ); (6.1)

3. Monotonicity: the IRFs are monotone nondecreasing in θ; that is,

E(Xj|θ) is nondecreasing in θ. (6.2)

For dichotomous items, the UMLVM implies stochastic ordering of the latent

variable θ by the total score X+, abbreviated SOL (Hemker et al. 1997). Let t

be an arbitrary value of θ. Then, for two values of the total score denoted C and

K such that 0 ≤ C < K ≤ J and any value t, SOL is defined as

P (θ > t|X+ = C) ≤ P (θ > t|X+ = K). (6.3)

SOL implies that respondents with higher total scores on average have higher

θ-values.

For polytomous items, Hemker et al. (1997) showed that SOL does not hold.

Hence, the use of the total score as an ordinal estimator of the latent variable is

not justified for polytomous items. However, using simulated data Van der Ark
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(2005) demonstrated that in real data SOL holds by approximation and may be

assumed for all practical purposes. Moreover, Van der Ark and Bergsma (2010)

showed that for polytomous items the UMLVM implies weak SOL. To define

weak SOL, we use total score x+ rather than concrete values C and K as in

Equation 6.3, so that for each value x+ = 1, . . . ,mJ weak SOL is defined as

P (θ > t|X+ < x+) ≤ P (θ > t|X+ ≥ x+). (6.4)

SOL implies weak SOL but weak SOL does not imply SOL (Van der Ark &

Bergsma, 2010). Weak SOL implies a less fine-grained stochastic order of the

distribution of θ, which holds for dichotomizations of the total-score scale into

disjoint person subsets but not for each value of X+ (Equation 6.3). For example,

for all cut scores x+0 based on the X+ scale, Equation 6.4 implies that the rejected

group (x+ < x+0) has a lower mean θ than the selected group (x+ ≥ x+0). An

application of rejection/selection using an a priori determined cut score is to

decide who does not and who does receive a treatment. Also, when one selects

a fixed percentage of, say, P%, of the highest-scoring applicants for a course one

implicitly cuts the total-score scale into a lower and a higher part.

The UMLVM does not impose a parametric structure on the response

probabilities P (Xj = xj|θ). As a result, the UMLVM does not enable the

numerical estimation of the latent variable. The importance of equations 6.3

and 6.4 is that we have ordinal scales for θ even if θ cannot be numerically

estimated. To have an ordinal scale for a real test that satisfies SOL

(Equation 6.3) or weak SOL (Equation 6.4), one first has to assess the fit of the

UMLVM to the data and conclude that the model indeed fits the data well.

Then, by implication the test measures the attribute on an ordinal scale. For

unidimensional θ, several goodness-of-fit methods exist that assess observable

consequences of the UMLVM; Sijtsma and Molenaar (2002) provide an

overview. One observable consequence that could be used for fit assessment is

conditional association (CA; Holland & Rosenbaum, 1986; Rosenbaum, 1984,

1988). CA opens a wide array of potentially powerful tools to assess the

goodness-of-fit of the UMLVM but has been largely ignored by IRT theorists.

The purpose of this article was to study this potential by linking CA to the

assumptions of the UMLVM, finding out which assumptions CA can assess best,

and combining the results in a new procedure for identifying locally
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independent item sets.

This article is organized as follows. First, CA is introduced, three special

cases of CA are proposed as candidates for investigating the fit of the UMLVM,

and the results of a computational study that investigated the three special cases

when assumptions of the UMLVM do not hold are presented. Second, based

on the results of the computational study, a procedure for identifying locally

independent sets of items is discussed. Third, a simulation study is presented in

which the use of the new procedure is compared with the methods DETECT and

Mokken scale analysis. Fourth, the new procedure is applied to real data. Fifth,

merits and drawbacks of the new procedure are discussed.

6.2 Conditional Association

6.2.1 Definition of Conditional Association

Let X contain the J item-score random variables and let these variables be divided

in two mutually exclusive sets of item scores, denoted by Y and Z, so that

X = (Y,Z). Further, let f1 and f2 be nondecreasing functions and let h be

any function. Let σ(., .) denote the population covariance and s(., .) the sample

covariance. Holland and Rosenbaum (1986, Theorem 6) proved that the UMLVM

implies CA, which is defined as

σ [f1(Y), f2(Y)|h(Z) = z] ≥ 0. (6.5)

Specific choices of X = (Y,Z) and f1, f2, and h enable a large number of

special cases that each impose restrictions on the data. Checking whether the

data are consistent with these restrictions provides a powerful method to assess

the goodness-of-fit of the UMLVM but also confronts the data analyst with the

question of how to limit the number of possibilities and how to combine the

numerous results that each of the possibilities produces. The multitude of

special cases of Equation 6.5 and concrete data results might explain why CA

has not become a standard tool in IRT goodness-of-fit research.
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6.2.2 Three Special Cases

Let items be identified by subscripts j, k and l. In three special cases of CA, Y

contains the scores on a pair of items j and k. The cases are the following.

1. Let f1(Y) = Xj and f2(Y) = Xk, and ignore set Z. Then CA reduces

to the well-known inter-item covariance (Holland & Rosenbaum, 1986, p.

1537),

σ(Xj, Xk) ≥ 0. (6.6)

In practical item analysis, researchers intuitively adopt the idea that items

measuring the same attribute must correlate positively, and IRT models

such as the UMLVM that assume local independence and monotonicity

imply Equation 6.6 (Mokken, 1971, p. 120).

2. Let h(Z) = Xl, so that CA reduces to

σ(Xj, Xk|Xl = xl) ≥ 0. (6.7)

Equation 6.7 shows that in the subgroup scoring Xl = xl, the inter-item

covariance is always non-negative provided the UMLVM is the correct

model.

3. Holland and Rosenbaum (1986, Equation 6.1) suggested the third case. Let

R(jk) be the total score on the items except items j and k, also known as

the rest score. Then if h(Z) = R(jk) =
∑

i 6=j,kXi, CA reduces to

σ(Xj, Xk|R(jk) = r) ≥ 0. (6.8)

Equation 6.8 shows that for any subgroup of individuals that have the same

rest score the inter-item covariance is non-negative.

The UMLVM implies CA; hence, a negative sign of any of the sample estimates

of the covariances in equations 6.6, 6.7, and 6.8 found in a data set is inconsistent

with the UMLVM and leads to the conclusion that, strictly speaking (i.e., ignoring

sampling fluctuation), the UMLVM is not the model that generated the data.

Reversely, if one finds only positive signs in the data for equations 6.6, 6.7, and

6.8, this result logically does not imply that the UMLVM is the data-generating
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model but many positive signs do provide increasing support for the UMLVM.

This is where the strength of CA resides: The many covariances one may check in

the data together build a strong case for the UMLVM. As noticed, CA’s drawback

is the abundance of covariances that have to be checked. For example, for J =

20 Likert items with m = 5 ordered answer categories, there are
(
J
2

)
= 190

covariances, σ(Xj, Xk) (Equation 6.6); m
(
J
3

)
= 5, 700 covariances conditional on

an item score, σ(Xj, Xk|Xl) (Equation 6.7); and (m − 1)(J − 2)
(
J
2

)
= 13, 680

covariances conditional on the rest score, σ(Xj, Xk|R(jk)) (Equation 6.8).

If the UMLVM does not fit the data, the interesting question that forces

itself upon the researcher is whether the misfit is due to assumptions of the

model that are inconsistent with the data. One inconsistency is that a

multidimensional θ is needed to explain the associations between the items, and

an incorrectly assumed unidimensional θ (Equation 6.1) produces dependencies

among particular item pairs thus suggesting UMLVM misfit. Another

inconsistency stems from non-monotone relationships between item scores and

the latent variable, so that monotonicity (Equation 6.2) cannot capture the true

relationship well. For practical data analysis, two questions need to be

answered.

First, how are equations 6.6, 6.7, and 6.8 related to model violations of local

independence (Equation 6.1) and monotonicity (Equation 6.2)? A distinction is

made between two violations of local independence. One violation is positive

local dependence (PLD; σ(Xj, Xk|θ) > 0), and the other violation is negative

local dependence (NLD; σ(Xj, Xk|θ) < 0); also, see Chen and Thissen (1997),

Rosenbaum (1988), and Yen (1984). It has to be decided whether, for example,

σ(Xj, Xk|Xl) < 0 means that items j and k are PLD or NLD. Next, one also needs

to know whether the negative sign may be due to a violation of monotonicity

in one or more of the IRFs. Once this question has been answered, specific

conditional covariances may be selected to assess a specific model violation.

Second, how can we combine the information from, say, 5,700 covariances of

the type σ(Xj, Xk|Xl) into meaningful conclusions, meanwhile taking into account

that several negative signs may be due to sampling fluctuation? A systematic

procedure is required that navigates through the abundance of information.
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6.2.3 Detecting Violations of UMLVM Assumptions

Suppose we investigate covariances pertaining to items a, b ({Xa, Xb} ∈ Y), and c

(Xc ∈ Z). We use shorthand notation σab = σ(Xa, Xb), σab|c = σ(Xa, Xb|Xc), and

σab|R = σ(Xa, Xb|R(ab)); and s replaces σ when sample covariances are considered.

Subscripts j, k, and l refer to any other item in the test. Notation PLD(j, k)

means that items j and k are PLD, and NLD(j, k) that the items are NLD.

Notation NM(j) means that the IRF of item j is non-monotone.

Holland and Rosenbaum (1986) and Rosenbaum (1988) provided analytical

proof that several covariances based on equations 6.6, 6.7, or 6.8 are also positive

when the UMLVM does not hold. Thus, these covariances are useless to detect

misfit of the UMLVM. In Table 6.1, 0 values refer to these covariances. Proof

of their positivity was given by Rosenbaum (1988, Theorem 4; superscript 1

in Table 6.1), Rosenbaum (1988, Theorem 1; superscript 2), and Holland and

Rosenbaum (1986, Equation 5; superscript 3).

For the covariances in equations 6.6, 6.7, or 6.8 that can be negative when the

UMLVM does not hold, we did a computational study to identify which of these

covariances were negative with high probability when particular assumptions did

not hold. Two violations of local independence that we studied were PLD, NLD,

and we studied non-monotone IRFs. Covariances that are negative with high

probability when PLD, NLD or NM holds are well suited to detect the violation.

Table 6.1 shows the proportions of negative values covariances σab, σab|c, and

σab|R (columns) attained under violations of the UMLVM (rows). Note that the

violation given in a particular row is the only violation of the UMLVM. The

proportion of negative values may be interpreted as the power of a covariance

to identify PLD, NLD or NM. The first column refers to covariance σab; hence,

all cells that refer to item c are empty. We notice that proportions depend on

particular design choices made in the computational study, and that different

choices might have resulted in somewhat different proportions; see the Appendix.

For our purpose, these small differences are unimportant as we meant to identify

covariances that have enough power to be useful for assessing fit of the UMLVM

to data.

We summarize the results of each column in Table 6.1. The first column

shows that σab may be negative if items a and b are NLD. However, σab|R (third
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Table 6.1: Power of Covariances (Columns) to Detect Model Violations (Rows).

Covariances

Type of violation σab σab|c σab|R

Both items a, b in PLD item-pair PLD(a, b) 01 01 01

One item a/b and conditioning item c in PLD item-

pair

PLD(a, c) .314 .318

PLD(b, c) .314 .318

One item a/b in PLD item-pair PLD(a, j) 01,2 01,2 .318

PLD(b, j) 01,2 01,2 .318

Conditioning item c in PLD item-pair PLD(c, j) 01,2 01

Both items a, b in NLD item-pair NLD(a, b) .497 .652 .774

One item a/b and conditioning item c in NLD item-

pair

NLD(a, c) .000 .000

NLD(b, c) .000 .000

One item a/b in NLD item-pair NLD(a, j) 02 02 .000

NLD(b, j) 02 02 .000

Conditioning item c in NLD item-pair NLD(c, j) 02 02

One item a/b violates M NM(a) .000 .000 .000

NM(b) .000 .000 .000

Conditioning item c violates M NM(c) 03 03

1,2,3 Superscripts are explained in the text.

column) is more powerful than σab for detecting NLD(a, b). The result for σab is

not pursued further. The second column shows that a negative value of σab|c may

occur for PLD(a, c), PLD(b, c), or NLD(a, b). Hence, sample covariances sab|c < 0

may be used to detect PLD(a, c) and PLD(b, c); this result we call Result 1. For

detecting NLD(a, b), σab|R is more powerful than σab|c. Therefore, detecting NLD

by means of sab|c is not pursued further. The third column shows that a negative

value of σab|R may occur when either a or b is in a PLD item pair. Sample

covariances saj|R < 0 and sbj|R < 0 (for j 6= a, b) may be used to detect these

PLD pairs; this result we call Result 2. A negative value of σab|R may also occur

when both a and b are in the same NLD item pair. Because σab|R is the most

powerful covariance for detecting NLD(a, b), sample covariances sab|R < 0 may be

used to detect NLD(a, b); this is Result 3.
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Finally, the conditional covariances did not have sufficient power to detect

NM. Hence, CA as operationalized here cannot be used to assess monotonicity;

see Sijtsma and Molenaar (2002, chap. 3) for an alternative method to assess

monotonicity.

6.3 A Procedure to Identify a Locally

Independent Item Set

We propose a procedure, called CA procedure, that uses Results 1, 2, and 3 to flag

items that are suspected to be locally dependent, and that enables us to delete

some or all of the flagged items to obtain a locally independent item subset from

the original J-item set.

6.3.1 Flagging Suspected Items

Three indices, denoted W (1), W (2) and W (3), were used to flag suspected items.

The three indices are counts of negative conditional sample covariances. A

problem of simply counting sample covariances is that small samples produce

many negative covariances simply due to sampling fluctuation. Thus, it makes

sense to give more weight to the count of a negative covariance if the covariance

was estimated in a larger sample. It is well known that the gain in precision

diminishes as sample size is larger, and for the standard error of the sample

mean, SE(X̄) = sX√
n
,
√
n expresses this phenomenon. For covariances, a simple

equation for the standard error is unavailable and for simplicity we thus weigh

negative covariance by
√
n, where n is the size of the sample in which the

covariance was estimated.

Let I(A) be an indicator function attaining values I(A) = 1 if A is true, and

I(A) = 0 otherwise. The three indices are defined as follows.

Index W (1) is determined for each item pair, and for item-pair (a, c),

W (1)
ac =

∑
j 6=a,c

∑
x

I[s(Xa, Xj|Xc = x) < 0]×
√
nx. (6.9)

In Equation 6.9, I[s(Xa, Xj|Xc = x) < 0] indicates whether the covariance is
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negative (value 1) and nx is the size of the group scoring Xc = x. Note that

W (1)
ac =

∑∑
x

I[s(Xa, Xj|Xc = x) < 0]×
√
nx

and

W (1)
ca =

∑∑
x

I[s(Xc, Xj|Xa = x) < 0]×
√
nx

are not the same, so we have a total of J(J − 1) different W (1) values. If W
(1)
ac is

large, then item-pair (a, c) likely is PLD.

Index W (2) is determined for each item. Index W (2) is based on Result 2, and

it is a weighted count of all negative covariances saj|R in which item a is involved.

For item a,

W (2)
a =

∑
j 6=a

∑
r

I[s(Xa, Xj|R(aj) = r) < 0]×
√
nr.

If W
(2)
a is large, then item a likely is in a PLD item pair.

Index W (3) is determined for each item pair. Index W (3) is based on Result

3, and it is a weighted count of all negative covariances sab|R in which item-pair

(a, b) is involved. For item-pair (a, b),

W
(3)
ab =

∑
r

I[s(Xa, Xb|R(ab) = r) < 0]×
√
nr.

If W
(3)
ab is large, then item-pair (a, b) likely is NLD.

The next step is to determine which index values are large enough to flag

item(s) as suspect. If most items are locally independent, most W values are low

and the distribution of each index is positively skewed. We used Tukey’s fences

(Tukey, 1977, a.k.a. the box plot) to determine whether a score is extremely

high, but we adjusted the box plot for skewness (Hubert & Vandervieren, 2008;

Kimber, 1990). Let M and Q3 be the median and the third quartile of the

distribution, then a W index is discordant if it exceeds the upper fence chosen at

Q3 + 3× (Q3−M). Each item for which one or more W values are discordant is

flagged.

6.3.2 Removing Flagged Items

Each item relates to 2(J − 1) indices W (1), 1 index W (2), and J − 1 indices W (3),

so that each item may be flagged any number of times between 0 and 3J − 2.
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Removing an item from the test may affect the number of flags for the other

items. For example, if item pair (a, b) is flagged by index W (1), and items a and

b have not been flagged elsewhere, then removing b from the item set clears the

flags for item a. After removal of item b, item a is consistent with the UMLVM.

This suggests removing items one by one rather than removing all flagged items

at once. We advocate the following procedure.

We want the procedure to remove the smallest number of items possible so

as to obtain the longest locally independent item set. We based the removal of

items on an algorithm that Ligtvoet, Van der Ark, Te Marvelde, and Sijtsma

(2010) proposed for a problem that is different from ours but has some formal

similarities. First, for each item we counted the number of flags across the three

W indices. Then, we removed the item with the largest number of flags, for each

item counted the number of flags again and removed the item with the largest

number of flags that appeared at this stage. This procedure was repeated until

there were no flags left. At any stage of the removal algorithm, two or more

items may have the same total number of flags. Thus, one has to consider an

additional criterion to remove items. For his purpose, we chose to remove the

item with the weakest discrimination power using Mokken’s (1971, pp. 151-152)

item-scalability coefficient Hj (Van Abswoude, Van der Ark, & Sijtsma, 2004).

6.4 Comparison of Methods Assessing Fit to

UMLVM

Next, we compared the procedure with two methods that also aim at selecting

items that are consistent with the UMLVM.

6.4.1 Method

We investigated the sensitivity and the specificity of the CA procedure, DETECT

(Zhang, 2007; Zhang & Stout, 1999a, 1999b), and Mokken scale analysis (Mokken

1971; Sijtsma & Molenaar, 2002) for identifying items that are inconsistent with

local independence and monotonicity. The CA procedure identifies and removes

PLD and NLD item-pairs to obtain a locally independent item set. DETECT

uses the DETECT -index, which is based on the mean of σjk|R and σjk|X+ , to
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identify one or several subsets of items, if present in the data, that are locally

independent. As items j and k are both included in total score X+, covariance

σjk|X+ is not a special case of CA, but DETECT averages the covariances σjk|R

and σjk|X+ in an effort to reduce bias in the estimation of σjk|θ (Zhang, 2007;

Zhang & Stout, 1999a, 1999b). Mokken scale analysis uses scalability coefficient

Hj, which is based on σjR, to identify within a set of items one or several Mokken

scales that satisfy particular scaling criteria (Mokken 1971, pp. 184-185; Sijtsma

& Molenaar, 2002, pp. 67-68). As the Hj coefficient is positively related to the

item discrimination, Mokken scale analysis relies on the slope of the IRFs to

identify item subsets, and unlike the CA procedure and DETECT, Mokken scale

analysis concentrates on the monotonicity assumption.

Design

Figure 6.1 illustrates the simulation model. We used the multidimensional graded

response model with θ = (θ, θ∗) to simulate 100 data sets. Each data set contained

the scores of 1000 persons on 20 polytomous items with five ordered item scores

(m = 4). The θs were standard normal. The 20 items measured the dominant

latent variable θ. The item discrimination parameters for this latent variable

were drawn from ln[N(0.2, 0.05)]. For each item, m = 4 location parameters

were drawn from N(0, 1). Graded response models require that the location

parameters of the same item have an increasing order, hence the four sampled

location parameters were ordered from smallest to largest.

Ten items were inconsistent with UMLVM assumptions. Violations were

either weak or strong. Discrimination parameters for the nuisance latent

variable θ∗ were drawn from ln[N(0.2, 0.05)] and ln[N(0.9, 0.01)], respectively.

Thus, a weak violation involved a smaller discrimination parameter (mean:

α∗ = e0.2 = 1.22) than a strong violation (mean: α∗ = e0.9 = 2.46). For θ∗, we

used superscripts w for weak local dependence and s for strong local

dependence, and combined each of them with either “+” for PLD or “−” for

NLD. Thus, local dependence was induced by θw+(X1 and X2), θs+(X3 and

X4), θw−(X5 and X6), and θs−(X7 and X8). A weak violation of monotonicity

(X9) involved a decreasing IRF with discrimination parameter −α†9 on

θ ∈ (−0.5, 0.5), thus affecting 38% of the sample, and a strong violation of

monotonicity (X10) involved a decreasing IRF with discrimination parameter
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Figure 6.1: Graphical representation of the multidimensional graded response

model used in Study II.
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−α†10 on θ ∈ (−1, 1), thus affecting 68% of the sample.

Dependent variables

Specificity was defined as the proportion of analyses within a design cell in

which a method correctly identified an item or an item pair to be consistent

with the UMLVM. For PLD and NLD, sensitivity was defined twofold: (Type 1)

the proportion of analyses within a design cell in which a method correctly

removed one item from a locally dependent item pair; and (Type 2) the

proportion of analyses within a design cell in which a method correctly removed

one or both items from a locally dependent item pair. Data analysis based on

the first definition aims to retain as many items as possible in the scale; that is,

it does not delete more items than necessary. Sensitivity according to the second

definition is always higher than sensitivity according to the first definition. For

violations of monotonicity, sensitivity was defined as the proportion of analyses

in which a method correctly removed an item violating monotonicity. We used

the R package CAprocedure (Straat, 2012), the program DETECT for

polytomous items (Zhang, 2007), and the R package mokken (Van der Ark,

2007) for the CA procedure, DETECT, and Mokken scale analysis, respectively.

6.4.2 Results

The CA procedure had the best specificity: The CA procedure correctly

identified 97.6 percent of the items that were consistent with the UMLVM,

DETECT identified 68.8 percent, and Mokken scale analysis 67.5 percent. Table

6.2 shows that for weak PLD, the CA procedure more often correctly removed

one item from the item set (higher Type-1 sensitivity) than DETECT, but the

CA procedure also more often failed to remove items (lower Type-2 sensitivity).

For strong PLD, the CA procedure removed one item in 71 percent of the

analyses and it produced longer item sets than DETECT and Mokken scale

analysis. For NLD, DETECT was the most sensitive method followed by the

CA procedure and Mokken scale analysis, respectively. For weak violations of

monotonicity, the CA procedure was less sensitive than DETECT and Mokken

scale analysis, but for strong violations the three methods were equally sensitive.
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Table 6.2: Sensitivity of the New Procedure, DETECT, and Mokken Scale

Analysis.

Scaling procedure Violation

PLD NLD Violation M

Type Weak Strong Weak Strong Weak Strong

New procedure

1 item 16% 71% 85% 78% 1% 84%

1 or 2 items 16% 77% 86% 100%

DETECT

1 item 3% 0% 94% 96% 50% 84%

1 or 2 items 62% 99% 97% 100%

Mokken scale analysis

1 item 24% 6% 49% 25% 35% 84%

1 or 2 items 60% 96% 82% 85%

6.5 Empirical Example: The Type D Scale-14

To study the performance of the CA procedure in real-data analysis, we used

data from 3,181 persons who responded to the Type D Scale-14 (DS14)

questionnaire (Table 6.3). The DS14 is a standard measurement instrument for

the distressed personality trait – Type D, for short – and contains two

seven-item scales measuring the traits negative affectivity (NA) and social

inhibition (SI). Three substraits called feelings of dysphoria, anxious

apprehension, and irritability drive NA, and three substraits called discomfort

in social situations, reticence, and lack of social poise drive SI (Denollet, 2005;

Svansdottir et al. 2011). Different subsets of items from the seven-item sets for

the NA-scale and the SI-scale represent the two subtrait triplets: Items NA1,

NA2, and NA3 represent feelings of dysphoria; items NA4 and NA5 represent

anxious apprehension; items NA6 and NA7 represent irritability; items SI1, SI2,

and SI3 represent discomfort in social situations; items SI4 and SI5 represent

reticence; and items SI6 and SI7 represent lack of social poise. Given the item

structure (Table 6.3), we expect that a set of items measuring the same

substrait is PLD. Next, we discuss the results of each step of the CA procedure

of the DS14 data.
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Table 6.3: Hj Coefficients for the Negative Affectivity Scale and the Social

Inhibition Scale.

Item Content Hj

Negative affectivity scale

NA1 Often feels unhappy 0.487

NA2 Takes gloomy view of things 0.555

NA3 Is often down in the dumps 0.589

NA4 Worries about unimportant things 0.430

NA5 Often worries about something 0.527

NA6 Is easily irritated 0.470

NA7 Is often in a bad mood 0.464

Social inhibition scale

SI1 Inhibited in social interactions 0.491

SI2 Difficulties starting a conversation 0.547

SI3 Does not find things to talk about 0.527

SI4 Closed kind of person 0.515

SI5 Keeps others at a distance 0.493

SI6 Makes contact easily 0.551

SI7 Often talks to strangers 0.457

Table 6.3 shows the Hj coefficients that the CA procedure uses in case of ties

with respect to the number of flags per item. Table 6.4 shows the three W indices

for the NA scale. The upper fences for the box plots of the W indices were 0,

503, and 186.43, respectively. The CA procedure flagged all items that had at

least one W (1) value larger than upper fence 0. For indices W (2) and W (3), none

of the items had W values exceeding the upper fence. Item NA3 had six flags

and was removed first. Removal of Item NA3 resulted in the vanishing of the

flag initially assigned to item pair (NA3, NA7), leaving four flags for Item NA7.

Consequently, Item NA7 was the second item that was removed. Without items

NA3 and NA7, no flags were left.

Table 6.5 shows the W (2) and W (3) values for the SI scale. All W (1) values

equalled 0. For W (2) and W (3), the upper fences were 445.02 and 203.01,

respectively. Hence, the CA procedure flagged no items. However, Item SI5 had

a W (2) value (i.e., 431.04) close to the upper fence (i.e., 445.02) and item pairs

(SI1,SI5) and (SI4,SI7) had W (3) values (i.e., 187.14 and 164.28, respectively)
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close to the upper fence (i.e., 203.01).

Table 6.5: W Indices for the Social Inhibition Scale.

W (2) W (3)

Item SI1 SI2 SI3 SI4 SI5 SI6 SI7

SI1 328.03

SI2 191.46 2.65

SI3 161.53 13.28 2.64

SI4 300.90 32.66 0 42.24

SI5 431.04 187.14 10.35 79.31 0

SI6 316.71 61.11 75.24 4.24 61.72 107.47

SI7 369.55 31.20 100.57 19.81 164.28 46.77 6.92

The CA procedure suggested to remove two items from the NA-scale (NA3

and NA7) and to keep all items in the SI-scale. From a theoretical viewpoint

(Denollet, 2005), because these items measured different subtraits it was to be

expected that these items had to be removed from the NA scale. Hence, the

CA procedure identified two of the three NA subscales, but none of the three SI

subscales.

6.6 Discussion

The CA procedure has higher specificity than DETECT and Mokken scale

analysis. Thus, the latter two methods show a tendency to remove items that

are consistent with the UMLVM, whereas the CA procedure procedure tends to

keep such items in the item set. Not rejecting fitting items is desirable, in

particular when the number of available items is small as with narrowly defined

attributes, and losing items that only deviate little from the majority might

unnecessarily reduce reliability and trait coverage.

For detecting PLD and NLD, the CA procedure has sensitivity similar to

DETECT and Mokken scale analysis. Thus, the methods are equally good at

identifying locally dependent items, which next are candidates for removal from

the scale. An advantage of the CA procedure is that it suggests removing only

one item in a locally dependent item pair, whereas DETECT and Mokken scale
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analysis usually remove both items. As a result, the CA procedure retains more

items in the item set than DETECT and Mokken scale analysis and again avoids

the unnecessary removal of items.

The CA procedure did not identify violations of monotonicity well. As local

independence and monotonicity together imply CA, the lack of power of the

CA procedure to identify items with decreasing IRFs came rather unexpectedly.

To identify decreasingness by means of conditional covariances, it appears that

along a large interval of the latent-variable scale where the population is located

the IRF of one item should be increasing and the IRF of the other item should

be decreasing. In model fit research, nonparametric regression methods of item

score on rest score should be used to estimate IRFs and to detect violations of

monotonicity (Junker & Sijtsma, 2000; Ramsay, 1991).

In the real-data example, we found an upper fence equal to 0, which implies

that even for small sample fluctuations resulting in negative covariances items

are flagged. This may happen when all items are consistent with the UMLVM.

Hence, all items with low but nonzero W values are flagged and a large number

of items is incorrectly removed. To correct the unfortunate removal of items, in

real-data analysis a minimum value for the upper fence equal to, say, 20, may be

used.

Given the results for the CA procedure, we suggest using the method as

follows. If the scale construction is exploratory, we suggest to use the

automated item selection procedure from Mokken scale analysis (Sijtsma &

Molenaar, 2002, chap. 5; Straat, Van der Ark, & Sijtsma, in press). Then, for

each identified scale the CA procedure might be used to exclude PLD and NLD

items, and nonparametric regression might be used to assess IRF monotonicity.

The program mokken (Van der Ark, 2007) may be used to run the automated

item selection procedure and next to investigate monotonicity. If the scale

construction is confirmatory, one may start right away using the CA procedure

followed by nonparametric-regression IRF assessment.

Appendix

The aim of the computational study was to estimate the probability of a

negative population covariance of the type σjk, σjk|l, and σjk|R, given either
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PLD, NLD, or a violation of monotonicity. Only if the probability is high, a

covariance is a likely candidate for detecting violations of UMLVM assumptions.

The study only considered the cases for which a nonnegative covariance could

not be proven analytically; these cases correspond to the cells in Table 6.1

containing proportions.

Method

Computational model

We assumed a 5-item test with items scored x = 0, . . . , 4. Population covariances

were derived from a two-dimensional graded response model (De Ayala, 1994).

The computational details for the population covariances can be obtained from

the first author. Vector θ = (θ, θ∗) contained a dominant latent variable θ and a

nuisance latent variable θ∗. Let δjx (j = 1, . . . , 5; x = 1, . . . , 4) be the difficulty

parameter of item j and category x, and αj = (αj, α
∗
j ) the vector of discrimination

parameters for item j. Parameter α∗j is the discrimination of item j on θ∗. The

two-dimensional graded response model is defined as

P (Xj ≥ x|θ) =
exp[αj(θ − δjx) + α∗j (θ

∗ − δjx)]
1 + exp[αj(θ − δjx) + α∗j (θ

∗ − δjx)]
.

Latent variables θ and θ∗ were standard normally distributed and correlated

zero. A histogram of 51 equidistant intervals ranging from −2.5 to 2.5

approximated the distributions of the latent variables. A pilot study showed

that item difficulty did not affect the sign of the covariances under investigation;

hence, difficulties were fixed. Let δj = (δj1, δj2, δj3, δj4). The values of the

difficulty parameters were δ1 = (−1.5,−0.75, 0.25, 1),

δ2 = (−1.25,−0.5, 0.5, 1.25), δ3 = (−1,−0.25, 0.75, 1.5), δ4 = (−0.75, 0, 1, 1.75),

and δ5 = (−0.5, 0.25, 1.25, 2).

PLD (Table 6.1, upper panel)

Items 1 and 2 were PLD, and items 3, 4, and 5 were consistent with the UMLVM.

Discrimination parameters relative to θ were positive (αj > 0, j = 1, . . . , 5). Items

1 and 2 had positive discrimination relative to θ∗ (α∗1, α∗2 > 0), and α∗3, α∗4, α∗5 = 0.

As a result, σ12|θ > 0 (the covariance depends on θ∗) and all other σjk|θ = 0.
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Discrimination parameters α3, α4, and α5 were fixed to 1.5. A pilot study

showed that discrimination parameters not related to model violations had

negligible effects on the sign of the covariances. The independent variables were

discrimination parameters α1, α2, α∗1, and α∗2. Each discrimination parameter

had 13 levels equally spaced between 0.25 to 3.25 (Table 6.6, first column),

yielding 134 = 28, 651 combinations of discrimination parameters.

The two dependent variables were: (1) the proportion of negative values for

σ13|2 and σ23|1 (in 28,651 models), which estimated the probability of finding

a negative value of σjk|l under PLD(j, l) (denoted P [σjk|l < 0|PLD(j, l)]; see

Table 6.1, second row, second column); and (2) the proportion of negative values

for σ13|R and σ23|R, which estimated both P [σjk|R < 0|PLD(j, l)] and P [σjk|R <

0|PLD(j, g)] (Table 6.1, second and third row, third column).

Table 6.6: Discrimination Parameters for Local Dependence and Violation of

Monotonicity Conditions.

Discrimination Type of violation

Parameter Local dependence Violation of monotonicity

α1 0.25, 0.5,. . . , 3.25 0.25, 0.5,. . . , 3.25

α2 0.25, 0.5,. . . , 3.25 0.25, 0.5,. . . , 3.25

α3 1.5 0.25, 0.5,. . . , 3.25

α4 1.5 1.5

α5 1.5 1.5

α∗1 0.25, 0.5,. . . , 3.25 0

α∗2 0.25, 0.5,. . . , 3.25 0

NLD (Table 6.1, middle panel)

We chose α∗2 < 0 to induce NLD(1, 2). The five dependent variables were

proportions of negative values of (1) σ12 estimating P [σjk < 0|NLD(j, k)]

(Table 6.1, fifth row, first column), (2) σ12|3 estimating P [σjk|l < 0|NLD(j, k)]

(Table 6.1, fifth row, second column), (3) σ12|R estimating

P [σjk|R < 0|NLD(j, k)] (Table 6.1, fifth row, third column), (4) σ13|2 and σ23|1
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estimating P [σjk|l < 0|NLD(j, l)] (Table 6.1, sixth row, second column), and (5)

σ13|R and σ23|R estimating P [σjk|R < 0|NLD(j, l)] (Table 6.1, sixth row, third

column).

Investigating violations of monotonicity (Table 6.1, lower panel)

Only item 3 violated monotonicity. IRF E(X3|θ) decreased either between

(−0.5; 0.5) or between (0.5; 1.5). Discrimination parameters α1, α2, and α3 had

13 levels (Table 6.6, second column), and α4 = α5 = 1.5. A pilot study showed

that the effects of α4 = α5 = 1.5 on the sign of the covariances were negligible.

The two θ-intervals and the 133 combinations of discrimination parameters

produced 4, 394 combinations in total.

The three dependent variables were the proportion of negative values in (1) σ13

and σ23, which estimated P [σjk < 0|VM(j)] (Table 6.1, seventh row, first column);

(2) σ13|2 and σ23|1, which estimated P [σjk|l < 0|VM(j)] (Table 6.1, seventh row,

second column); and (3) σ13|R and σ23|R, which estimated P [σjk|R < 0|VM(j)]

(Table 6.1, seventh row, third column).

Results and Conclusions

Table 6.1 shows the results. Different parameter choices might have resulted in

somewhat different results. We emphasize that the exact proportions of

negative covariances were not of main interest but rather the knowledge that

the proportions were considerable. Given a violation of a particular assumption,

a considerable proportion of negative values suggests that the covariance can be

used to identify the violation. Additional computations showed that for

violations of monotonicity (i.e., decreases of the IRF) across at least two

standard deviations of the latent variable, the proportion of negative values was

considerable but we considered such large decreases unrealistic and ignored the

results.



Chapter 7

Epilogue

The measurement model that is central in this thesis is the nonparametric item

response model of monotone homogeneity. The model is based on three

assumptions. Unidimensionality means that one latent variable drives the

responses to the items. Local independence means that the item scores are

independent conditional on the unidimensional latent variable. Finally,

monotonicity means that the item response function (dichotomous item) and

the item step response functions (polytomous items) are monotone

nondecreasing functions of the latent variable. The monotone homogeneity

model is important because it implies an ordinal scale for person measurement,

and because many frequently used, parametric item response models are special

cases of the more general, nonparametric monotone homogeneity model. The

generality of the monotone homogeneity model implies that if the model does

not fit the data collected by means of a test or a questionnaire, a wide array of

more specific parametric item response models also show misfit to these data

and need not be investigated anymore.

The psychometric part of the thesis deals with item selection and investigating

local independence, and contributes to the topic of fit assessment of measurement

models, in particular, the monotone homogeneity model. We discuss three topics.

In Chapter 2, we discuss the bottom-up automated item selection procedure that

Mokken (1971, pp. 190-193) proposed, and notice that the procedure suffers from

two problems. The first problem is that, after completion of the procedure,

Mokken’s automated item selection procedure may have produced a scale that

107
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is inconsistent with the definition of a Mokken scale. The second problem is

that, given the definition of a scale, Mokken’s objective was to partition a set

of items into one or more scales that contain as many items as possible but the

procedure may not attain this goal. We proposed a genetic-algorithm version of

the automated item selection procedure that solves the first problem and almost

always produces the longest scale(s) given the definition of a Mokken scale.

We recommend using the genetic-algorithm version for item selection. The

genetic-algorithm version can also be used in combination with the methodology

Hemker et al. (1995) proposed to investigate the dimensionality structure of an

item set. The methodology consists of running the automatic item selection

procedure for varying scalability lower-bound values c. In doing this, several

item-scalability values Hj are unavoidably close to at least one of the c values,

thus inducing the first problem that sometimes a scale is inconsistent with the

definition of a Mokken scale. This problem disappears when the genetic

algorithm is used, and the resulting dimensionality structure is more

trustworthy. A drawback of the genetic algorithm is that it is slow for tests

containing more than 20 items and that it does not always find the largest

possible item clusters. Brusco, Koehn, and Steinley (2011) proposed a

branch-and-bound max-cardinality algorithm version of Mokken’s automated

item selection that more easily finds the global maximum.

In Chapter 5, we discussed the stability of Mokken’s automated item selection

algorithm and the genetic-algorithm version for varying sample sizes, and found

the same results for both procedures. The results show that the difference between

values of item-scalability coefficients Hj and scalability lower-bound c has the

largest effect on the minimally required sample size. For Hj values close to c, one

needs a larger sample size (N ranging from 1250 to 1750) than for Hj values that

well exceed c (N ranging from 250 to 750). Thus, we recommend researchers to

construct and retain items having absolutely high Hj values. When the Hemker

et al. (1995) methodology for investigating the dimensionality structure of the

item set is run using the automated item selection procedure, we recommend a

minimum sample size of at least 1250 respondents. This methodology consists

of different analysis steps. In each step, the item partitioning is evaluated for

a particular value of lower bound c. Thus the methodology evaluates lower-

bound values increasing in steps of .05 from 0 to, say, .65 (Hemker et al., 1995).
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Therefore, it is unavoidable that for some of these analysis steps, lower bound c

is close to one or more Hj values. This condition requires a large sample size to

obtain stable results.

The assumption of local independence has received little attention in the

context of investigating the goodness of fit of the monotone homogeneity model.

One could argue that the use of the automated item selection procedure and its

genetic-algorithm version already lead to unidimensional scales for which local

independence probably holds, but it remains worthwhile to investigate local

independence separately to find out whether this investigation produces

additional and possibly interesting information about item structure that item

selection does not pick up. In Chapter 6, we discussed how the property of

conditional association can be used to investigate local independence. We

proposed a new procedure, called CA procedure, that uses three special cases of

conditional association to identify a set of locally independent items. The

results show that CA procedure produces larger sets of items than Mokken’s

automated item selection procedure and method DETECT. We concluded that

using Mokken’s automated item selection procedure to produce scales in

combination with CA procedure to analyze each separate scale to identify

locally dependent items that might be removed from the scale, was not a

fruitful strategy. More research is needed to show how CA procedure may be

used to assess the fit of the monotone homogeneity model.

In chapters 3 and 4, we discussed real-data applications of the automated

item selection procedure and its genetic-algorithm version. In Chapter 3, we

investigated the dimensionality structure of the DS14 (Denollet, 2000, 2005),

which is a questionnaire that measures distressed (Type D) personality. In

Chapter 4, we investigated the HADS (Zigmond & Snaith, 1983), which is a

questionnaire that measures anxiety and depression in physically ill hospital

patients. Both questionnaires have become the topic of debate in the medical,

clinical and health psychological literature. The debate about the DS14

concentrates on which of three different factor models that each describe the

hierarchical structure of the DS14 best represents the true dimensionality

structure. The Hemker et al. (1995) methodology that used the

genetic-algorithm version of Mokken’s automated item selection procedure

supported the theoretical three-level hierarchical structure of the DS14. The
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debate about the HADS concentrates on the disagreement among different

studies with respect to the dimensionality structure of the HADS. The Hemker

et al. (1995) methodology revealed that the different dimensionality structures

that different studies found represent different levels of a hierarchical structure.

Our analyses with respect to the DS14 and the HADS illuminated two

problems that were both ignored or missed in the debates in the relevant

literature. The first problem is that the outcomes of dimensionality research

strongly depend on the method used and the population in which the research

was done. By using the Hemker et al. (1995) methodology, we revealed the

hierarchical structure of the data and showed that methods frequently reported

in the relevant literature, which are Rasch analysis, exploratory factor analysis,

and confirmatory factor analysis, each assessed only one particular level of the

hierarchical HADS structure but never revealed all levels. The second problem

seems to be that questionnaires such as the DS14 and the HADS lack a

well-tested theoretical foundation, and are in strong need of such a foundation,

which then is leading in instrument construction. In the absence of a theoretical

foundation, the items in a questionnaire define the attribute that the

questionnaire purports to measure. However, a well-tested theory should define

the attribute and guide the operationalization into items (Sijtsma, 2012, in

press). This strategy in which theory guides instrument construction avoids

debates about the “true” dimensionality structure that in fact discuss

methodological artifacts.
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Summary

In Chapter 1, we introduced a general, nonparametric item response theory (IRT)

model, known as the monotone homogeneity model. The monotone homogeneity

model implies the measurement of individuals on an ordinal scale. If the monotone

homogeneity model fits the data collected by means of a test or a questionnaire,

the test or questionnaire is appropriate for ordinal measurement. Examples are

personnel selection problems in which the applicants are selected that have the

highest scores on, for example, an intelligence test, and the clinical context in

which patients are selected for treatment that have the highest scores on, for

example, an anxiety test.

The monotone homogeneity model assumes that the relation between response

probabilities on individual items and the latent variable, also known as the item

response function, is subject to order restrictions. The order restriction is that

the item response function is monotone nondecreasing. Parametric IRT models

assume a monotone, parametric item response function, such as the logistic, and

are special cases of the monotone homogeneity model. Hence, misfit of monotone

homogeneity implies that parametric IRT models that are special cases also show

misfit. Monotone homogeneity is evaluated by means of observable consequences

of the model, such as scalability coefficients that have values the model restricts

to the interval [0, 1], and conditional association. In this thesis, we discuss item

selection methods that use scalability coefficients to identify clusters of items that

measure one latent variable, and we discuss the property of conditional association

to assess the assumption of local independence of the items in the test or the

questionnaire. We also assess the usefulness of the methods for investigating the

goodness of fit of the model of monotone homogeneity model to several real-data

sets.

In Chapter 2, we discussed the bottom-up, automated item selection
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procedure that Mokken (1971, pp. 190-193) proposed. The procedure selects

item sets that satisfy the definition of a Mokken scale. The procedure is known

to suffer from two problems. First, due to its bottom-up character the

procedure sometimes selects items that are inconsistent with the definition of a

Mokken scale. Second, the procedure sometimes produces Mokken scales that

are consistent with the definition of a scale but that are not optimal given the

objective that selected Mokken scales should contain as many items as possible

given the definition of a Mokken scale. Hence, the procedure may sometimes

produce a local maximum.

We proposed a genetic algorithm that avoids the first problem and often

avoids the second problem. Thus, each scale identified is a Mokken scale and

often it contains the maximum number of items the side conditions of the

selection problem allow. We used a simulation study to compare the automated

item selection procedure and its genetic-algorithm version with respect to two

questions: Which item selection method best produces item clusters consistent

with the goal to find Mokken scales of maximum length, formalized as an

objective function in an optimization problem; and which item selection method

best retrieves the true dimensionality of simulated data. We found that the

genetic-algorithm version of the item selection procedure performs better than

the traditional bottom-up version with respect to both questions, in particular if

the item-scalability values were close to the lower bound criterion for admitting

items to a scale. We used the two item selection procedures to analyze the data

collected by means of the communality scale of the Adjective Checklist, and

found that the genetic-algorithm version resulted in one scale containing seven

items and the bottom-up version resulted in two scales containing four items.

We concluded that the genetic-algorithm version provides an improvement of

the bottom-up version of Mokken’s automated item selection procedure.

In Chapter 3, we used the bottom-up version and the genetic-algorithm

version to investigate the dimensionality structure of the Type-D Scale 14

(DS14). The dimensionality structure of the DS14 is subject to debate. The

DS14 has a three-level hierarchical structure: At the high level, the DS14

measures type D personality; at the medium level, the DS14 measures the

personality traits of negative affectivity and social inhibition. At the low level,

negative affectivity encompasses the attributes of dysphoria, anxiety, and
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irritability, and social inhibition encompasses the attributes of social discomfort,

reticence, and lack of social poise. In the literature, three models that describe

the internal structure of the DS14 are discussed. In addition to Mokken’s

automated item selection procedure and its genetic-algorithm version, we used

exploratory factor analysis and confirmatory factor analysis to investigate which

of the three models best describes the internal structure of the DS14. The

results supported the three-level hierarchical model as a conceptual model for

Type D personality, but only the genetic-algorithm version of Mokken’s

automated item selection procedure identified the expected six low-level scales.

We concluded that the item structure of the DS14 reflects the theoretical

three-level hierarchy.

In Chapter 4, we used Mokken’s automated item selection procedure and the

genetic-algorithm version to analyze data collected by means of the Hospital

Anxiety and Depression Scale (HADS). A recent review found that researchers

using different dimensionality assessment methods and investigating the HADS

dimensionality in different populations produced different dimensionality

structures. We showed that the different dimensionality structures are due to a

methodological artifact that is effective as a result of the HADS’ hierarchical

structure. Using a methodology proposed by Hemker et al. (1995), both item

selection procedures showed the different levels of the hierarchical structure of

the HADS. Based on different analysis steps (Hemker et al., 1995), the two item

selection procedures identified one scale at the high level, measuring

psychological distress, and two scales at the low level, measuring anxiety and

depression, respectively. Confirmatory Mokken scale analysis showed a

partitioning of the 14 HADS items into three scales. We concluded that the

Hemker et al. (1995) methodology is suited to identify the different levels of a

hierarchical trait structure, but that several other psychometric methods, such

as factor analysis, only identify one level of the hierarchy. Thus, other methods

may provide misleading information because they miss the hierarchical

structure altogether.

In Chapter 5, we investigated minimum sample-size requirements for the

bottom-up and genetic-algorithm versions of Mokken’s item selection procedure.

In practice, researchers reported having used samples ranging from 133 to

15,022 respondents. We investigated the relevant factors that determine the
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sample size minimally required to assign items to the correct Mokken scales. We

found that the most relevant factor was the difference between the

item-scalability value and the lower bound value it must minimally attain for

the item to be admitted to the scale. If the item-scalability value corresponded

to this lower bound value, which suggests that the item is a borderline-case for

selection, the minimally required sample size for accurate item selection ranged

from 1250 to 1750 respondents. If the item-scalability values well exceeded the

lower bound, which made them much more appropriate candidates for selection,

the minimally required sample size for accurate item selection ranged from 250

to 500 respondents. Hence, for items that have item-scalability values well

above the minimum value required for admittance to the scale, relatively small

sample sizes suffice for accurate assignment of items to Mokken scales.

In Chapter 6, we investigated the observable property of the monotone

homogeneity model known as conditional association (CA). We specialized

conditional association into three covariances that must be nonnegative if the

monotone homogeneity model is the true model for the data; investigated in a

computational study whether the signs of the covariances were helpful to

identify violations of the monotone homogeneity model; and used the results of

the computational study to define the “CA procedure”. CA procedure aims at

identifying violations of local independence and removing items from locally

dependent item pairs so as to obtain a locally independent set of items. We

simulated data which we used to investigate whether CA procedure, Mokken’s

automated bottom-up item selection procedure and program DETECT were

capable of identifying violations of the local independence assumption and

violations of the monotonicity assumption. We found that CA procedure

produced larger locally independent item sets than Mokken’s automated item

selection procedure and DETECT, but also that CA procedure was not

sensitive for violations of monotonicity. We used CA procedure to analyze the

DS14 data set that was investigated in Chapter 3, and found that CA procedure

identified locally dependent items in two low-level scales. We concluded that

CA procedure is sensitive to violations of local independence and specific for

items that are consistent with the monotone homogeneity model.

Chapter 7 gives an overview of the results of this thesis. We discussed ideas

for future research that the results suggested.



Samenvatting

In hoofdstuk 1 introduceren wij een algemeen nonparametrisch

item-responstheorie (IRT) model, dat bekendstaat als het model van monotone

homogeniteit. Het model van monotone homogeniteit laat meting van personen

op een ordinale schaal toe. Indien het model van monotone homogeniteit bij de

door middel van een test of vragenlijst verzamelde data past, is de test of

vragenlijst daarmee geschikt voor ordinale meting. Voorbeelden zijn

personeelsselectieproblemen waarbij de sollicitanten worden geselecteerd die de

hoogste score hebben op, bijvoorbeeld, een intelligentietest, en de klinische

context waarin patiënten voor een behandeling worden geselecteerd op basis van

de hoogste score op, bijvoorbeeld, een test die angststoornis meet.

Het model van monotone homogeniteit veronderstelt dat de relatie tussen de

responskansen op een item en de latente variabele, die bekendstaat als de

itemresponsfunctie, een gerestricteerde ordening heeft. De orderestrictie is dat

de itemresponsfunctie monotoon niet-dalend is. Parametrische IRT modellen

veronderstellen een monotone, parametrische itemresponsfunctie, bijvoorbeeld

een logistische functie, en zijn daarom speciale gevallen van het model van

monotone homogeniteit. Dit betekent dat wanneer het model van monotone

homogeniteit niet bij de data past, de parametrische modellen de data evenmin

adequaat beschrijven. De passing van het model van monotone homogeniteit bij

de data wordt onderzocht door middel van observeerbare eigenschappen van het

model, zoals schaalbaarheidscoëfficiënten die onder monotone homogeniteit

waarden hebben in het interval [0,1] en conditionele associatie. In dit

proefschrift, bespreken wij itemselectiemethoden die gebruikmaken van

schaalbaarheidscoëfficiënten om itemclusters die dezelfde latente variabele

meten te identificeren, en ook bespreken wij de eigenschap van conditionele

associatie waarmee bij de items in een test of vragenlijst de aanname van lokale
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onafhankelijkheid kan worden onderzocht. Wij onderzoeken ook de

bruikbaarheid van deze methoden voor het nagaan van de passing van het

model van monotone homogeniteit bij enkele echte datasets.

In hoofdstuk 2 beschouwen wij de door Mokken (1971, pp. 190-193)

voorgestelde geautomatiseerde bottom-up itemselectieprocedure. De procedure

selecteert verzamelingen van items die voldoen aan de definitie van een

Mokkenschaal. De procedure kent twee problemen. Ten eerste selecteert de

procedure, omdat het een bottom-up proces betreft, soms items die inconsistent

zijn met de definitie van een Mokkenschaal. Ten tweede vindt de procedure

soms een Mokkenschaal die wel voldoet aan de definitie van een schaal, maar die

niet optimaal is gegeven het doel om Mokkenschalen te vinden die zoveel

mogelijk items bevatten. De procedure vindt soms dus een lokaal maximum.

Wij stellen een genetisch algoritme voor dat het eerste probleem

gegarandeert vermijdt en het tweede probleem bijna altijd vermijdt. Iedere

gëıdentificeerde schaal is dus een Mokkenschaal en bevat bijna altijd het grootst

mogelijke aantal items die de randvoorwaarden van het selectieprobleem

toestaan. Wij deden een simulatiestudie om Mokken’s geautomatiseerde

itemselectie procedure te vergelijken met de genetisch-algoritme variant met

betrekking tot twee onderzoeksvragen: Welke itemselectiemethode vindt

itemclusters die het best overeenkomen met het doel om Mokkenschalen met

zoveel mogelijk items te vinden, geformaliseerd als een doelfunctie voor een

optimalisatieprobleem; en welke itemselectiemethode vindt het beste de ware

dimensionaliteit van de gesimuleerde data. Wij vonden met betrekking tot beide

onderzoeksvragen dat de itemselectieprocedure gebaseerd op een genetisch

algoritme beter presteert dan de traditionele bottom-up variant, en dit gebeurt

vooral als de waarden voor itemschaalbaarheid ongeveer even groot zijn als het

ondergrenscriterium voor het toelaten van items tot een schaal. Wij gebruikten

beide varianten van Mokken’s itemselectieprocedure om data die waren

verzameld met de communaliteitsschaal van de Adjective Checklist te

analyseren. Het genetisch algoritme vond een schaal die zeven items bevat en de

bottom-up variant vond twee schalen die ieder vier items bevatten. Wij

concludeerden dat de genetisch-algoritme variant een verbetering biedt van de

bottom-up variant van Mokken’s geautomatiseerde itemselectieprocedure.

In hoofdstuk 3 gebruiken wij de twee varianten van Mokken’s
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geautomatiseerde itemselectieprocedure om de dimensionaliteitsstructuur van de

Type-D Scale 14 (DS14) te onderzoeken. De dimensionaliteitsstructuur van de

DS14 wordt in de vakliteratuur betwist. Theoretisch heeft de DS14 een

hiërarchische structuur met drie niveaus: Op het hoge niveau meet de DS14

type-D persoonlijkheid. Op het middenniveau meet de DS14 de

persoonlijkheidstrekken van negatieve affectiviteit en sociale inhibitie. Op het

lage niveau bestaat negative affectiviteit uit de attributen dysforie, bezorgdheid,

en prikkelbaarheid en sociale inhibitie uit de attributen sociaal ongemak,

geslotenheid, en een gebrek aan zelfverzekerdheid in sociale situaties. In de

literatuur worden drie modellen besproken die de interne structuur van de DS14

beschrijven. Naast Mokken’s geautomatiseerde itemselectieprocedure en de

genetisch-algoritme variant, gebruikten wij exploratieve factoranalyse en

confirmatorische factoranalyse om te onderzoeken welk model de interne

structuur van de DS14 het best beschrijft. De resultaten ondersteunden de

theoretische hiërarchische structuur met drie niveaus als een geschikt

conceptueel model voor Type D persoonlijkheid, maar alleen de

genetisch-algoritme variant identificeerde de zes schalen op het lage niveau. Wij

concludeerden dat de itemstructuur van de DS14 de theoretische hiërarchische

structuur met drie niveaus weerspiegelt.

In hoofdstuk 4 gebruiken wij Mokken’s geautomatiseerde

itemselectieprocedure en de genetisch-algoritme versie om door middel van de

Hospital Anxiety and Depression Scale (HADS) verzamelde data te analyseren.

In een recent overzichtsartikel werd geconcludeerd dat onderzoekers, die

verschillende methoden voor dimensionaliteitsonderzoek gebruikten en die de

dimensionaliteit van de HADS onderzochten in verschillende populaties,

verschillende dimensionaliteitsstructuren vonden voor de HADS. Wij toonden

aan dat de verschillende dimensionaliteitsstructuren kunnen worden opgevat als

een methodologisch artefact. In feite heeft de HADS een hiërarchische

structuur. Door gebruik te maken van de door Hemker et al. (1995)

voorgestelde methodologie, lieten beide geautomatiseerde itemselectieprocedures

verschillende niveaus van de hiërarchische structuur van de HADS zien. Op

basis van verschillende stappen in de analyse (Hemker et al., 1995), vonden

beide itemselectieprocedures een schaal op het hoge niveau, die psychologisch

leed meet, en twee schalen op het lage niveau, die respectievelijk angststoornis
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en depressie meten. Confirmatorische Mokkenschaalanalyse bevestigde een

indeling van de 14 HADS items in drie schalen. Wij concludeerden dat de

methodologie van Hemker et al. (1995) de verschillende niveaus van een

hiërarchische structuur in kaart kan brengen, terwijl diverse andere

psychometrische methoden, waaronder factoranalyse, slechts een niveau van een

hiërarchische structuur laten zien. Vanwege het negeren van de hiërarchische

structuur kunnen deze andere methoden misleidende informatie geven.

Hoofdstuk 5 behelst een onderzoek naar de minimaal vereiste

steekproefomvang voor de bottom-up en de genetisch-algoritme varianten van

Mokken’s geautomatiseerde itemselectieprocedure. In de praktijk passen

onderzoekers Mokkenschaalanalyse toe op steekproeven in grootte variërend van

133 tot 15.022 respondenten. Wij onderzochten de relevante factoren die van

invloed zijn op de minimaal vereiste steekproefomvang die nodig is om de items

aan de juiste schalen toe te wijzen. De belangrijkste factor was het verschil

tussen de waarde van de gevonden itemschaalbaarheidscoëfficiënt en de waarde

die een itemschaalbaarheidscoëfficiënt minimaal moet hebben voordat het item

in een schaal kan worden geselecteerd. Indien de waarde van itemschaalbaarheid

overeenkwam met de waarde van de ondergrens, vonden wij dat de minimaal

vereiste steekproefgrootte voor nauwkeurige itemselectie tussen 1250 en 1750

respondenten lag. Indien de waarde van de itemschaalbaarheidscoëfficiënt

beduidend groter was dan de waarde voor de ondergrens, waardoor de items

veel geschikter zijn voor selectie, vonden wij dat de minimaal vereiste

steekproefgrootte voor nauwkeurige itemselectie tussen 250 en 500 respondenten

lag. Wij concludeerden dat relatief kleine steekproefgroottes voldoen om items

nauwkeurig aan Mokkenschalen toe te kennen indien de waarden van de

itemschaalbaarheidscoëfficiënt duidelijk boven de ondergrens liggen.

Hoofdstuk 6 betreft onderzoek naar de observeerbare eigenschap van het

model van monotone homogeniteit die bekendstaat als conditionele associatie.

Wij selecteerden drie covarianties die speciale gevallen zijn van conditionele

associatie. De drie covarianties zijn niet-negatief indien het model van

monotone homogeniteit het correcte model is voor de data. In een rekenkundige

studie onderzochten wij of covarianties inderdaad negatief zijn als het model

niet bij de data past en hoe geschikt die eigenschap dus is om schendingen van

monotone homogeniteit te identificeren. Op basis van de resultaten van dit
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onderzoek definieerden wij de “CA procedure”. CA procedure heeft tot doel om

schendingen van lokale onafhankelijkheid te identificeren en items te verwijderen

die deel uitmaken van een lokaal afhankelijk itempaar. Het resultaat is een

verzameling van lokaal onafhankelijke items. Wij simuleerden data die wij

gebruikten om te onderzoeken of CA procedure, Mokken’s geautomatiseerde

bottom-up itemselectieprocedure en DETECT in staat waren om schendingen

van lokale onafhankelijkheid en monotonie in de data te identificeren. De

resultaten lieten zien dat CA procedure grotere verzamelingen van lokaal

onafhankelijke items vond dan Mokken’s geautomatiseerde itemselectie-

procedure en DETECT, maar niet gevoelig was voor schendingen van

monotonie. Wij pasten CA procedure toe op de DS14 data die wij onderzochten

in hoofdstuk 3 en vonden dat CA procedure lokaal afhankelijke items in twee

schalen op het lage niveau identificeerde. Wij concludeerden dat CA procedure

gevoelig is voor schendingen van lokale onafhankelijkheid en specifiek voor items

die consistent zijn met het model van monotone homogeniteit.

Hoofdstuk 7 geeft een overzicht van de gevonden resultaten in dit

proefschrift. Naar aanleiding van deze resultaten bespreken wij ideeën voor

toekomstig onderzoek.
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