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ABSTRACT An adaptive estimation procedure is presented for tracking changing pa­rameters, such as abilities of students. The procedure is based on a Me­tropolis algorithm, a Markov chain Monte Carlo method involving an old state, a new state, and a stochastic innovation such that the Markov chain converges to an invariant distribution. The stochastic innovation is par­tially provided by responses of persons to items, with the Markov chain as a dynamic estimator of ability. Item responses are incorporated in two differ­ent places. First, item responses are incorporated as stochastic innovations of the Metropolis candidate distribution, with a discrete Markov chain as an alternative estimate of ability. Second, item responses are used as ac­ceptance variables. A simulation study is provided to demonstrate some properties of these adaptive estimation procedures in monitoring student abilities. Several applications and extensions are discussed. 
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1. INTRODUCTION The dominant tradition in statistical inference, especially parameter esti­mation, assumes that parameters are fixed unknown quantities, the value of which is to be estimated. In the field of educational measurement, however, it typically holds true that parameters change over time. For example, the point of providing education to students is exactly to change the value of their ability parameter. As long as observations are collected in a relatively short period of time, any changes in the abilities of students during testing can, probably, safely be ignored. However, when testing extends over a long period of time, changes in the ability of the students seem inevitable. In this paper we consider how parameter estimation may account for possible changes in the value of a parameter. A straightforward approach to dealing with parameter change is to de­velop explicit models for exactly how the parameters change. That is, a (latent) growth model (Rao, 1958; Stoel, van den Wittenboer, & Hox, 2004) or other explicit models for change (Visser, Raijmakers, & van der Maas, 2009), can be considered. Although such models are certainly valuable, their scope is limited to situations in which a growth model of limited complexity is suitable. However, in many contexts it is not well defined how devel­opment or growth takes place (e.g., in a student monitoring system where students are frequently administered a test over period of a couple of years). In this paper we consider tracking systems that aim to follow development through time, rather than model it. 
1.1. A simple exaniple. The type of system we will consider can be il­lustrated with a simple coin tossing example. To put the example in an educational measurement context we consider the situation where the same student repeatedly and independently answers the to same item. The re­sponse of the student with ability 0 on the i-th occasion is denoted with the Bernoulli random variable Xi: 
(1) 

exp(O) P(Xi = 1) = (O) = p • 1 +exp 
Formally, X is an independent and identically distributed (iid) sequence of Bernoulli random variables. The obvious estimate of the parameter p is the sample mean: 
(2) 

- 1� p X n = - L...- Xi -+ P , n i=l which has many desirable statistical properties. It is unbiased, consistent, and best asymptotically normal, to name a few of these. If we consider a situation where at some trial j the coin is replaced by a different one, or framed in the context of our educational measurement inter­pretation of the coin tossing experiment, the ability of the student changes: 
(3) 

if i < j if i ?. j 
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As a consequence, our naive estimator looses many of its desirable statistical properties. If j is large enough, it will take a very long time before the sample mean becomes even close to p�. To appreciate why this is the case we express the sample mean, based on a sample of size n, as a function of the sample mean, based on a sample of size n - l, and a new observation: 
- n-l- 1 (4) Xn = --Xn-1 + -Xn 

n n It is readily seen that the weight of new observations decreases with n, which is a good thing if the random variables involved are iid, but prevents the estimator from adapting to changes in the true value of the parameter. An obvious way to overcome this problem is to give a fixed weight to both terms: 
(5) Such an estimator has very different operating characteristics. It is clearly not consistent, nor is it necessarily unbiased. If the value of the parameter does change, however, the estimator will quickly adapt to the new value, where the speed of adaptation is governed by the value of a. Figure 1 offers an illustration of how much faster Xn adapts to a parameter change than does Xn. 
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FIGURE 1. True parameter value (dotted line), sample mean (dashed line) and our alternative estimator (solid line) where 
a= .02. 

Both Xn and Xn form Markov chains. That is, their present value is inde­pendent of the past values conditionally on the previous value. However, Xn converges to a point whereas Xn converges to a non degenerate invariant distribution. Some simple analysis shows that if the value of the param­eter does not change, then all moments of this invariant distribution can be determined. Put differently, as long as the value of the parameter does not change, Xn converges to a known invariant distribution. Hence, if the Markov chain has converged to its stationary distribution and the value of the parameter has not changed, we may use the Markov chain to construct 
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an unbiased and consistent estimator of the parameter. If on the other hand, the value of the parameter does change, the Markov chain will adapt to the new value and will provide us with information on the nature of the change in the parameter value. Later on we illustrate how these characteristics can be used in an educational measurement context. 
1.2. The Elo rating system. Problems concerning changing abilities have appeared in other fields as well. A lot of work has been done in the field of measuring chess expertise. Already in 1929, Zermelo1 introduced a model we now know as the BTL model (Bradley & Terry, 1952; Luce, 1959) to measure chess ability. The influential work of Ela (1978) describes several methods to deal with large number of chess games. His method was adopted by the World Chess Federation (FIDE) and several national chess federations, such 
as the United States Chess Federation (USCF). Chess games are regarded as paired comparisons, where two objects (players) are compared (play a match) and one is preferred over the other (wins or loses)2

. Here we note the relation to an educational measurement context, where students answer items. Every answered item can be regarded as a student-item pair, where we might be interested in estimating either the ability of the students, the difficulty of the items, or both at the same time. With the use of such pairs, we can describe traditional examinations with a fixed item set, adaptive tests and tests 'that are administered over time. The relation to educational measurement allows us to use results from research that concerns the Ela rating system. The Ela rating system is a numerical system in which each player receives a rating which may be converted into a winning probability. It consists of several different forms with corresponding formulas. Below the Current 
Rating Formula for Continuous Measurement is presented (1978, p. 25). 
(6) 

Rn is the new rating after the event. 
R0 is the pre-event rating. 
K is the rating point value of a single game score. 
W is the actual game score, each win counting 1, each draw 1/2. 
We is the expected game score based on R0 . The player's rating R can be updated after every match, allowing for continuous measurement. In Formula (6), the possible values of W are {O, 0.5, 1}, and the positive sign of We indicates that in every case a player gains points if he wins, and looses points if he loses. The amount of rating points that are at stake depends on the- difference between the actual game score Wand the expected game score We , multiplied by K. Consequently, a player competing a much higher rated opponent risks dropping few points when losing the game, with the possibility of gaining many points when 

1We thank Gerhard Fischer for calling attention to the work of Ernst Zermelo. 
2Draws are ignored for the sake of simplicity 
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winning. The opposite holds for the higher rated player competing with this lower rated opponent. Properties of Elo's sytem and alternatives are extensively discussed by Batchelder and his co-workers in a series of papers (Batchelder & Bershad, 1979; Batchelder & Simpson, 1989; Batchelder, Bershad, & Simpson, 1992). Many extensions to Elo's system are available, for example by including parameters that vary with time (Fahrmeir & Tutz, 1994; Glickman, 1999), allow for sudden shifts in ability (Glickman, 2001), or include team ability estimations in a large scale gaming application (Herbrich, Minka, & Graepel, 2006). Formula (6) bases its updated state on an observed outcome and a previ­ous state, satisfying the Markov property. Specifically, it satisfies a discrete trial, inhomogeneous Markov process with on any trial two possible transi­tions, concerning a win or a loss (Batchelder et al., 1992, p. 194-195). A player's past is only represented in the previous ability estimate, which al­lows for quick adaptation to changing ability levels. Due to this property, estimates in the rating system do not converge to points, but remain noisy. There are several desirable properties of Elo's system to follow develop­ment through time in an educational measurement context. It it a simple, self correcting system which simultaneously tracks the ability of two oppos­ing chess players, or of students and items at the same time. In the field of chess ability estimation, it is widely accepted, applied and studied. However, if we regard the rating system as a measurement model we find that properties we desire from an estimator, such as unbiasedness and consistency are not granted. Bias is discussed in Brinkhuis and Maris (2009), though the extent is limited in size and symmetric. Batchelder and Bershad (1979) suggest an unbiased alternative to Elo's formula for sequential estimation, a simple linear difference system: 
(7) 

(8) 

.Xt+l = (1 - a)Xt + aXt+l 
= Xt + a(Xt+1 - Xt) 

The linear difference system needs an unbiased estimator of ability to pro­duce unbiased results. Formula (7) displays a linear difference equation with constant coefficients and random input Xt+1 (1979, p. 53). It is rewritten in Formula (8) in the form of Elo's rating system in Formula (6). Rating .Xt+1 is a new rating, being assigned to each player after a tournament. Xt is an estimate of a players true rating, which might change over time due to update Xt+l · The parameter a is a weighing parameter, bounded between zero and unity. The purpose of this paper is to apply well known methods from the field of Markov Chain Monte Carlo (MCMC) for the purpose of adaptive estimation. We will first discuss a Metropolis type of system as a flexible solution to adaptive estimation in the next paragraph. In the Metropolis system we have two logical places in which we can insert real item responses. We will discuss in two seperate paragraphs item responses as stochastic innovations, and item responses as acceptance variables in the Metropolis system. Both lead to different systems which we discuss and apply to simulations in the 
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succeeding paragraphs. Finally, we will discuss the results of this paper, and suggest extensions and possible applications in several fields. 

2. A METROPOLIS TYPE OF SYSTEM Basically, MCMC methods work in the following general way. A new state is determined from the old state and some stochastic innovation, in such a way that the resulting Markov chain converges to a, typically very compli­cated, invariant distribution. In adaptive estimation, an obvious approach is to let the stochastic innovation be determined, partially, by the responses of students to items. ff the random variable Xi denotes the current state of our dynamic estimator, l'i denotes the response to the i-th administered item, and we assume, for the moment, that the ability parameter 0 does not change over time, we may schematically represent the estimation procedure as follows: 0 0 0 () .i .i .i .i (9) Y1 ½ Y3 Yoo .i .i .i .i 
Xo -+ X1 -+ X2 -+ X3 -+ ... -+ Xoo Our ultimate interest is in the distribution of X00 . Specifically, we require that X00 has a known distribution for which () is the location parameter: 

(10) P(X00 � x) = F(x - B) = Fo(x) 
where F is a distribution function that does not depend on any unknown parameters. The Metropolis algorithm (Metropolis et al., 1953; Chib & Greenberg, 1995) from MCMC provides a flexible and powerful way to construct such a Markov chain with a given invariant distribution. Formally, the Metropolis­Hastings (Hastings, 1970) algorithm may be characterized as follows: 
(11) {Xt if zt = 0 Xt+1 ~ . ~ Xt ~ Fo(·) Yt lfzt= l 
where Xt is our estimator of ability, a random variable from distribution f, and Yt is a random variable from the proposal distribution g. The value of Zt determines whether the proposal value Yt is accepted or rejected. The algorithm is called the Metropolis algorithm if the distribution of Yt condi­tional on Xt-1 is symmetric about the value Xt, and the Hastings algorithm otherwise. 
2.1. A Formal Characterization. As a courtesy to the reader we work out the consequences of this formal characterization in some detail, for the case where Xt, and also Yt, is a real-valued random variable3. The schematic 

3If we regard discrete distributions, integrals in formulas are simply replaced by 
summations. 
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representation of the Metropolis-Hastings algorithm given above translates into the following formal characterization: 
F(x - 0) = [: [: 1r(s, t)f(s - 0)g(tls)dtds 

+ I: 1-: [1 - 1r(s, t)]f(s - 0)g(tls)dtds 

where 1r(xt, Yt) = P(zt = 1 lxt, yt) is the acceptance probability (i.e., the probability that we accept Yt as a draw from Fe) and g denotes the proposal density, the distribution of Yt conditionally on the value of Xt. With a change in notation, and a change in the order of integration for the second integral we can express this equation as follows: 
F(x - 0) = [: [: 1r(s, t)J(s - 0)g(tls)dtds 

+ [: 1-: [1 - 1r(t, s)]f(t - 0)g(s1t)dtds 

which can further be simplified to y ield: 
F(x - 0) [: [: 1r(s, t)f(s - 0)g(tls)dtds 

+ F(x - 0) - J:
00 
I: 1r(t, s)f(t - 0)g(s1t)dtds 

from which we obtain the following condition: 
(12) [: I: 1r(s, t)f(s-0)g(t1s)dtds =[:I: 1r(t, s)f(t-0)g(slt)dtds 

Clearly, if the integrands on the left and right hand side are equal, the condition will hold, which gives us the following detailed balance condition (Chib & Greenberg, 1995): 
(13) 1r(s, t)f(s - 0)g(tls) = 1r(t, s)f(t - B)g(slt) 

It is important to observe that for given f and g the detailed balance con­dition does not admit of a single unique solution for 1r. For instance, both the functions: 
(14) 
and 
(15) 

. [ f(t-O)g(sit)] 1r(s, t) = mm 1, f(s - O)g(tls) 

1r s t = 
f (t - e)g(slt) ( ' ) 

f(t - 0)g(slt) + f(s - 0)g(tls) 

meet the detailed balance condition. Observe that if we consider a Metrop­olis algorithm, neither of these expressions for the acceptance probability 7r depend on the functional form of the proposal density g. 
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2.2. Including item responses. A Metropolis algorithm involves three distributions: the invariant distribution f, the distribution g of proposal values conditionally on the current state of the Markov chain, and the accep­tance probability 1r conditionally on both the proposal value and the current state of the Markov chain. For the purpose of adaptive estimation, it is im­portant to observe that only the distribution of item responses is given, and all three distributions needed for the construction of a Metropolis algorithm may be chosen freely, as long as they meet the symmetry condition on g and 1r satisfies the detailed balance condition. Since the invariant distribution f is assumed to be independent of the items that are administered, we are left with two choices for incorporating the effect of item responses. First, we may choose to use item responses as stochastic innovations, where they determine the proposal distributions g which yields discrete distributions for both f and g. Second, we may use item responses to determine acceptance or rejection directly, as acceptance variables 1r. Both options are developed below. 

3. ITEM RESPONSES AS STOCHASTIC INNOVATIONS The first use of the Metropolis algorithm for adaptive estimation relates back directly to the coin tossing example from the introduction. The only difference is that in test administration, at each trial a different coin is being tossed. Specifically, the i-th item that is being administered has difficulty 8i, and hence the probability of a correct response equals: 
(16) P(l'i = 1) = exp(O - oi) 1 + exp(0 - 8i) Put differently, the coin tossing example from the introduction involves in­dependent and identically distributed (iid) replications of a Bernoulli ran­dom variable, whereas test administration involves independent and non­identically distributed (inid) Bernoulli random variables. We show how we may use these inid Bernoulli variables to construct a sequence of dependent identically distributed (did) Bernoulli random variables. That is, we turn independent answers to different questions into dependent answers to the same question using a Metropolis algorithm. The state Xt of the Markov chain we construct is assumed to be governed by an invariant Bernoulli distribution with parameter: exp(0) (l7) p = 1 + exp(O) The t-th item response of a person is the proposal value Yt, and is governed by the following Bernoulli distribution: 

( ) exp(O - 81(t)) (18) P Yt = 1 = -----1 + exp(O - 81(t)) where I(t) gives the index of the item that is administered at time t. Clearly, if Yt equals Xt, the new state of the Markov chain will automatically be equal to its previous value, so that the choice of 1r in that case is of no ,consequence. If however, Yt does not equal Xt the choice of 1r becomes important. If we consider the different ways the state of our Markov chain at time t+ 1 can be 
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equal to one, and require that its distribution is Bernoulli with parameter p we obtain that: 
(19) P(Xt+i = 1) = 

exp(0) 1 + exp(0) 

= [1 - 1r(l 0)] exp(0) 1 
' 

1 +  exp(0) 1 + exp(0 - <>r(t)) 1 exp(0 - i>1(t)) 
+ 1r(O, l) 1 + exp(0) 1 + exp(0 - <>1(t)) 

(l l) exp(0) exp(0 - i>1(t)) 
+ 7r ' 1 + exp(0) 1 + exp(0 - <>1(t)) 

which, if 1r(l, 1) is chosen to equal unity, gives the following sufficient detailed balance condition: 
(20) 

(o l) 1 exp(0 - <>r(t)) _ (l 0) exp(0) . 1 7r ' 1 + exp(0) 1 + exp(O - <>1(t)) - 1r ' 1 + exp(0) 1 + exp(0 - <>1(t)) 
which can be simplified to yield: 
(21) 1r(0, 1) exp(-i>1(t)) = 1r(l, 0) 
We make the following choice, consistent with the detailed balance condition: 
(22) 

and 
( exp O) 1 ) . l+exp O 1+exp(B-61(t)) 1r(l, 0) = mm 1, (O 6 ) = mm [1, exp(<>1(t))] 1 exp - /jt) l+exp(O) I+exp(0- 1(t)) 

(23) (0 1) _ . l l+exp(O) l+ex:p(0-01(t)) _ . [l (-i. )] ( l exp(8-61(t)) ) 7r , - mm , exp(O) 1 - mm , exp UJ(t) l+exp(O) l+exp(0-61(1)) 
We see that the acceptance probabilities do not depend on the unknown value of 0, which means that as long as the item difficulties for all items are known, we may actually generate realizations of the acceptance random variable Zt. In the coin tossing example from the introduction we used a linear dif­ference system on the iid sequence as an alternative estimator for p. We can use the same linear difference system on the did sequence developed here. While the first moment of the estimator will be correct, results for other moments are not. Working out these moments for the did sequence developed here is left open for further research. An implementation of the algorithm is expressed below in pseudo-code. For each person, we estimate ability by feeding dichotomous sequence x to a linear difference algorithm. We register item response y at time t to some selected item with difficulty parameter <5. 



if Yt = Xt-1 then Xt = Xt-1 else if Xt-1 = 1 and Yt = 0 then z ~ Bernoulli(min[l, exp(OJ(t))]) if Xt-1 = 0 and Yt = 1 then z ~ Be rnoulli(min[l, exp(-oI(t))] ) if z = 0 then Xt = Yt if z = 1 then Xt = Xt-1 0t = (1 - a)(h-1 + axt 
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First, if the dichotomous item response is the same as the value of Xt-1, we do not change our estimate x. However, if the value of Yt differs from Xt-1 ,  we draw a value z from the appropriate Bernoulli acceptance distribution. Depending on the value of z, we either accept or reject our proposal value Yt, the item response. Finally, Xt updates our ability estimate 0t by means of a linear difference equation with weight a. 
4. ITEM RESPONSES AS ACCEPTANCE VARIABLES The obvious alternative way to use item responses in a Metropolis-Hastings algorithm is to use the item responses a person gives as acceptance variables. Here we develop such an approach. We now denote the response of a person to item OJ(x,y) as Z, the estimates as X and the proposal distribution as Y. Specifically, we choose 

P(Zt = llXt = x, Yt = y) = 1r(x, y) = l+exp(0�61c2:.11)) { exp(0-61(:i:,11)) if y > X 

l+exp(0-61(2:,y) ) if y ::; X 

That is, if the proposal value is larger than the current value, a correct response implies that the new higher value will be accepted, whereas if the proposal value is smaller than the current value, an incorrect response implies the the new lower value will be accepted. Moreover, we assume that the acceptance probability has the following relation to the invariant distribution: f(y - 0) 
(24) 1r(x, y) = 

J(x - 0) + J(y - 0) which means that the invariant distribution should satisfy the following func­tional equation: 
(25) f(y - 0) _ 1r(x, y) _ {exp(0 - OJ(x,y))  f(x - 0) - 1 - 1r(x, y) - exp(-0 + OJ(x,y) ) if y > X if y ::; X 

If for f the functional form of a normal distribution with variance u2 is assumed we readily obtain: 
(26) f(y - 0) = exp [ y - x  (0 - y + x) ]  f(x - 0) u2 2 in which we can recognize an item response model with two parameters, which means that items should be offered to the candidates with a discrimi­nation parameter of a = (y - Xt) / u2 and o = (y + xt) /2. An item bank with items with a large variety of discriminations and difficulty indices is required 



12 

for this purpose. We can restrict y - x to be equal to plus or minus a-2 in order to restrict the acceptance probability to a Rasch model (Rasch, 1960). Hence, if we choose our proposal values from a symmetric distribution with half of its probability mass at the value x + u2 and half at the value x - u2 by selecting items with difficulty Xt plus or minus a-2 /2, then our variance parameter a-2 equals the step size of the algorithm. Clearly, we end up with a discrete Markov chain. We find, in contrast to the Markov chain developed in the previous sec­tion, that this algorithm implies a definite choice for the item that is to be administered at any given moment. Furthermore, the algorithm implies that the states that can be reached lie on a grid, where neighbouring values are a2 seperated from each other. Again, we provide an example of the algorithm in pseudo-code. y ~ N(xt, a) a =  (y - Xt)/a2 6 = (y + xt)/2 candidate generates Zt if 7,t = 1 then Xt = y if Z',t = 0 then Xt = Xt-1 
Based on the ability estimate Xt and variance a-2

, an appropriate proposal value is drawn from a normal distribution. An alternative distribution, as discussed herefore, can be used to obtain a Rasch model. Item parameters for item selecton are calculated, and a response zt to this specific item is generated by the candidate. Specific for this algorithm is that the response to a specific item determines acceptance or decline of the candidate value y. 

5. SIMULATION STUDY Here we describe the results of a simulation study to illustrate the adaptive estimation algorithms introduced in this paper and their applications. We discussed two places where item responses can be used in the Metropolis algorithm. First, we develop an example where we use item responses as stochastic innovations. Second, we develop an example where item responses are acceptance variables. 
5.1. Item responses as stochastic innovations. We have simulated 1000 students, who answer 500 questions in a test that stretches over some time. In this first study, where item responses are stochastic innovations, we have freedom in selecting what item to administer. We select random Rasch items with difficulties from a standard normal distribution. We illustrate how the algorithm performs if ability is kept stable, and if ability grows suddenly. Results are graphed for individual trace lines and for the group as a whole. We start with the example from the introduction, where we observe a coin that undergoes a sudden change in its probability to fall tails. We simulated a thousand exchangable persons that undergo a similar sudden change. They are all offered the same first item, for which the probability of giving a correct response for everyone is p = .2, i.e. they all have the same ability of 0 = ln(p/(1 - p)). Our Metropolis algorithm accepts or rejects responses on following items such that we obtain a did chain as if 
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the first item was answered many times. After 250 trials, the ability of 
the candidates suddenly changes so that their probability to answer the 
first item correct changes to p = .8. We use a linear difference system to 
estimate the probabilities back form the dichotomous chains X that each of 
our simulated respondents produces. 

In Figure 2, we plot the linear difference estimates of a single person, 
together with the underlying probability of answering the first item correct . 
The linear difference system needs a parameter o: between zero and unity 
to weigh new observations. If we choose a very small number, new updates 
receive a small weight and changes are therefore quite slow. In Figure 2 the 
weight is o: = .03. If we choose the linear difference parameter to be larger, 
o: = . 1 ,  we observe more noise in the estimates but the ability to adapts 
quickly to the new value of p = .8, as seen in Figure 3. 
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FIGURE 2. Linear difference estimates on a selected person, 
with a =  .03. 
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FIGURE 3 .  Linear difference estimates on a selected person, 
with o: = . 1 .  
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While we have graphed the estimates of a single person, we can also look at the whole group. At every trial, we have calculated the mean of the linear difference estimates of the persons. Again, we have used the two different levels of a, to evaluate the speed with which the algorithm adapts. It is clear that the algorithm in Figure 4 adapts slower than in Figure 5. 
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FIGURE 4. Mean linear difference estimates, with a =  .03. 
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FIGURE 5. Mean linear difference estimates, with a =  .1. 
We remark that regardless of the chosen parameter in the linear difference system, the mean of the estimates converges to its true value, as seen in Figure 4 and Figure 5. For considering estimates of individuals however, stepsize matters in interpreting results as can be seen in Figure 2 and Figure 3. It is instructive to compare the performance of our Metropolis algorithm with an iid sample, following the example in the introduction. We simulate our persons again, only this time their ability does not change and is fixed at p = .5. We have also simulated a thousand fair coins that are thrown at every trial. Since abilities, or p-values, are stable in this simulation, we can 
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use a running average to compare the two sequences. We note that since we estimate the probability correct of our first item, our Markov chain is already converged at the start and no burn-in period needs to be considered. Since this is true, the running averages of both sequences will be exactly correct at p = .5 if we let our numbers of persons increase ad infinitum. The interesting difference between the two chains is their difference in standard deviations of the running means, over all 1000 persons. These are plotted in Figure 6. 
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F IGURE 6. Standard deviation of the means of a Metropolis did sequence (black) and an iid sequence (grey) . 
Intuitively, one would expect that the iid chain performs much better because observations are independent. However, Figure 6 shows that our generated did sequence does not perform much worse. By dividing these two sequences of standard deviations we obtain their relative efficiency, which is shown in Figure 7. The relative efficiency converges to about 2, which means that we need about 4 times as many observations to obtain a similar variance as the iid sample. The relative effiency of the did chain depends on many variables, and serves here merely as an indication of efficiency. 
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FIGURE 7. Relative e:fficience of our Metropolis did sequence compared to an iid sequence. 
5.2. Item responses as acceptance variables. In this second study, where items act as acceptance variables, we perform a simular simulation as before, with 1000 students answering 500 items over some time. However, we now assume we have a calibrated item bank with known difficulty and discrimination parameters of all sorts to facilitate the item selection as pro­posed by the algorithm. Again several graphs are provided to demonstrate how the algorithm acts under stable and changing abilties. First, we illustrate a single student with the adaptive estimates in Figure 8. We observe a stable ability throughout the trials, with estimates that are clearly noisy. The step size of the algorithm is determined by a2 , which is the variance of the candidate generating density g. If we reduce a2 , the stepsize and thus the amount of noise are reduced. We have shown that if 
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FIGURE 8. A stable ability with true parameter value (solid line) and adaptive estimate ( dashed line). 
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F IGURE 9. A changing parameter value (dotted line) and adaptive estimate ( solild line). 
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ability is stable, the estimates converge to a known invariant distribution centered around the student's true ability. More interesting is the case where there is growth of ability. The size of the variance is' more important here, since it determines whether we have a quick or slow adaptation to changes in true ability. True abilities of the 1000 students are drawn from a standard normal distribution. In our simulation we allowed halfway for a rather large and sudden increase in true abilities for every student, also the spread in true abilities was increased. Figure 9 shows the estimates for a selected student. Though there is some obvious lag between the change in true ability and the adaptive estimates, the sys­tem adapts itself quite quickly to the new situation. We have selected three occassions in which we make a cross-section of all the students' abilities, noted by three vertical lines in Figure 9. For each occassion, we can plot cumulative empirical distributions of both the true and estimated abilities of the 1000 students. The estimates of the algorithm contain normal dis­tributed noise with a fixed and determined variance (J'2 for all persons. These estimates can be compared with the true abilities either by a deconvolution of the estimates and the normal distributed error, or by adding a normal distributed random error to the true abilities. The latter option is applied to obtain true cumulative distributions with error and compare them to the estimates with the same distributed error in Figure 10. On the first and last occassion the cumulative distributions of the adaptive estimates resemble the true distribution with error added, while the occassion directly after the sudden shift in ability shows lag in the adaptive estimates as expected. 
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FIGURE 10. Cumulative empirical distributions of true abili­ties with error (black) and adaptive estimates (grey) at cross­section 1,2 and 3. 
6. DISCUSSION 

6 

For the purpose of estimating a parameter that may change during the course of the data collection, we developed adaptive estimation procedures based on the Metropolis-Hastings algorithm. It should be clear from the specific algorithms considered here that these are surely not the only ones that could be developed. Neither the choice for the Rasch model nor the choice for the Metropolis-Hastings algorithm are necessary. Applications of adaptive estimation are obvious in the field of monitoring student progress and well-suited for a whole range of different situations. The most obvious one, and the one that served as guiding example through­out the paper, is that of estimating ability in situations where the ability may change with time. A different type of application can be found on the item side, where it may be of interest to find out whether item parameters are invariant over time. A third variant that could be developed involves the joint estimation of person and item parameters, both of which might change with time. 
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Another type of application becomes clear if we look at the characteristics of the Markov chains that have been constructed. The state of the Markov chain, assuming it has converged to its invariant distribution (10), differs between persons only in the value of its location parameter. We can obtain that accross persons x00 ~ J�00 f(x - 0p)h(0p) d0p, where f is fully known. We can use this to recover the unknown distribution of ability h from x. This property is useful in applications of survey research. If the chains are converged, estimates from a cross-section at some time point can be used in a simple regression analysis without the introducion of bias, since the variance of estimators do not depend on ability. Here we have made the claim of classical test theory true: an observed score equals a true score plus an error. This paper dealt with adaptive estimation. Specifically, based on the assumption of a fitting IRT model we developed methods to estimate its parameters. An interesting open problem however concerns the evaluation of this assumption. That is, how does one evaluate model fit in a situation where all the parametes involved in the model may be changing with time. We propose to leave this topic for further research. A second problem, that is particulary relevant in situations where both person and item parameters are being estimated is that of parameter identification. It is known from experience with the Elo rating system, the values of the ratings tend to inflate with time. This inflation is due to the fact that chess players enter the system with a low rating and usually leave the system again at some point in time with a much higher rating. From the Elo update it is clear that the rating system maintains the sum of the ratings. We began by noting that often an explicit growth model is not available. In situations where a tentative growth model is available we can extend the adaptive estimation procedures to both provide estimates for the parameters of the growth model and to track individual students. A final note concerns the title of this report. In the adaptive estimation procedures as discussed, we are able to track a moving target. However, since there is always lag between the actual change of the targets and our adaptive estimates, we can only hit the target if it stops moving for some time. 
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