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Abstract 

 
In the present study, a procedure which was developed to select dichotomous items in 

computerized adaptive testing was applied to polytomous items. The aim of this procedure is to 

select the item with maximum weighted information. In a simulation study, the item information 

function was integrated over a fixed interval of ability values and the item with the maximum area 

was selected. This maximum interval information item selection procedure was compared to a 

maximum point information item selection procedure. No substantial differences between the two 

item selection procedures were found when computerized adaptive tests were evaluated on bias 

and root mean square of the ability estimate. 

 

Index terms: CAT, GPCM, polytomous items, item selection, Fisher information function, 

decomposition. 
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1 Introduction 
 

Computerized adaptive testing is one of the major developments of item response theory 

(IRT). Its main advantages over traditional paper and pencil tests are that the same precision can be 

achieved with shorter tests and that each examinee is given a test adapted to his or her ability 

(Weiss, 1982). Until recently, most of the research and applications in computerized adaptive 

testing concerned dichotomous items and not polytomous items (Dodd, De Ayala & Koch, 1995). 

While item selection, which is an essential component of computerized adaptive testing, has 

received considerable attention in the last few years (Eggen, 1999; Van der Linden, 1998; Berger 

& Veerkamp, 1997; Tang, 1996; Chang & Ying, 1996), only a few studies have dealt with the 

selection of polytomous items in computerized adaptive testing. 

 There are two main approaches to item selection. The first is item selection based on item 

information, where the most informative item at a certain estimated ability level is selected. Fisher 

information is the most commonly used form of information used in item selection (Berger & 

Veerkamp, 1997), though Kullback-Leibler information has also been used (Eggen, 1999; Chang 

& Ying, 1996). The second approach to select an item is Bayesian item selection in which a prior 

or posterior distribution of ability is used in combination with a Bayesian variant of information 

(see Van der Linden, 1998). This study focuses on item selection based on Fisher information with 

no specific prior distribution and its purpose is to use Fisher information more optimally to 

estimate ability. Some research has already been done on Fisher information functions of 

polytomous items (Muraki, 1993; Donoghue, 1994; Akkermans & Muraki, 1997), the results of 

which have been used in the present study.  

There are many IRT models for polytomous items (e.g., Hemker, Sijtsma, Molenaar & 

Junker, 1997; Dodd et al., 1995; Mellenbergh, 1995; Thissen & Steinberg, 1986). One of the most 

commonly used models is the generalized partial credit model (GPCM; Muraki, 1992) which is an 

extension of Masters� (1982) partial credit model (PCM). The PCM, in contrast to the GPCM, has 

been investigated in some computerized adaptive testing applications (Dodd et al., 1995; Baek, 

1997). 

 In the present study, two item selection procedures for the GPCM and their effects on 

accuracy and precision of the ability estimates were investigated. One item selection procedure 

was the procedure that selects the most informative item at the current estimate of the examinee�s 
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ability. The other item selection procedure which was investigated is an application of Berger and 

Veerkamp�s (1997) general weighted information criterion to polytomous items. This procedure 

amounts to selecting the item with the maximum of a weighted average of information function 

values, e.g., the maximum of an area under the information function. The latter seems an obvious 

choice since GPCM item information functions do not necessarily have to be single-peaked 

(Muraki, 1993). Selecting items on the basis of a single point of the information function may 

therefore lead to the selection of non-optimal items. Another advantage of using an area under the 

item information function is that the uncertainty of the ability estimate can be taken into account. 

Especially in the beginning of a CAT, this uncertainty can be quite considerable (Berger & 

Veerkamp, 1997; Chang & Ying, 1996).  

The description of the GPCM, followed by information functions of GPCM items, is 

presented in Section 2 of this paper. Subsequently, an important feature of the GPCM, i.e., 

decomposition of polytomous items and its consequences on item information is discussed. Some 

item selection procedures for dichotomous items are then reviewed, followed by the presentation 

of selection procedures for polytomous items. Finally, a simulation study on the different item 

selection procedures and its results are presented and discussed. 

 

 

2 Generalized Partial Credit Model 
 

 A score Xi = 0, 1 ,�, mi can be obtained on item i =1,�, B from an item bank with B 

items. A higher score indicates a better performance and mi indicates the maximum score on item i. 

The probability of obtaining a score k on item i, given the value of the ability θ, is denoted by 

where k = 0, 1, �, mi. In the GPCM (Muraki, 1992), it is assumed that the probability of obtaining 

a score k on item i, given that the score is k or k-1 and given the value of the ability θ, is governed 

by the logistic function, that is, 
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where ai is a slope parameter and bik, k = 0,�, mi, are the item category parameters. The 

probability of obtaining a score k is 

for k = 0, 1,�, mi, and bi0 ≡ 0. Equation 2.2 is called the item category response function (ICRF). 

If mi = 1, the model reduces to Birnbaum�s (1968) two parameter logistic (2-PL) model. If all ai 

are equal, the GPCM reduces to the PCM. These two restrictions combined yield the Rasch model.  

 The first derivative of the ICRF with respect to θ is given by 

and the likelihood of the responses on n GPCM items is  

Here, ki is the score on item i with maximum score mi. Both Equation 2.3 and 2.4 are needed to 

obtain the information function in the next section.  
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3 Information Function 
 

 The test information function (TIF) for n polytomous items is defined as (Samejima, 1969) 

For a single item i, Ii(θ) is the item information function which equals (Muraki, 1993) 

 

It can be derived for the GPCM that this can be written as (Donoghue, 1994) 

        Muraki (1993) showed that the IIF of a GPCM item does not necessarily have to be single-

peaked, but can have as many peaks as there are estimated item category parameters (bik). Multi-

modality of IIFs (i.e., with more than one peak) can only take place if item category parameters are 

sequentially ordered. Akkermans and Muraki (1997) showed for trinary GPCM items that if the 

second and first item category parameter differ by more than 4ln2/ai, i.e., ai(bi2 � bi1) ≥ 4ln2, the 

IIF becomes bimodal. Both the slope parameter ai and the bik�s determine the locations of one or 

more of the peaks. In Figure 1, information is plotted as a function of the ability θ of three trinary 

GPCM items. The item parameters are: a1 = 1.5, b11 = -2.8, and b12 = -1.0; a2 = 2.0, b21 = -1.0, and 

b22 = 1.0; a3 = 1.7, b31 = 0.0, and b32 = 3.0. Unimodal as well as bimodal item information 

functions are plotted. 
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Figure 1 

Information functions of three trinary GPCM items. 

 

 

 

 

 

 

 

 

 

 

The maximum value of the IIF is often used in item selection based on Fisher information. 

For trinary GPCM items, the maximum of the IIF decreases in bi2 � bi1. Some maxima for a trinary 

GPCM item i with different relations between the item category parameters are given below 

(adapted from Akkermans & Muraki, 1997): 

The value of the slope parameter ai is of particular importance because it has a linear effect on the 

difference between the item category parameters and a quadratic effect on the value of the 

maximum of the IIF. 
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4 Decomposition of Polytomous Items 
 

Decomposition of a polytomous item is the splitting up of the IRF of an item score Xi into 

H (with 2 ≤ H ≤ mi) items i1, i2,�iH, where the sum of the separate IRFs yields the original IRF 

of these H items. The total maximum score of the original item and the sum of the item scores in 

the decomposition remains the same (i.e. , i

H

h
ii m,mm
h∑

=

=
1

 ≥ H and mi > mih for all h). Huynh 

(1994) showed that a trinary PCM item i can be decomposed into two locally independent 

dichotomous (Rasch) items (i.e., mi1 = mi2 = 1) if the second and first item category parameter 

differ by more than 2ln2, i.e., bi2 � bi1 ≥ 2ln2. This is a sufficient condition for decomposition. 

The likelihood functions for estimating the ability from the original item and those from the 

items in the decomposition are the same (see Equation 2.4). In a subsequent article, Huynh 

(1996, Definition 2) defined a trinary PCM item to be indecomposable if bi2 � bi1 < 2ln2. 

Furthermore, Huynh (1996) showed that a PCM item with any number of categories can always 

be decomposed into independent Rasch items and indecomposable trinary items (i.e., mih ∈{1, 

2}).  

Huynh (1996) noted that it is not known whether this decomposition can be generalized to 

more complex models for partial credit items, like the GPCM, where there is no simple sufficient 

statistic as there is in the case of the PCM. However, it should be noted that the sufficient statistic 

is not used in the proofs presented by Huynh (1994, 1996) and decomposition concerns one item at 

a time. Since the slope parameter ai may be considered a constant for a single item, ai seems to 

pose no problems for the derivations leading to (in)decomposability as long as ai remains the same 

for the items in the decomposition. The difference between the second and first item category 

parameter (bi2 and bi1) of a trinary GPCM item has to become more than 2ln2/ ai to bring about 

decomposability.  

Because of the decomposition property, the maximum information given by a PCM item 

with more than three categories cannot exceed that of the sum of its decomposition (Akkermans & 

Muraki, 1997). This also holds for the GPCM (see above). The information functions of the 

original item and of its decomposition are the same because the likelihood functions for estimating 

ability are equal. The amount of information yielded by an indecomposable trinary GPCM item, 

however, can exceed the information obtainable with any two independent dichotomous items, 
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given equal ai�s. The maximum information to be obtained with any two dichotomous items is ½ 

ai
2 (Hambleton & Swaminathan, 1985, p. 107) and the maximum information of an 

indecomposable trinary item is at least ½ ai
2 (see Equation 3.4). 

These points about the information of trinary items and items with any number of 

categories are important when considering computerized adaptive testing and more specific, 

polytomous item selection, since items with more categories generally provide more information 

and thus are selected more often. If an item with more than three categories cannot give more 

information than its decomposition, it is questionable whether it should be used in a CAT. The use 

of binary and trinary items can result in CATs with the same TIF as the use of items with various 

(high) mi�s, so it might be more appropriate to administer binary and trinary items in a CAT. The 

administration of indecomposable trinary items in a CAT can give more information than any two 

independent dichotomous items and may therefore be more efficient. 

 

 

5 Item Selection 
 

 First, a short overview of Fisher information-based item selection procedures for 

dichotomous items is given. Then, the item selection procedures for polytomous items are 

presented and discussed.  

 

Selection Procedures for Dichotomous Items 

Note that the notation which is used here has been simplified because only one test with fixed 

length is considered. Let the subscript u = 1,�, n indicate the order of items in the test where n is 

the number of items in a test. Let Su-1 = {i1,�, iu-1} be the set of items selected, and Ru ={1,�, B}\ 

Su-1 be the remaining set of items. 

The most common item selection procedure, the maximum point (Fisher) information item 

selection criterion (MPI) selects as the next item iu the most informative item j at the current ability 

estimate from Ru. This can be represented as 

,  ),�(max ujju RjIi ∈= θ (5.1) 
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where θ�  is the current ability estimate. An important reason for using this selection criterion is that 

the reciprocal of the TIF evaluated at the estimation of ability θ is an estimate of the asymptotic 

variance of the maximum likelihood estimator of θ (Hambleton & Swaminathan, 1985, p. 89).  

 Berger and Veerkamp (1997) proposed a general weighted information criterion, which is 

defined as 

where vector xu-1 denotes the responses to previously administered items. Wu-1 (xu-1; θ) can be any 

kind of weight function in which all previous responses are used. Several item selection criteria 

can be defined by using different kinds of weight functions. For example, a step function or a more 

complicated function like the likelihood function of θ can be used. MPI is a special case of the 

general weighted information criterion, i.e., weighing the current ability estimate with one and all 

other ability values with zero. One problem in using the integral of the IIF is that the total area 

under the information function of a dichotomous 2-PL item is equal to ai (Birnbaum, 1968, p. 460). 

When no weight function is used, item selection depends only on ai, so the test is no longer 

adaptive. In the simulation study performed by Berger and Veerkamp (1997), the use of the 

general weighted information criterion resulted in CATs with more test information and less mean 

squared error of the ability estimates than the use of the MPI criterion when the likelihood function 

of the ability was used as a weight function. The differences between the criteria, however, were 

small. Because of the specific (non-unimodal) form of the IIFs and the (in)decomposability issue, 

the weighted information criterion might be more useful in the polytomous case. 

 

Selection Procedures for Polytomous Items 

Two selection procedures for polytomous items were investigated using Berger and Veerkamp�s 

(1997) general weighted information criterion. These are the maximum point Fisher information 

criterion (MPI) in Equation 5.1 and the maximum interval Fisher information criterion (MII) 

which can be represented as 

,  ,)�();(max 11 ujuuju RjdIWi ∈= ∫
∞

∞−
−− θθθx (5.2) 
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where δ determines the width of the interval of integration. The value of this integral is the product 

of the average of the information function values in the interval and the interval width. Since 

information functions of GPCM items do not have to be single-peaked (Akkermans & Muraki, 

1997) and the uncertainty of the ability estimate at the beginning of a CAT can be quite 

considerable (Chang & Ying, 1996), this criterion seems more appropriate than MPI. 

If an information function has more than one peak and the ability estimate is not stable at 

the beginning of a CAT administration, a non-optimal item could be selected by MPI. See Figure 2 

for a visualization of this situation where the information functions of two items are plotted. This 

figure shows that if the ability estimate is zero and not very certain, item j is a better choice than 

item i. MII with a certain δ would select item j and MPI would select item i. It is expected that this 

situation occurs frequently enough to influence the quality of CAT in terms of the accuracy and 

precision of the ability estimate and that MII results in better ability estimates than MPI. 

 

Figure 2 

Case where MII selects a different item than MPI. 
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 The value of δ should not be too large because the area under the information function of 

GPCM items equals miai if δ → ∞  (see Appendix A), which means item selection becomes 

dependent only on the number of categories and the slope parameter ai. As a consequence, the test 

is no longer adaptive because the ability of the subject has no influence on the selection of the 

items. 

In this study, the value of δ is fixed. However, it can be used as a parameter that gets 

smaller as more items are administered in a CAT. In the beginning of a CAT, when the uncertainty 

of the ability estimate is relatively high, the item information of surrounding abilities is taken into 

account with a wider interval. When this uncertainty becomes smaller, the focus can be 

increasingly switched to the ability estimate alone by narrowing the interval. Since the influence of 

the width on a CAT can be determined better with a fixed interval, the interval was not narrowed 

here. 

The quality of a CAT in terms of accuracy and precision of the ability estimate, given an 

infinite item bank, can be considered as a function of the interval width used in MII. It was 

expected that MII with δ equal to 0.5 or 1.0 would perform better than MPI when the ability 

distribution is standard normal because MII uses more information than MPI. If the interval 

becomes too large, however, the quality of the CAT will decline. Therefore, it was expected that 

MII with δ equal to 0.5 results in better CATs than MII with δ equal to 1.0.  

 Other factors in the administration of a CAT were included in this study in order to 

investigate possible interactions with one of the item selection procedures. The number of items in 

the item bank, the number of categories of the items in the item bank, and the distribution of the 

item category parameters (bik�s) were investigated. 

 

 

6 Simulation Study 
 

Design  

CATs were simulated to compare maximum point information (MPI) with maximum interval 

information (MII) using polytomous items in a realistic setting. Random item selection was used as 

a benchmark. Only simulated item banks were used and the items were generated from the GPCM. 
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The independent variables were number of items in the item bank (2 levels), item category 

parameter distribution (3 levels), number of categories of items (3 levels), item selection procedure 

(4 levels), and stopping rules in combination with ability distribution (2 levels, see below). These 

variables generated a design with 90 cells, which is shown in Table 1. Random item selection was 

omitted when a maximum standard error was used as stopping rule to prevent exhaustion of the 

item banks. Each simulated CAT was evaluated on bias and root mean square of the ability 

estimate. 

 

Table 1 

Number of CAT simulations in the design of the simulation study. 

 

Item selection 

Three experimental item selection procedures were used and random item selection was used as a 

benchmark. The experimental item selection procedures were maximum point information (MPI), 

maximum interval information with a fixed interval width of 1.0 (MII-1.0), and maximum interval 

information with a fixed interval width 0.5 (MII-0.5). The widths of 1.0 and 0.5 were chosen on 

the basis of arguments given in the section on item selection. The integrals were approximated 

using Simpson�s rule with 100 sample points. 

Item selection procedure 
Number of CAT simulations 

MPI MII-1.0 MII-0.5 Random Total 

Stopping rule � Fixed test length; Ability distr. � N(0, 1) 

- Number of items in item bank (150 and 500) 

     - Number of categories (3, 4 and a mix of 2, 3, and 4) 

- Item category parameter distribution  

 (bik � N(-1, 1), N(0, 1) and N(1,1)) 18 18 18 18 72 

Stopping rule � Max. std. err. of 0.20; Ability values = {-3, -2, -1, 0, 1, 2, 3} 

- Number of items in item bank (150 and 500) 

     - Number of categories (3, 4 and a mix of 2, 3, and 4) 

- Item category parameter distribution  

  (bik � N(0, 1)) 6 6 6 0 18 

Total 24 24 24 18 90 
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Item banks and item parameter distributions 

The simulated item banks consisted of 150 and 500 items with parameters pseudo randomly drawn 

from normal distributions with log ai ~ N(0, 0.5) and bi ~ N(-1, 1), N(0, 1) and N(1, 1), as can be 

seen in Table 1. Item category parameters were randomly drawn from their distributions after 

which they were ordered and assigned to the respective categories. Items with ordered item 

category parameters were used only because the emphasis in this study was on items with multi-

modal IIFs. Different numbers of item categories were used in the item banks: 3, 4 and a mixture 

of 2, 3, and 4. The latter is called a mixed item bank. 

 

Simulees and stopping rules 

Two stopping rules were used: fixed test length of 30 items and maximum standard error of the 

ability estimate of 0.20 with an absolute maximum test length of 99 items. Each stopping rule was 

used in combination with a different ability distribution. Fixed test length was used in combination 

with a standard normal distribution of ability, and maximum standard error of 0.20 was used in 

combination with seven discrete ability values: {-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0}. A random 

sample of  N = 5000 simulees was drawn from the standard normal ability distribution. In addition, 

500 simulees were selected for each of the seven discrete ability values resulting in a total of N = 

3500 simulees. Ability estimates were obtained using the weighted likelihood estimation (WLE) 

procedure. WLE provides better (ability) estimates than either maximum likelihood estimation 

(MLE) or Bayesian modal estimation (BME) because it removes the first-order bias term from 

MLE (Warm, 1989). 

 

CAT simulation procedure 

The CAT started with two pseudo randomly selected items from the item bank, after which one of 

the four item selection procedures was started. The simulee�s response was generated as follows: 

after an item was selected for administration, the probability of every score given the simulee�s 

ability was calculated. Next, the cumulative probabilities of the scores were determined. A pseudo 

random number between 0 and 1 was then drawn from a uniform distribution. Finally, it was 

determined in which interval of the cumulative probabilities of the scores this number was. The 

score assigned to the simulee was the score belonging to this interval. The CAT was terminated 

after the used stopping rule was reached. 
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Evaluation criteria 

Accuracy, i.e., mean bias (Bias), and precision, i.e., root mean square (RMS) of the ability 

estimates, were used to evaluate the CATs. Bias and RMS are defined as 

Bias is the mean over all simulees of the difference between the ability and the ability estimate. 

RMS is the root of the mean squared differences between the ability and the ability estimate. Mean 

test length was only used to evaluate the CATs when the stopping rule was a maximum standard 

error of 0.20. Item exposure was investigated only when mixed item banks were used so that the 

exposure of items with different categories could be compared. Item exposure is defined as the 

number of times an item was administered divided by the total number of test administrations (note 

that this definition only applies to CATs with a fixed length).  

 

 

7 Results 
 

Although the results did not show any substantial differences in bias and RMS of the ability 

estimates between MPI, MII-1.0, and MII-0.5, there were some differences, however. In most 

cases, MPI performed equal to or better than MII, and only in some cases MII performed slightly 

better. In general, the differences between the three experimental item selection procedures were 

small compared to the differences between those three and random item selection.  

The other independent variables (size of item bank, number of item categories, item 

parameter distribution) did not interact with any of the three experimental item selection 

procedures in terms of differences in bias and RMS. Because of the absence of interactions, not all 

the results will be presented. The main effects will be illustrated with examples. 

In Figure 3 and 4, bias and RMS are plotted against the number of administered items for 

all four item selection procedures. In the CATs, item banks containing 500 trinary items with 

standard normally distributed item category parameters were used. It can be seen that MII-0.5 

showed somewhat less RMS than MPI and MII-1.0.  
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Figure 3 

Bias of CATs using 500-item bank with trinary items and bi ~ N(0, 1), N = 5000. 
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Figure 4 

RMS of CATs using 500-item bank with trinary items and bi ~ N(0, 1), N = 5000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effects of the number of items in an item bank are presented in Figure 5 and 6. Bias 

and RMS are plotted against the administered items for the item banks with 500 and 150 items. 

The CATs used MII-0.5, trinary items and standard normally distributed item category parameters. 

CATs selecting items from the item bank with 500 items showed less bias in the beginning and 

less RMS at every stage.  
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Figure 5 

Bias of CATs using MII-0.5 with trinary items and bi ~ N(0, 1), N = 5000. 
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 Figure 6 

RMS of CATs using MII-0.5 with trinary items and bi ~ N(0, 1), N = 5000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 and 8 show the bias and RMS of CATs with the three item category parameter 

distributions using MII-0.5. The CATs used the 500-item banks with trinary items. If the item 

category parameter distribution matched the ability distribution, the CATs showed no bias. The 

two mismatched item category parameter distributions did show considerable bias in the beginning 

of a CAT. This bias, however, disappeared when the number of administered items was increased. 

When the distributions of ability and the item category parameters matched, the CATs showed less 

RMS.  
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Figure 7 

Bias of CATs using MII-0.5, 500-item bank, and trinary items, N =5000. 
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Figure 8 

Bias of CATs using MII-0.5, 500-item bank, and trinary items, N =5000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CATs using item banks with dichotomous items showed more bias in the beginning than 

CATs using item banks with items with three, four categories, and mixed item banks, as can be 

seen in Figure 9. (Note that dichotomous items were only studied in this specific case and were 

originally not included in the design of the study.) All these CATs used MII-0.5 and standard 

normally distributed item category parameters. The CATs using items with four categories showed 

the least RMS. This is shown in Figure 10. The CATS using item banks with mixed categories 

performed slightly better than the item bank with trinary items in the beginning of the CATs, but 

worse than the item bank with items with four categories. 
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Figure 9 

Bias of CATs using MII-0.5 with bi ~ N(0, 1), N = 5000. 
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Figure 10 

RMS of CATs using MII-0.5 with bi ~ N(0, 1), N = 5000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 When mixed item banks were used, the items with more categories were selected more 

often in terms of item exposure, with Fcontrast(2, 497) = 24.53, p = .000 (see Table 2). Note that this 

500-item bank was used for CATs with a fixed length of 30 (explaining the total mean exposure of 

0.06). More categories did not produce equally better CATs when considering RMS (the total 

score of three trinary items is equal to the total score of two items with four categories). An 

improvement of 3/2 was definitely not the case. In general, item banks with trinary items showed 

the best results when taking into account the total maximum score. 
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Table 2 

Means and standard deviations of item exposures in a CAT using an item bank with mixed 

categories. 

Number of Categories Mean Std. Dev. N 

2 0.0176 0.0570 167 

3 0.0396 0.1108 166 

4 0.1228 0.2174 167 

Total 0.0600 0.1514 500 

 

In Figure 11, 12, and 13, bias, mean test length, and RMS are plotted against ability for 

CATs using MPI, MII-0.5, and MII-1.0 with trinary items and standard normally distributed item 

category parameters. The stopping rule was a maximum standard error of 0.20 with an absolute 

maximum test length of 99 items. Bias and RMS for all three item selection procedures are 

approximately equal for all ability values after the stopping rule was reached. Test lengths differed 

substantially, however. Simulees with large positive and negative ability values had to be 

administered considerably longer tests. 
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Figure 11 

Bias of CATs with maximum standard error of 0.20 as a stopping rule with absolute maximum 

length of 99 items, N = 3500. 
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Figure 12 

RMS of CATs with maximum standard error of 0.20 as a stopping rule with absolute maximum 

length of 99 items, N = 3500. 
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Figure 13 

Mean length of CATs with maximum standard error of 0.20 as a stopping rule with absolute 

maximum length of 99 items, N = 3500. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 Conclusions and Discussion 
 

The main conclusion of this study is that the two maximum interval information (MII) item 

selection procedures, in general, did not improve the quality of a CAT in terms of accuracy and 

precision of the ability estimate (in comparison to the maximum point information (MPI) selection 

procedure). While, in some cases, MII performed slightly worse and, in others, slightly better, the 
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differences were small. This result is in accordance with the study by Berger and Veerkamp (1997) 

in which dichotomous items were used. The reason for these small differences is that MII, like 

MPI, depends very much on the ai-parameter. MII selects roughly the same items as MPI, 

particularly the ones with a high ai parameter, and many item categories when mixed item banks 

are used. Therefore, the differences between MII and MPI were too small to have an effect on the 

quality of a CAT in terms of accuracy and precision of the ability estimate. Apparently, the 

situation in which MII selects a different item than MPI does, as was shown in Figure 2, does not 

occur as often as is needed to result in CATs of different quality. The interval width to calculate 

the area under the information function did not influence the quality of the CATs. Despite some 

differences between MII-1.0 and MII-0.5, there was no indication that either one should be 

preferred. 

The idea of MII as an average of ability values is more attractive than the idea of MPI, 

especially when the ability estimate is uncertain. When these two item selection procedures 

perform similarly, MPI may be preferred because it is easier to compute. Note that other weight 

functions (e.g., the likelihood function of the ability estimate or a function that cancels out the 

dependency on ai) can be used in the general weighted information criterion, which may result in 

better CATs. 

The item selection procedures that were investigated in this study are highly dependent on 

the ai parameter. In computerized adaptive testing, this dependence is not desirable (see Section 5), 

although discrimination between different abilities is. In the beginning of a CAT administration, 

when the ability estimate is relatively uncertain, items that give information over a range of ability 

values are desirable. To overcome the dependency on ai, Kullback-Leibler information which is 

less dependent on ai may be used for polytomous item selection. Chang and Ying (1996) found 

that, for dichotomous items, item selection using Kullback-Leibler information resulted in CATs 

(evaluated on several criteria) at least equal to CATs using MPI and in several cases better than 

CATs using MPI. With computers getting better and faster, Bayesian item selection, which 

requires a substantial amount of computing time when using dichotomous items (Van der Linden, 

1998), could be realized for polytomous items. Bayesian item selection is also less dependent on 

the ai parameter. 

Although CATs using item banks with items with more categories resulted in better CATs, 

when taking into account the maximum score of an item, the results indicated that the optimal 
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number of categories of an item is three. This seems plausible given the decomposition property of 

polytomous GPCM items and the consequences of decomposition for item information discussed 

in Section 4. However, with the two stopping rules used here, items with four categories are 

selected more often than items with two and three categories (when mixed item banks are used). A 

different stopping rule may be used to overcome this problem, namely, that of a fixed maximum 

total score. This stopping rule may result in CATs of different lengths but with the same maximum 

total score. The use of this stopping rule may have effects on item selection procedures when 

mixed item banks are used because one has to select an optimal item given the current ability 

estimate and the number of scoring points left. 

The administration of a CAT is subject not only to criteria such as maximum standard error 

of the ability estimate and maximum test length. Other criteria such as item exposure (Stocking & 

Lewis, 1998; Sympson & Hetter, 1985), item content (Kingsbury & Zara, 1991), and test 

specifications should also be considered in order to obtain reliable and valid tests (Chang & Ying, 

1996). In general, these additional criteria have an adverse effect on the properties of a CAT such 

as accuracy and precision of the ability estimate (Van der Linden, 1998). From a practical point of 

view, however, a study of the effects of these criteria on polytomous item selection and on the 

resulting CATs is of interest. 
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A. Appendix 
 

For the item selection criteria used in this paper, it is useful to find out what the total area 

under the Fisher information function of a polytomous item is. It will be shown that it is equal to 

miai.1 This only has to be shown for trinary GPCM items, because of the decomposition property 

discussed in section 4. The area under the information function of 2-PL items is equal to ai 

(Birnbaum, 1968, p. 460). With this knowledge, the area under the information function of any 

GPCM item can be calculated. 

First, we can write the information function of a trinary GPCM (see Equation 3.2) item as 

follows: 

Next, the indefinite integral is calculated for each part. For the first term, Pi1(θ ), the integral 

becomes 

which can be rewritten as 

By applying the following substitutions: 

                                                 
1 A great deal of this appendix was calculated with the help of the Maple V computer program. 
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the integral becomes 

This is a standard integral (except for the constant factor) and its solution is 

By filling in the substitutions, the integral and its solution are given by 

where C is a constant. 

The second part of the integral of the information function can be written as follows: 

This results in 

The other parts can be integrated in the same way. The definite integral of the information function 

of a trinary GPCM item is (after simplifying) 

In order to calculate the area under the total IIF, the extended fundamental theorem of the calculus 

(FTC) is needed (see Priestley, 1997, Section 16.3), which amounts to 
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The total area under the information function of a GPCM item is equal to 2ai because if Equation 

A.8 is evaluated in a → -∞,  the integral goes to -2ai and b → ∞, it goes to 0. Because of the 

decomposition property of the GPCM discussed earlier, and since the area under the IIF is equal to 

ai for dichotomous items, the area under the IIF of any GPCM item is miai. 

).(lim)(lim' aFbFF
ab −∞→

∞

∞−
∞→

−=∫


