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General Introduction 

The purpose of Project •optimal Item selection' is to solve a number of 

issues in automated test design, making extensive use of optimization 

techniques. To this end, there has been a close cooperation between the 

project and, among others, the department of operations Research at 

Twente University. In each report, one or aeveral theoretical issues 

are raised and an attempt is made to solve them. Furthermore, each 

report is accompanied by one or more computer programs, which are the 

implementations of the methods that have been investigated. In due 

time, requests for these progriµns can be sent to the project director. 

T.J.J.M. Theunissen, 

project director. 
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Abstract 

A procedure for maximizing the coefficient of generalizability under 

the constraint of limited resources is presented. The procedure uses 

optimization techniques that offer an investigator or test constructor 

the possibility to employ practical constraints. The procedure is 

illustrated for the two-facet random-model crossed design. 

Keywords: generalizability theory, optimization of decision studies, 

optimization techniques. 
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1 Introduction 

In generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnam, 

1972) a distinction is made between a generalizability study and a 

decision study. In a generalizability study, accurate estimates of 

variance components are obtained that can be used in decision studies. 

Variance components from a generalizability study can, for example, be 

used to gauge the change in generalizability coefficients when altering 

the number of conditions for the facets in a decision study using 

equation (1), given below. In equation (1), the generalizability 
.z coefficient, p , for the two-facet random-model crossed design is 

expressed as 

p 
p 

o.z + o2 + o2 + 0 2 

....e.!. E res 

n, n2 n1n2 

where o 2 is the variance component for persons, o 2 is the variance 
p p1 

2 component for the person by facet l interaction, o is the variance 
p2 

( 1) 

2 component for the person by facet 2 interaction, o is the variance res 
component for the person x facet 1 x facet 2 interaction plus error, 

and n
1 

and n2 are the number of conditions of facet 1 and facet 2. The 

three interaction variance components constitute the error variance in 

the two-facet random-model crossed design. The product of the number of 

conditions of facet 1 and facet 2, n 1n2, forms the number of 

observations per subject or other object of measureme�t. From (1), an 

investigator or test constructor can not only infer that increasing the 

number of conditions of the two facets will increase the 

generalizability coefficient, but also that altering the number of 

conditions of a facet with a large error variance component will have a 

different impact on the generalizability coefficient than altering the 

number of conditions of a facet with a small error variance component. 

To improve the quality and economy of decision studies, Woodward 

and Joe (1973) developed two procedures. one can �e used to solve the 

problem of determining the minimum number of observations for a 

specified generalizability coefficient. Recently, a more versatile 
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extension of their procedure for this problem was presented by sanders, 

Theunissen, and Baas (1989). In response to discussions by cronbach et 

al. (1972, pp. 173, 182), Woodward and Joe (1973) also developed a 

procedure for the problem of maximizing the generalizability 

coefficient subject to the constraint that the total number of 

observations is fixed. Because this constraint implies that the 

investigator is free to vary the number of conditions of the facets and 

resources required per condition of each facet do not differ, their 

procedure does not correspond to the application of decision studies in 

practice. Investigators do not conduct decision studies under the 

constraint of a fixed total number of observations but under other, 

different constraints, with the most important being an upper limit on 

resources - including monetary, time, and expertise. Therefore, 

resources constitute a factor that has to be considered when decisions 

about the composition of measurement instruments are made. However, 

despite its relevance, procedures that could help investigators to make 

these decisions are lacking. 

The problem of maximizing the coefficient of generalizability 

under the constraint of an upper limit on resources is addressed in 

this paper. The problem is first formulated as an optimization problem. 

A two-step procedure for solving the optimization problem for the two­

facet random-model crossed design is presented, and an example is used 

to illustrate the procedure. 
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2 Optimization Problem 

Maximizing the generalizability coefficient of the two-facet 

random-model crossed design is equivalent to minimizing the error 

variance. 

Denoting o:1, o:2
, and o:12 by vc1, vc21 

and vc 12 
respectively, the 

objective-function for this optimization problem is formulated as 

minimize ( 2) 

The minimization statement (2) refers to the value of the objective­

function that results when different numbers of conditions, n
1 

and n2
, 

are used for facet 1 and 2. 

A complete description of our optimization problem includes two 

other constraints. First, the constraint specifying the resources 

available for the decision study: 

r . ( 3) 

In (3), the resources required by the conditions of facet 1 are 

specified by the term c n , with c being the ' cost• of one condition 
1 1 1 

of facet 1.  The resources required by the conditions of facet 2 are 

specified by the term c2
n

2
, with c2 

being the cost of one condition of 

facet 2. The number of observations per subject or other object of 

measurement equals n
1

n2. Thus, denoting the cost of one observation for 

the sample of subjects to be tested by c12, the resources necessary for 

the total number of observations are specified by the term c
12

n1n2
. The 

right-hand term of (3) specifies an upper limit on the resources 

available for the decision study. Here, it is assumed that the cost per 

condition does not vary within the same facet but can vary across 

different facets, and that the cost of conditions for all the facets 

are expressed in the same units as r. Second, because feasible values 

for n1 and n2 have to be integer values and each facet in a two-facet 

design has to have at least one condition, a lower bound integer 
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constraint has to be included as well: 

n and n integer � 1 . 
, 2 

In addition to (3) and (4), other constraints can be employed, as 

discussed later. 
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3 Solution for the Two-Facet Design Problem 

Optimal integer solutions for n1 and n2 of the optimization 

problem defined by (2), (3), and (4) are obtained in two steps. In the 

first, solutions are derived for a continuous relaxation of constraint 

(4), that is, n1, n
2 

� o. In the second step these optimal continuous 

solutions are used as the bounds in a branch-and-bound procedure (see 

Papadimitriou & steiglitz, 1985, p. 443) to obtain the optimal integer 

solutions. 

Continuous Solution 

By defining 
"2 

vc12c1 , and v = vc + 
2 2 r 

, a transformed version of 

the problem can be formulated as: 

minimize 

subject to 

However, X = 
1 

1 

", 
C 1 - < o or x 

r 2 

, and 

= - -
"2 

+ 

( 6) 

( 7) 

c2 - < o would imply n c > r or r 1 1 

n2c2 
> r, which is inconsistent with the resources constraint (3). 

Hence (7) is modified to O 
c, s x s 1 - , and o s 1 r 
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1 d • t b d d f (1 '. c· 
r
,· 

] and (1, c 2
r ] • 

ea ing o oun s on n
1 

an n
2 

o 

The formulation of the problem is further simplified by defining the 

right-hand terms of (6) and (7) as: 

b = 
C 

1 1 - , and 
r 

so that the continuous optimization problem can be expressed as: 

minimize 

subject to x1x2 
i!:: b' 

0 s X s u, ' and 

0 s x2 
s u2 

( 8) 

(,9) 

(10) 

Note that the last three terms of (5) are denoted as a constant in 

(8). The above optimization problem can be solved by standard methods 

from non-linear optimization using Kuhn-Tucker necessary conditions. 

The Lagrange function is given by 

LCX,>.) = V X + V X + V X X - A (X X -b) + A (X -u ) 
1 1 2 2 1 2  1 2 1 1 2 2 1 1 

- A X + A ( X -U ) - A X • 
31 4 2 2 52 

To guarantee a non-empty solution set (see discussion later on), the 

assumption u1 u2 i!:: b or its equivalent c1 + c2 + c1 2  s r has to be made. 

since a so-called constraint qualification holds with this assumption, 

the Lagrange function results in the following system of Kuhn-Tucker 

necessary conditions: 

8L 
= V + V X - A X + A - A c 0 ax, 1 12 2 1 2 2 3 

( 11) 

= v 2 
+ v, 2 x , - A, x , + ). 4 - A

s 
= o (12 ) 
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).
2 ( X 1 - U 1 ) = 0 

A X = 0 5 2 

X X == b 
1 2 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

These conditions are necessary but not sufficient to produce a 

solution for the continuous problem being considered here. However, 

since the feasible region defined by conditions (9) and (10) is closed 

and bounded in R 2 , and the objective function is continuous there, the 

existence of a solution is guaranteed. Moreover, any solution to the 

constrained minimization problem is included in the solution set for 

the Kuhn-Tucker conditions. This solution set will be derived next, 
* * 

with a candidate solution denoted by x1 and x
2

. 

If either x 1 = o or x
2 

= o, condition (19) cannot be fulfilled 

since b > o. Hence, in a feasible solution both x1 > o and x
2 

> o must 

hold, from which, because of condition (15) and (17), it follows that 

).3 = ).5 
= o. since ).

2 
== o and ).4 == o, it is concluded that ).

1 
> o, 

otherwise conditions (11) and (12) cannot have a solution. With ).
1 

> o, 

condition (13) implies that x1x2 
= b must hold. 

* 
A solution with x1 

satisfy the Kuhn-Tucker conditions if b 
u, 

b ,  can only 

< u2
. Substituting these 

values in (11) and (12) with ).3 
= ).5 s o, as established above, and 

).4 = o, because of (16), results in the following system of two 

equations in the two variables 

b 
- ). + ). = o, and 1 u 1 2 
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v 2 + v1 2 u1 
Solving this system gives >.1 

= 
u, 

, and >.
2 = 

b v2 - v • Since, 
u 2 1 

because of (18), ). 
2 

* 
� o, a solution x 1 

and only if v, 
b v2 

s --2· 
u, 

similarly, if v 2 

* 
u 1 , x 2 = u 2 results. 

* 

, 

b < u 2 exists, if 
u , 

b v1 * b 
:5 --2, a solution x, IC < 

u 2 
u 2 

solution with X 1 = u , ' 
* 

x 2 
= u 2 

c• n = n IC 1 )  can only exist if , 2 
u1u 2 

= b ( IE C 
1 

+ c 2 
+ c ,2 

= r) ' which has already been excluded from 

consideration. 

What remains to be derived is the solution for the general case 
* * 

with x 1 
< u1 and x 2 < u 2, for which >.2 = >.4 = O according to (14) and 

* 
(16). From (11), with >.

2 
= o, x 2 = 

). -v 
1 1 2 

and from (12), with >.
4 

= o, 

* 
These two equations give x

2 
= 

v, * 
x 1. substitution in (9) produces 

v2 

2 v 
[
b v )½ 

__ 
[
b

v

v

2

1)½ 
x �  = b 

v: 
, which in turn yields x �  = 

v : 
, and x ;  

It is easily verified that the four possible solutions exclude 

each other. For example, for the solution of the general case, solution 

* 
X = 

1 
< u 

* 
[
b v1)½ and x = -- < 2 v2 

u 2 imply that the inequalities 

b v2 
b v1 

v1 > -
2
- and v2 > -

2
- must hold, which excludes as possible solutions 

u 1 
u 2 

* * 
x 1 -= u1 and x 2 

= u 2. The four possible solutions are listed in Table 1. 
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Table 1 Four possible solutions for the continuous optimization problem 

1. 

3. 

u1u2 
= b 

bv2 

, 

u,uz > b 

bv2 � 
u• 2 

b v z 
bv 1 

v
1 

> -- , v
2 

> --
u 2 u 2 

, 2 

* 
X 1 

* x 2 

* 
X 

1 
= 

* x2 
= 

* = u, 
� n, 

= 

* = u2 
� n2 

= 

* 
n 1 

= 1 

[rc12 + c1c2 ] _, b * 
C 

1 � n, 
- + -

u2 r(r•c2> r 

* u2 
� n2 

= 

The last column of this table contains the solutions after back-
* * 

transformation. Because solutions 2 and 3 with n
1 

or n2 equal to 1 are 

not likely to occur, the solution for the general case, solution 4, can 
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be regarded as the appropriate optimal continuous solution for the two­

facet optiJnization problem. 

Integer solution 

The optimal continuous solution for the general case, derived in 

the preceding section, will be used as a starting point for a branch­

and-bound procedure to obtain the optimal integer solution for the 
* * 

problem. Assume that n and n are the optimal continuous solutions, 1 2 * * 
and that not both values are integer. Let L n J denote that n1 is 

* * 1 
rounded down, and r n1 1 that n1 is rounded up, then two problems have 

to be solved excluding the value n1, but maintaining feasibility for 

all possible integer values of ", . The first problem is 

o2 o2 o2 

minimize .....e.l. p2 res 
+ -- +--", "2 "1"2 

subject to c
1
n

1 
+ c n + c n n ::5 r , 

2 2 12 1 2 

n 1 , n 2 .: 1 , and 

", s L < J 

In a solution (; 1, ;
2

) for this problem, n1 = L n; J must hold, 

because if n* � L; J the rounding down constraint would be 
1 , 

irrelevant , resulting in the non-integer solution to the original 

problem . As before , the resources constraint has to be satisfied as 

well. Consequently , either the solution for the first problem is n1 = 

L n,* J and, from the resources constraint, 

, or n1 = 1 and n2 
= • The second problem 

c2 + c , 2 

differs from the first in that the rounding down constraint is replaced 

by the rounding up constraint n 1 .: r n; 1 . The solution for ·::he second 
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problem is n1 
* 

= r ", l, and n = 
2 

Each of these two problems gives rise to two new problems, with 

additional constraints regarding n2 
whenever the value �

2 
is non­

integer. If, for instance, �
, is non-integer in the first problem, the 

constraint sets for the following two problems are given by (1) n2 
� 1, 

1 � ", � L �, J, and (2) "2 
� 1, ", ? r �, ,. Branching continues until 

either an integer solution or an infeasible constraint set is found. 

Each time an integer solution is obtained during the branching process, 

its value is compared with that of the previous best solution and 

accepted as the new best solution or rejected as such. At the end of 

the process the current best solution is the optimal integer solution. 
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4 Example 

our procedure will be illustrated for the two-facet random-model 

crossed design using the example from Woodward and Joe (1973, p. 179) 

with the following variance components: o; = 5.435, o;, = 3,421, o;
2 = 

1.140, and o:es = 1 1,850. The objective-function for this example is 

minimize 3.421 

", 
1.140 1 1.850 

+ --- + 

Assuming that a condition of facet l (e.g., essay questions), 

costs 40 dollars, a condition of facet 2 (e.g. , raters), costs nothing 

and one observation (i.e., the answers of all examinees to one essay 

question rated by one rater), costs 80 dollars, and that the budget for 

the decision study is limited to 3000 dol lars, the resources constraint 

for this example can be stated as 

40n + 80n n s 3000. 
1 1 2 

The optimal integer solutions n1 and n
2 

for this optimization problem 

are derived in two steps. First, using solution 4 from Table 1, the 
* * 

optimal continuous solutions n
1 

= 8.8 and n
2 

= 3.8 are obtained. 

Second, because both solutions are non-integer, a branch-and-bound 

procedure is needed to find the optimal integer solutions. For the 

problem with additional constraint n1 s L n; J = 8,-one finds a 

solution " ,  = 8, �
2 

= 4. 2 and for the problem with n, � r n; l = 9, a 

solution n
1 

= 9, n
2 

= 3.7. Further branching gives rise to four 

problems with constraint sets including n1, n
2 

� and: (l) n1 s 8, n
2 

s 4 ; ( 2 ) n 
1 

s 8 , n 
2 

� 5 ; ( 3 ) n 1 � 9 , n 
2 

s 3 , and ( 4 ) n 1 
� 9 , n 

2 
� 4 . 

The search process for the exclJ'!\ple with resources limited to 3000 

dollars is shown in Figure 1, 
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Figure 1 

� 

� 
infeasible infeasible 

Search-tree for the two-facet example 

starting from the optimal continuous solution in node 1, the 

strategy to traverse the search-tree is depth-firs� and from left to 

right, as indicated by the numbering of the nodes. Node 3 produces the 

first candidate solution, which is not improved by the solution found 

in node 5. The solution in node 6 does not satify the budget constraint 

and is therefore an infeasible solution. Other infeasible solutions are 

found in node 10 and 11. The solution found in node 9 is slightly worse 

than the solution in node 3 and thus rejected. From the search-process 

in Figure 1 as well other solutions presented in Table 2, it can be 

concluded that a more exhaustive search will result in either 

infeasible solutions or solutions that do not improve the solution in 
A A 

node 3. Therefore, the solution in node 3, (n
1

, n2
) = (8, 4), that is, 

eight essay questions of which the answers of all examinees have to be 

rated by four raters, is the optimal integer solution for this problem. 
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Table 2 Values of n 1, "2 ' variance components, p2 and r, when c , = 40 dollars, 

", 
6 
6 
7 
7 
7 
8 
8 
9 
9 

10 
10 
11  
12 

C = 0 
2 

c1n1 "2 

240 4 
240 5 
280 3 

280 4 
280 5 
320 3 
320 4 
360 3 

360 4 
400 3 

400 4 
440 3 
480 2 

dollars and c12 = 80 dollars 

"1"2 c12"1"2 
c,2 "2 

...£.!_ 
"1 

24 1920 5. 435 .570 
30 2400 5.435 .570 
21  1680 5.435 .489 
28 2240 5.435 .489 
35 2800 5. 435 .489 
24 1920 5.435 .428 
32  2560 5.435 .428 
27 2160 5. 435 .380 
36 2880 5.435 .380 
30 2400 5. 435 .342 
40 3200 5.435 .342 
33 2640 5. 435 .3 11 
24  1920 5.435 .285 

c,2 c,2 p2 
_e1_ res 

"2 "1"2 

.285 .494 .802 2160 

.228 .395 . 820 2640 

.380 .564 .791 1960 

.285 .423 .820 2520 

.228 .339 .837 3080 

.380 .494 .807 2240 
.285 .370 .834 2880 
.380 .439 .819 2520 
.285 .329 .845 3240 
.380 .395 .830 2800 
.285 .296 .855 3600 
.380 .359 .838 3080 
.570 .494 .80 1 2400 

Although the resources constraint employed here is not based on real 

data, the example is realistic since in most decision studies, 

differences between the number of observations will have more impact on 

the necessary resources than on the generalizability coefficient. A 

small difference between generalizability coefficients will therefore 

correspond with a large difference in resources (for example, compare 

solution (�,, �
2

) = (7, 3) with solution <�
,
, �

2
) = (8, 3)). 

The present example is also used to demonstrate that our procedure 

is a generalization of Woodward and Joe's. Their pr?cedure is a 

simplification of the resources constraint (9) employed by our 

procedure, obtained by substituting the left-hand term of (9) with the 

number of observations, the •greater than or equal to• sign with the 

'equal' sign and the right-hand term with a specific number of 

observations. Then, using solution 4 from Table l, the optimal 

continuous number of conditions of facet 1 and facet 2 under the 

constraint of a fixed number of observations is given by 

r and 

- , substituting b , the number of observations specified by the 

investigator, with the term L, leads to Woodward and Joe's equations 
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( 1973, p. 176). According to the preceding equations, the optimal 

continuous number of conditions of facet 1 and facet 2, with L is equal 
* * 

to 400, are n1 = 34. 65 and n2 = 1 1.55. Rounding off these non-integer 

values, their solution<�
, = 40, �

2 = 10) with a generalizability 

coefficient equal to . 9595, is the optimal integer solution under the 

constraint of 400 observations. However, a generalizability coefficient 

of . 9596 can be obtained with a smaller number of observations, 

explicitly, � = 36 and� = 1 1. This solution would have been obtained , 2 
with our two-step procedure, and it can be proven that this solution is 

indeed the optimal integer solution (Sanders et al., 1989). Although 

the differences in generalizability coefficients are trivial, this 
A A A 

solution is to be preferred over solutions (n
1 

= 33, n
2 

= 12) and (n 1 
= 

35, �
2 

= 1 1) with respectively 396 and 385 observations. The latter 

procedure also shows the insensitivity of higher values of 

generalizability coefficients to even major changes in the design. 

Woodward and Joe's solution is less parsimonious than ours because 

their procedure does not allow for the number of observations to vary. 

With L set to 396, their solution would have been the same as ours. 

Besides the efficiency resulting from defining the objective-function 

as an inequality constraint, our procedure also allows to handle 

additional constraints much more easily. These two features make it a 

very versatile procedure. 

As was shown by the example above, it is important to note that 

when the resources constraint is replaced by a constraint specifying 

the number observations, v1 
= vc1 and v2 = vc2 in the above 

expressions. For resources constraints comparable to the budget 

constraint employed in our example, the ratio v1/v2 will roughly 

approximate the ratio vc1
/vc2

. This means that for two-facet random­

model designs, the optimal number of conditions for facet 1 and facet 2 

will be proportional to the ratio of the error variance components. 
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5 conclusions and Discussion 

The procedure proposed in this article enables an investigator or 

test constructor to conduct a decision study under the constraint of 

limited resources. Although in practice resources will be the most 

important constraint, the procedure admits the possibility of others as 

well. For example, an investigator who wishes a measurement instrument 

composed of at least six times as many conditions of facet l (e. g. , 

essay questions) than of facet 2 (e. g., raters) can achieve this by 

employing the constraint n1 � 6n
2

. Adding this constraint to the 

present example would result in the optimal solution(�, � 1 2, �
2 = 2) 

= 2400 dollars, as can be seen in Table 2. The possibility of including 

additional constraints makes the procedure particularly useful for 

solving many practical measurement construction problems. 

Because of the consequences for the measurement instruments 

attached to the choice of constraints, they should be the result of a 

deliberate choice and carefully examined. Following Sanders et al. 

(1989), a distinction can be made between psychometric constraints and 

other , economic or practical, constraints. A psychometric constraint is 

one in accord with the psychometric structure of the problem - the 

magnitude of the error variance components. The inequality n1 � n
2

, for 

instance, would be a psychometric constraint for the present example, 

because a higher generalizability coefficient will be obtained by 

increasing the number of conditions of facet l than by increasing the 

number of conditions of facet 2. on the other hand,-the constraint n1 � 

n
2 

would not be considered as such. Another useful distinction to be 

made is between equality and inequality constraints. Inequality 

constraints are to be preferred over equality constraints, because 

equality constraints often lead to less efficient solutions. The latter 

was illustrated by Woodward and Joe's equality constraint of a fixed 

number of observations. It should be emphasized that dependent on the 

employment of psychometric and/or other constraints, quite different 

optimal solutions can be obtained. obviously, employing only 

psychometric constraints will lead to higher generalizability 

coefficients than employing other constraints. An investigator who 

considers the generalizability coefficient obtained inadequate, can 

take two decisions. The first is to change the resources constraint 

(e.g. , increasing the budget). The second is to change the design of 
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the decision study (e.g., nesting or deleting a facet). 

An optimization model for classical test theory has recently been 

presented by Van der Linden and Adema (1988). Assuming an item bank 

with estimates of item parameters based on classical test theory (i. e. , 

item difficulty and item test correlation), their procedure maximizes 

coefficient alpha permitting as many practical constraints as test 

constructors can think of. Their procedure can be viewed as an 

extension of our procedure for one-facet designs. Instead of a 

(stratified) random selection of items from the item bank, their 

procedure makes a selection of specific items based on the psychometric 

properties of these items. For tests of usual length, however, the 

differences between reliability coefficients constructed by the two 

procedures can be expected to be small and of little practical 

relevance. For one-facet designs, the aspect of diminishing returns 

should also be taken into account, because higher values of reliability 

coefficients are hardly influenced by changes in the number of items. 

Two extensions of the procedure presented here are obvious. First, 

the assumption of constant cost per condition within the same facet can 

be relaxed to allow for varying costs for conditions within the same 

facet. second, the procedure can be generalized to multifacet and 

nested designs, and designs for mixed models. Although the mathematics 

of these generalizations is rather tedious, they are quite 

straightforward as demonstrated for a similar procedure by Sanders et 

al. (1989). 

Applications of integer optimization technique-a for test design 

within the framework of latent trait theory have been presented by 

Theunissen (1985) , and Van der Linden and Boekkooi-Timminga (1989). To 

make these techniques accessible to the practitioner, a computer 

program has been developed that can handle a variety of test designs 

and constraints. Information about this program, called 'Optimal item 

selection', can be obtained from the second author of the current 

paper. Unfortunately, present computer programs for performing 

generalizability and decision studies (see crick & Brennan, 1982;  

Brennan, 1983; cardinet & Tourneur, 1985) do not use optimization 

techniques. As far as we know, only one experimental program applying 

these techniques in generalizability theory has been developed (see 

sanders et al., 1989). Using as input estimates of variance components, 

this program enables an investigator to specify an acceptable threshold 
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for a generalizability coefficient and employ constraints to obtain the 

optimal number of conditions of facets for a limited number of designs. 

What is needed, however, is a general program that can handle various 

kinds of objective-functions, designs and constraints. 
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