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Abstract 

The linear logistic test model (LLTM) specifies the item parameters as a 
weighted sum of basic parameters. The LLTM is a special case of a more 
general non-linear logistic test model (NLTM) where the weights are partially 
unknown. This paper is about the identifiability of the NLTM. Sufficient and 
necessary conditions for global identifiability are presented for a NLTM where 
the weights are linear functions, while conditions for local identifiability are 
shown to require less assumptions. It is also discussed how these conditions 
are checked using an algorithm due to Bekker, Merckens, and Wansbeek 
(1994). Several illustrations are given. 





1 Introduction 

For a set of k dichotomous items the Rasch Model (RM) is defined as 

where Xi indicates whether a response was correct (Rasch, 1960, 1966). The 
notation P(Xi = 1; e) is used to denote the probability of a correct response 
to the ith item as a function of e. This probability is decreasing in /3i, 
which is recognized to be a difficulty parameter associated with the ith item. 
Similarly, e denotes a person parameter. The present paper is about models 
for the item parameters; the person parameters act as nuisance parameters. 

The parameters of the RM are not unique in the sense that C = e + C and 
/3: = /3i + c for any constant c, give the same value of P(Xi = 1; e) for 
all i E { 1, ... , k}. This uncertainty regarding the value of the parameters is 
inherent to the model and can not be diminished by taking very large samples. 
We can remove this arbitrariness in the parameterization by imposing a linear 
restriction on the item parameters, i.e., 

k 

ao + L aif3i = 0. (2) 
i=l 

The coefficients ai are arbitrary but I:;=1 ai should not be zero because oth­
erwise (2) holds for /3i and f3i + c. A linear constraint with this property is 
called a normalization. The normalizations that are most frequently used in 
applications of the RM have a0 set to zero. This facilitates the interpreta­
tion of the normalized item parameters because the absolute value of /3i will 
then be equal to its distance from a reference, which is formally defined by 
I:;=1 ai/3i. The normalized item parameters are no longer arbitrary and are 
said to be identified ( or identifiable). In this report we consider the value of 
one of the item parameters as a reference. This amounts to setting a9 = l 
( for some g E { 1, ... , k}) and ai = 0 ( i =I= g). 

The Linear Logistic Test Model (LLTM) is defined as a RM subject to 
linear restrictions on the item parameters (e.g., see Fischer, 1995 and earlier 
references contained therein). Defining /3 = (/31, ... , f3k)', these restrictions 
can be written in matrix notation as 

(3) 
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where 'f/ = (771, ... , 7Jm)' with m < k - 1 is a vector of so-called basic parame­
ters, and Q = ( qii) is a k x m matrix of constants which reflects some theory 
or hypothesis on the structure of the item parameters. Most applications of 
the LLTM aim at explaining the difficulty of items in terms of the underly­
ing cognitive operations. In applications of this kind the basic parameters 
represent the difficulty of the certain cognitive operations. 

The LLTM is a restrictive model because it requires the full specification 
of the Q-matrix. Misspecification of this matrix may lead to systematic errors 
in the estimates of the basic parameters (Baker, 1993), and be responsible for 
the misfit that is frequently observed in applications of the LLTM (Fischer, 
1995). To detect such misspecifications, Glas and Verhelst (1995) suggest 
that the score (Rao, 1947), or Lagrange multiplier test statistic (Silvey, 1959) 
be used to evaluate the appropriateness of an LLTM against that of a more 
general model where some elements of the Q-matrix are random parameters 
(see Section 5.1. herein). The presence of variable elements in the Q-matrix 
defines a class of Non-Linear Logistic Test Models (NLTM). Loosely, a NLTM 
is a model which has the same overall structure as the LLTM, but the weights 
in the matrix Q are only partially known. 

Butter (1994), and Butter, De Boeck, and Verhelst (1998) discuss a par­
ticular NLTM (see Section 2 herein). They demonstrate that the method 
of conditional maximum likelihood can be used to estimate the parameters 
but offer no procedure to establish the identifiability of these parameters. It 
is essential that the parameters are identified. Unless the parameters of the 
NLTM are identified, there is no meaning to estimation of such parameters as 
several combinations of different values may lead to the same distribution of 
item responses. In particular, a parameter can not be estimated consistently 
if it is not identified_ (Gabrielsen, 1978). 

In the present report we pursue the investigations by Butter, et al. (1998) 
by providing means to establish the identifiability of the parameters in a gen­
eral class of models that includes their model as a special case. rr:o illustrate 
our findings we discuss two applications. We focus on a NLTM where the ran­
dom elements of the Q-matrix are linear functions of a set of a-parameters. 
A formal defi_nition of this kind of NLTM is provided in Section 2. In Sec­
tion 3, we present the conditions that are necessary and/or sufficient for the 
identification of the NLTM, given certain assumptions on the model. In Sec­
tion 4, we describe a simple algorithm to determine the identifiability of a 
NLTM. This algorithm is due to Bekker, Merckens, and Wansbeek (1994). 
In Section 5, we apply the algorithm to investigate the identifiability of two 
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NLTMs which were encountered in practical applications. In Section 6 we 
conclude the article and formulate some open problems. 

2 The Non-Linear Logistic Test Model 

Preceeding a formal definition of the NLTM, we set the stage by discussing 
a small example that we have adapted from Butter, et al. (1998). 

Subjects were administered three items that required them to solve math­
ematical problems. The first item required an addition, the second required 
a subtraction, and the third item an addition and a subtraction. Together 
these items are said to constitute a family. The items that refer to a single 
mental operation ( or component) are called subtasks, and the item involving 
a combination of the components is called the composite task. The items 
may be presented in any order. 

It is assumed that for a collection of k/3 item families (containing k items 
jointly) the RM is valid with the following restrictions 

(j = 1, ... , k/3). (4) 

The parameter /3jc refers to the item difficulty of the composite item, and 
/3j1 and /3i2 to the subtask difficulties in the jth family. We assume that the 
difficulty of the composite task is an increasing function of the difficulties 
of the subtasks. As a consequence, the parameters a1 and a2 must be non­
negative. When the item parameters are rescaled we get 

(j = 1, ... , k/3), (5) 

for some c, which implies that a1 + a2 = 1. Under this restriction, and 
provided that they are non-negative, the parameters a1 and a2 give the rel- · 
ative weights of the components. The intercept T represents the difficulty 
of a composite task over the difficulty of the subtasks. Butter (1994), and 
Butter, et al. (1998) present this model, without restrictions on the values of 
a1 and a2. Instead, the intercept T is made dependent on the normalization 
(see Butter, et al., 1998, Equation 10) which complicates its interpretation. 

The following equation shows the model in the form of the LLTM for 
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k/3 = 2 item families: 

/311 1 0 0 0 0 

/312 0 1 0 0 0 
'r/11 

/321 0 0 1 0 0 
'r/12 

/322 0 0 0 1 0 
'r/21 (6) 

f31c 1 - 0"2 0-2 0 0 1 'r/22 

f32c 0 0 1- 0-2 1 T 
0-2 

If the values of o-2 ( or o-1) were known, ( 4) would be a LLTM. In the present 
situation however, they are considered as model parameters. Because of the 
multiplication of parameters in ( 4) the logit of the response probabilities is 
non-linear in the parameters which is why we call this kind of model a non­
linear logistic test model. This contrasts with Butter, et al. (1998), who 
refer to the model as "an item response Model with Internal Restrictions on 
Item Difficulty (MIRlD)." 

Now we normalize the item parameters and arbitrarily choose /311 as a 
reference. This implies that ry11 = 0 so that the first column of the Q-matrix 
can be deleted, giving 

/311 0 0 0 0 

/312 1 0 0 0 

( 

'r/
12 

l 
/321 0 1 0 0 'r/21 (7) 
/322 0 0 1 0 'r/22 

f31c 0-2 0 0 1 T 

/32c 0 1 - 0-2 0-2 1 

With this normalization, the remaining parameters ( ry12, ry21 and ry22) must 
be interpreted relative to ry11.1 

We define the differentiable NLTM ( dNLTM) as a LLTM· where ele­
ments of the Q-matrix are differentiable functions of a set of p a-parameters 
arranged in the vector u = (o-1, ... , o-P)', i.e., 

f3(TJ, u) = Q(u)TJ. (8) 

The notation is chosen to indicate that the vector of item parameters and 
the Q-matrix are a function (or mapping) of (TJ, u) and u, respectively. 

1The notion of "normalizing an LLTM" is presented by Bechger, Verstralen and Ver­
helst (2000). An example is given in Section 5.1., herein. We do not use a standard 
procedure to normalize in the dNLTM but treat each case separately. 
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Structural assmnptions regarding the difficulty of the items determine the 
properties of this function. Note that the name NLTM is reserved for the 
larger class of models where this function is not required to be differentiable. 

In this paper we focus on the class of dNLTMs where elements of the 
Q-matrix are linear functions of the a-parameters. A typical element of the 
matrix Q(o-) is thus given by a:jo-+bij, where �i = (aijh) is a p-dimensional 
vector of constants, and bii a real number. The index i is used for items, j 
for basic parameters, and h for elements of o-. Using this notation, 

m p m 

/3('11, u) = LLa.jhO"h1Jj + Lb,i'Tli, 
j=l h=l j=l 

(9) 

where b.j denotes the vector (b1j,···,bkj)', and a.jh = (a1jh,a2jh,···,akjh)'. 
Hence, each item parameter is a polynomial function of rJ and o-. This 
polynomial has the following properties: an item parameter is never equal 
to a constant, and there a.re no powers over 1. In the absence of standard 
terminology for polynomials of this kind, we call this type of dNLTM the 
Simple Polynomial Logistic Test Model (SPLTM). 

Changing the order of summation in (9) shows that the SPLTM may also 
be defined as 

/3('17, o-) = P('IJ)o- + "Y('IJ). (10) 

The elements of the k x p matrix P(TJ) and the k-dimensional vector 1'('17) 
are equal to a:_h'T/ and h\TJ, respectively, where �.h = (ailh, ... , aimh)' and 
b.i = (bi1, ... , bim)' are vectors of constants. The model (7), for instance, can 
be written as 

f311 0 0 
f312 0 "712 

f321 0 
(a2) + 

"121 (11) 
f322 0 "722 

f31c "112 T 

f32c "722 - "121 "121 +r 

Note that Equation 8 is a linear mapping if we consider the o--parameters 
as constants, while Equation 10 defines an affine linear mapping if the basic 
parameters '17 are kept constant. This property of the SPLTM is used in the 
proof of Theorem 5 in the next section. 
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3 Identifiability 

We assume that the item parameters are normalized, so that the parameter 
vector (3 is identified by the probability distribution of the item responses, 
and concentrate on the model for the item parameters. This implies that Q 
has been adapted, as in the previous section, so that the item parameters are 
normalized. 

( 
I ')' Let 9 = "I , u denote the parameter vector of the dNLTM. Let (30 be 

the population value of the normalized item parameters. The dNLTM under 
investigation is assumed to hold and there exists a vector 90 = ( "I�, u�)' from 
the parameter space f2 such that 

(12) 

The hypothetical "true" parameter point 90 being, of course, unknown. It 
will be supposed throughout this paper that f! is an open and connected 
subset of JRm+p, ( m + p )-dimensional Euclidean space. We say that a pa­
rameter 0w E 9 is globally identified ( locally identified) at 0wo if the value 
0wo is unique (locally unique)-that is, if (3(9*) = {3(90) and 9* E f2 (9* is 
in an open neighborhood of 90) implies that 0:i = 0wo (Shapiro, 1986). We 
say that a dNLTM is (locally or globally) identified if all its parameters are 
(locally or globally) identified. 

The rest of this section is structured as follows: We starts with a re­
sult concerning the local identifiability of the dNLTM. We then continue by 
making stronger assumptions about the model and the true parameter point. 
These additional assumptions '.3-llow us to derive necessary and sufficient con­
ditions for global identifiability. An appendix is provided to show that all 
these assumptions hold in the SPLTM. This way the reader can see what re­
sults can be proven for the dNLTM and what results require the SPLTM. For 
ease of presentation we will first consider the identifiability of 9 as a whole 
before we consider the identifiability of separate parameters in Corollary 7. 

Consider the dNLTM so that each item parameter is a differentiable func­
tion of 9. By definition, this implies that 

for some mapping G, defined for values of 92 and 91 that are sufficiently close 
such that 

(14) 
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where J(61) = ( gg� l0
w=0

wi
) denotes the Jacobian matrix of the NLTM at 

6 1, and 11-11 denotes the Euclidean vector norm (e.g., Lang, 1996, XVI, §2). 
Now assume that the model is locally not identifiable at 60; that is, in every 
open neighborhood of 60 there are two distinct points 6 1 and 62 such that 
{3(62) - {3(61 ) = 0. Equation 13 implies that 

(15) 

Equation 14 implies that the product on the left of (15) can be made as small 
as we wish by taking 62 and 61 sufficiently close to 60 . The right side of (15) 
is never smaller than the smallest eigenvalue of the matrix J' (61)J(61) (e.g., 
Lang, 1987, Theorem 3.3), and since det(J' (61)J(61)) is continuous (e.g., 
Borden, 1998, p. 257) 

det(J' (6o)J(6o)) = lim det(J' (61)J(61)) = 0, 
81-+80 

(16) 

which implies that the Jacobian matrix does not have full column rank at 
60. The Axiom of Contraposition implies that we have proven the following 
proposition: 

Proposition 1 If the Jacobian matrix has full column rank at 60, the cor­
responding dNLTM is locally identifiable at 60 . 

The converse is true under the following regularity condition ( used by 
Wald 1950; see Fisher 1966; Rothenberg 1971). 

Definition 2 A point 60 E n is regular if the rank of the Jacobian matrix 
is constant for every lJ in an open neighborhood of 60 . 

If 60 is a regular point and the Jacobian matrix has deficient column 
rank at 60, the columns of the Jacobian matrix are linearly dependent for 
any specific lJ in an open neighborhood of 60 . As a consequence, there exists 
a vector a( 6) =/=- 0 such that 

J(lJ)a(lJ) = 0 (17) 

for all 6 in an open neighborhood of 60 . Since J(B) is continuous and of 
constant rank, a(lJ) is continuous in an open neighborhood of 60 . This 
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property allows us to consider a trajectory or curve B(t), which solves for 
0 :S t :S t* the differential equation 

d8(t) 
= a(B) 

dt ' (18) 

where 8(0) = 80 so that the curve passes through the unknown true pa­
rameter point. It follows from the chain rule (e.g., Lang, 1996, XVI, §3) 
that 

d{3(8(t)) 
= J(B) d

8(t) 
= J(B)a(B) = O dt dt ' (19) 

where {3(8(t)) denotes the value of the item parameters corresponding to 
parameter values on the curve. Equation 19 implies that {3 is constant along 
the curve for 0 :S t ::; t* so that 8 is not identified at 80 . 

Summarizing, we have now proven the following theorem, which is well 
known in Econometrics, albeit for a different kind of models (Fisher, 1966; 
Bekker, et al., 1994). 

Theorem 3 If 80 is a regular point, the parameters of the dNLTM are locally 
identifiable at 80 if and only if the Jacobian matrix of the model has full  
column rank at Bo. 

Even if we restrict O to regular points in ]Rm+v, global identifiability 
may not prevail, although the Jacobian matrix has full rank for all 8 E n 

(Parthasarathy, 1983). An example is given by the following dNLTM 

(20) 

The determinant of the Jacobian matrix of this model is 
cos 0"1 0 - (sin ai ) 771 0 

0 e"2 0 e"2TJ2 2u2 (21) e"2 0 0 e"2TJ1 = -e 'f/1 1]2 . 

0 sin a1 (cos ai ) 112 0 

The parameter o-1 is not globally identified at any point in lR because any 
two values that differ by a multiple of 21r have a common image, yet the 
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Jacobian matrix has full column rank except when r,1 or r,2 is zero. We will 
now demonstrate that (in contrast to the dNLTM) the parameters of the 
SPLTM are globally identified if and only if they are locally identified at any 
8 E 0. To this aim, we need the following elementary lemma, which is easy 
to prove (e.g., Lang, 1996, XIV, §3). 

Lemma 4 An affine linear mapping of real vector spaces maps a straight 
line into a straight line. 

This lemma is now used to prove the following theorem. 

Theorem 5 The SPLTM is globally identified if and only if it is locally 
identifiable everywhere in 0.  Proof. Suppose that the model is not glob­
ally identified and there exist distinct parameter values 83 = (11; , u;)' and 
81 = (11� , u�)' such that /3(81) = /3(83) .  Let 82 = (11; , u�) ' . Lemma 3 im­
plies that the image of the line segment between 81 and 82 is a line segment 
between /3( 81 ) and /3( 82) .  Similarly, the image of the line segment between 82 

and 83 is a line segment between /3( 82 ) and /3( 83) .  Since /3( 83) = /3( 81 ) ,  and 
since there is only one straight line between two points, the two line segments 
must be the same. Hence, in every open neighborhood around 82 , there are 
two points that map onto the same item parameters so that the model cannot 
be locally identifiable at 82 {Figure 1). Hence, if the model is not identifiable 
there must be a point where it is not identified locally. The reverse implication 
also holds as global identifiability implies local identifiability. ■ 

The main result of this paper is given now in the following (new) theorem. 

Theorem 6 If 80 is a regular point, the SPLTM is globally identified at 00 if 
and only if the Jacobian matrix has full column rank at 80 . Proof. Theorem 
9 in the next section implies that the rank is equal at all regular points. Thus, 
if the Jacobian matrix has full column rank at 80, Theorem 3 implies that the 
model is locally identified at any regular point. Finally, Theorem 5 implies 
that the SPLTM is globally identified at any regular point in Rm+p_  ■ 

If 8 as a whole is not identified it may still be the case that some separate 
parameter is identified. Equation 19 implies that , if a parameter is identified 
at 80 , the corresponding element of the vector a(8) must be zero. Since a(8) 
is in the null space of the Jacobian matrix (see Equation 17), a zero row in 
a basis of this null space would imply that the corresponding parameter 
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Figure 1: Relation between the parameter space and the space that contains 
the item parameters. The curved lines points from particular values of the 
parameters to their images. We have also drawn the line segments between 
the parameter values and their images. The circle around 02 represents an 
open ball around that point 

is constant in an open neighborhood of any regular parameter point and 
therefore identified. These observations bring us to the following result (see 
also Bekker, et al. , 1994, Corollary, 2.7.1). 

Corollary 7 Assume that 80 is a regular point. Let N(0) be a basis for the 

null space of J(8) , i. e., J(0)N(8) = 0.  Let ew be the wth unity vector. Then 
the wth parameter is globally identified if and only if e�N(8) = 0. 

A natural question that arises from the preceding discussion is: How 
frequent are the regular points ? The following important result is due to 
Fisher (1966, p. 167; also Andres, 1990, Section 3.3). 

Theorem 8 Let f3i, i E {1, ... , k }, be real analytic functions on 0.2 Then 

the set of irregular points is of Lebesgue measure zero, i. e., almost all (} E n 

are regular. 

2 A function is real analytic on an open set U � 1R if it may be represented by a 
convergent power series in a neighborhood of every point of this set. See Dieudonne (1969, 
IX) or Krantz and Parks (1992; Definition 1 . 1 .3) .  In particular, polynomial functions are 
analytic on JR. 
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In other words, if we consider 0 to be random with some non-degenerate, 
continuous distribution, the irregular values constitute a set of zero area and 
the probability that 00 is not a regular point is zero. In view of Theorem 
8 ,  a parameter is said to be identified (or not identified) almost everywhere 

in JRm+p ( abbreviated to a.e. [JRm+p] )  to indicate that this statement is true 
under the assumption that 00 is a regular point.3 

4 An Algorithm to Determine the Identifia­

bility of an SPLTM 

In the SPLTM, all item parameters are real analytic functions on JR. The 
Jacobian matrix has the following generic form 

J(0) = (Q(u) , P('.17)) . (22) 

Since Q ( u) is known, we can assemble the Jacobian matrix using the formulae 
presented in Section 2.  Note that the Jacobian matrix may be much more 
complicated in the dNLTM (see e.g. , 21) .  

To determine the rank of J(00) and at the same time find a basis of the 
null space of J(0), Bekker, et al. (1994) propose a simple procedure, which 
can be performed by ubiquitous computer packages for symbolic math such 
as Maple.4 When applied in the present situation, this procedure consists 
in the use of elementary row operations (Gaussian elimination) to transform 
the augmented matrix [J' (0) , Im+pl into reduced row echelon form (RREF) ,  
where Im+p denotes an ( m + p )-dimensional unit matrix. Let E be a non­
singular matrix representing the elementary row operations. Let E be parti­
tioned as E = (E1 , E2) ,  where E1 has d columns, and E2 has k - d columns. 
The matrix that results from Gaussian elimination can be partitioned as 
follows. 

3Note that a model that is identifiable a.e.[O] is sometimes called identified (e.g., Lui­
jben, 1991, p. 656). We prefer to distinguish explicitly between local identifiability, global 
identifiability and identifiability a.e. [O] . 

4 An alternative procedure is discussed by Bekker (1989), and a program called ERA is 
provided with the Bekker, et al. (1994) book. 
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where R21 is a zero matrix with k columns and as many rows as possible. 
Since J(O)E2 = 0, the matrix E2 = R;2 gives a basis for the null - space of 
the Jacobian matrix. According to Corollary 7, a zero-row in E2 indicates 
that the corresponding parameter is identifiable a.e. [ffi.m+p]. The rank of the 
Jacobian matrix at any regular point is given by d, which is the number 
of columns minus the dimensionality of the null space, i.e ., k - ( k - d) ( cf. 
Bekker, 1989, prop. 2). The following theorem implies that d is also the 
maximum rank of the Jacobian matrix when the maximum is taken over real 
values of the parameters. 

Theorem 9 Let f3i , i E {1 ,  . . .  , k } ,  be real analytic functions on 0. Then 80 

is a regular point if and only if 

rank(J(80)) = max {rank(J(O)) } .  
9EJRm+p 

(24) 

Proof. The proof is given by Shapiro {1983, p. 9), or Bekker, et al. (1994, 
Theorem 2. 6. 1). In the appendix we provide a relatively simple but less gen­
eral proof. ■ 

As an illustration we apply the algorithm to the following SPLTM: 

The augmented matrix is 

0'1 1 0"1 1 0 0 0 l 
0 0'2 0 0 1 0 0 
771 0 771 0 0 1 0 
0 T/2 0 0 0 0 1  

If the augmented matrix is transformed into RREF we have 

1 0 0 0 -1 0 1 1 
T/1 0'1 

0 1 0 1 2 0 -1+2a1 _:}22 

- 1
1/

�l 
1/2 0 0 1 0 1 0 0 

1/1 
0 0 0 0 0 1 0 1 - 1/2 0'2 

12 

(25) 

(26) 

(27) 



Consequently, for all regular points the rank of J ( 0) equals 3. The vector 
[ 0 1 0 - ;2 0-2 ] furnishes a basis for the null space of the Jacobian ma-
trix, which indicates that a-1 and 'f/I are identifiable a.e. [JR.m+p], while a-2 and 
'f/2 are not identifiable a.e. [JR.m+P]. If we set a-2 = 1, the resulting model is 
identified a.e. [JR.m+p]. 

Cramer's rule (e.g., Lang, 1987, p. 157) states that the elements of vectors 
in the null space are ratio 's of subdeterminants of J ( 0) . In the SPLTM, the 
elements of J(0) -are polynomials and any subdeterminant of J(0) is the sum 
of products of polynomials (see Appendix). Since the ring of polynomials is 
closed under addition and multiplication, subdeterminants of J(0) are also 
polynomials. Hence the elements of o.(0) are rational functions in 0, as in 
the example. 

5 Illustrations 

5.1 The Identifiability of Single Elements of the Q-

Matrix 

Suppose that we follow the suggestion by Glas and Verhelst (1995), and use 
the score test to investigate the specification of an LLTM. First we adapt 
the Q-matrix so that the item parameters are normalized. If the rth item 
is taken as a reference, we must pre-multiply Q with a matrix Lr, that is 
obtained from Ik by subtracting the rth row from any other row (including 
the rth row) of lk. Thus, we obtain a normalized LLTM : 

(28) 

Let this LLTM represent the null-hypothesis. The alternative hypothesis is 
a SPLTM with parameter vector 0 =( ,,,, , u')' ,  where u contains parameters 
that represent the unknown values of those entries in the Q-matrix whose 
specification we wish to investigate. Let S8 ( 0 L) be the vector of first order 
partial derivatives of the loglikelihood of the SPLTM evaluated at 0 L ,  which 
denotes the Maximum Likelihood (ML) estimates under the LLTM. That 
is, 0L = (f,', c1

)
1

, where c is a vector of constants, and fJ denotes the ML 
estimates of the basic parameters. Similarly, Io,o (0L) denotes the information 
matrix evaluated at 0L. The Score Test (ST) is defined as 

(29) 
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If the postulated LLTM holds, this statistic follows a central chi-square dis­
tribution with degrees of freedom equal to the number of parameters in u. 
The partial derivatives of the loglikelihood function with respect to the basic 
parameters are zero since they are evaluated at the ML estimates. Hence, 
the corresponding rows in 19 ,9 (0£)-1 can be deleted. Since O = (711, u')' is 
partitioned, the score vector and the information matrix may likewise be 
partitioned: 

The inverse of the information matrix can be partitioned using standard 
formulae for the inverse of a partitioned matrix. After simplification, we 
obtain the following expression for the ST: 

(31) 

where 
(32) 

(cf. Glas & Verhelst, 1995). 
Suppose that the ST is used to investigate the specification of the (g, l) 

entry in the Q-matrix. An application of this kind is reported in detail by 
Bechger, Verstralen and Verhelst (2000). If the ST turns out to be significant, 
we may consider this entry as a parameter and estimate its value. Before 
doing so we must find out whether the resulting SPLTM is identified. This 
turns out to be relatively easy. The Jacobian matrix is 

(33) 

where, for convenience, r =/=- g so that P(r7t) denotes a column vector with all 
elements equal to zero except the gth entry which is equal to ry1 .  W ithout loss 
of generality we first re-order the rows of the Jacobian matrix such that the 
gth row is the last row. Then, it follows from basic properties of partitioned 
matrices (e.g., Basilevsky, 1983, Equation 4.9.2) that 

(34) 

where Q_9 denotes the Q-matrix with the gth row deleted. The results in 
the third section of this paper imply that the model is identified a .e. [�m+p] if 
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and only if Q_9 has full column rank. The point where 'f/t = 0 is irregular. It 
is, however, easy to see that the parameter (J'gl is not identified at 'f/l = 0. At 
all other irregular points, the Jacobian matrix has full column rank so that 
the model is locally identified there by Proposition 1. Theorem 5 implies 
that (J'gl is globally identifiable at 00 if and only if Q_9 has full column rank, 
and 'f/t =/= 0. 

5.2 A Simple Polynomial Logistic Test Model for Facet 

Designs 

Suppose that children that have participated in a music course are expected 
to know nM melodies by name and be able to recognize each of nr times. 
To test their knowledge as well as their musical abilities, the children are 
required to listen to small pieces of music, sing along with the melody, and 
simultaneously beat time with their hands. The exam also includes sessions 
where the children have to sing either a melody or beat time. At each occasion 
their performance is judged as sufficient or insufficient by their music teacher. 

This example can be placed in a more general context by noting that 
the composite tasks are composed as elements of the Cartesian product of 
two facets: melodies and times. The use of this model for facet designs was 
suggested by Butter (1994). It is, however, beyond the scope of this paper to 
develop a SPLTM for facet designs in its full generality. We merely use the 
example to illustrate that the SPLTM can be used to analyze data of this 
kind. 

As in Section 2, we assume that the difficulty of this composite task is an 
additive function of the difficulty of the subtasks: singing and beating time. 
To be more specific, the difficulty of the composite task is given by 

f3av = (J'Mf3ao + (J'rf3ov + r (a E {1, ... , nM} and v E {1, ... , nr} ), (35) 

where f3ao denotes the difficulty of singing the ath melody, f3ov denotes the 
difficulty of beating the vth time, and f3av denotes the difficulty of doing both 
things simultaneously. To improve the interpretability of the-parameters and 
to assure that the structure of the model is invariant under normalization, 
we make the following assumptions: 

1. Monotonicity: For all melodies a, b and all times v,w, 

(36) 
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f3ov 2:: f3ow {::} f3aw 2:: f3aw (37) 

2. Invariance under normalization: For any c E JR, a E {1 , ... , nM} and 
v E {1, ... , nT} 

f3av + c = CIM(f3ao + c) + CIT (f3ov + c) + T. (38) 

The monotonicity assumption asserts . that weak order relations among 
the difficulties of singing separate melodies, or beating separate times also 
hold when singing and beating time are performed simultaneously. This 
assumption implies that the weights CIM and CIT are non-negative.5 The 
invariance under normalization assumption implies that CIM + CIT = 1. We 
can therefore interpret the parameters CIM and CIT as the relative difficulty of 
singing and beating time, respectively, as perceived by the music teacher. 

The composite task requires the coordination of the hands and the voice, 
which is not necessary to perform any of the subtasks separately. The inter­
cept T represents the difficulty of this coordination as perceived by the music 
teacher. To see this, consider that if T = 0 the difficulty of the composite 
task is restricted to lie somewhere between the difficulties of each subtask. 
If T -=/:- 0 ,  the difficulties of the composite tasks are all shifted an amount T. 

Hence, the intercept T represents the difficulty of a composite task over a 
subtask. 

When there are two melodies and two times we have the following model 
for difficulty parameters: 

/311 1 - CIT 0 CIT 0 1 
/312 1 - CIT 0 0 CIT 1 
/321 0 1 - CIT CIT 0 1 'TJ10 

/322 0 1 - CIT 0 CIT 1 'T]20 

/310 1 0 0 0 0 'TJ01 (39) 

/320 0 1 0 0 0 'TJ02 

/301 0 0 1 0 0 
T 

/302 0 0 0 1 0 

We take /310 as a reference. This implies that ry10 = 0 so that first column of 
5 Alternatively, we might have assumed that the weights are non-negative and this 

would, together with the invariance under normalization, have implied monotonicity. 
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Q can be deleted giving 

/311 0 O'T 0 1 
/312 0 0 O'T 1 
/321 1 - O'T O'T 0 1 

( 

T/20 

) 
/322 1 - O'T 0 O'T 1 T/01 

(40) 
/310 0 0 0 0 T/02 

/320 1 0 0 0 r 
/301 0 1 0 0 
/302 0 0 1 0 

Ignoring the zero row in Q, the Jacobian matrix of this model is 
0 O'T 0 1 'T/01 
0 0 O'T 1 'f/02 
1 - O'T O'T 0 1 'f/20 - T/01 

[Q(u) , P(r,)] = 1 - O'T 0 O'T 1 'f/20 - 'f/02 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 

The null space of this matrix is empty, which means that the model is iden­
tifi.able a.e. []Rm+p]. 

6 Concluding Remarks 

The LLTM models the item difficulty parameters of the RM as a weighted 
combination of m basic parameters. In some applications, this model is 
considered too restrictive because the weights must be specified in advance. 
We have discussed two such applications. The first application concerned 
the estimation or respecification of a single entry in the Q-matrix, and the 
second application was a model for measurements obtained from a crossed 
two-facet design. In each of these applications, the weights were specified 
as linear functions of additional random parameters. This model was called 
the SPLTM. Butter , et al. (1998) considered a special case of the SPLTM 
and demonstrated that the method of conditional maximum likelihood can 
be used to estimate the parameters. The aim of the present paper was to 
discuss conditions for the identification of the SPLTM, and the more general 
dNLTM, and provide ways to check these conditions. 
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We have found that the SPLTM is identified at almost every real pa­
rameter point if and only if the maximum rank of the symbolic matrix 
[Q (u) , P(77)] is equal to the number of its columns. We have also found 
that the null space of this matrix provides information on the identification 
of individual parameters. To arrive at these results we have profited from 
work done in Econometrics (Fisher, 1966; Rothenberg, 1971), and structural 
equation modeling (Andres, 1990; Bekker, et al., 1994; Shapiro, 1983;1986). 
These publications have almost exclusively dealt with local identification ( as 
in the dNLTM) and our results about the global identifiability of the SPLTM 
are quite unique. Bekker, et al. (1994) have demonstrated that Gaussian 
elimination can be used to obtain all the required information. Most of 
the recently developed programs for computer algebra incorporate Gaussian 
elimination and can be used for this purpose. Without this algorithm it may 
be very difficult to determine whether a particular parameter is identifiable, 
even when the number of items is small. The reader is challenged to try, for 
instance, to determine whether (25) is identifiable. 

Although a model that is not identified would occur in practice with 
negligible probability, one might find instances where a solution is close to 
an unidentifiable model causing numerical instabilities and convergence dif­
ficulties. Given a model that is identifiable a.e. [JR.m+P], it is therefore of 
interest to know which irregular values of the parameters would render the 
model unidentified. This knowledge would also serve to avoid the specifi­
cation of a restriction that would render a unidentified model. In general, 
the irregular values are real roots of the determinant of the symbolic matrix 
J' (0)J(0) = [Q(u) , P(77)] ' [Q(u) , P(77)] .  In general, this determinant is a 
complicated multivariate polynomial. The applications in this paper show 
that in some cases these roots may be found on the back of an envelope but 
to the best of our knowledge there is no general algorithm which enables us 
to solve such complicated multivariate polynomials automatically. A notable 
exception is when there is only one parameter in the Jacobian matrix so that 
the elements are univariate polynomials (e.g., Henrion & Sebel, 1998). 

There is no SPLTM that is globally identified at any (regular or irregular) 
true parameter point since we can always find an irregular point where the 
model is not identifiable, e.g., 77 = 0. That is, we may always find a restric­
tion that will make a model unidentified. Through our experience with the 
SPLTM we have come to believe that there are no irregular points where 
the SPLTM is locally identified. This conjecture has been proven wrong for 
factor analysis (Shapiro &. Browne, 1983; Shapiro, 1985) but we did not find 
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any counterexample for the SPLTM. The proof of this conjecture is a topic 
for future research. To find out whether the true parameter is regular, one 
could use a sample estimate of the Jacobian matrix to test whether this ma­
trix has full column rank at the population value 00 (Gill & Lewbel, 1992). 
This same procedure can be used to test the local identifiability of a dNLTM 
by Proposition 1. 

Finally, we hope that the present article stimulates the application of the 
SPLTM but we realize that this is contingent on the availability of user­
friendly software. We therefore consider the development of such software 
to be an important topic for future work. A final topic for future research 
is the generalization of the ideas presented here to models for polytomous 
items (e.g., by extending the Linear Partial Credit Model (LPCM); Fischer 
& Ponocny, 1994; 1995) and/or multidimensional models (e.g., Andersen, 
1995). We believe that the conditions for identifiability generalize to such 
models. 
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7 Appendix 

A function is a real polynomial if it consists of the sum of products of real 
parameters. Hence, in the SPLTM each item parameter is a polynomial 
function of u and TJ. This polynomial is characterized by the fact that there 
are no powers over 1 and that no item parameter is equal to a constant. 
There appears to be no conventional way to refer to such polynomials and 
we have somewhat arbitrarily chosen to call it "a simple polynomial." A 
polynomial is also a power series on ]Rm+p_ To see this, look at the definition 
of a power series given by Dieudonne (1969, p. 199) , and add an infinite 
number of zeroes to the polynomial. By definition then, a polynomial is a 
real analytic function on ]Rm+p_ Theorem 9.3.6 in Dieudonne (1969) implies 
that it is indefinitely differentiable. 

We will now prove that Theorem 8 holds when the model is a SPLTM. 
To this aim we need the following Lemma (see also Shapiro, 1983, Lemma 
2) . 

Lemma 10 A simple multivariate polynomial is either identical to zero or 
zero for a subset of Lebesgue measure zero.Proof. Suppose that the poly­
nomial is unequal to zero but vanishes on an open and connected subset of 
n. Hence, the polynomial is not a non-zero constant. It must then be pos­
sible to change only one arbitrary parameter without changing the value of 
the polynomial. However, a simple polynomial consists of sums of products 
and it is necessary to change at least one other parameter to compensate for 
the change in the former parameter. This means that there cannot be an 
open subset of positive Lebesgue measure where the polynomial vanishes. If a 
polynomial consists of a single parameter the set where it is zero is a set of 
Lebesgue measure zero. ■ 

The determinant of J'(8)J(8) is calculated as the sum of products of 
parameters in 8. Hence, it is a polynomial and so is each minor of J ( 8). 
This will be used to demonstrate that (24) holds. 

Suppose that 80 is a regular point and rank ( J ( 8)) = d ::; ( m + p) , which 
means that J(8) has a non-zero d x d minor. Since this minor is continuous 
there exist an open neighborhood around 80 where it is non-zero. Hence this 
minor is non-zero for almost every O E JRm+p. If d < ( m + p) there is a 
s x s minor, s > d, which includes the d x d non-zero minor, that is zero in 
a neighborhood of 80 . Since the minor is a real polynomial, it follows from 
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Lemma 10 that any s x s minor is identically zero on R It follows that the 
rank of J is d or less than any 0 E �

m+p.  This suffices to prove Theorem 9 
for the case of the SPLTM. 
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