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Abstract 

Solutions for the problem of maximizing the generalizability 

coefficient under a budget constraint are presented. It is shown that 

the Cauchy-Schwarz inequality can be applied to derive optimal continuous 

solutions for the number of conditions of each facet. 

Key words: generalizability theory, Cauchy-Schwarz inequality, optimal 

designs. 
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Introduction 

A procedure for the problem of maximizing the generalizability 

coefficient of the two-facet random-model crossed design under a budget 

constraint was recently presented by Sanders, Theunissen, and Baas (1991), who 

formulated this optimization problem as: 

minimize (1) 

subject to (2) 

n1 and n2 integer � 1. ( 3) 

Maximizing the generalizability coefficient is equivalent to minimizing 

the error variance, that is, the sum of the three interaction variance 

2 components. In (1), O
p1 is the variance component for the person by Facet l 

interaction, 2 O
p2 is the variance component for the person by Facet 2 

2 interaction, ores is the variance component for the person x Facet l x Facet 

2 interaction plus error, and n1 
and n2 are the number of conditions of Facet 

l and Facet 2. The minimization statement in ( l) expresses that the value of 

the objective-function is determined by the numbers of conditions, n1 and n2, 

used for Facet 1 and 2. 

In the cost function in ( 2) , the right-hand term specifies an upper 1 imi t 

on the budget. The costs required by the conditions of Facet 1 are specified 

by the term c1n1 , c1 being the cost of one condition of Facet 1. The costs 

required by the conditions of Facet 2 are specified by the term c
2 n2

, c
2 

being the cost of one condition of Facet 2. The number of observations per 

subject equals n1 n2
. Thus, denoting the cost of one observation for the 

sample of subjects to be tested by c12, the costs necessary for the total 

number of observations are specified by the term c1n1n2. 

The lower bound integer constraint ( 3) states that feasible values for 

n1 and n2 have to be integer values and each facet has to have at least one 

condition. 
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In the two-step procedure proposed by Sanders et al. (1991), optimal 

continuous solutions for n1 and n2 are derived for a continuous relaxation of 

(3) in the first step. These continuous solutions are then used as the bounds 

in a branch-and-bound algorithm to obtain the optimal integer solutions. The 

use of the Lagrange multipliers method to attain the optimal continuous 

solutions, however, can result in complex derivations. But, as first shown by 

Stuart (1954) for problems of sample survey theory, derivations of optimum 

solutions can be simplified if the Cauchy-Schwarz inequality applies. This 

inequality states that for any sets of real numbers 

{ah}, {bh} , (h = 1, 2, ... , p) , 

(Eai) (Ebi) � (Eahbh) 2, (4) 

with equality occurring if and only if ah
/bh = k for all hand some constant 

k. According to Stuart (1954, p. 239), the sampling variance in most of the 
V 

problems in sample survey theory takes the form E___.E = V, where v
h 

is the 
nh 

function of population parameters only, and nh is a function of sample 

numbers only. The cost functions generally considered are of the form 

Enhch = C, where the eh are fixed cost constants. From ( 4) it therefore 

follows that 

Since the right-hand side of (5) is independent of the nh
, the minimization 

of vc for fixed c (or for fixed v) and variation in the nh is achieved 

when, from (4) and (5), 

n 2c h h 
= k2 ( all h) (6) 

Vh 

In the survey sampling literature (e.g., Cochran, 1977), applications of 

the Cauchy-Schwarz inequality to optimization problems abound. The purpose of 

the present note is to show its applicability to optimization problems 

recurring in generalizability theory. 
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Solutions for Two-Facet Optimization Problems 

Other 1 inear cost functions besides ( 2) can arise if c1, c2 or c
1 2 is 

equal to zero. Functions with c1 or c2 and c12 equal to zero, however, lead 

to trivial optimization problems. Moreover, the cost function with c
1 

and c
2 

equal to zero, that is, cost function _£ S: n1n2, reduces the problem of 
C12 

optimum allocation for fixed cost to the problem of optimum allocation for a 

fixed number of observations. By replacing the inequality constraint in the 

cost function by an equality constraint, the optimal continuous solutions for 

this optimization problem, 

2 
and 

( l

'
AI O

p2 C 
n = -- --2 2 • C O

p1 12 

were derived by Woodward and Joe {1973). Therefore, three other potential 

linear cost functions can be distinguished: 

These three cost functions and (1) result in three different optimization 

problems. 

The solution strategy for each of the three optimization problems is as 

follows. First, the inequality constraint of the cost function is replaced by 

an equality constraint. Second, the terms in the objective-function and the 

cost function are reformulated so that (5) applies. For example, for the 

optimization problem defined by (1) and (7), we note that the cost function 

does not include a linear term with n
2

. Dividing (7) by n1 n
2

, however, we can 

C 
rewrite (7) as c12 = -

_!. 
n

2 

multiplying this constant 

2 2 2 2 
O

p1 + 
O

p2 + 
Ores + 

a
p2 

nl n
2 

n1n2 Cl 

2 2 2 

( 
O

p1 + 
O

p2 + Ores + 
nl n2 n1 n2 

From (4) and (5) we obtain 

+ _c_ . Moreover, by adding a constant to (1) and 
n1n2 

by C12' ( 1) can be expressed as 

C
1 2 

2 2 

l 

O
p2 + 

O
p2C 

n
2 

c1n1
n2 
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2 
Op1 

c1 n1 = k
2 and , 

nl 

( a;es 
2 

�) 
+ Op2 

c12n1n2 = k2. 

n1n2 

Multiplying (10) by (c1 ) 1/2 and (11) by (c12) 1/2 results in 

from which it follows that 

k= 
C 

Having determined k, n1 and n2 
can be solved. 

( 10) 

(11) 

Since the functions of the optimization problem defined by (1) and (8) 

are equivalent to the functions defined by (1) and (7), the derivation of the 

solution for this problem is analogous. 

To apply the Cauchy-Schwarz inequality to the optimization problem 

defined by (1) and (9), both functions need to be rewritten. We start by 

dividing ( 9) by n1n2 

( 1) and multiplying 

2 

2 O resC2 
O

p1 
+ --

C 

2 
0res + 

+ 

which gives 

this constant 

From (4) and (5) we obtain 

Cl 
n

2 

by 

+ 
C2 

= 

C By adding a constant --
nl n1n2 

C 
( 1) can be expressed as 

n1 n2 

= 

4 

to 

(12) 



n2 

Multiplying ( 12) by ( c1) 1/2 and ( 13) by ( c2) 112 results in 

from which it follows that 

2 1/2 2 1/2 
0resC2 ( Cl) 1/2 + 2 <1resC1 ( C2) 1/2 

CJpl + 
C 

CJp2 + 
C 

k= 
C 

Having determined k, n1 and n2 can be solved. 

(13) 

The solution of the optimization problem defined by (1) and (2) also 

requires a restatement of the functions concerned. Dividing (2) by n1n2 
Cl C2 C 

results in + - - -- = -c12. By adding a constant to (1) and 
n2 n1 n1n2 

multiplying this constant by -
c121 (1) can be expressed as 

2 2 
2 <J resC2 2 

+ 

0resC1 
2 2 2 CJpl + C1p2 

O
pl CJp2 <J res C1res C C 

+-- +-- +-- -c12 -
nl n2 n1n2 C nl n2 

Adding 
C1C2 
C12 

to both sides of (2) results in 

ci(n1 + 
C2 

) 
C12 

+ C12(n1 + 
c2 

)n2 C12 

= 

(c + 
C1C2

) 
=-

C12 

(14) 

By adding a constant and multiplying this constant by c12, ( 14) can be 

expressed as 
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2 
2 0resC

2 <Jpl + 
C 

nl 

2 O res C2 
O

p1 + --

C 

2 <J resC1 <Jp2 + 
C 

n
2 

2 2 <J p2C + (J xesC1 
cc1 

As cost function (2) can also be stated as 

we obtain from (15) and (16), 

2 2 <J p2C + O resC1 
cc1 

Multiplying ( 17) by ( c1) 1/2 and ( 18) by ( c12) 1/2 results in 

from which it follows that 

Having determined k, n1 
and n

2 
can be solved. 

Two-Facet Example 

""-2 "'2 "2 Using variance components <Jp 
= 5.435, O

p1 = 3.421, O
p2 = 1.140, 

"2 and Ores
= 11.850, the objective-function is defined as: 

6 

(15) 

(16) 

(17) 

(18) 

(19) 

( 2 0) 



minimize 3.421 + 1.140 + 11.850 

Let c
1

, C
2 

and C
12

, of cost functions (2), (7), (8), and (9) be the cost of a 

condition of Facet l (e.g., essay questions), the cost of a condition of Facet 

2 (for example, raters), and the cost of one observation for all subjects in 

the sample (i.e. , the answers of all students to one essay question rated by 

one rater), respectively. With a total budget of 3000 dollars, the following 

three cost functions, leading to three optimization problems, are considered: 

A A 

The optimal integer solutions n
1 

and n
2 

for the three optimization problems 

are derived in two steps. First, the optimal continuous solutions are 

determined with the equations presented before. These solutions are n; = 8.8 

and n; = 3.8 for the first problem, n; = 40.9 and n; = 17 for the second 

• * 
problem, and n1 = 9. l and n2 = 3. 3 for the third problem. Second, a branch-

and-bound procedure such as described in Sanders et al. (1991) is used to 

obtain the optimal integer solutions. Table 1 contains the results for the 

three problems. 
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TABLE l 

Values of n1, n2 / Variance Components, p2 and C for Three Cost Functions. 

"2 "2 "2 
nl c1n1 n2 C2n2 n1n2 c12 n1 n2 

"2 Op1 Op2 0res 

p2 C Op 
nl n2 n1n2 

1. Cl = 40 dollars, C2 = o dollars, and C12 
= 80 dollars 

8.8 351 3.8 0 33. 1 2649 5.435 . 390 .302 . 358 .838 3000 
240 5 0 30 2400 5. 435 . 570 .228 . 395 . 820 2640 

7 280 5 0 35 2800 5. 435 .489 . 228 . 339 . 837 3080 
8* 320 4* 0 32 2560 5. 435 . 428 . 285 . 370 .834 2880 
9 360 4 C 36 2880 5. 435 . 380 .285 . 329 . 845 3240 

10 400 3 0 30 2400 5. 435 . 342 . 380 . 395 .830 2800 
11 440 3 0 33 2640 5. 435 . 311 .380 .359 .838 3080 

2. Cl = 40 dollars, C2 = 80 dollars, and C12 
= o dollars 

40. 9 1635 17 1364 697. 5 0 5. 435 .084 .067 .017 .970 3000 
39* 1560 18* 1440 702 0 5. 435 .088 . 063 . 017 . 970 3000 
40 1600 17 1360 680 0 5. 435 . 086 . 067 . 017 . 970 2960 
41* 1640 17* 1360 697 0 5. 435 . 083 . 067 . 017 . 970 3000 

3. Cl = 40 dollars, C2 = 80 dollars, and C12 
= 80 dollars 

9.1 361 3. 3 261 29. 7 2375 5. 435 . 376 . 350 . 399 . 829 3000 
7* 280 4* 320 28 2240 5. 435 . 489 . 285 . 432 . 819 2840 
8 320 4 320 32 2560 5. 435 . 428 . 285 . 370 . 834 3200 
9 360 3 240 27 2160 5.435 . 380 .380 . 439 .819 2760 

10 400 3 240 30 2400 5. 435 .342 .380 .395 . 830 3040 

*Optimal integer solutions 

Conclusions and Discussion 

With respect to cost functions, the influence of the cost factors on the 

optimal solution should be noted. From the solutions in Table 1 it can be seen 

that the cost functions discussed here are dominated by cost factor c12 
= 80 

dollars. The solutions for the first problem with cost function (7) and the third 

problem with cost function (2) are therefore very close, while they are quite 

different from the solutions for the second problem with cost function (9). These 

results, however, also imply that an optimization problem with a cost function 

including a dominant cost factor will give good starting solutions for a branch

and-bound procedure for other optimization problems with cost functions including 

this dominant cost factor. 
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In survey sampling, (7) or (8) and (9) are the cost functions employed in 

connection with the allocation of optimal resources for designs known as two

stage and two-phase sampling designs. Applications of the Cauchy-Schwarz 

inequality to more complex designs, for example, three-stage sampling designs 

(e.g., Snedecor & Cochran 1976, p. 533) have been presented. As this note showed 

the formal similarity between optimization problems in survey sampling and 

generalizability theory, these applications signify that solutions for more 

complex designs employed in generalizability theory could also be derived. 
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