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Abstract 

From the principle of minorization, we derive monotone convergent 

algorithms for conditional and marginal maximum. likelihood estima­

tion in the Rasch model, where the parameters are updated one item 

at the time. In addition, we show that these algorithms can be made 

faster by deliberately over-parameterizing the model. The algorithm 

for CML turns out to be equal to the implicit equations algorithm that 

was proposed by Gerhard Fischer in the early 1970s, without proof of 

its monotone convergence. 

In this paper we consider estimation methods for the parameters in the 

Rasch (1960) model based on the idea of minorization (De Leeuw, 1994). 

Minorization provides a general framework for constructing monotone con­

vergent algorithms_ for parameter estimation. The iterative minorization ap­

proach for finding the maximum of a (log-likelihood) function l(Ej) (De Leeuw, 

1994; Heiser, 1995; Lange, Hunter, & Yang, 2000) rests on the following chain 

of inequalities: 

known as the sandwich inequality, where the auxiliary function M is called a 

minorizing function. From the sandwich inequality we obtain the following 
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properties for the minorizing function M: 
(1) 

Repeatedly constructing and maximizing a minorizing function yields an al­
gorithm that will in every step increase the value of the likelihood: M(Ej, i) > 
M(E°j, i)  => l(Ej) > l(EJ) . Since the first order derivatives of the minorizing 
function and the loglikelihood are equal when evaluated at i we obtain that: 

(2) 

Hence, if iterative maximization of the minorizing function converges (i.e., 
the left hand side of Equation 2), we have found the parameters values at 
which the function l(Ej) reaches its maximum (i.e., the right hand side of 
Equation 2). 

We derive algorithms for conditional and marginal maximum likelihood. 
The parameters are updated one item at the time, and the update for the 
jth item parameter is of the form 

(3) 

where Oj and �' evaluated at E°j, denote the observed and expected value 
of the sufficient statistic for Ej. The difference between conditional and 
marginal maximum likelihood is in the expected value �. By deliberately 
over-parameterizing the model, a faster algorithm is derived where the up­
date factor is the ratio of observed and expected odds-ratios. An example 
is used to illustrate how these algorithms generalize to more complex IRT 
models. 
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The paper is organized as follows. In the first section, we introduce the 
Rasch model and consider the different estimation methods. In the second 
section, a minorization algorithm for computing conditional maximum like­
lihood estimates is considered. In the third section, a similar minorization 
algorithm is considered for computing marginal maximum likelihood esti­
mates. The fourth section deals with ways to accelarate convergence. In the 
fifth section, we show how the minorization approach generalizes to more 
complex IRT models. The paper ends with a discussion. 
1 The Rasch model 

The Rasch model (Rasch, 1960) is defined as follows: 
(4) 

where the responses of N persons to M items are represented by a matrix 
x where the rows are response patterns Xp = ( Xpt, . . .  , XpM). The first item 
parameter 61 is arbitrarily set to zero to identify the model and the other 
item parameters are interpreted as difficulty relative to the first item. A 
recent and extensive survey of the literature related to the Rasch model can 
be found in Fischer (2007) . 

If we wish to estimate the item parameters 6i , the person parameters 0p are incidental. That is, their number increases with the sample size. It is 
known that in the presence of an increasing number of incidental parameters 
it is, in general, not possible to estimate the (structural) item parameters con­
sistently (Neyman & Scott, 1948) . This problem can be overcome in one of 
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two ways. First, since the Rasch model is an exponential family model (e. g. , 
Andersen, 1977) we can base our inferences on the distribution of the data 
conditionally on the sufficient statistics for the incidental parameters. This 
method is called conditional maximum likelihood ( CML) estimation. Sec­
ond, if the subjects can be regarded as a random sample from a well defined 
population characterized by an ability distribution G, the structural item pa­
rameters can be estimated from the marginal distribution of the data. That 
is, we integrate the incidental parameters out of the model. Rather than es­
timating each subject's ability, only the parameters of the ability distribution 
need to be estimated. This method is called marginal maximum likelihood 
(MML) estimation. Under suitable regularity conditions both methods can 
be shown to lead to consistent estimates of the item difficulty parameters. 

The likelihood of the Rasch model conditional upon the sum scores: 

has the following form: 

where x.+ = (x1+, . . . , XN+) , Ei = exp(-<5i) , n8 denotes the number of persons 
with Xp+ = s, and the rj(E) (or rJ for short) are the elementary symmetric 
functions (e.g., Hardy, Littlewood, & Polya, 1952, 2.22, Andersen, 1972; Verhelst, Glas, & van der Sluis, 1984). It is customary to find the maximum 
of the logarithm of the likelihood: 

(5) 
i B 
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by setting its derivatives equal to zero: 
(j) X+j """"' 'Ys-1 - Q - - �ns-- -

Ej 
8 /8 

(6) 
where ,!j) = 8�_18 denotes the elementary symmetric function of E without 
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Ej (Andersen, 1972) .  This expression can be cast in the general form of 
exponential family likelihood equations (Fischer, 1995; Andersen, 1980) : 

E·,U) 
X+j = I: n8

....L.!=.!. = £(X+jlx.+, e) 
s /8 

(7) 
Observe that the likelihood equations need not always have a finite solution. 
Fischer (1981) , Haberman (1977) show that a finite solution exists if and 
only if the data are well conditioned. Throughout this article we assume well 
conditioned data. 

The marginal Rasch model assumes that abilities have been sampled 
from a population distribution g(r), where r = exp(0) .1 The marginal log­
likelihood is 

(8) 
with derivatives 

a
�
j 

lnP(x ) = � L [a
�
j 

lnP(XpjlT, Ej)] f(rl:xp;e)dr (9) 
= � L [ �j 

- 1 ;TEj
] f(rl:xp; e)dr (10) 

1The parameters of the population distribution are ignored for simplicity of presenta­

tion. 
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where f(TIXp; t::) is the posterior distribution of ability T. Equating this 
derivative with zero gives the marginal likelihood equation: 

(11) 
Note that this expression can be written as 

(12) 

Even though the marginal likelihood is not a member of the exponential 
family, the CML (7) and MML likelihood equations (12) are quite similar. 
Neither the CML nor the MML likelihood equations admit an analytical 
solution, and iterative methods have to be used to find a solution. 
2 A Minorization Algorithm for CML 

The second term in the conditional log-likelihood in Equation 5 is intractable 
because it contains logarithms of elementary symmetric functions. Hence, we 
develop a minorization for these functions. 

The elementary symmetric functions satisfy the following recursive rela­
tion: 

(Andersen, 1972; Verhelst et al. , 1984). Hence, the conditional log-likelihood 
function can be written as: 

lxjx.+ ( €) = L X+i ln( t:,:) - L ns In ( ,�) + €j1��\) 
i B 
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and we find that the complicated part in the conditional log-likelihood is 
actually rather simple when considered as a function of a single item param­
eter. 2 

The terms In( ,ii) +EJ,!�1) are concave functions in Ej. A concave function 
lies below any of its tangents so that: 

(j) 
In ( (j) (j) ) < In( (j) � (j) ) 'Ys-1 

( � ) Is + Ej1s-l - "Is + Ej"/s-1 + (j) ,,.. (j) Ej - Ej 
"Is + € j"/ s-1 

(13 ) 
with equality when Ej = 0· Substituting the right hand side of (13 )  for 
the left hand side in the conditional log-likelihood we obtain the following 
minorizing function: 
lxJx.+(E) > 

The derivative of M(EJ , e) with respect to Ej is: 
/ (j) X+j L 'Ys-1 

-;-
3

. - ns '""(j) + 
7

_'""(j) • 
s ,s �3 ts-1 

If we compare this with the derivative, in Equation 6, of the conditional 
log-likelihood we se1;i that the only difference is that the denominator in the 
second term now depends on €j alone. Setting the derivative of the minorizing 
function equal to zero, we see that we can find an explicit solution for Ej: 

2
-y(jl does not depend on fj. 
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If we multiply the right hand side numerator and denominator by s we 
obtain the following more compact form: 

(15) 

where £(X+i lx.+, €) denotes the conditional expectation of X+i , evaluated at 
€ = €. In the psychometric literature, this algorithm is known as the implicit 
equation algorithm. It was proposed by Fischer (1974) without proof of its 
(monotone) convergence. For later reference we state this as 
Theorem 1. Fischer's implicit equation algorithm is an iterative minoriza­
tion algorithm, and therefore monotonely convergent. 
3 Minorization Algorithms for MML 

In order to derive a minorizing function for the marginal likelihood function, 
it turns out to be convenient to consider the logarithm of a likelihood ratio: 

ln P(:xp;�) = Lln { P(:xplr;€�g(T)dT P(:xp;€) JR P(xp ;€) 
= �ln { P(:xplr;�)P(:xplT ; i�g(T) d7 'L...J J R P(:xplT; €) P(:xp; €) 

p 

= �l 1 P(xplT; €)!( I . �) d L....J n P( I . �) T Xp, € T 
p R Xp T, € 

= �lnE [P(:xplT; E)I ·e] (16) 7 P(:xpl7; i) Xp, 

Clearly, finding the parameter values at which this log likelihood ratio reaches 
its largest value is equivalent to finding the parameter values at which the 
log-likelihood reaches its largest value. 
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3.1 The EM-algorithm 

Since ln(x) is a strictly concave function on (0, oo), it follows from Jensen's 
inequality that 

p p 

with equality when € = i. If we expand the function on the right side of 
( 17), we see that we have found a minorizing function 

(18) 
where 

(19) 
p It is seen from (18) that M(E, i) improves if Q(E, i) improves; Q(i, i) is 

constant. An iterative minorization algorithm where, in each step, the Q­

function is maximized is called an EM-algorithm (Dempster, Laird, & Rubin, 
1977; de Leeuw, 2006). 

Under the Rasch model, 

Setting the derivative of M ( €, €) with respect to Ej to zero gives 
(21) 
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The MLE is obtained by solving this equation for Ej - Observe that, in com­
parison with the marginal likelihood equation (11 ) , the posterior distribution 
of T no longer depends on e but only on its current value. We see that with 
an EM algorithm we can update the item parameters one at a time, since 
Equation 21 only depends on a single item parameter. 

Maximization of the minorizing function M is easier than maximization 
of the full marginal likelihood. However, no closed form for the maximum 
has been obtained, and the solution still requires a numerical optimization 
method. 
3.2 Minorizing the Q-function of EM 

Reconsidering the Q-function, we recognize the term ln(l + ni) as a concave 
function of Ei- Hence, 

-ln(l + n·) > -In(l + TE·) - 7 (€· -€·) i _ i l + TEf, i i 

Using this inequality in (20) gives that, for all T > 0, 
lnP(xpilTiEi) f(Tlx,,;e) � (xpilnEi -ln(l +TEf.) -l 7 

,.._ (Ei -Ei) ) f(Tlxp ; e) +ni with equality when Ei = fi. Hence we may minorize the Q-function as follows: 
Q*(e, e ) = :Ex+ilil€i - �L f (1n(l +TEf.) + l 7 ,..__(€.i -Ei) ) f(Tlx,,; e) dT 

· . JR +n, i p i 

� Q(e,°E) 
Consequently, we have found an alternative minorizing function for the marginal 
log likelihood ratio: 

M*( -.) Q*( -.) Q(,..., ,...,) M(  -.) In P(x,,; e) 
E ,  E = E, E - E ,  E '.S E, E � P(Xp; €) 
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This gives rise to an alternative algorithm. Setting the derivative of 
M* ( €, i) with respect to Ej equal to zero gives X+ · "1 T 

-
3 

= � 1 ,,__ f(r lxp ; i) dr Ej P R + Tcj (22) 
In comparison to Equation 21, the integral on the right hand side is now 
completely independent of Ej, and we can solve Equation 22 explicitly for Ef ,,__ X+j ,,__ X+j Ej 

= 
Ej �P JR 1:�i; f(rlXp; E°) dr = 

Ej £ [£ (X+j lr,4)  jx; E] (23 ) 
Comparing this algorithm for marginal maximum likelihood estimation to 
the one for conditional maximum likelihood estimation in Equation 15 we 
see that both algorithms are of the same form (3 ) and differ only in the 
expected value of the sufficient statistic that is used. Although this algorithm 
for MML requires more iterations than the EM algorithm, it is considerably 
simpler because all terms on the right side of (22) are evaluated at the current 
estimates. 
4 Overparameterization 

If the data x are recoded such that Yp i = 1 - Xpi , the likelihood for the 
recoded data y still conforms to the Rasch model. Specifically, 

II II exp( (1 - Xpi)*( 0P* -* 8; ) )  
p(yl6* , «5*) = . 1 + exp((0p - c5i ) ) 

p i 

_ II II exp(xpi([-0;1 - r-o;m . 1 + exp([-0p*] - [-c5;] ) 
p i with parameters 0; = -0P and o; = -oi. The sufficient statistics for these 

new parameters are Yp+ = M - Xp+ and Y+i = N - x+i respectively. Con­
sequently, the algorithms derived in this paper can be used for the original 
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data x as well as for the recoded data y .  However, the parameter updates 
for x and y are not equivalent. Specifically, 

exp(-c5:) 

The algorithms differ in the update factor. Both updates increase the log­
likelihood, and we can determine which takes the largest step 

N - &(X+i lx.+ , E°) or 
N - x+i 

Next we show that for both of these update factors, the new value is between 
the current value and the value at which the conditional log-likelihood attains 
its largest value. Hence, we may choose at any point that update factor that 
gives the greater change in parameter value, knowing that it will also lead to 
the higher likelihood value. 

We show that if we denote the value of €j at which the conditional log­
likelihood, considered as a function of the single parameter €j , attains its 
maximum by Ej , the implicit equation algorithm leads to a new value be­
tween Ej and Ej . We prove this by showing that the sign of the derivative of 
the conditional log-likelihood with respect to €j has not changed when the 
parameter has been updated with the implicit equation algorithm. 

First, if we assume that '?; < Ej , we easily find that the derivative of the 
contional log-likelihood with respect to €j is positive: 
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where e(X+J ) is short -hand for £ (X+i lx.+, €) ,  and we readily see that the 
parameter value increases. 

Second, filling in the new value in  the derivative of the conditional log­
likelihood with respect to Ej (6) reveals that the sign of the derivative does 
not change: 

(24) 

This means that, all other things being equal, we never overshoot the maxi­
mum value of the likelihood. 

A different perspective on this curious result ,  and one that allows further 
progress, is obtained if we consider different ways to parameterize the Rasch 
model. Rather than working with the likelihood in (4) we may writ e the 
model as follows 

P(xl-r, v )  (25) 

where obviously, vi = E;1 . We readily find that N - X+i is sufficient for vi and a similar implicit equation algorithm can be derived for estimating the 
v parameters from their conditional likelihood. We find that this implicit 
equation algorithm corresponds to the implicit equation algorithm obtained 
when the data are recoded. 

14 



Next we consider a situation where we use yet another parameterization 
of the Rasch model 

P(xlT, e, v )  np [I Xpi 1 -Xpi 

II Tp ; €,. 1/i [Iivi + €iTp) p 
,..np [I ,:�Pi vl -Xpi 

II 'P i "i i 
M 

P �i=O 'Yi (e, v )� (26) 
It is obvious that we cannot identify the parameters e and v from the re-
suiting conditional likelihood. We can only identify the ratio of Ei over vi . However, if a set of parameters is found which maximizes the likelihood in 
(26) ,  we can easily deduce from it the maximum likelihood estimators assum­
ing any set of identifying constraints. As we will show, it is computationally 
convenient to start from an overparameterized model in which the parameters 
are not identifiable. 

It is readily found that the likelihood in Equation 26 gives rise to a con­
ditional log-likelihood of the following form: 

lnP(xlx.+ , e, v )  = L L Xpi ln(€i ) + (1 -Xpi) ln(vi ) - L ln,np (e, v )  
The functions p i p 

are concave both in Ei and in Vi . Hence, a bivariate minorization is eas­
ily achieved, following a line of thought similar to the one that led to the 
minorization used for the derivation of the implicit equation algorithm. 

Working out the details gives the following updates for Ei and vi : 
(27) 
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and 
� N - x+i 

= vi 
N - £(X+i lx.+, E) 

(28) 

where we recognize the updates obtained before for the original and recoded 
data. Deriving from these equations the parameter update for the identifiable 
parameter Ei/vi (assuming that Ei /v1 = 1) we obtain 

Ei X+i N - £(X+i lx.+, E) 
¼ £(X+i lx.+ , E) N - x+i 

(29) 
We find that combining the two updates derived from the recoding of the 
observations yields yet another monotone algorithm for computing CML es­
timates. This algorithm is similar to the implicit equation algorithm except 
that the update factor in (29) is the ratio of observed and expected odds­

ratios. 

It is readily seen that the new algorithm in Equation 29 changes a param­
eter at l east as much as the original implicit equation algorithm and both 
algorithms change the parameter in the same direction. Theorem 2 shows 
that also for the update in Equation 29, the new value is between the current 
value and the value at which the conditional log-likelihood attains its largest 
value. Hence, this new update leads to a higher l ikelihood value than the 
original implicit equation algorithm, and the variant of the implicit equation 
algorithm introduced before. 

By the same reasoning we can also derive an improved version of the 
implicit equation algorithm for computing marginal maximum likelihood es­
timates. This algorithm also involves the observed and expected odds-ratio, 
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albeit with  a different expectation. Note that the approach used to speed 
up the convergence rate (i. e. ,  deliberately overpararneterizing the model) is 
similar to the one used by Liu, Rubin, and Wu (1998) to accelarate the EM 
algorithm. 
5 More complicated models 

Essentially the same steps that led to the implicit equation algorithm for 
the Rasch model can be used to derive algorithms for ML est imation of 
considerably more general exponent ial family models. As an illustration, 
we consider a special case of the Nominal Response Model (Bock, 1972 ) .  
Consider an item i with m i +  1 response alternatives j = 0, . . .  , mi ; one of 
which is chosen. Let Xpi denote the response alternative and for pract ical 
reasons we also consider the dummy coded variables Ypij = 1 if category j 

was chosen and Ypij = 0 otherwise. The item response function of the NRM 
is given by 

where Eij = exp(-6ij), and aiO = 6io = 0 (or EiO = 1) for identfication. If 
the parameters aij are known , the NRM specializes to an exponential family 
model in which Yp++ = Ei Ej aijYpii = Ei ai,x,,

i is a sufficient statistic for 
0p. If furthermore, the parameters aij are assumed to be integer valued, such 
that more response patterns correspond to the same value for the sufficient 
statistic, the method of conditional maximum likelihood est imation can be 
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used. Among others the One Parameter Logistic Model (OPLM: Verhelst 
& Glas, 1995) and the partial credit model ( e. g. , Masters, 1982; Andersen, 
1995, p. 280) are special cases that satisfy these additional constraints. 

The conditional loglikelihood can be written as 
L LY+ij ln Eij - Lns ln /8 , (30) 

j 8 

where s indexes values of the sufficient statistic Yp++ · In this case, the ele­
mentary symmetric functions satisfy the recursion 

(31 )  
These formulae specialize to those for the dichtomous Rasch model when 
mi = 1 and aiJ = 1 for j > 1. 

A minorization algorithm is found in the same way as before, because 
the recursion in Equation 31 is a linear function in EiJ · Now, the category 
parameters can be updated one at the time and the update is of the same 
form as in the Rasch model: 

In the psychometric literature this algorithm is described by Andersen (p. 277 
and p. 280, 1995) . Again, without a proof that the algorithm is monotonely 
convergent. 

A variant based on overparameterization is obtained by updating Eio along 
with the others and identifying the model afterwards. Thus, we obtain: 

� Y+iJ e [Y+iDIY.++ , 'iJ 
Eij = Eij -- ~ Y+io e[Y+ij IY.++ , €] 

18 
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for j = 1, . . . , mi . 
Note that, in contrast to the Rasch model, conditions for the existence of 

finite conditional maximum likelihood estimates have not been described for 
the NRM. This makes an interesting topic for future research. 
6 Discussion 

This paper has barely scratched the surface when it comes to the use of 
minorization based methods for constructing monotonely convergent algo­
rithms for computing maximum likelihood, or Bayes modal, estimates. We 
have only considered methods based on simple concavity properties of parts 
of the log- likelihood function. The new algorithms considered in this paper 
involve unidimensional, and in one instance two-dimensional, linear minoriza­
tions. Both the unidimensionality and the linearity can be relaxed. Fruitful 
work remains to be done in both areas. Especially interesting is the use 
of quadratic minorizations (e.g. , Groenen, Giaquinto, & Kiers, 2003 ; van 
Ruitenburg, 2005; de Leeuw, 2006) .  

Why bother with minorization methods such as the ones developed in this 
paper, and not just use the Newton-Raphson algorithm to mechanically find 
the maximum likelihood estimates? First, such methods are not foolproof, 
and require good starting values. This is all the more true with the sort of 
logistic models, such as the Rasch model, that are considered in this paper. 
The log-likelihood for such models becomes linear as the parameters tend 
to plus or minus infinity. This implies a vanishing second derivative, and 
divergence problems for the Newton-Raphson algorithm. Second, methods 
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like the Newton-Raphson algorithm require the computation of a full matrix 
of second derivat ives, and the solution of a linear system of M equations in 
M unknowns. Both become computationally demanding and unstable as M 
becomes large. Large numbers of items are not uncommon (e.g. ,  M > 5000) 
in educational measurement contexts. 

For the problem at hand, the approach of overparameterizing the model 
and deriving a minorization algorithm for the overparameterized model has 
yielded promising results. We were able, in this way, to derive a new algo­
rithm that , all other things being equal, leads to a bigger gain in likelihood, 
compaired to Fischer' s implicit equation algorithm. This does not imply, 
however, that all other things not being equal, we may not overshoot the 
maximum value of the likelihood from one iteration to the next. That is, if 
we update parameter Ej , and next also update  all the other parameters, we 
may have changed the sign of the derivative with  respect to Ej - Hence, we 
can not guarantee that the new algorithm always converges faster. 

In closing, we remark that minorization is not the only principle from 
which to derive simple algorithms that are monotonely convergent . For ex­
ample, van Ruitenburg (2005) obtained promising results  with methods based 
on the iterative refinement of an interval that is constructed to contain the 
maximum likelihood estimate, such as the classical false position method. 
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Appendix 

Theorem 2. If Ej denotes the value at which the conditional log-likelihood 
for the Rasch model assumes its largest value, when considered as a function 
of Ej , then 

is in-between 4 and Ej . 

Proof. We proof the theorem by showing that the sign of the derivative of 
the conditional log-likelihood: 

with respect to Ej is the same for Ej and the new value. Without loss of 
generality, we assume that 4 < Ej , which implies that the sign of the partial 
derivative at Ej is positive. As a consequence, the new value will be larger 
than €j. From the monotonicity of the odds function, we immediately obtain 
that: 

Filling in the new value in the first term of the right hand side equation yields 
that: 

From Lemma 3 we know that the function 
1 e(X+i) 

Ej N - t:(X+j) 
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is monotonely decreasing, and hence we find that €j > Ej makes the derivative 
positive, as was to be shown. 
Lemma 3. The function 

1 e(X+j lx.+ , e) €j N - e(X+jlx. + ,  e) 

is monotonely decreasing in €j . 
Proof. 

1 e (X+jlx.+, e) €j N - l'(X+jlx. + ,  e) 

In the second part we recognize: 

and P(X+ = s) = � such that 
ns ,!j) P(X.j = 0) = L N (j) (j) 

s 18 + 'Ys-1 €j 
Using Bayes' Theorem we obtain that 

□ 

It follows that the function of interest is the expectation over the distribution 
of X+ IX.j = 0 of the ratio ,f�1 

C,ij) ) -1 which is known to be a monotone 
function of s (Verhelst et al. , 1984) . 
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Monotone likelihood ratio for P(X.+ = s lX.i = 0; Ej )  in Ej follows readily 
from 

(j) (j) (j) P(X.j = 0IX+ = s2, Ej ) _ 'Ys2 'Ys1 + 'Ys1 - 1 €j P(X.j = OIX+ = s1, Ej) -
"Yw ,y�{) + "Y��1€j which is seen to be monotone in Ej because 1��1 (,i3>t1 is a monotone func­

tion in s .  The result follows from the symmetry of monotone likelihood ratio 
and the fact that monotone likelihood ratio implies stochastic ordering ( e.g., 
Ross, 1996, chapter 9 ) .  □ 
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