
Measurement and Research Department Reports 2002-1 

Testing the unidimensionality assumption of the Rasch 

model 

Norman Verhelst 





Measurement and Research Department Reports 2002-1 

Testing the unidimensionality assumption of the Rasch model 

Norman Verhelst 

Cito groep 
Citogroep Postbus 1034 6801 MG Arnhem 

Amhem, Januari 2001 
Kenniscentrum 

8501 004 4650 

\ \\\\\\\\I\\\\\\\\\\\\\\\\\\\\ \I\\\\\\\\\\\\\ 





Abstract 
Statistical tests especially designed to test the unidimensionality ax

iom of the Rasch model are scarce. For two of them, the Martin-Lof test (ML-test) and the splitter-item-technique, an extensive power analysis has 
been carried out, showing clearly the superiority of the ML-test. The disadvantage of the ML-test, however, is  that its null distribution deviates 
strongly from the asymptotic chi-square distribution unless one has huge samples. A new test with one degree of freedom is proposed. Its power is superior to that of the ML-test, and its null distribution converges rapidly 
to the chi-square. 





Introduction 
The asswnption of unidimensionality is at the heart of the Rasch model and of many other !RT-models as well. Nonetheless, relatively few attention has been paid 

to the statistical testing of this assumption Tests especially sensitive to violation of the unidimensionality axiom are scarce. For parametric statistical tests of the Rasch 
model, aimed at detection of multidimensionality, the list is very short. All there is can be related to two important contributions, developed from quite different 
viewpoints. The first and oldest contribution is a test developed by Martin-Lof (1973, see also Gustafsson, 1980, Verhelst, 1993, and Glas and Verhelst, 1995). To apply the test, it is assumed that the dimensional composition is known, the items fall into 
two subsets, such that all items in the same subset represent the same dimension. The other contribution is Van den Wollenberg's Qrtest (1979, 1982), where 
the alternative hypothesis is quite vague. The author has shown that the test has power against violation of the unidimensionality asswnption. He conjectured that 
the asymptotic null distribution of the Q2-test statistic is the chi square distribution, but a proof was never given. Thorough theoretical work by Glas (1989) showed that 
the conjecture of Van den Wollenberg is probably not correct. Fortunately, Glas was able to derive a modification of the Q2-test statistic ( called the R2cs tatistic), 
which is asymptotically chi-square distributed. The computation of this test statistic, however, is utterly complicated, and in practice only feasible if the nwnber of items 
in the test is small . A third approach, also initiated by van den Wollenberg (o.c.), and elaborated by Molenaar (1983) is the so-called splitter-item-technique. In this approach one 
item (the splitter item) is used as a criterion test. The sample is split according 
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to the score on this splitter item, and the parameters of the remaining items are 

estimated ( using conditional maximum likelihood, CML) in each of the two samples. 

The product of the two conditional likelihoods is then compared with the likelihood 

after estimation of the parameters in the total sample by means of a likelihood ratio 

test. Van den Wollenberg (1979) has shown that this test has power against violation 

of the unidimensionality assumption. 

This ends the list of tests especially constructed to detecting multidimensional

ity. For all tests listed, the asymptotic distribution has been shown to be chi-square 

(except for the Q2-test), and for all, some evidence of their power has been demon

strated. A systematic study of the power of these tests, and a comparison of their 

power curves, however, has never been undertaken. 

The primary purpose of the present article is to explore the power of these tests 

and to present a comparison of their power curves as a function of some measure of 

deviation of unidimensionality. It was readily realized, however, that the power of 

tests as the ones mentioned here depends on many factors, and that consequently, 

any attempt to quantify the impact of many of these factors might result in a 

disordered and probably chaotic collection of tables, from which it may be very 

hard to extract recommendations for practical applications. Therefore, a number of 

restrictions has been imposed throughout. Here is a list: 

1. All violations to the unidimensionality assumption have the same structure: the 

latent variable is a bivariate normally distributed variable (01, 02) with zero means 

and unit variances in both dimensions. The severity of the violation is expressed 

by the correlation p between the two variates. The test consists of k items, which 

can be partitioned into two sets of k1 and k2 items respectively. For both subsets 

the Rasch model holds with 01 and 02 , respectively, as latent variable. The Rasch 
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model then holds for the set of k items if and only if p = I. All power curves will be reported as a function of the correlation. 
2. In all studies reported, all item parameters are equal to zero. Although the power of all statistical tests considered depends on the distribution of the item para

meters, there seems to be no reason to expect that the comparison of the power curves of the tests will be influenced in an essential way by altering the distrib
ution of the difficulty parameters. 3. Although sample size is the moot important tool to manipulate the power of a 
statistical test, we did not vary the sample size in the power studies to be reported, but kept it constant at a value of 1000. We have no reason to assume that the differences between the power curves of the tests we considered, will change in 
important respects for other sample sizes, except maybe for small values, where the approximation of the null distribution by the asymptotic distribution becomes problematic anyway, but this aspect of the tests is not investigated thoroughly, although it will be discussed at two places. 4. The significance level of all tests is set at 5%. 
The set up of a power study like the present one is very simple in principle: 

for a given test and a given value of p, thousand artificial response patterns are generated, the test statistic is computed and the binary result (significant or not) 
is recorded. This procedure is repeated a number of times, and the proportion of significant results is an estimate of the power at the used value of p. In all tables to be 
presented the number of replications is 4000, except in the following case. The power is always estimated for a series of values of p, starting at 1 and decreasing in steps of 0.05 until p = 0.5. If for a certain value of p the estimated power exceeded 99%, the estimate for all subsequent values was set at 100% without further computations. 
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While developing the specialized software to carry out the analyses, it was decided not to study the Qr or R2c-tests. The Q2 was excluded because its asymptotic 
null distribution is not known, and the theoretically better founded R2c is available. But this test is hardly applicable in tests having more than 15 items, so that the 
programming effort will almost never be put at use in practice. While studying the theoretical similarities and differences betwoon the Martin-Lof test and the R2c-test, however, we discovered that it was fairly easy to construct a class of statistical tests with high power against violation of unidimensionality and having only one degree 
of freedom. This class of tests will be discussed at some length in the sequel, and their power will be compared with that of the Martin-Lof test and the splitter-itemtechnique. 

The Martin-Lof test 
TheCJretical corzsidemtions 

The Martin-Lof test for multidimensionality (ML-test) can be conceived of as a 
likelihood ratio test. By hypothesis, the item set under consideration is split into two or more subsets and the likelihood is maximized under the general hypothesis that 
the Rasch model (RM) is valid for each subset. The null hypothesis or restricted model states that the RM is valid for all items jointly. 

To investigate the power of the ML-test, we will stick to the case of two subsets, having k1 and k2 items respectively. The subsets themselves will be denoted by 
their index sets Ii and h Response patterns will be denoted as x1 and x2, and test scores as s1 and s2. The corresponding symbols without subscript will denote the corresponding quantities for all items jointly: k = k1 + k2, s = s1 + s2 and x = (x1, x2). The symbol 7f will denote the probability function. 
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Martin-Lof considers the marginal likelihood of a score pattern under the general model (1r(x1 ,x2)), which can be written as 

(1) 

where the 'x '-sign indicates a factorization of the likelihood in a oonditional part 
and a marginal part. For the marginal part ML uses a saturated multinomial model. The item parameter estimates are completely determined by the conditional part. Now if we take the logarithm of (1), and sum it across all observations, we will 
get a sum due to the ronditional part and a sum due to the marginal part. Using the tilde to denote the maximum under the general model, we find 

where 

and 

ln L9 = ln L9c + ln L9m, 

lnLgm = L L ns1s2 ln(ns1s2/n), 
81 82 

(2) 

(4) 
where Ei is the easiness parameter of item i, expressed on an exponential scale, ti is the number of correct responses to item i, nse is the observed number of response 
patterns xe having a score equal to se (£ = 1,2), ns1s2 is the observed number of response patterns (x1 , x2 ) with score (s 1 , s2 ), and 18

(e) denotes the basic symmetric 
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function of order s and with a vector e as argument: 
'Ys(e) = I: IT c:fi . 

I: Xi=S i 

Under the restricted model, the marginal likelihood of a response pattern can be written as 
(5) 

and the restricted log- likelihood at its maximum can be written as 
(6) 

8 s Notice that in (3) and in (6) the sufficient statistics for the item parameters, ti, are identical. 
In the Rasch model the conditional probability of obtaining the scores s1 and s2 on two exclusive subtests, given the total score s = s 1 + s2 is given by 

(7) 

such that the maximum likelihood estimator of the cell proportion in the bivariate score distribution under the restricted model is given by 
ns ,.�

1 
{E1h.�,. (€2) n ,sCe) 

Now, consider the following sum of two terms: 
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then we find by adding A to (6) and subtracting again that 
� � � ln Lr = 1n L

9
c + ln L9m, (10) 

meaning that we can write the restricted log-likelihood in the same formal way as 
the unre:;tricted one. The only thing that we have to do is to use in the unre:;tricted case the estimates e, and in the restricted case the estimates e (and using (8) to evaluate In L

9m)-The Martin-Lof test statistic can then be written as 
(11) 

As one can see, the ML-statistic consists of two terms, both of which are positive. The 
first term compares the conditional log-likelihood of the general model, evaluated at the maximum under the general model and the restricted model respectively. The 
second term reflects the comparison between the observed bivariate frequencies n8182 (ln L9m) and the predicted bi variate frequencies under the restricted model (ln L gm). 

An interesting observation is the following. In all the power studies done with the ML-statistic, the relative contribution of each of the two terms in (11) has been 
recorded. The contribution of the first term was never larger than 2.5%. Contributions larger than 0.05% were only observed for small k ( < 16); for longer tests the contribution of the first term was negligible for all values of p considered. It follows that for practical purposes one might safely use an approximation to the 
ML-statistic: 

(12) 

and since the computation of ln L9m is trivially simple ( see ( 4)), this approximation 
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means a considerable reduction in the work to be done for the computations: the item parameters have to be estimated only under the restricted model, which is the RM 
for all items jointly. Since the ignored term is pooitive, use of the approximation will yield a slightly conservative test. The computational formula for the approximation 
is 

(13) 
The degrees of freedom for the MI.r test is 

(14) 

ill the se:iuel, all power studies on the :ML-test are based on (11) ,  and not on its 
approximation (13). 

The power of the ML-test 

To get an impre=;sion of the power of the ML-test, three series of analyse=; were carried out, following the general setup described in the Introduction. In each series the two dimensions are repre=;ented by an equal number of items (k 1 = k2 ), taking 
the value=; 3, 5 and 8 respectively. The results of the study are displayed in Table 1. The graphs of the power curves are given in Figure 1 

Three remarks will be made with respect to these results. First, there is a very marked effect of the test length on the power of the te=;t. Second, the rejection rate 
for a test with 16 items when the null hypothesis is true (p = 1) is suspiciously low. In the next subsection detailed attention to this phenomenon will be given. The third aspect of the results is the disappointingly low power, even with 16 items, 
for correlations which are very common in cognitive testing. ill the PISA project 

8 



Table 1. Power of the ML-test (in % ) p k1 = k2 = 3 k1 = k2 = 5 k1 = k2 = 8 1.0 5.33 5.78 2.55 .95 6.50 8.78 6.98 .90 11.1 18.8 26.1 .85 21.0 39.4 62.8 .80 33. 7 64.9 90.6 .75 53.4 86.9 98.9 . 70 69.8 96.3 100 . . 65 83.8 99.3 100 . .60 92.1 100. 100. . 55 97. 1  100. 100. . 50 99.1 100 . 100. 
(OECD, 2001) a correlation in the order of magnitude of .85 was found between dimensions as distinct as reading and mathematics. For more similar dimensions (like subscales of mathematics) the correlations are usually as high as 0.9 (frequently found in the Dutch National Assessment Program). It should be remembered that thffie correlations are not attenuated by unreliability: they are correlations between latent variables, not between observed scores. 

The null distribution in the ML-test 

As can be seen from Table 2, the rejection rate in case the null hypothesis is true 
(p = 1) is far too low for the case k1 = k2 = 8. Verguts and De Boeck (2000) offer as a possible explanation that the expected frequencies in the bivariate frequency table 
are too small for too many cells. As an example, the expected frequenciffi under the null hypothesis have been computed for a sample of 10, 000 observations with k1 = 8 and k2 = 1 1  items respectively in the two test halves. The results are displayed in Table 2. As an extreme low score in one test halve and an extreme high score in the 
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Power curves: ML 
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0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 

correlation Figure 1 
other test halve is highly unlikely, the corresponding expected frequencies are very low, and this might make the null distribution of the ML-test statistic systematically deviant from the chi-square distribution. Of the 9 x 12 = 108 rells in the table, 22 have an expected frequency smaller than 5. 

To investigate the form of the true null distribution, the ML-test statistic was computed (under the null hypothesis) on 10, 000 samples of 1,000 and 10, 000 sam
ples of 10, 000 observations , and the percentiles (1,  .. . , 99) were determined in both empirical distributions and compared to the percentiles in the chi-square distribu
tion with 87 degrees of freedom. The results are displayed as Q-Q-plots in Figure 2, from which it is very clear that the null distribution in the ML-test deviates system
atically from the chi-square distribution in the sense that the empirical percentiles are systematically smaller than the chi-square percentiles. The deviation is more 
pronounced for n = 1000 than for n = 10, 000. At the nominal rejection r ate of 5%, the null hypothesis is rejected only in 1.5% of the cases for n = 1000. To get a rejection rate of 5%, one should not use the critical value under the chi-square 
distribution (which is 109.773), but the critical value under the exact null distrib-
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Table 2. Expected frequencies under the null hypothesis (n = 10 , 000) 
S2 \s1 0 1 2 3 4 5 6 7 8 0 73.7 78.3 51.2 24.4 9.5 2.9 0.7 0.1 0.0 1 107.7 161.0 134.4 83.6 39.8 1 5.1 4.4 0.8 0.1 2 100.7 192.0 209.0 159.3 94.4 43.9 14.8 3.6 0.5 3 72.0 179. 1 239.0 226.7 164.7 88.9 38.3 10.9 1.6 4 44.8 136.6 226.7 263.6 222.3 153.1 76.5 25.4 4.7 5 23.9 90.7 184.5 249.0 267.9 214.3 124. 5 52.7 11.3 6 11.3 52.7 124.5 214.3 267.9 249.0 184. 5 90.7 23.9 7 4.7 25.4 76.5 153.1 222.3 263.6 226. 7 136.6 44.8 8 1.6 10 .9 38.3 88.9 164.7 226.7 239.0 179.1 72.0 9 0.5 3.6 14.8 43.9 94.4 159.3 209.0 192.0 100.7 10 0.1 0.8 4.4 15.1 39.8 83.6 134. 4 161.0 107.7 11 0.0 0.1 0.7 2.9 9.5 24.4 51.2 78.3 73.7 

ution, which is in this example is estimated at 100.852 This means that, at least in this case, the ML-test is conservative, and as a consequenoo that the power is 
underestimated. Our finding is in line with the findings of Verguts and De Boeck, and can probably be generalized to all instances of the MI.rtest. 

The splitter-item-ta:hnique 
Rationale and examples 

The term splitter-item-technique was introduced by Molenaar (1983), in an elaboration of an approach introduced by Van den Wollenberg (1979). We will paraphrase here the rationale as proposed by Van den Wollenberg (1979, pp. 108-112). 
Suppose a test measures two dimensions, and we have an externar criterion which measures one of these dimensions. We split the sample of testees according to this criterion in a high scoring group and a low scoring group. The items loading on the criterion related dimension will be relatively difficult for the low group and 
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relatively easy for the high group, while the relative difficulty of the other items will 

be less affectoo by the criterion variable: not if the dimensions are independent, and 

more so as the correlation between the two dimensions grows. Building a likelihood 

ratio test using this splitting of the sample will have power against the violation 

of unidimensionality, because the rank order of the difficulties will tend to differ in 

both subsamples. 

Using such an approach to compare with the ML-test, of course, is not fair, 

because in the ML-test we do not have an external criterion. To make a fair com

parison we should only rely on the test data. We can do this if  we use some of the 

items as a criterion measure, and build the test on the other items. If only one item 

is used, the technique is calloo the splitter-item-technique ( Molenaar, 1983) , but we 

could use more items. Using more items will generally lead to a more valid splitting 
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of the sample, but at the same time will le.sen the number of items to be used in the test, and thus to decreasing power. So there is a trade-off between the validity of 
the splitting and the test length for the remaining items on which the test is built. To refer to the whole class of tests basoo on this rationale we will use the general 
term 'likelihood ratio' test (LR) and reserve the term splitter-item-technique to the particular case where one item is usoo as a criterion variable. The power of such a test will, however, depend on more features than just the number of items used as splitting criterion. We name a few of them: (i) Molenaar 
found that using the splitter-item-technique where the splitting is done on a very easy or very difficult item does not work well. Probably because the two subsamples are of very unequal size. (ii) The splitting can be done in two groups, but more 
groups can be used of course, allowing for more opportunities to show differences in difficulty, but at the same time paying in increasing the number of degrees of freedom. 
It is our guess that two groups (preferably of equal size) will maximize power. (iii) Not only the number of remaining test items will count, but also their balance. We 
expect that a more balanced test will show more power than an unbalanced test. In  the general setup of this report, we do not intend to investigate the effect of the difficulty of the criterion item( s) on the power, but the effect of the other factors may be explored by using a quite simple design. The number of items used as a 
criterion will be denoted kc, and power is investigated for the six cases displayed in Table 3 .  

To allow for a comparison with the ML-test, the power was estimated for 8+ 11 = 19 items and the rejection rate was computed at the nominal 5% level (df = 87, critical chi-square value equals 109. 773), as well as at the real 5 % level ( critical value: 100.852; see the preceding subsection). The results are displayed in Table 4. 
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Table 3. Design of power study case k1 k2 kc #groups df 1 8 10 1 2 17 2 7 1 1  1 2 17 3 8 8 3 2 15 4 8 8 3 4 45 5 5 1 1  3 2 15 6 5 1 1  3 4 45 

The numbers 1 to 6 in the top row refer to the six cases described in Table 3. It is seen from Table 4 that the ML-test outperforms all six versions of the LRtest, except for a correlation of 0.95 if the chi square approximation is used. The differences between the power curves for the six cases will be discussed in some more detail in the next subsection. 
Table 4. Power Analysis Results 

p Mlrreal ML-nom. 1 2 3 4 5 6 1 5.00 1 . 55 5.10 4.90 5.32 5.50 4.92 5.25 .95 13.5 5. 02 6. 12 6 .60 6.72 6.87 6.65 6.57 .90 46.6 25.8 9.50 8.92 13 .2 10.6 11.5 10.6 .85 83.9 68.2 17. 5  16.0 27.5 21. 8  24.4 19.3 .80 98. 7 95.2 28. 4 28.0 47. 1 39.6 41.4 32.0 .75 99.9 99.7 43.2 43.2 69.4 60. 7 62.7 53.5 .70 100 .  100. 61 .5 58.3 85.3 80.2 79.7 72.6 . 65 100 100. 75. 3 73.9 94.2 92. 5 91. 1  87.7 .60 100. 100. 85.6 84.6 98.4 97.8 96.4 95.7 . 55 100 . 100. 92. 4 92.4 99.5 99.5 99.0 98.9 . 50 100. 100. 96.6 96.3 100. 100. 100. 100 . 
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Summary of the power study 

From Table 4, it is clear that the 1\,1:L-test is more powerful than the LR-tests. In Figure 3 power curves are displayed for four cases: the 1\,1:L-test with rejection at the 
nominal level and at the real level ( diamonds with plain lines and dashed lines respectively), and the two cases using the splitter-item-technique ( squares representing 
a more balanced test ( case 1) than the triangles ( case 2)). The more balanced case (having 8 and 10 items respectively) has a bit more power than the more unbalanced 
case (with 7 and 11 items), but the difference is very small .  
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corralatlon Figure 3. 

As can be seen from Table 4, the splitter-item-technique has less power that the LR-test using three items for the criterion. The most powerful strategy is found when the three-item criterion is used to construct two contrasting groups (the cases 3 and 5). These two cases are compared with ML-test (nominal level) in F igure 4. 
Here we see that the balanced case (8 items for each dimension) has more power than the unbalanced case (5 against 11 items), but the difference is very small compared to the difference in power with the ML-test. 
In Figure 5 the power curves are given for the three LR-tests which yield the 
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most balanced test halves ( cases 1, 2 and 4; the notation in the legend, e.g. , LR(8-8-
3(2)) denotes the LR-test with 8 items in each dimension, 3 items used as criterion and the criterion test is used to form 2 contrasting groups). There it is seen that 
three items used for the criterion yields more power than using just one, and that using two contrasting groups yields more power than using four. A similar result 
was found for the three unbalanced cases ( not displayed). 
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It appears that balanced tests have more power than unbalanced ones, that a more extensive ( and therefore more reliable) criterion yields more power and that a 
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contrast of two groups yields more power than a contrast of four groups. If the criterion is made still more reliable, by making it longer, we might expect 
still more power, but with a given number of items, there will be a trade-off: making the criterion longer will make one test halve shorter (and the test more unbalanced) . 
To explore this trade-off, two extra power curves were constructed with 5 and 7 items respectively in the cri terion, and constructing two contrasting groups. The results 
are displayed in Figure 6. Most power is obtained with a criterion of 5 items ; with 7 items the power is a little bit smaller. From this analysis we might conjecture 
that the LR-test has maximal power using a criterion of about half of the items loading on a single dimension and two contrasting groups. Of course this is a crude indication, which should be corroborated by more results, especially concentrating 
on differences in diffi.cul ty. 
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As a general result we can say that in the study reported here, the ML-test has considerably more power than the LR-test (the generalization of the splitter-itemtechnique) . But this does not mean that it is  always preferable to use the ML-test. 
In the simulation study it has been assumed that the partition of the item set in 
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two homogenoous subsets does not contain errors, an assumption which may not be true in reality, where an incorrect classification of items according to their relevant dimension may be rather the rule than the exception. The LR-test is in some sense less vulnerable to such an incorrect classification, because not all items have to 
be classified as belonging to one or the other dimension. The only way in which an incorrect classification may diminish power is in the selection of the criterion items: if 
the criterion consists of more than one item, a non-homogeneous criterion will affect the power. On the other hand, it is conjecturoo that an error in the composition of 
a multi-item criterion will have more dramatic consequences because the criterion consists of fewer items than the remaining test itself. Before sorting this out, however, two problems of a more pure statistical nature 
have to be treated. The first one is the null distribution of  the ML-test. Even with as few as 19 items, the null distribution is  definitely not chi-square unless the sample size is huge. We did not succeed in deriving the true null distribution, and the fact that in the present example this distribution seems to be shrunken towards lower 
values (and thus delivers a conservative test) cannot simply be generalized to other cases. 

The second problem has to do with the lack of power of the ML-test in case the correlation between the dimensions is high ( which in practice will be more often the case than not). The two problems are closely connected. As was shown earlier, the ML-test 
essentially compares the predicted and observed bivariate score table, and the longer the two test halves are, the more cells the table contains and at the same time the more degrees of freedom are associated with the test statistic. So the solution might be found in reducing the number of cells in some way and at the same time reducing 
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the number of degrees of freedom. How this can be accomplished will be explained in the next section. 
A class of one-degree-of-freedom tests 

Rationale 

Under the null hypothesis we may consider the two test halves as representing each a latent variable, where the two latent variables correlate 1 with each other. As a 
consequence the frequencies in the bivariate score table will tend to be concentrated in a number of cells which we might label as the 'main diagonal'. Further down we 
will have to discuss what we exactly mean by this term, but for the time being we may consider the simple case of two test halves having an equal number of items, 
with similar distributions of the difficulty parameters, such that, in this case, the fuzzy term 'main diagonal' refers to the main diagonal of the bivariate frequency 
table. But even in such an ideal case, the correlation between the scores will be less than one, because of attenuation by unreliability, and therefore the observed frequencies of the off-diagonal cells will differ from zero. If the correlation between the latent variables is less than one, the observed fre
quencies on the 'main diagonal' will tend to be less than in the unidimensional case, and the opposite effect will appear in cells farther away from the 'main diagonal'. 
So we can roughly split the cells of the bivariate table in a subset where, under the alternative model, the expected frequencies are larger than the observed ones, and the complementary subset where they will be smaller. The first subset will contain mainly cells along the 'main diagonal'. If we were successful in identifying these two subsets without inspecting the data, we might just sum the expected frequencies in one subset and compare this sum with the sum of the observed frequencies in the 

19 



same subset of cells. In other words, the tests will consist in taking 'cells together' such that the summed differences between observed and expected frequencies do not 
diminish due to cancellation. Since there are two complementary subsets, we may expect to have a single 
degree of freedom. 

The thwry 

In the ML-test the measurement model is the conditional Rasch model, and the marginal model is a saturated multinomial model for the score distribution. 
Both models are an exponential family and their combination also is an exponential family. Without loss of generality we can apply the same model also if  all observations yielding a zero score or a perfect score are eliminated: for the conditional measurement model, these response patterns do not carry any information, and for the structural model they are simply eliminatoo. from the sample space. So under this assumption, k - 1  item parameters and k - 2 multinomial parameters are to be 
estimated. The total number of different response patterns is M = 2k - 2. Now construct two matrices T1 and T2 of order Mx k and Mx (k-2) respectively, where each row corresponds to a response pattern. The row in T1 is the response pattern itself, the row in T2 is an indicator vector of the score: any two response patterns having the same score on the total test should have an identical row in T2 , containing a single 1-entry and zeros elsewhere. 

Define the (partitioned) matrix U as 
(15) 

where Y is an arbitrary matrix of constants with s columns. The matrix Y is the 
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most important part of the matrix U, and its construction usually needs a lot of creativity from the designer of the test, as will be discussed in the sequel. The matrix 
[T1 IT2] is added for technical reasons, namely to ensure that a certain function of U is asymptotically chi-squared distributed, no matter how Y is defined. This function is the quadratic form Q(U) ,  defined as 

(16) 
where p is the M-vector of observed proportions of the response patterns, fr is the 
M-vector of estimated probabilities, D1r is a diagonal matrix with ir as its main diagonal and the superscript ' -' denotes a generalized inverse. The main and quite powerful result (Verhelst and Eggen, 1989; Glas and Verhelst, 1995 and Verhelst 
and Glas, 1995) can be formulated as follows. 
1. If fr is estimated using a BAN-estimator, then Q (U) is asymptotically chi-square 

distributed. The associated degrees of freedom are given by 
df(Q (U)) = rank(U) - number of parameters - 1 (17) 

2. If fr is estimated using maximum likelihood, then 
(18) 

If we take care that the columns of Y are mutually linearly independent and independent of the columns of T1 and T2 as well, then the number of degrees of 
freedom is simply the number of columns of Y, i. e. , s .  To make things a bit more concrete, an example with k = 4 items is displayed in Table 5 .  The column Y will be explained in the next subsection. Notice that the two response patterns yielding a zero score and a perfect score are omitted. 
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Table 5. An example of a U-matrix 

T1 T2 y 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 

1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 2 0 1 1 0 0 1 0 2 

1 0 0 1 0 1 0 2 

1 0 1 0 0 1 0 2 

1 1 0 0 0 1 0 0 

0 1 1 1 0 0 1 0 

1 0 1 1 0 0 1 0 
1 1 0 1 0 0 1 1 

1 1 1 0 0 0 1 1 

The algebra 

For the example used in Table 5, we used 11 = {1, 2} and 12 = {3, 4}. To 

construct the test, one needs a definition of what was described loosely as the main 

diagonal, but formally this is a subset of cells of the bivariate score table. We will 

denote this set as S: 

S = { (s1 , s2) : cell of the 'main diagonal'} 

For the example in Thble 5, S has been defined as 

S = { (1 , 1) , (2, 1) }  

and as can be checked in  the column Y of  Table 5 ,  all non-zero entries correspond 

to a response pattern of one of these cells, and no zero entry does belong to either 
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of these cells. Although the matrix Y is arbitrary, a constraint will be put on it to keep it 
practicable (since the number of rows grows exponentially with k) .  Therefore a practical rule is introduced: all rows in Y corresponding to the same cell of the 
bivariate score table are identical. In Table 5, all entries fitting in cell (1, 1) have a weight equal to 2 ,  and the rows fitting in cell (2, 1) have a weight of 1. Using 
different weights for different cells may reflect the user's certainty about the sign of the difference between expected and observed frequencies under the alternative 
hypothesis. Weights certainly will have an impact on the power of the test. Weights will be denoted by the symbols v(s1, s2) or Vs

1 ,s2
-Computing Q (U) using (16) as a computational formula for the example in Table 

5 is not too hard, but it is readily seen that problems will arise for larger k. For k = 20, the matrix has more than one million rows, and for every additional item, 
the number of rows doubles. As a first step to simplify the computations, we will construct a matrix U of 
full rank (such that all generalized inverses are regular inverses). It is not difficult to check that the partitioned matrix [T1 jT2] in Table 5 is not of full rank ; in fact 
its rank is one less than the number of columns. To get rid of this dependency we may discard one of the columns of T1 , the last one, say. This reduced matrix will be denoted T1 as well. If T = [T1 IT2] is of full rank and the one column matrix Y is linearly independent of it, then, because of (18), the quadratic form Q(U) can be 
rewritten as 
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where 
[ T{DiiT1 T{D1rT2 

] [ Tu T12 

] (20a) T'DrrT = T�D1rT1 T�D1rT2 T21 T22 
and 

Y'DrrT = [ Y'D1rT1 I Y'D1rT2 ] = [E' IF'] . (21) 
Before deriving the elements of the needoo matrices and vectors in detail, it may be useful to consider (19) in some other form. For the case the non-zero elements of the 
one-column matrix Y correspond to response patterns which belong to the subset 
S, (19) can be rewritten as 

(22) 
where K is a 1 x 1 matrix: it is the expression between brackets in the right-hand side 
of (19). As is easily seen, the propooed test statistic is proportional to the square of the weighted sum of the differences between observed and expected cell proportions in the cells belonging to the set S. The art in finding a powerful test will consist in finding a definition of S, having as many elements as poosible and such that 
all or most of these differences have the same algebraic sign under the alternative hypothesis. The computational difficulty is related to the evaluation of the quantity 
K, to which we return now. The elements of matrices T11 , T12 and T22 are always present in tests of the general form (19) and are derived elsewhere (Verhelst and Eggen, 1989, p. 61; Verhelst and Glas, 1995, p. 227) . They are repeated here for convenience. It will be assumed throughout that the rank number of the columns of T2 equals the corresponding 
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score; this is the case in Table 5. In the formulae to follow, the subscripts i and j refer to items and the subscripts s and t refer to scores. 

where 7rijJs is the conditional probability of having a correct response on items i and j given the score s, and where we define 

Notice that n denotes the total number of response patterns not leading to a zero or maximum score. Next, 

and 

.Ib. if s = t  
n 

, 

0 otherwise. 
( s, t = l, . . .  , k - 1), (24) 

(25) 

For the other expressions, we collect all item parameters ci, i E le in a vector ee (£ = 1, 2) in an arbitrary but fixed order. Using Table 5 as an example it is not too hard to check the following expressions: 
(26) 
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and of course, a similar expression holds if i E h. And finally 
(s = 1, . . .  , k - 1). (28) 

Using the rule for an inverse of a partitioned matrix, it follows that 
(29) 

where 
(30) 

(31) 

(32) 

and 
(33) 

Verhelst and Eggen (1989, p. 62) show that the elements of the matrix n-1 are equal to the elements of minus the matrix of second derivatives of the conditional 
loglikelihood, divided by the effective sample size n.  In a conditional estimation procedure, the matrix s- 1 is usually computed to yield estimates of the standard 
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errors of the item parameter estimates. Defining 

and using (30) , (3l)and (32) it follows that 

which, subtracted from (26) gives the 1 x 1 matrix K, to be used in (22) . 
Defining the 'main diagonal ' 

Since the rationale of the test consists in 'taking cells together' ,  the power of the 
test will critically depend on the definition of the set S. If this set is defined in such a way that the difference between observed and expected frequencies has the same sign for all the cells in the set, then no cancellation will occur. Moreover, it may be argued that the set S should be as large as possible. But of course, the deviations themselves must not be inspected to define S. 

If k1 = k2 and both test halves are equally difficult, then the main diagonal of the bivariate frequency table may be a suitable choice for S, but in other cases the 
choice is not obvious. So, one has to develop one or more reasonable heuristics to define S. We developed two heuristics which are based on the following rationale. If the item par a.meters are given ( under the null hypothesis), then one can rank the cells with the same total score according to their expected frequencies, and assign 
one or more cells with high expected frequencies to the set S. For the small power study we undertook, the following two heuristics have been applied: 
1. For each score 2 :S s :S k -2, the cell with the highest expected. frequency belongs 

27 



to S. 2. As heuristic 1, but for each score 5 � s :s; k - 5 and s odd, the cell with the next 
highest frequency also belongs to S. 

For the same test specifications as in earlier studies (k1 = 8, k2 = 11, all item parameters equal zero, n = 1000 and number of replications is 4000), the power of 
the two one-degree-of-freedom tests has been estimated. The results, together with the Martin-I.of test and the splitter-item-test (taking one item from the largest test 
halve as criterion) are given in Table 6 and are graphically displayed in F igure 7. The differences are most dramatically seen for p = 0.85 where the power ranges from 
less than 20% for the splitter-item-technique to more than 90% for the one degree of freedom test using heuristic 2. 

Table 6. Comparison of power p ML LR x2 (1) x2(2) 1.00 1.55 5.10 5.27 5.28 0.95 5.02 6.12 15. 9  21.8 0.90 25.8 9.50 48.7 62.4 0 .85 68.2 17.4 78.7 90.9 0.80 95.2 28.4  93.6 98.9 0.75 99.7 43.2 98. 7 99.9 0.70 100 61. 5 99.9 100 0.65 100 75.3 100 100 0.60 100 85.6 100 100 0.55 100 92.3  100 100 0.50 100 96.6 100 100 
Notice that there is no simple relationship between the power of the tests and their associated number of degrees of freedom: the ML-test has 87 degrees of freedom, the splitter-item-technique (with the least power) has 17 , while the two newly 

28 



introduced tests, with the greatest power, have one degree of freedom. As to the (considerable) difference in power between the latter two, it may be noticed that the average ( across replications and values of p) percentage of the summed expected frequencies of the cells belonging to S relative to the effective sample size is 36% 
for heuristic one, and 4 7% for heuristic two, suggesting that the power increases the more the percentages of observations covered by the set S and its complement 
approach 50%. Of course, more than the evidence presented here is needed to rely on this suggestion. 
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\Vhat if one is mistaken? 
The Martin-Lof test and the one-degree-of-freedom tests developed here have a quite specific alternative hypothesis: the partition of the items along the two dimensions is highly specific, and with a considerable number of items in the test 

it is quite likely that some errors may occur in the partitioning with respect to the two dimensions. In the splitter-item-technique (using a single item as a criterion) it does not matter very much to which dimension the criterion item belongs, as long as the test is reasonably balanced with respect to the two dimensions. (Compare 
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the cases 1 and 2 in Table 4.) In the generalization of the splitter-item-technique, taking more than one item as a criterion, the consequences of a specification error 
may be dramatic for the power of the test, as can be seen if two equally difficult items are taken as criterion: no matter how the high and low groups are defined, the two dimensions will be equally represented in both groups and the test will loooe all its power. 

In the ML-test and the one-degree-of-freedom tests, things may be less dramatic as long as the majority of the items in each test halve represent the same dimension. 
To get an idea about the loss of power two extra power studies have been undertaken, using only heuristic 2 of the one-degree-of-freedom tests. In the first study two items are incorrectly classified and in the second study four erroneous classifications occur, 
but in both studies, the two test halves have 8 and 11 items respectively. The results are displayed graphically in F igure 8. 
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The power drops quite dramatically i f  errors in the assignment to the dimensions are made. If four of the 19 items are incorrectly classified, the test performs worse 
than the splitter-item-technique. If two errors are made, the power is higher than the 
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power for the ML-test if the correlation is higher than 0.90, but as the correlation decreases, the power raises less steeply than the power of the :ML-test. Although the 
power curve in  the case of four specification errors may be disappointing, it should be realized that the first dimension is identified by only 8 items, two of which are 
erroneously assigned to this dimension, which may be considered as a rather poor identification of the dimensionality of the total item set. 

To get an impression of the power in a more realistic case, the power curves have been determined also for the case where k1 = k2 = 15, for identifications with 
zero, two, four and six errors respectively. In the worst case, the subset identifying each dimension contains 12 items of that dimension and three items of the other dimension. The results are displayed graphically in Figure 9. 
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Figure 9 
It can be seen from this Figure that the power drops rather quickly (yielding a 

power of less than 50% in case of 6 errors and a correlation of 0.85). On the other hand, the power curves with 30 items are much steeper than in the case with 19 items. In the errorless case and with a correlation of 0.95, the power with 19 items 
is just above 20%, while with 30 items it is 45%. 
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One may regret this rather drastic less of power in the case of specification errors, or even find the requirement of a correct identification of the dimensions too 
stringent for the proposed tests to be useful in practice, and favor an alternative approach which does not require any a priori identification of the dimensions. The splitter-item -technique is such a procedure, but the above results have shown that its power is poor in comparison to the Martin-Lof test or the one-degree-of-freedom 
tests introduced here. There are other approaches possible, and one of them will be discussed in the next section. 

Other pcssibilities 
It may be interesting to see how versatile the general theory about test con

struction is, on the one hand, and on the other hand to discuss its limitations. The matrix Y in Table 5 has 1 column, but other matrices w ith more columns (yielding tests with more degrees of freedom) may be constructed as well. We will consider 
three examples in the domain of testing unidimensionality: the X2-analogue of the Martin-Lof test, the R2c-test developed by Glas (1989), and a specialization of this 
test, which takes advantage of prior information about the dimensionality. 
1. the X2-analogue of the Martin-Lof test. It has been shown in a previous section (see equation (11)) that the ML-test statistic can be decompcsed as the sum of two likelihood ratio statistics, one of which is very dominating and amounts to a likelihood ratio statistic comparing the expected bivariate frequency table 

to the observed table. But such a comparison could of course be done via a X2-like statistic, and the precise form is given by the quadratic form Q(U) of equation (16), with a Y-matrix having a column for each cell of the bivariate frequency table (with the exception of the (0, 0) and the ( k1 , k2) cells, which 
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do not contribute to the test statistic) . The entries corresponding to response patterns which belong to this cell equal one, the others are zero. 
2. In  1989 Glas, following a rationale put forward by van den Wollenberg (1979,1982), developed the Rcrtest which essentially compares the expected and observed fre

quencies in the 2 x 2 tables formed by all item pairs. Although Glas followed another rationale than the one presented above, it can be shown that this test can also be considered as a quadratic form Q(U) , where the Y-matrix has a column for each item pair, with a 1 entry for all response patterns having a 
correct answer to both items of the pair. The number of degrees of freedom in this case equals the number of pairs of items. 3. If item parameters are estimated using a unidimensional conditional Rasch model 
and a saturated multinomial model for the distribution of the test scores, it seems plausible that the predicted 2 x 2 frequency table will show a closer correspondence 
to the observed table for pairs of items where both items belong to the same dimension (homogeneous pairs), than for pairs where the items belong to different 
dimensions (heterogeneous pairs) .  Consequently, more power may be achieved if the matrix Y is restricted to the heterogeneous pairs, instead of using a column for each pair as in the R2ctest. The number of columns in this case is then k1k2, while in the R2c-test k(k - 1)/2 columns are required. 
The problems associated with the approach where Y has many columns, however, are not always easy to solve. We discuss some of the problems occurring when 

one tries to construct tests like the ones in the examples above. 
1. The rank of the U-matrix has to be determined on theoretical grounds. For quite general approaches this is usually not trivial. For the U-matrix in the first ex-
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ample, it is not hard to show that it is not of full rank , but is  much harder to show what its rank is in general. 
2. The computational burden is substantial if the matrix Y'D,;:Y is not diagonal (which it is not in each of the three examples above), i.e., when the columns of 

Y are not mutually orthogonal. For the R2ctest, for example, basic symmetric functions must be computed for the parameter vector with all singletons, pairs, triples and quadruples of parameters removed. If the number of items is substantial, computing time may become prohibitive. 3. But even if computing time is not a problem, numerical instability may become a big problem. For the R2c-test, the matrix of the quadratic form Q(U) is the inverse of a symmetric matrix with k(k - 1)/2 rows and columns. It is quite a 
complicated problem to show the numerical aa:;uracy of the computed result of 
Q(U) ,  even for a moderate number of items (say 30 to 40). 

4. Reliance on asymptotic results may become problematic. As was shown in Figure 2, the null distribution of the ML-statistic differs substantially from the asymptotic chi square distribution ( with 1000 observations, the real significance level is 1. 5% where the nominal level is 5%). For the X2-analogue of this test the 
situation is not different: the expected bivariate frequency table is used here as well. Similar problems may appear with the �c-test: the expected proportion of people having two correct answers can be extremely low (or high) for pairs of items which are both difficult ( or easy). 
None of the above problems occurs when a one-degree-of-freedom test is constructed. With a one-column matrix Y the number of degrees of freedom is either one or zero (and the latter case occurs only if the Y-vector lies in the column space 

of [T1 IT2] ,  which is usually not too hard to check), the computational burden is 
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relatively low, the matrix to be inverted is trivially simple (1 x 1), and asymptotic results will quickly apply if, as in heuristic 2, the summed expected frequencies do 
not differ too much from half of the effective sample size. Moreover, the total number of  items in the test does not complicate the computations in any important way, 
while the computation of the R2cstatistic gives problems if k > 15 (Glas, 1989, p. 42 and p. 97). 

Conclusion 
A number of  statistical tests especially designed to test the unidimensionality 

axiom of the Rasch model have been investigated and compared with respect to their statistical power. It may be interesting to look at these tests from the viewpoint of the risk taken by the user and the pay-off for taking and not taking risk. • I f  the user does not take any risk, leaving the testing as a mechanical routine to his software, he can use the splitter-item-technique (and, for example, use each 
item in turn as a splitter item) to detect violation of  the unidimensionality axiom or he could use an omnibus test like the R2c (if available). For the splitter-item
technique, it has been shown that the power is  not very high, which will probably also contribute to the finding that when the items are used in turn as a criterion, 
a proportion of  the tests will lead to significant results and the others not, without showing a clear-cut or easy to interpret pattern. 

On the other hand, i f  the user has a priori information on the dimensional structure, the power can be increased substantially. Three different procedures may be followed here, and their pro's and con's can be summarized as follows. 
1. A generalization of the splitter-item-technique where the criterion consists of the 

score on a homogeneous subtest. From the power studies reported here, it appears 
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that the power increases substantially as compared to the splitter-item-technique (see Figure 5), and that the maximum power is reached when approximately half of the items of one dimension are used for the criterion. It seems also that the test has more power if the sample is split into two contrasting groups rather than 
more than two. The test is a likelihood ratio test, and the number of degrees of freedom is 

df = ( G - 1) ( k - kc - 1 )  

where G is the number of contrasting groups, and kc is the number of items used as a criterion. Although no detailed study has been undertaken on the less of power if specification errors are made in the compooition of the criterion, yielding a 
heterogeneous criterion, it is easy to see that there is no power if kc = 2 and the criterion is not homogeneous. 2. The Martin-Lo£ test of unidimensionality, which essentially compares the bivariate frequency table with the expected one appears to have substantially more 
power than the optimal LR-test of the previous class (see Figure 5). Application of the test is relatively easy, but it requires full identification of the dimensions. 
The problem with this test is that the null distribution deviates substantially from the asymptotic distribution, unless the sample size is huge. The comforting finding of the present study is that the test seems to be conservative, and that one might therefore raise the nominal significance level to have a better approx
imation to the intended level, or conversely that the real power is greater than the power suggested by the estimated power curves. One should, however, be 
careful with this statement, because there is no theoretical evidence that the test is indeed conservative. A more accurate approximation of the null distribution 
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(in samples of realistic size) than the asymptotic one would be highly welcomed. 3. A class of generalized X2-tests with one degree of freedom. The rationale of 
these tests consists in summing the deviations between observed and expected frequencies in the bivariate frequency table for a set of cells ( the set S) where 
the algebraic sign of the deviations is expected to be the same. The power of the test will largely depend upon the accuracy with which this set can be identified without inspecting the deviations themselves. In the present study, two heuristics have been applied, which both yielded tests with substantially more power than 
the ML-test. For the best of the two heuristics the influence of specification errors on the power curves has been investigated. The decrease in power seems to be substantial in the case where for each dimension 12 of the 15 items belong to 
the same dimension (see Figure 9). Although not investigated in detail, it seems reasonable to expect similar effects for the other heuristic as well as for the ML
test. 
As a ooncluding note, some suggestions for future research can be made. It has 

been shown that the general theory on constructing X2-tests can deliver very powerful tests. The theory itself serves as a general framework, and the power obtained 
depends largely on the creativity of the user to define an adequate Y-matrix. The two heuristics presented above are perhaps not the most powerful ones, and endless 
variation (also using different weights) and good ideas may be necessary to build superior stati stical tests with power against specific violations of the model used. In testing the unidimensionality of the Rasch model, one might think, for example, of assigning negative weights to the complement of S,  or to form three sets of cells, receiving positive, negative and zero weights, respectively. From an application point of view, the availability of software where the user can define his own tests by spec-
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ifying the Y-matrix, would be highly welcomed as a powerful and original research 

tool. 
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