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Abstract 

When subjects from non-equivalent groups take the same test, the items may change 
their characteristics relative to each other giving rise to what is known as Differential 
Item Functioning (DIF). In this paper, we sketch our view on DIF: i.e., ·what it is, 
how it is detected, and how we deal with it when we find it. We focus on DIF in difficulty. Our start point is that DIF in difficulty can only be defined meaningfully in 
terms of differences in difficulty between items. Thus, to investigate DIF, we compare the relative difficulties estimated in separate calibrations in each group. If there is DIF, it does not imply that all relative difficulties are different. Items whose relative 
difficulties are invariant across groups form clusters. Each cluster may be used as an anchor in a concurrent analysis and the set of anchor items or, equivalently, the set 
of "DIF-items", is not unique. This issue relates to what Camilli (1993) refers to as the ipsative nature of DIF and appears to be well-known among psychometricians 
What enticed us to bring this issue around is the observation that, when there is DIF, the relation between the latent traits in two groups depends on which set of DIF ( or anchor) items one considers. Consequently, when the purpose of the study is to equate scores on two test forms, there may be two or more equating functions 
that can not be distinguished with the data at hand. An explanation is offered by showing that clusters measure different latent abilities and DIF occurs because the relation between the abilities is different across groups. 
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Primary Education 

Secondary Education 
FIGURE 1. 

Results of separate analysis. The positions of the items are their difficulties 8i. 

1. Introduction 
When subjects from non-equivalent groups take the same test, the items may 

change their characteristics relative to each other giving rise to what is known as 
Differential Item Functioning (DIF). When this happens, we have to decide, in con­
sultation with content experts, how to deal with DIF in order to make a meaningful comparison between the groups. This paper is about DIF: i.e., what it is, how it is detected, and how we deal with it when we find it. It is assumed that there are only 
two groups and there is no DIF with respect to "hidden" groups. When there are 
more groups, we would compare them pair-wise. Throughout this paper, we assume that Rasch model (Rasch, 1960) holds and focus on DIF in difficulty. We continue the Introduction with an invented example to provide a concrete context. In Paragraph 1.2 we explain why DIF in difficulty can only be defined mean­
ingfully in terms of differences in difficulty between items. Paragraph 1.3 provides 
the outline for the rest of the paper. 
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1.1. Motivating Example 

The same test of three items has been taken by two groups of students: students from the final year of primary school, and students from the first year of secondary school. The items are: 
1. 365 - 277 
2. (4+2 X 3)-7 

We assume that the items follow the Rasch model (Rasch, 1960) in each group. However, separate analyses of the data collected in each group show that the relative difficulties of the items are not the same for both groups. Figure 1 shows that items 
1 and 2 have changed positions relative to one another, while the relative position of item 2 and item 3 is the same in both groups. Thus, the characteristics of the items depend on the group to which they are administered and we recognize this as a simple case of DIF. 
Remark 1. Note that in practice

) 
one might be inclined to think that DIF is the 

consequence of a qualitative difference between the abilities of primary and secondary 

school children. The intuition is that DIF signals multidimensionality. For now
) 

we 

ignore this interpretation but we get back to it in Section 3. 

Next, we wish to do a concurrent analysis and analyze data from both groups simultaneously. The groups are samples drawn from populations whose ability dis­
tributions are a priori unknown to us. This means that we need a set of anchor 

items to establish a relation between the two ability scales. Items that show DIF 
are kept in the analysis but removed from the anchor. They are treated as different items in the two pop�lations. 
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(a) Choosing the largest DIF-free set (b) Looking at the content of the items 

FIGURE 2. 

Two different choices to link the two scales. An asterisk indicates that the item is considered a 

different item in the secondary education group. 

It will be clear that items 1 and 2 (or items 1 and 3) can not be both in the 
anchor but there is still a number of alternatives to choose from. In consultation with content experts, we consider the following two possibilities, illustrated in Figure 2. 

Al: Item 2 and item 3 A2: Item 1. 
The first option Al is based on the argument that DIF items are always a minority, 
and items 2 and 3 constitute the largest set without DIF. The second option A2 is based on inspection of the curricula of primary and secondary school. The substan­
tive argument is that the first item is the only item that both primary and secondary school children should find easy to solve. According to content experts, item 2 shows 
DIF because it requires knowledge of precedence rules of operations, which confuses 
some of the primary school children. Item 3 is difficult for both groups, but sec­
ondary school children have less difficulty understanding that the fractions must be 
converted into like quantities in order to add them. 

When we look at the output of our computer program, however, both analyses 
give the same value of the likelihood function and we conclude that the models, 
although with different sets of DIF items, give the same goodness-of-fit. On second 



7 thought, the reason is that differences between d1fficulties of items .within each group 
are the same in the two models (see Figure 2), and we have in fact specified the same 
model (see Appendix 6.1). 

This outcome worries us for two reasons: First, following e.g., Mellenbergh (1989), Penfield and Camelli (2007, par. 14) or Zumbo (2007) we would like to identify the DIF items, and help content experts to develop theories about the na­ture of the differences between the populations. Thus, when asked to identify which items show DIF, and which do not, and we are left with two equally good options. The options are ,:'equally good" in the sense that there is no empirical ground to 
prefer one over the other. Second, the relation between the ability scales depends 
on which items were selected for the anchor. Figure 3 shows that the average ability in the groups can either be the same or different depending on the anchor used. If the vertical line represents a passing score on the test, half of the pupils in the second group pass in the first analysis, while it is about 10% in the second analysis. It clearly matters which anchor is used. Eventhough, from an empirical point of view we are free to choose any of the anchors, the substantial conclusions are very 
different. It is this observation that enticed us to prepare this report. 

1.2. Separate Calibrations as a Start Point for Inquiry 
1.2.1. The Rasch Model 

When each of n persons answers each of k items and answers to these items are scored as right or wrong, the result is a two-way factorial design with Bernoulli vari­ates X
p
i, p = l, . . . , n, i = l, . . .  , k. Associated with each variate is the probability 

7rpi = P(X
pi = 1). The Rasch model expresses 7rpi as a function of a row or person effect 0P and a column or item effect oi , and assumes that the X

pi are independent. 
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(a) Choosing the largest DIF-free set 

I 

(b) Looking at the content of the items 

FIGURE 3. 

Two different choices to link the two scales, similar to Figure 2. The vertical line indicates a ability 

threshold defined on the scale of the first group. 

Specifically, 
(1) 

where Xpi denotes the observed response. The probability to find the correct re­
sponses is an increasing function of 0p which is taken to represent a person's ability. 
When 8i increases, it becomes harder to find the correct response. Hence, 8i can be interpreted as the difficulty of an item. 

The responses of person p will be put into a vector Xp = (xp1, . . .  , Xpk) called a 
response pattern. From independence, the data matrix x is observed with probability 

P(X = xl8, t5) = II P(Xp = :xpj0p, t5) 
= II II exp [xqi(0g - Ot)] 

P i l + exp(Oq - 8i) _ exp (EP xr>+0P - Ei x+i8i) 
-

I1p IL[l + exp(0p - oi)] 

(2) 

(3) 

(4) 

where Xp+ - Ei Xpi, and X+i - EP Xpi- This is the Rasch model, named after 



9 Georg Rasch who presented it in 1960 (Rasch, 1960). The Rasch model will be 
used throughout this paper. This keeps the mathematics simple while the main ar­guments extent readily to more complex models. Note that the row and column sums Xp+ and X+i determine the probability (4). This property of the Rasch model 
fits well to the ubiquitous use of the number correct score to make decisions about persons. 
1. 2. 2. Identifiability 

It is well-known that the Rasch model is not identifiable. The value of its param­eters is not unique because an arbitrary constant can be added to 8i and ()P without 
changing the probability of a correct answer. That is, P(Xpi = ll0p, 8i) = P(Xpi = 
llOP + c, 8i + c), where c is an arbitrary constant. Consequently, it makes no sense to say: "the difficulty of this item is 2". Only relative difficulties, i.e., differences in difficulty, are uniquely defined. The item parameter values produced by a program like OPLM (Verhelst, Glas, & Verstralen, 1994) are not to be interpreted as estimates of item difficulty. In fact, 
each is an estimate of difficulty relative to an aribtrary chosen point of reference. Estimated abilities are relative to the same point of reference. Both the estimates 
and their standard errors may change when a different point of reference is chosen (cf. Verhelst, 1993). Simply because it is a different thing that is estimated. 

The point of reference is chosen by imposing a restriction, called a normalization. 

For example, if 81 = 0 we obtain difficulties relative to the first item. A normalization is a restriction of the form: �7=1 ai8i = c, where c is a constant that may arbitrar­
ily be set to zero. The coefficients ai are arbitrary except that �i ai =/:. 0. A linear combination of the item parameters with �i ai = 0 is called estimable because its value is uniquely determined under the Rasch model. It is easily proven that any 



10 estimable function can be expressed as a linear combination of relative difficulties 
8i - 8i (cf. Bechger, Verstralen, & Verhelst, 2002, appendix). When we restrict an 
estimable combination of the item parameters (e.g., 81 = 82) we are truely impos­
ing a restriction on the model, i.e., one that can be true or false. In . contrast, a 
normalization merely serves to identify the models: i.e., it cannot be false. 

Now, suppose we have persons in two independent groups taking the same test. 
To allow for the possibility that the same item may have a different difficulty in the 
groups, we write 8i,g to denote the difficulty parameter of the i th item in the gth 
group (see e.g., Davier & Davier, 2007). We may then write the likelihood as: 

group 1 group 2 

where n1 denotes the number of persons in group 1. It is easily seen that 
P (X = xjB, '5) = IT IT exp [xpi (e;* - 0{1)] IT I[ exp [x9i(0;* - ot,2)] 

p=l i=l 1 + exp(0p - 8i,1) q=n1+l i=l 1 + exp(e;• - 8l,2) ) where 87,1 = 8i,l - c, 0; = 0p - c, 87,2 = 8i,2 - d, and 0t = 0q - d, where c and d are arbitrary constants that need not be equal. That is, we are free to choose a different 
point of reference in each group. It follows that only differences in difficulties within 
groups are unique. As long as we do not change the relative difficulties of items in 
each group, we do not change or violate the model. Another way of saying this is that differences between groups are not uniquely determined because we can add a 
constant to the abilities in a group and add the same constant to the item parameters without changing the model. 
1.2.3. Conclusion 

With non-equivalent groups, only the relative difficulties of items within each 
group are defined. What this means is that only differences in relative difficulties 
across the groups can be detected. Furthermore, we cannot distinguish between a 



11 uniform shift in difficulty and a difference in average ability between the groups. 
Note that this has been known for a long time (e.g., Thissen, Steinberg, & Gerrard, 
1986). For example, Scheuneman (1981) writes that 

. . . the mean bias effect across items appears as part of the apparent differ­
ences between groups on item difficulty. What remains to be detected is only 
the variation across items. (pp. 24-25) 

Differences in difficulty can be estimated separately with the data from each group. Hence, in contrast to what is sometimes believed, e.g., Millsap (2010), it not neces­sary to analyse the data from two groups simultaneously in order to test for DIF. 
1. 3. Outline 

In the motivating example, we found that a different Rasch model holds in each group. However, the two concurrent analyses also revealed that the items can be partitioned into two subsets, X and Y, such that the items in each set conform to the same Rasch model in both groups. As illustrated in Figure 4, we found that the Rasch model holds for: 
1. { XC9), y(9)} in each group g. 2. {xc1), xc2)} 

3. {Y(l)' y(2)} 

Interestingly, each concurrent analysis proved two of our three findings: i.e., 1 and 
2, or 1 and 3. The first analysis established finding number 2 with X = {item 2, 
item 3}. The second analysis finding number 3 with Y = {item 1 }. Thus, it proved to be useful to do two concurrent analyses, although we would rather use a model 
that is consistent with all three findings. 
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Group 1 Group 2 

FIGURE 4. 

Subsets of items. The ovals indicate which data conform to a Rasch model. 

In the sequel, we will take our findings as a starting point. That is, we assume 
that there is a partition of the items such that our findings are true. We focus on two questions. The first is: How do we find a partition? This is addressed in Section 
2. Second, if we have a partition, is there a model that is consistent with all three 
findings? This is discussed in Section 3. The paper ends with a discussion in Section 4. To keep the discussion focused, some of the technical details are in the Appendix and a separate report (Bechger, Maris, & Verstralen, 2010). 

2. Detecting DIF Item-pairs 
2.1. A Statistical Test for DIF 

While parameter values depend on the arbitrary normalization imposed in each analysis, the relative difficulties do not and are uniquely determined. If we know 
the item parameters in each group, we can construct two matrices: R(l) and RC2) 

that contain the differences in difficulties in each of the two groups. That is, R}J> = 
8i,g-8j,g· These matrices contain all information that is available for inferences about 
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DIF with respect to difficulty: When there is no ,DIF, AR = R<1) - R(2) = 0. For 
later reference we state this as: 

Ho : AR = 0 (No-DIF) 
H1 : AR :/ 0 (DIF) 

Example 2 (Motivating example continued) . In the motivating example, R(l) and 
R(2) may have looked like this: 

It follows that 

0 -0.5 -1 0.5 0 -0.5 1 0.5 0 
and R(2) = 

0 -1.5 - 1.5 AR = 1.5 0 0 
1.5 0 0 

0 1 
-1 0 -0.5 0.5 

0.5 -0.5 0 
(5) 

(6) 

and we immediately see that there is DIF. Note that AR is, by construction, skew­symmetric: i . e. ,  D..�j = -6.Rji · Note further there are zero as well as non-zero entri es in 6.R. The fact that entry (3,2) equals zero means that the relative difficulty 
of i tem 2 compared to item 3 is the same in both groups. The non-zero entries in 
the first row ( column) are due to the fact that 81 has changed i ts position relative to 
82 and 83 . 

By construction, the matrices have a very specific structure, and we can repro-
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FIGURE 5 .  

Empirical distribution of the probability of Da,1 and D3,2 under the standard normal distribution 

based on a simulatioh. n = 300. 

duce the whole matrix dR from the entries in any single row or column. Specifically, 

= 6- 1 - 6 1 - [6 · 1 - [J 1] - (8· 2 - [J 2 - [6 · 2 - 6 2]) i, r, J, r, i, r, J, r, 

for all rows i and columns j =I r. In fact, we need only know the off-diagonal entries, since the diagonal entries are always zero. Let 13<r> denote the r th column of dR but 
without the zero diagonal entry. Then, dR = 0 {::} 13<r> = 0, for any r E {1, . . .  , k }. 
It turns out that we can take any column we like, and to avoid excessive notation we refer to 13<r> as {3. 

In practice, the item parameters are not known but estimated: (3 is calculated 
with estimates of item parameters and used to make inferences about {3. If the estimators of the item parameters are asymptotically normal, the asymptotic distri-
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(a) No DIF:5% entries significant 

1 3 6 7 0 11 13 15 17 18 21 23 26 27 29 

FIGURE 6. 

A colour map of the matrix I> based on simulated data (n = 1000) . Rows and columns are item 

indices. See Appendix 6.4. 
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bution of j3 is multivariate normal, with mean /3 and variance-covariance matrix :E 
with entries: 

(7) 

(8) 

where the second equality follows from the fact that the calibrations are based on independent samples. The ( co )variances in (7) are obtained from the asymptotic 
variance-covariance matrix of the item parameter estimates (see Appendix 6.3). 
Testing for DIF is now easy. Under H0 , the squared Mahalanobis distance (SMD: 
Mahalanobis, 1936) 

(9) 

follows a chi-squared distribution with k - 1 degrees of freedom (e.g., Rao, 1973, 
pp. 418-420). In Appendix 6.2, we show that the index r is arbitrary: i.e., the value 
of xiR is independent of the column of �R we use. Appendix 6.3 provides a small R-script and explains how the test is calculated in practice. 

2.2. Clusters 
To assess the hypothesis HJ

ij) : R}}> = Rg) against Hi
ij) Rg) =J. Rg> , we calculate: 

(10) 

(11 )  

The standardized difference bij is asymptotically standard normal under HJij) . When Rg> =J. Rg), the mean of bij is non-zero. The power of the test depends 
only on the difference Rf]) - R}}) ,  and on the standard errors which depend on the 



17 difficulty of the items relative to the corresponding ability distribu�ion, and the sam­ple size in each group. Furthermore, the marginal distribution of bij is not affected 
by other entries. This means that each entry can be tested consistently, i.e., the result for one item-pair have no bearing on the result for others. A small simulation 
study confirms that this works. See Figures 5 and 6. 
Example 3 (Motivating example continued) . We randomly generate 200 responses 

in each group, with �R as in Equation 6. Ability distributions are normal with µ1 = 0, a1 = 1, µ2 = 0.2, a2 = 0.8. The item parameters are estimated with conditional 

maximum likelihood. The xiR = 20.52, which is highly significant with 2 degrees of 

freedom. Hence, we reject the hypothesis that there is no DIF. When we now look at 

item-pairs, we find 

0 - 1.36 -0.87 
1.36 0 
0.87 -0.50 0.50 0 

, D = 
0 -4.46 -2.86 

4.46 0 2.86 -1.62 1.62 0 
(12) 

Compared to .&ii, f> has the advantage that we interpret the value of the entries: 

i. e . ,  if its absolute value is smaller than 2, an entry is not significantly different 

from zero. At a glance, it is clear that we may conclude that item 1 has changed 

its position relative to the others, while the distance between item 2 and item 3 is 

invariant. 

Example 3 illustrates that items form clusters: i.e . ,  subsets of items whose dif­
ficulties relative to each other are invariant, and visual inspection of the matrix D 
may help to spot them. In the absence of DIF, there is one cluster containing all items (e.g., Figure 6.a). When one item has changed its difficulty relative to all 
other items, there are two clusters: one consisting of one item, and one consisting of all others (see Figure 6.b). On the other extreme, when all relative distances are 



18 different there are k clusters: each consisting of a single item. Testing whether a par­
ticular group of items form a cluster is straightforward. A cluster corresponds to a 
submatrix of �R and we simply test whether an arbitrary column in this submatrix 
is equal to zero. Note, however, that when we wish to do an exploratory analysis 
and consider multiple clusters we run into the problem of multiple comparisons or 
multiple testing. 

It is useful to define a cluster as a set of items such that, if one more item is added to the set, the relative difficulties of the items in the set are no longer invariant. A 
single item i can classify as a cluster in this way when c\1 - t5h,I =I= t5i,2 - t5h,2 for 
all h =I= i. Both anchors, X = {1}, and Y = {2, 3}, in the motivating example are 
such clusters. Defining an anchor in this way guarantees that different anchors are mutually exclusive. Note that we define the clusters with the true parameter values: clusters may not appear so clear-cut with limited data. 

2.3. A Real Data Example 
To see our test in practice we investigate DIF using real data collected with an IQ-test for children in the age between 11 and 15. For our present purpose, we have 

taken two samples of ( 424 and 572) 12-year old children that have taken a sub-scale 
of the test consisting of 15 items: This subscale was found to fit the Rasch model 
in each group. The first group has taken the test on the computer, while the second group has taken the paper-and-pencil version of the test. 

The items look exactly the same on screen as on paper. Nevertheless, the X�'.rn is 
highly significant (p < 0.0001). It appears that the way items are presented has had 
an effect on relative difficulties. The matrix D is shown in Figure 7. To facilitate 
visual inspection we have colored its entries. Furthermore, we have permuted its 
rows and columns such that small entries are clustered (see Appendix 6.4). There 



19 
3 

5 

10 

& 

12 

1 1  

14 

15  

" 

3 8 5 'f 10 6 2. 1� 11 7 4 9 14 15 13 

FIGURE 7. 

The standardized matrix D for the real data example. Labels of columns and rows are item num­

bers. About 22 percent of the entries is significant at the 5 percent level. 

appear to be three substantial "clusters" of items: X = {11, 7, 4, 9, 14, 15, 13}, Y = {6, 2, 12}: and Z = {3, 8, 5, 1, 10}. There are also items whose difficulties relative to 
each other have changed. For example, items {3, 8, 5} have changed their difficulty relative to items {14, 15, 13}, which confirms that they belong to different clusters. It 
is not correct to test an hypothesis on the same data that suggested the hypothesis. 
For illustrative purposes only, we investigate whether X and Y could be combined 
in one cluster. Unfortunately, this hypothesis was rejected: xiY = 26.11 which is 
significant with 9 degrees of freedom (p = 0.002). If we remove items 13 and 15 from 
X, we get xiY = 15.71 with p = 0.027. 



20 3. Bringing it all together: DIF and multidimensionality 
In the motivating example, one might be inclined to attribute DIF to a qualita­

tive difference between primary and secondary school children. This suggests that a 
multi-dimensional model is needed, albeit one that is consistent with our findings. 
That is, the Rasch model must hold for: 

Assumption 1 {X(9) ,  y(9)} in each group g. Assumption 2 {X(ll, x<2l }  Assumption 3 {Y(l) , y(2) } 

where X and Y' are clusters of Rasch items that show DIF relative to each other: e.g., X = {Item 2, Item 3}, and Y = {Item 1}, in the motivating example (see 
Figure 4) . It will be clear how this extends to more than two clusters. Assumptions 2 and 3 imply that X and Y are Rasch homogeneous scales across the groups. This case is discussed by Glas (1989). The (marginal) likelihood of a 
person randomly sampled from group g is 

(13) 

where P (xl0, �x) and P (yl,8, �y) conform to the Rasch model, and only the distri­bution of abilities differs between the groups: where 0 is the ability measured by the items in X, and ,8 the ability measured by the items in Y (Glas, 1989, Eq. 7.1.2). 
Assumption 1 holds when 

(14) 
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This means that the latent variables are perfectly correlated and the marginal like­
lihood is: 

P9 (x, y) = / P (xl0, 6:i:)P(yjO + b9 , 6y) f9 (0)d0 
= f P (xj0, 6w)P(yj0, 6y + b9)f9 (0)d0, 

(1.5) 
(16) 

where the second equality holds because a shift in ability is equivalent to a shift in 
difficulty. When b1 =/- b2 , the position of the items in X relative to the items in Y is different in the two groups. Hence, the latent variables are perfectly correlated, but their relation is different in the two groups and this gives rise to DIF: In this case, DIF in difficulty. Furthermore, we can identify the items measuring each latent variable. 

It follows that a model where all three assumptions hold arises as a special case of a general multidimensional model, where 
(17) 

and E denotes random error with mean zero and variance one. Specifically, we ob­tain (14) from (17) when a1 = a2 = 0. Thus, when a9 = 0, and we have Rasch homogeneous subsets X and Y, DIF can be investigated by testing whether b1 = b2 . 

4. Discussion 
We have developed a statistical test for DIF based on relative item difficulty. 

The start point has been that DIF is not a property of individual items but of 
pairs of items. Because we look at item-pairs directly, our test is quite different from traditional procedures to identify "DIF items" . To appreciate what this means, let 
us compare bij , which was introduced earlier, to 

8- 1 - 8- 2 2 1 1 I, 

Xi = ✓ ( �  
� ) V ar c5i,1 - Di,2 

(18) 
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·• 13 14 

FIGURE 8 .  

A submatrix: of D for the real data example corresponding to items flagged as  "DIF items" by a 

likelihood ratio test with purification. Labels of columns and rows are item numbers. 

which was proposed by Lord (1980, p. 219) as a statistic to test the hypothesis that 
8i,l = 8i,2. The similarity between the two statistics becomes apparent when we 
realize that Ji is really the estimated difficulty of item i ,  relative to some arbitrary 

point of reference. The notation is somewhat misleading. If, for example, the r th item is used as a anchor, we should write 
8--1 - 8  1 - (8·-2 - 8  2) 

2 
i, r, 1., r, 

Xi = ✓ ( - ( _ )) , 
V ar <5i,l - 8r,1 - 8i,2 - 8r,2 

(19) 
and we see that xt = Dir ·  It follows that, when xt is used as a item-DIF statistic, it 
depends on the normalization in each calibration whether or not an item is flagged 
as a DIF-item: e.g., item r never has any DIF. The effect is clearly seen in the 
motivating example. There, if we take r = 1, x� and x� are significant even though 



23 D23 = 0. If r = 2, item 1 is flagged. 
While our procedure gives consistent tests for different subsets of items, many of the traditional tests are inconsistent due to a abuse of the Neyman-Pearson approach to hypothesis testing (Neyman & Pearson, 1933). Consider the following common 

procedure. We do two concurrent analyses. In the first analysis, all items figure in the anchor. In the second analysis, one item is removed from the anchor: i.e., the item is entered in the analysis as a different item for the second population. The null-hypothesis is H0 
: 15(1) = 15(2) . The alternative hypothesis is: 

A likelihood ratio is calculated to determine whether Ho should be abandoned in favor of the alternative hypothesis H1i . When this happens, it is concluded that item i shows DIF (e.g., Glas, 1998, p. 655). However, the alternative hypothesis is 
not &?) =/- 8}2

) ,  but includes the condition that the remaining (anchor) items form a cluster. If this condition doesn't hold, neither H0 nor H1i is true and it is difficult to say what we expect for the distribution of our test statistic. Furthermore, tests for different items are no longer consistent which leads to a tendency to conclude that all items show DIF. This is easily confirmed by simulation (e.g., Finch & French, 
2008; Stark, Chernyshenko, & Drasgow, 2006). Note that this observation is not new and has led researchers to suggest alternative anchoring strategies (e.g., De Boeck, 2008, §7.4; Wang & Yeh, 2003; Wang, 2004; Stark et al., 2006), and heuristics for iterative purification of the anchor (Lord, 1980, p. 220; Flier, Mellenbergh, Ader, & Wijn, 1984; Candell & Drasgow, 1988; Penfield & Camelli, 2007, pp. 161-162). Lord 
(1980) employed one such anchoring strategy, now called the free-baseline method. 

It entails choosing a "referent" item and examining x; = Dir for each item i =/- r. 

This provides a correct way to test the hypothesis that 8i,1 - &r,1 = &i,2 - &r,2· 



24 The conceptual problem, however, remains. As an illustration, we have applied the 
likelihood ration test with purification (Thissen, 2001) to the real data analyzed earlier, and Figure 8 shows D for the flagged items. It is seen that many of the 
"DIF items" have invariant relative difficulties. We find it hard to assess whether 
this provides a meaningful summary of the data. The focus on item-pairs has naturally led to the observation that items form 
clusters: subsets of items whose difficulties relative to each other are invariant across groups. The real data example confirmed that there can be various clusters that are 
substantial in size. In the case considered here, each cluster constitutes a Rasch 
homogeneous scale across groups. While each cluster can be used as an anchor 
for concurrent analysis, the substantive outcomes will not be the same for each cluster. We have found that this can be explained in a multidimensional Rasch 
model: Finding DIF means that the test is multidimensional and the clusters are unidimensional subtests measuring different abilities. In future research we hope 
to develop practical ways to estimate the clusters: i.e., to determine which of the 
possible partitionings of the items is best supported by the data. Note that, if there 
is DIF, this procedure would produce multiple anchors, while current procedures to detect DIF-items produce one and only one set of DIF items. This means that there 
must be an implicit rule to choose between multiple empirically equivalent sets. What ever rule is applied, we suggest that it be made explicit such that users can 
decide whether they agree with it. The posterior anchoring advocated by De Boeck 
(2008), for instance, explicitly incorporates the rule that DIF items are a minority (p. 556). This means that items that show DIF in a test where they are a minority, 
may not show DIF in another tests where they constitute a majority. Note that the definition of DIF used in this report, i.e., a difference across groups 
in the properties of items relative to each other, is different from the commonly 



25 accepted one: i.e., an item shows DIF when people from different groups of same 
underlying true ability have a different probability to give a certain response. As an 
illustration, we quote the definitions of DIF, or item bias as it was called at the time, 
given by two influential authors: First, Lord ( 1980) provides the following definition 

If each test item in a test had the same item response function in every group, then people of the same ability or skill would have exactly the same change of getting the item right, regardless of their group membership. Such 
a test would be completely unbiased. If on the other hand, an item has a different item response function for one group than for another, it is clear 
that the item is biased. (p. 212) 

Second, Mellenbergh (1989) defines DIF, rather general, as: 
An item is unbiased with respect to the variable G and given the variable Z 
if and only if 

f(XJg, z) = f(Xlz) 

for all values g and z of the variables G and Z, where f(XJg, z) is the dis­tribution of the item response given g and z and f(Xlz) the distribution of 
the item responses given z; otherwise the item is biased. (p. 129) 

Both definitions start with a definition of no DIF, and DIF is defined as the com­
plement. We agree on the definition of no DIF which, in this case, simply states that the Rasch model holds. However, from our point of view, the definition of DIF 
is incomplete because it doesn't say which anchor is chosen to define the common ability (Z in the definition of Mellenbergh). An item shows DIF with respect to a 
certain anchor, and researchers using different anchors will define DIF with respect to a different ability. If the anchor is explicitly chosen (e.g., the mean difficulty in 



26 each group) there is still the issue that different anchors are equally good from an 
empirical point of view. This was illustrated by the motivating example, where item 1 could be a DIF item or an anchor item. 

Our results have implications in the following contexts: 
l. Examinations: !RT-based equating is done to determine a score on a new test 

that corresponds to an established passing score on an existing test (Holland, 
Dorans, & Petersen, 2007). In the presence of DIF, researchers will carefully 
choose an anchor to equate scores from old to new. However, there will be more 
than one possible anchor. Furthermore, as illustrated in the motivating example, researchers working with different anchors may find different passing scores and 
there is no empirical basis to prefer a particular passing score over another. In view of the importance of passing scores for people taking the test, this constitutes a serious issue. However, DIF means that the test is multidimensional. Thus, 
we should, in retrospect, conclude that the test is measuring other latent traits besides the intended one. One should then decide how the scores on different subtests may be combined to reach a pass-fail decision. Clusters corresponding 
to traits that are considered irrelevant may be removed. 2. Population Inference: Suppose that in the motivating example, we would like to make inferences about the populations taking the test. By choosing different anchors we shift the scale in one population relative to the other which changes 
our inferences regarding the ability distributions in the populations (see Figure 
3). Cross-national comparative studies like PISA,TIMMS, PIRLS, etc. have to deal with substaatial amounts of DIF. As a rule, DIF items are identified before 
the main study, as part of a general effort to ensure that tests are comparable 
across groups (e.g. , Hambleton, Merenda, & Spielberger, 2005). The DIF items are 
then removed and population inferences are based on an analysis without these 



27 items (e.g., Guideline 12 in Vijver & Hambleton, 1996). However, and especially 
when there are two or more substantial clusters, the league tables will differ depending on the choices made. As with examinations, recognizing that DIF 
implies multidimensionality provides a way-out. It seems opportune not to remove items and report ability differences on the scales defined by the clusters. 3. Student Tracking: Student tracking systems relate scores on multiple test levels to a developmental scale that can be used to assess student growth over a range 
of educational levels (e.g., Kolen, 2006). Abilities may change both quantitatively and qualitatively as students progress. Hence, depending on the range of levels covered, the need for a multidimensional model is evident. When a unidimensional model is used, qualitative changes will show up as DIF. Conclusions concerning growth then depend on how the scale is anchored across levels, as demonstrated in practice by Verhelst (2010). A solution would be to use a multidimensional model, and this was suggested earlier by Andersen (1985). The model may prove 
difficult to interpret but once we have the multivariate distributions under control, we may use the model for vertical prediction. That is, foretell how a student will score on a test at a next level. 

Thus, DIF affects much of what psychometricians do in practice. In this paper we have sketched our view on DIF. It will be clear that further study is needed to: 
a) work out the consequences in more detail, b) generalize our approach to more complex IRT models, c) develop efficient ways to apply the test in practice, and d) to establish more firmly the agreements and disagreements between our approach and existing work: Especially, the earlier work relating DIF to multidimensionality 
(e.g., Kok, 1988; Shealy & Stout, 1993; Nandakumar, 1993). 

Finally, we think that many psychometricians share our points of view. Nev­ertheless, the consequences have not been put into practice. The indeterminancy 
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of the anchor, for example, relates to what Camilli (1993) refers to as the ipsative or circular nature of DIF (e.g., Angoff, 1982; Camilli, 1993, pp 408-411; Thissen, Steinberg, & Wainer, 1993, p. 103; Williams, 1997; Penfield & Camelli, 2007, pp. 
161-162) and appears to be well-known among psychometricians (e.g., Shealy & 
Stout, 1993, p. 207; De Boeck, 2008, p. 551; Soares, Concalves, & Gamerman, 2009, 
pp. 354-355; Verhelst & Glas, 1995, p. 91, or Wang, 2004). Penfield and Camelli 
(2007), for instance, recognize that ipsativity is a problem but continue to focus on the identification of a single set of DIF items. 
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6. Appendix 
6. 1. Equivalence of the Models in the motivating example 

In the example, we stated that analyses with two different anchors lead to the 
same likelihood and the models are observationally equivalent models. At first sight, however, the model cannot be equivalent because they differ in the number of param­
eters. To wit, four parameters in the first analysis, and five in the second analysis (i.e., 81 , 82 , 83 , 82 , 83) .  Consequently, one expects the second analysis to furnish a 
better fit to the data. This requires clarification. 

On closer look, the difference between the two analyses is that, in the second analysis, there is no restriction that 81 - 82 = 82 - 83 . Thus, the second model is nested in the first and it is only after we impose the restriction that the two models become observationally equivalent. If we do not impose the restriction, it is possible to find that 81 - 82 =/- 82 - 8; in which case one would decide in favour of the second model. When, however, 81 - 82 = 82 - 83 , this will become increasingly unlikely when sample size increases. To illustrate this, we have conducted a small simulation 
study. For different sample sizes, n ,  we generated 200 data sets and analyze each 
using conditional maximum likelihood. If we gather the conditional likelihoods for each model we find that the likelihood for the second analysis tends to be higher. However, as seen in Figure 9, the ratio of the likelihoods converges to one when 
sample size increases. That the models are equivalent may proven more formally by casting the mod­
els for concurrent analysis in the framework of the classical Linear Logistic Test 

Model (LLTM: see Fischer, 2007, par. 7, and references therein) . A detailed proof is 
described elsewhere (Bechger et al., 2010). 
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FIGURE 9. 

Average Likelihood Ratio of the two concurrent analyses in the motivating example. 

6. 2. xiR is independent of the co lumn 
Let 13<r> denote the r th column in R(l) - R<2) ,  without the diagonal entry, which we know to be zero. As mentioned in the text, we can reconstruct the whole matrix R(l) - R<2) from each of its columns. Hence, if we know the r th column we can determine the hth column: 

(20) 

where Tr,h is constructed from a k x k identity matrix as follows: First, each entry in the hth column is given the value -1. Then, remove the r th column and hth row. 
Note that T8,rTs,h = Ts,r such that Th,r = T;:,l. 



Example 4. Consider 

It follows that 

0 -0.7 -1 

R(l) - R(2) = 0.7 0 -0.3 
1 0.3 0 

The second column is 
Ti,2/31 = ( -l O ) ( o.7 ) = ( -o.7 ) -1  1 1 0.3 

If we go backwards: 
_ ( - 1  0 ) ( -0.7 ) - ( 0.7 ) T2,1.82 - -- 1  1 0.3 1 

Now the xiR statistic based on row h =/= r can be written as: 
xiR = (Th,rf3? (Th,rET[r) -1 Th,rf3 

= ,aTTI,r (Ttr
1 E-1Th,;Th,rf3 

This shows that its value is the same whatever column we take. 
6.3. Detect DIF in practice 

(21) 

(22) 

(23) 

(24) 

(25) 
(26) 
(27) 

The following is an R script that calculates the squared Mahalanobis distance, 
and the matrix of standardized differences f>. It uses the eRm package (Mair & 
Hartzinger, 2007) to estimate the parameters and calculate the asymptotic variances and covariances of the parameters. This will suffice for small problems. 



# Estimation 
library(eRm) 
res1=RM(dataGr1 , sumO=FALSE) 
res2=RM(dataGr2 , sumO=FALSE) 

# Calculate \Delta\mathbf{R} 
R1=kronecker(res1$betapar ,t (res1$betapar) ,FUN="-") 
R2=kronecker(res2$betapar ,t (res2$betapar) , FUN="-") 
DR=R2-R1 

# Calculate \chi-2_{\Delta\mathbf{R}} 
beta=DR [2 : k ,  1] 
Sigma=vcov(res1)+vcov(res2) 
chi2=mahalanobis(beta,rep(O , (k-1) ) ,Sigma) 
p_chi2=1-pchisq(chi2 , (k-1) ) 

# make D 
Acov1=cbind(rep (O,k) , rbind(rep(O , k-1) , vcov(res1) ) )  
Acov2=cbind(rep (O,k) , rbind(rep(O,k-1) ,vcov(res2) ) )  
var1=diag(Acov1) 
var2=diag(Acov2) 
S1=kronecker(var1 , t (var1) , FUN="+")-2•Acov1 
S2=kronecker (var2 ,t (var2) , FUN="+") -2•Acov2 
S=S1+S2 
diag(S) =1 
D=DR/sqrt (S) 

Some explanation is in order. First note that in the r th column of R(1) , we have difficulties relative to item r :  i.e., R�) = 8}9) - 8�9) . Hence, 
(28) 
(29) 

Estimating with sumO=FALSE means that we have chosen r = l. The estimates res1$betapar, and res2$betapar are estimates of difficulty relative to item r in each 
group. The command 

vcov(res1) 

produces the asymptotic variances and covariances of the k - l relative difficulties 
<>f) - 8�1

) ,  for i = 2, . . .  , k in the first group. It follows from Equation 29 that 
Sigma=vcov (res1) +vcov(res2) 



To calculate D, we need to calculate: 
----- ----- ---- -----V ar (.kiJ)) = Var (8]9) - 8�9) ) + Var (8J9) - 8$9) ) - 2Cov(8J9) - 8$9) , 8]9) - 8$9) ) 

To this aim, we construct the complete variance covariance matrix: i.e., including the first item, using the command 
Acov1=cbind(rep(O , k) , rbind(rep (O , k-1) , vcov(res 1 ) ) )  

which simply adds the zero column and row for the first item that was fixed. Now, 
Var ( flit) is calculated for each entry in R(l) by 

S1=kronecker(var1 , t (var1 ) , FUN= 11
+

11 ) -2*Acov1 

and similarly for R (2) .  

6.4 - Produce a Colar-Plot 
The following R-script produces a simple color plot of the matrix D. This one is suppose to look the same on screen as printed1 

plotD <- function(x) 
{ 

} 

yLabels <- c (ncol(x) : 1) 
xLabels <- c ( 1 : nrow(x) ) 
x <- x [yLabels , ]  

#set breaks for categories 
alpha=c ( . 05 , . 01 , . 001) 

#set colors for categories (1 more than breaks) 
cols=c( "white" , "lightgray" , "darkgray" , "black") 

#calc . z-scores and define breaks 
qn=-qnorm(alpha/2) 
br=c (O ,qn [1] , qn [2] ,qn [3] , 1000) 

#plotting commands 

#z-scores 
#breaks (>1000=white ! )  

par(mar=c (2 , 2 , 2 , 2) )  #make al l  margins equal 
image (abs (x) , col=cols ,breaks=br, axes=F) #use image command 
axis (1 , labels=xLabels , at=seq(0 , 1 , length . out=nrow(x) ) )  
axis (2,labels=yLabels , at=seq(0 , 1 , length. out=nrow(x) ) )  
box() #square box around plot 
layout (!)  

1Thanks to Matthieu Brinkhuis! 



If we wish to order the rows and columns such that clusters are more easily seen 
we found that multidimensional scaling is useful. By construction, f> is unidimen­
sional and the scale values of the items can be used to order the rows and columns of 
f> such that the clusters may be more easily seen. This is how we produced Figure 7. 
library(MASS) 
Dpo=abs (D) 
Dpo [Dpo=0] =0 . 0001 
diag(Dpo) •O 
rr=isoMDS (Dpo ,ks1) 
o=order (rr$points) 
ff=as .matrix(colnames(DD) ) 
ff=cbind(ff ,rr$points) 
ff=ff [o , ]  
D_order=D [o , o] 
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