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Preface 

It all started on the 16th of September 2 00 4. I read an advertisement in the Eras­
mus Magazine about a internship at Cito, which seemed interesting. This company 
does a lot of research in the field of Psychometrics, and I knew that prof. Groenen is 
also acquainted with this field. He was positive about the research of the company, 
and so I contacted prof. Sanders at Cito. Before I realized it, I had signed a contract 
to write my thesis there, starting in April. 

This proved to be a good decision. I was given my own room, and was supervised 
by two well-learned enthusiastic doctors, Timo Bechger and Gunter Maris. At a 
suggestion made by prof. Groenen, we decided to use techniques from his area of 
research for the parameter estimation of models, which are interesting for CITO. 

In the first months, I was busy programming all kinds of existing and self­
invented algorithms in Visual Basic. In the meanwhile, we were having theoreti­
cal discussions on alternative methods, and their characteristics. After a couple of 
months, we had to make the decision whether to expand the research or to go deeper 
into the the methods we were already working with. Looking back, I think we made 
the right decision to choose the latter option. 

Meanwhile, prof. Groenen had given his consent to write a thesis on this topic. 
In the summer I did some simulations and wrote this piece. Two fellow students, 
Ferdinand Houwink and Anna Lim, were kind enough to read the thesis, and to point 
out some ambiguities. Finally, my supervisors gave some final remarks in September 
and in October, after which I completed this thesis. I want to thank all persons 
whom I have previously named for their help. I hope the reader will become (more) 
interested in the world of algorithms after reading this thesis. 





Abstract 
We compare several methods to find the parameters of the Rasch Model, well-known 
in psychometrics. This search entails finding the maximum of the concave conditional 
log-likelihood function. We focus on iterative minorization and interval algorithms, 
which update one parameter per iteration, and are guaranteed to converge. We 
present six algorithms, an acceleration method, and perform a small simulation 
study with them. This study shows that the convergence time of the algorithms 
depends on the shape of the likelihood function. 
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1 .  Introduction 
As the name suggests, Maximum Likelihood e stimation entails finding the value 

of one or more parameters that make the likelihood of observing the data, considered 
as a function of the parameters, highest. In many cases, the estimates cannot be 
determined analytically and one has to resort to iterative algorithms. 

This iterative search can be done by updating the current point. Newton­
Raphson is a well-known example for this search. Another method is to update 
the interval in which the maximum has to lie. Here, one takes two points on both 
sides of the optimum and a third point somewhere in the middle. Depending on the 
derivative of this point, it replaces one of the other points, and again another point 
somewhere in the middle is taken. A well-known example is the Bisection method, 
which lets the third point lie exactly between the two other points. 

Both methods have a disadvantage: Newton-Raphson is not guaranteed to con­
verge, whereas interval algorithms do not find a better point in each step. A method 
which does update the current point in every step and does for certain converge is 
Iterative Minorization (IM). 

In this thesis, we focus on the estimation of the parameters of the Rasch Model 
of psychometrics (Rasch, 19 60). For this estimation, we test the performance of the 
monotone converging algorithms. Not all algorithms we consider in this thesis are 
new. For example, we discuss the implicit equations algorithm that was introduced 
by Fischer (197 4) . This algorithm has been used for many years although it was 
never proven to converge. By showing that this algorithm is based on iterative 
minorization, we establish its monotone convergence. 

For all algorithms, we prove that, under certain conditions, they can be gener­
alized to the class of Exponential Family Models. This Family includes many useful 
statistical distributions. An important property of the Exponential Family is that 
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the likelihood functions are log-concave, which is needed for the convergence of the 
algorithms. This concavity implies there is a unique maximum. 

The Rasch model is used to estimate the difficulty parameters of items, for 
instance the questions on a graduation exam, and the ability parameters of persons, 
for example, of students. Here, we present how the likelihood function follows from 
the density function. The probability f(Ypi = lJ0p, oi) that person p answers item 
i correctly lies between O and 1, and is determined by a logistic function. This 
function is monotonically increasing in the ability parameters of the persons, 0p, 
and monotonically decreasing in the difficulty parameters of the items, oi. The Rasch 
model assumes that the probability on a correct answer is 

exp(0p - oi) 1 + exp(0p - oi)' (1) 

and the probability on an incorrect answer is 
1 

The probability of giving the right answer is 50% if and only if 0P = oi, as shown in 
Figure 1. 

Under the assumption that this probability only depends on the parameters, 
and not on the fact that a person has answered other items right or wrong, the 
likelihood of the Rasch model can be obtained by multiplying over the probabilities 
of all observations: 

M N  P(YJ0, �) = II II (I[ypi = 1JJ(ypi = 110p , oi) + I[ypi = o]f(ypi = 0 10p, oi)) 
p=l i=l 

M N 
= II II (Ypd(Ypi = 110p, oi) + (1 - Ypi)f(Ypi = 0 10p, oi)) 

p=l i=l 

= 
fi :fi exp(ypi( 01' - oi)), 
p=l i=l 1 + exp(0p - Oi) 

where N is the number of items, M the number of persons, Y the M x N matrix 
2 
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FIGURE 1. 

The probability of given the right answer where 8i = 2 

of responses with elements Yip equal being 1 for a correct answer and O otherwise, 
(J the M x 1 vector of abilities 0p , and � the N x 1 vector with item difficulties 8i. 
Note that the last line of this equation covers both the case that the answer is right, 
as well as the case the answer is wrong. 

It is well-known that the parameters of the Rasch model are not identifiable. 
Specifically, the ability parameters 0P and the difficulty parameters 8i can be shifted 
by the same constant without changing the value of the likelihood function. This 
problem is resolved here by assuming that the difficulty of the first item is equal to 
zero. The other difficulty parameters must be interpreted relative to the first item. 

Usually, the focus of the analysis are the item parameters oi . In that case, we 
are not interested in the ability parameters 0p, whii;;h can be considered incidental. 
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Moreover, the number of the ability parameters increases with the samp!e size. In 
the presence of an increasing number of incidental parameters it is, in general, not 
possible to estimate the (structural) difficulty parameters consistently (Kiefer & 
Wolfowitz, 1956; Neyman & Scott, 194 8). This problem can be overcome in one of 
two ways. 
1. Since the Rasch model is an Exponential Family Model we can base our inferences 

on the distribution of the data Y conditional on the sufficient statistics for the 
incidental parameters. This conditional distribution no longer depends on the 
incidental parameters, and also belongs to the Exponential Family (Lehmann, 
19 86). This method is called conditional maximum likelihood (CML) estimation. 

2. If the persons can be conceived as a random sample from a well defined population 
characterized by an ability distribution G, the structural difficulty parameters can 
be estimated from the marginal distribution of the data. That is, we integrate 
the incidental parameters out of the model. Rather than estimating each person's 
ability, only the parameters of the ability distribution need to be estimated. This 
method is called marginal maximum likelihood (MML) estimation. Note that the 
marginal likelihood does not belong to the Exponential Family. 

Under suitable regularity conditions both methods can be shown to lead to consistent 
estimates of the difficulty parameters. 

In this thesis, we concentrate on CML estimation. Because the likelihood func­
tion is concave in the difficulty parameters bi, we do not have to worry about local 
maxima. The global optimum of this likelihood cannot be found analytically. In 
OPLM, a software package used at CITO, currently a combination of the implicit 
equations algorithm (Fischer, 1974) and Newton-Raphson is used. We compare the 
performance of these and several other iterative methods to find the global optimum 
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of the likelihood. We try to find algorithms which are faster than the ones which 
are currently used with as goal increasing the speed of the software package. 

The remainder of this thesis is organized as follows: In Section 2, we present the 
general idea of iterative minorization, and some practical examples. The conditional 
log-likelihood function of the Rasch model is derived in section 3. In Sections 4 to 
6, we respectively explain how to use minorization algorithms, interval algorithms, 
and Newton-Raphson. These algorithms are used in a simulation study, which is. 
presented in Section 7. Section 8 contains some final remarks. 

2. Iterative Minorization 
A function g(x) is said to minorize a target function f(x) if g(x) is smaller than 

or equal to f(x) for all x, and coincides at least at one point x. The point where we 
demand the two functions to coincide is called the supporting point. In this thesis, 
we assume that the target functions are continuous and twice differentiable. The 
minorizing condition implies that at x the first-order derivatives are equal, and the 
second-order derivative of g(x) is smaller. In literature, the topic of majorization 
is discussed (Heiser, 1995; Lange, Hunter, & Yang, 2 000).  This is used to find the 
minimum of a function. Since maximizing a function is the same as minimizing 
minus this function, and bacause minorization is the exact opposite of majorization, 
the same properties hold (Hunter & Lange, 2 00 4). An important characteristic of 
minorization is that it is closed under summation, a property that is used later. 
Because the minorizing function g(x) depends on the supporting point x, we write 
g(x, x). That is, we need a minorizing function g(x, x) such that: 

l=J(x) ifx=x; 
g(x, x) � l :S: f(x) for all x =I= x. 

5 
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FIGURE 2. 

Illustration of minorizing a difficult function by a quadratic function 

Figure 2 shows how a difficult function is minorized by a parabola. 
A minorizing function g(x, x) is used when the maximum of f(x) cannot easily 

be found. The maximum of g(x, x) can usually be found by setting the first-order 
derivative equal to zero. The iterative minorization approach for finding the maxi­
mum of f(x) rests on iteratively using the Sandwich inequality (De Leeuw, 1 994) 

where g(Xi-+i, xi) is the maximum value of g(x, xi). In the next step, Xi+J. replaces 
£i as supporting point. If the sequence of values of f(xi) is bounded, convergence 
of this sequence to a maximum is guaranteed. Often, the minorizing function is 
quadratic, leading to simple updates. However, in this thesis we also investigate the 
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use of other minorizing functions. 
To construct a minorizing function, one has to look closely at the properties of 

f ( x). One has to determine: 
1. its domain; 
2. its limits; 
3. where the function is convex and concave. 
Then, one needs to think about the preferable shape of the minorizing function. 
Generally, linear or quadratic functions are used. Later on, we present a function 
which is neither linear nor quadratic. At the supporting point, the minorizing func­
tion has to have the same value, the same first-order derivative, and a smaller or 
equal second-order derivative compared to the target function. To satisfy these three 
conditions, it may help to choose a function with three free parameters a, b, and 
c, which depends on the supporting point x. An example is the quadratic func­
tion g(x, x) = ax2 +bx+ c. One can replace a and b with functions of c, using 
the two equality conditions. This setup leaves only the inequality condition of the 
second-order derivative, and one free parameter c. Choosing a proper c now gives a 
potentially minorizing function. A picture of the graph gives an indication whether 
the function actually minorizes, but a formal prove is always needed. In the next 
two sections, we give some examples to illustrate how minorizing functions can be 
constructed. 

2.1. One supporting point 

At first, we give a general solution for minorizing convex functions. Hereafter, 
we show how the concave function ln(x) can be minorized by rational functions. 
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Minorizing convex functions 

The following example is more general. Suppose the function f(x) has the fol­
lowing properties: 
1. its domain is [a, b]; 
2. f(a) and J(b) exist; 
3. the function is convex. 
Because a convex function has a positive second-order derivative for all values, a 
sufficient minorization is a straight line (Borg & Groenen, 1997; Heiser, 1 995) .  Such 
a minorization can be found by taking the first-order Taylor approximation at the 
point x: 

g(x, x) = f(x) + f'(x)(x - x). (2) 

This minorization for example holds for x2 and - ln(x), see Figure 3. For f(x) = x2, 

the Taylor expansion at x is 

and for f(x) = - ln(x), it is 
g(x,x) = -ln(x) - x

-= 
x

_ 
X 

Minorizing ln( x) 

Here, we try to minorize the function f ( x) 

function are: 
1. it only exists for positive x; 

2. limf(x)= - oo; 
x!O lim f(x)= oo; 

x-+oo 

8 

ln(x). The properties of this 
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FIGURE 3. 

Minorization of x2 and - ln(x) by their first-order Taylor expansion. 

3. the function is concave on the whole domain. 
We have to find a function g(x, x) which minorizes f(x) on the interval ( 0, oo), and 
of which limg(x, x) = - oo. The latter property implies that g(x, x) cannot be a 

x!O polynomial. Therefore, we try two rational functions of the following form: 
-a 

g1(x,x) = - - bx+ c, 
X 

( �) -a 
b 2 

g2 X, X = - - X + C, 

with a,b > 0 to ensure that g1(x,x) and g2(x,x) are smaller in the limits. We 
must admit that the minorizing functions are quite difficult to optimize, because of 
the rational part -a/x. However, we hope to give the reader a better idea on the 
construction of minorizing functions. 

For g1(x, x) the following conditions have to hold: 
-,__

a 
- bx+ C = ln(x), 

X 

a l 

�2 
- b = ::::, 

X X 

-2a -1 
--<-
x3 - x2. 
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Expressing a and b as a function of c gives 

The inequality now becomes 

a =  1/2x(c - ln(x) + 1), 
c - ln(x) - 1 

b = 2x • 

-(c - ln(x) + 1) -1 > l (�) �2 
� � =} C _ n X . 

X X 

To ensure that a and b are positive, c has to be larger than ln(x) + 1. If we for 
instance choose c = ln(x) + 2, we end up with 

g1 (x, x) = -3x - x� +ln(x) + 2. 2x 2x 
Doing the same for g2 (x, x) ,  gives the following set of equations: 

-=._
a - bx2 + C = ln(x) , 

X 

Solving these for a, b and c, gives 

a 1 
�2 

- 2bx = :::: ,  
X X -2a - 1  - - 2b < -
�3 - �2 . X X 

a =  1/3x(2c - 2 ln(x) + 1) , 
c - ln(x) - 1 

b =  - I 3x2 

c 2: ln(x) + 1/2. 
Again, because b has to be positive, c has to be larger ln(x) + 1. For symmetry, we 
again choose ln(x) + 2. It can be seen that for this value a and b are positive. We 
now have the minorizing function 

3� 
2 g2 (x x) = _....:!_ - x� + ln(x) + 2 ' X 3x2 

10 
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Minorizations of ln(x) with supporting point 1 .  

The two minorizations are plotted in Figure 4 .  Both functions have the property 
that their limits for x - 0, and x ---t oo  are equal to - oo. They touch f(x) only at 
the supporting point x. 

Now, we look at quadratic minorizing functions with two supporting points. One 
can use these to minorize concave functions. 

2. 2. Two supporting points 

Here, we show how a concave function f ( x) can be minorized by a quadratic 
function which has two supporting points. Before we give a practical example, we 
first provide a new theorem stating that such a minorizing function is unique. 
Theorem 1 .  For a given function, consider minorizing functions of the following 
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form: 

where x is the supporting point and k is a fixed integer constant greater than or equal 
to 2, that is even and finite. There is no value y -=I- x such that mik(Y, x) = mjk(Y, x) , 
for i -=I- j. Furthermore, for any two such functions one minorizes the other. 
Corollary 1. If the minorization mik (x, x) of a certain target function has a second 
supporting point, this second supporting point is unique, and this is the only function 
with multiple supporting points for given k. 
Corollary 2. The unique minorizing function mik(x, x) with two supporting points 
is better than any other minorizing function of the same order k. 

A proof of Theorem 1 and its corollaries is given in the Appendix. From Groenen, 
Giaquinto, and Kiers (2 003) we derive the quadratic minorizing function g(x, x) for 
f(x) = - ln(l + exp(-x)),  with supporting points x and -x: 

with 
f(x) = - ln(l + exp(-x)) � g(x, x) = ax2 +bx+ c, 

f'(x) - f'(-x) a =  4x ' 

b = -2ax + f'(x), 
c = f (x) - ax2 

- bx, 
(3) 

where lima = - 1/ 8. Groenen et al. (2 003) prove that g(x, x) actually minorizes 
x-+O f(x). Figure 5 plots f(x) and g(x, x) with supporting points -2 and 2. 
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Quadratic minorization of - ln(l + exp(-x)) with two supporting points. 

In this case, J(x) has some interesting properties: 
f(x) = - ln(l + exp(-x))  

= - ln(l + exp(-x)) - ln(exp(x) )  + ln(exp(x)) 
= - ln((l + exp(-x))  exp(x)) + x 

= - ln(l + exp(x)) + x 

= J(-x) + x, 

J'(x) = -J'(-x) + 1, 

(4) 

(5) 

where ( 5) follows from ( 4) via the chain rule. Obviously, for the minorizing function 
13 



g(x, x) these two properties also have to hold at x. Now, suppose g(x, x) is a general 
expression of a quadratic function: 

g(x, x) = ax2 + bx +  c. 
Because (4) also has to hold for g(x, x) at both supporting points, we obtain 

ax2 + bx +  c = a(-x)2 - bx + c + x =} 2bx = x =} b = 1/2. 
The latter equation implies that b is independent of x! This result can also be derived . 
from a combination of (3) and ( 5): 

b = -2ax + J'(x) 

= _2J'(x) - J'(-x) + J'(x) 4 

= 1/2f'(x) + 1/2!'(-x) 
= 1/2. 

The fact that at the supporting points also ( 5) has to hold for g(x,  x), helps to 
simplify a: 

2/'(x) - 1 a = 4x • 
In this paper, we consider two iterative minorization algorithms for the Rasch 

model. Quadratic minorization is used in one of these algorithms. In the next section, 
we continue our discussion of this model. 

3. Rasch Model: The Conditional log-likelihood Function 
In the introduction, we have described the Rasch model. In this section, we 

introduce the conditional log-likelihood function which has to be optimized. We 
show how this function follows from the general likelihood function. It is convenient 
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to reparameterize the Rasch model by 

where np and mi are the sufficient statistics for ()P and §i, respectively. Also, we use 
the following generalization of the Binomial Theorem: 

N N 
IJ (1 + bit) = L 'Yi (b )ti, 
i=l i=O 

where 'Yi (b) = I: IL bfi are the so-called elementary symmetric functions. The 
x:n=i latter summation is taken over all response vectors x which lead to score j. This 

function is based on writing out the product into a summation by basic mathematics. 
For notational convenience, we write 'Yi for 'Yi (b) . In the Appendix more information 
is given on these functions. The above functions can now be used to reparameterize 
the likelihood: 
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We are interested in the likelihood conditional on the M xl vector of sum scores n. 
This conditional likelihood is defined as 

The nominator is the likelihood, whereas the denominator is equal to 

The conditional likelihood can now be obtained by 

ITN bm; i=l i 
= M 

Ilp=l "fnp 

where the la.:;t equality follows from the definition of the elementary symmetric 
functions. Since the sum scores n are sufficient for the ability parameters t this 
conditional distribution no longer depends on t. Taking the logarithm gives the 
conditional log-likelihood function (CLLF) 

lmln (b) = L mi ln(bi) - L ln('Ynp) 
i p 

= L mi ln(bi) - L ln( "f�; + bj"f�J _1 ) ,  
i p 

where 'Y�) is used to denote the n-th elementary symmetric function of b without 
the j-th element (see the Appendix). The previously used parameterization has the 
restriction that the bi's always have to be positive. During an algorithm, they can 
become negative, and we find no solution. Therefore, the CLLF usually is reparam-

16 



eterized, where bi is replaced by exp(-8i) :  
lmln(d) = - L mi()i - L ln(,np) 

i p 

(6) 

The advantage of (6) is that it exists for every value of 8j . Because 1'�) is always 
positive, this function is concave in every 8j , and has no local maxima. We prove this 
in Section 4.5 by showing that all Exponential Family Models have a concave log­
likelihood. In the next section, we introduce two iterative minorization algorithms, 
starting with an estimation procedure that is currently used in software. 

4. IM Algorithms for the Rasch Model 
In the Rasch model, maximization cannot be done analytically by derivation, 

because the right-hand side of the CLLF is intractable. In this section, we focus 
on methods which use iterative minorization to find the maximum of this concave 
function. One can choose to use a simple minorization, which for instance uses a 
Taylor expansion of the logarithmic part of the log-likelihood function. Another 
idea is to use a more difficult minorization, which uses two supporting points. This 
minorization probably costs more calculation time per iteration, but this function 
is expected to lie closer to the log-likelihood function. 

In OPLM, a software package used at CITO, currently a combination of the 
implicit equations algorithm (Fischer, 197 4) and Newton-Raphson is used. The proof 
of the (monotone) convergence of the implicit equations algorithm has not been given 
until now. We present this proof by showing that this algorithm is a form of iterative 
minorization. Secondly, we present a minorizing function which uses two supporting 
points. Finally, we illustrate how both ideas can be generalized to the Exponential 
Family. 
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4. 1. One supporting point: Implicit equations 
The terms - ln( ,�j + bj1;!J_1) of the CLLF are convex functions in bj ( ,�) 

does not depend on bj) .  Because one wants to minorize the CLLF, one can opt 
for minorizing these terms. This minorization can be done by taking the first-order 
Taylor expansion, see Section 2.2. We obtain 

1 ( ) ( (j) ---b (j) ) 
'Ynp-1  

( ---b) ( 
w 

) - n 'Ynp 2:'.: - ln 'Ynp + jf np-l + (j) --. (j) bj - j 'Ynp + bj1np- 1  By substituting the right-hand side for the left hand side in the CLLF, we obtain 
the minorizing function MmJn(bj, b), see Figure 6: 

Mm1n (bj, b) = 

( 

(j) 

) 

'°' '°' C) --- (j) 'Yni,-1 ---L.., mi ln(bi) - L.., ln(,jp + bj'Ynp-1) + (j) � (
j) (bj - bj) ::; lm1n(b). 

i P 'Ynp + bi'Ynp-1 The CLLF and the minorizing function coincide at bj = bj, as they should. If 
we differentiate MmJn(bj, b) with respect to bj we obtain 

(j) mj _ '°' 'Ynr l 

b . L 0) --. 0) 
J P rnp + bj'Yn

,,
-1  

Hence, the maximum of Mm10(bj , b) is found at 
( 

(
j) ) -1 

_ '°' 'Yn,,-1 b1 - m1 L (j) --. C.1.·> , 
P 'Ynp + bj1np-1 

(7) 

(8) 

which is called an implicit equation (b1 is a function of itself). The new bj can now 
be used to update bH1 , etcetera, until convergence. 
Characteristics of implicit equations 

The implicit equations algorithm updates one parameter at every step. Within 
each step, a minorizing function is updated, hence the CLLF increases until conver­
gence. Suppose we keep the other parameters constant, and only update b1 . Let the 
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Minorization of the CLLF by hnplicit equations with supporting point 2. 

top of the function for bi be bj,opt, and the value of bi found at the i-th iteration bi,i · Now, we obtain for every step in this dimension the following theorem: 
Theorem 2. bi,i lies between the old value � and the top of the function bj,opt· 
Proof. The CLLF is monotonically increasing for O < bi < bj,opt and monotonically -decreasing for bj,opt < bi < oo. Suppose that bj,i-l < bj,a,pt, then the slope for bi,i-1 
is positive: 

(j) 
ffij " /n,p-1 

0 = - L., (j) -- (j) > • bi,i-1 P 'Ynp + bi,i-l'Yn.,,-1 This inequality implies that 
( (j) ) -1 

b- '°' 'Ynp- 1 b j,i = ffij L., (j) --- (j) > j,i-1 • 
P 'Yn,, + b;,i-l'Ynv-1 
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The slope of bi,i can be found after filling in the new value: 
(j) mj '°' fnp-1 

� - � (j) -- (j) -bi,i P rnp + bi,irnp-1 
(j) (j) 

'°' fnp-1 '°' 'Yn,,-1 
� (j) - (j) - � (j) - (j) > 0, 

P 'Yn,, + bj,i-lrn
p

-1  P 'Ynp + bj,i'Y11;p-l where the latter inequality follows from inequality ( 9) .  Therefore, the signs of the 
slopes of the new value � and the old value Ci are the same. Combining the fact 

- � that the slopes have the same sign, and that bi,i > bi,i-l proves that bi,i < bi < bj,opt· 
The opposite holds when the slope for bi,i-l is negative. This completes the proof. □ 

If this procedure is repeated for a single parameter, ceteris paribus, it converges 
to bj,opt · After updating other parameters, this bj,opt also changes. In the implicit 
equations algorithm, only one updating step per parameter is used. However, it might 
be advantageous to take more steps, while keeping the other parameters constant. 
In this way, we gain insight in a possible convergence rate, which can help creating 
a faster algorithm. 
Convergence rate 

Here, we are looking for a way to increase the convergence rate of the implicit 
equations algorithm by investigating the sequence of values of bj,i, ceteris paribus. 
If the differences between the sequential values become smaller, it might be possible 
to accelerate the procedure to get closer to bj,opt, while needing only a few values. 
We show that such a method can be used by considering n persons and only two 
items. This example serves to illustrate how we can use the convergence rate to 
compute the optimum. Note that persons with all items wrong or all items correct 
contribute nothing to the estimation and are ignored. In both cases, there is only 
one response pattern that leads to the observed number correct score. Hence, con­
ditional probabilities are either zero or one, which means that they disappear from 
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the (log)likelihood (see also Fischer, 1974). 
For two items, CML estimation entails maximizing the CLLF 

where r1 denotes the number of persons with one item correct; either item 1 or item 
2. These persons constitute all data used for estimation. For notational convenience, 
the symbol 1r is used to denote m2/ r1 , the proportion of the r1 persons with correct 
answers to i tern 2. 

The update in the implicit equations algorithm is b2,k+l = 1r(b2,k + 1). The first 
three values can be found, using 

2 b 2 = 7r + 7r + 2,07r , 

which can be generalized to 
b2,k = (1 + b2,k-1)1r = ( 1 + [%;: 7rh + b2,07r

k
-l] )  7r 

k 

We know that for l z l  < 1 
= L 7rh + b2,07r

k
. 

h=l 

21 



It follows that the iterates b2,k constitute approximately a geometric series, of which 
the latter term converges to zero. Since 1r < 1, the series converges to 

1r m2 
lim b2 k = b2 apt = -- = --­

k---->oo I ' 1 - 7r r1 - m2 
Thus, in this case we may determine the estimates without iterations. Furthermore, 
if we look at successive iterates, we see that in general 

and distances between subsequent iterates become smaller during iterations. Finally, 
the speed of convergence is seen to depend on m2/r1 . That is, convergence is slower 
if the first item is relatively easy so that ffi2/r1 is close to one. We illustrate that 
this theory also holds for multiple items in the simulation study at the end of this 
thesis. 

Naturally, the problem with two items has an explicit solution and we would not 
consider an iterative procedure. In case we consider a number of items greater than 
2, there is no explicit solution, and it might be possible to use the convergence rate. 
We know that, in general, a series that is both bounded and monotonically increasing 
or monotonically decreasing, converges to a number, not further than the bound. 
In this case the bound is bj,opt and the values decrease or increase monotonically. 
However, the absolute value of the step I bj,i+l -bj,i I is not necessarily smaller than the 
absolute value of the previous step, l bi,i - bj,i-i I - Some preliminary experimentation 
shows that the steps usually become smaller, but not always. We prove our last 
statement by a counter example. 

Assume we have three items and three persons. Given are m1, no, n1, n2, n3, b2 
and b3 . We start at the point b11 . Assuming that there are no persons who answered 
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all questions right or wrong, the new values b12 and b13 can be computed as 

If we take m1 = 2, n1 = 2, n2 = 1, b2 = 0.0 5, b3 = 1.4, bu = 0.0 5, then b12 is 0.173 8, 
and b13 is 0.34 87. In this case, l b12 - bu l = 0. 123 8 and l b13 - bd = 0.174 9 showing · 
that the steps get larger. We can conclude that although convergence to a certain 
point is guaranteed, not every step towards this point has to be smaller than the 
previous one. 
Aitken's Convergence Acceleration Method 

In case the steps do get smaller, the sequence can be accelerated. Several methods 
exist which make use of the convergence rate to find the point of convergence Xc­

A well-known method is the Aitken's Convergence Acceleration Method (Aitken, 
1 926). For the implicit equations algorithm, one needs three consecutive points to 
estimate the one-dimensional optimum Xc = bi,o-pt· 

Suppose x0 = bj,o, x1 = bj,l , and X2 = bi,2 are known. The first step is X1 - Xo, 
the second step x2 - x1 . The growth rate of these steps is 

Assuming the sequence is a geometric, Xc is equal to 

Hence, if l (x2 - x1)/(x1 - x0) 1  < 1, then the point of convergence can be computed 
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as follows: 
Xc = X2 + (x2 - x1) lim t ( x2 - Xi ) i 

n-+oo i=l X1 - Xo X2 - X1 ( X2 - X1 ) -l = x2 + (x2 - x1)--- 1- ---x1 - Xo X1 - Xo (x2 - X1)2 
= X2 + ----,---------(x1 - xo) - (x2 - x1) (x2 - x1)2 = x2 + ---- -2x1 - x0 - x2 

For the Rasch model, bj,opt can be estimated in the same way as Xc by using the 
- - -sequential values bj,O , bj,I ,  and bj,2 , Note that in case the steps become larger, this 

acceleration method does not work. 

4.2. Multiple supporting points: Quadratic minorization 

In this section, we present a new minorizing function for the CLLF which has 
two supporting points by again minorizing the right part of the CLLF. The goal of 
minorization with multiple supporting points is to find a function which is closer to 
the target function than a minorization which is obtained with only one supporting 
point. 

In Section 2.3, f(x) = - ln(l + exp(-x)) is minorized by a quadratic function. 
This quadratic function has two supporting points, which lie symmetrically around 
zero, and is lower than f(x) for all other x. Now to obtain a term of the CLLF, two 
factors are added to parts of f ( x). For notational convenience, we write ')'o = 1$!;, 
"'1 = "'(j) and x = 6 -: I lnp-1 J 

k(x) = - ln(,0 + ')'1 exp(-x)), 
2 4  
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which can be rewritten as 
k(x) = - ln(l + 11 exp(-x)) - ln(,0) ,o 

= - ln(l + exp(ln ( �: ) - x)) - ln(,o) -
Here, it becomes clear that these factors shift f(x) on the x-axis to the right with 
the term ln(,i /,0), and on the y-axis down with the term ln(,0). The latter shift is 
not important for finding the parameters, because this only affects the constant c. 

Correcting for the horizontal shift is done by taking the second supporting point on 
the other side of a mirror point. This mirror point Xm is equal to 

If 10 = 11, this mirror point is equal to zero, and we are back at J(x) minus the 
constant ln( ,o) .  The parameters of the minorizing function change accordingly: 

b = k'(x) - 2ax, 
c = k(x) - ax2 

- bx. 
We use these parameters to create the following minorization: 

lm1n(6) = - L mi8i - L ln(,�; + exp(-8j)'Y�;- 1) 
'i p 

� -L mi8i + E(ap8J + bp8i + cp) -
i p 

The terms on the right-hand side are all minorized with two supporting points. How­
ever, unless all ,�;-i/,r,/} are equal, the total minorization only has one supporting 
point (�) - Setting the first-order derivative of the minorizing function equal to zero, 
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gives the new point 8i : 

-mi + �J2ap8j + bp) = 0 

The latter is also an implicit equation, because ap and bp depend on 8i for every 
p. This algorithm is called below the quadratic minorization algorithm. We do not 
further investigate the behavior of this algorithm, but compare its fit with that of 
the implicit equations algorithm. 

4. 3. Comparison between both minorizations 
We compare the two minorization algorithms in two ways. F irst, we consider the 

global fit of both minorizations. Secondly, we compare the second-order derivatives 
at the supporting point. We know that at the supporting point, both algorithms have 
the same value, as well as the same derivative for every term. It is obvious that each 
term the quadratic minorization function is better at its second supporting point, 
because then it is equal to the term of the CLLF. To compare both algorithms, we 
plot them in F igure 7 for constant ,'s with four different supporting points. We 
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make the plot after reparameterizing the implicit equations minorization as 

(j) v(bi, b) = - ln(-i!; + 1½1�;- 1 ) - (i) 'Ynp__:-1 
(j) (bi - 1½) = 

'Yn11 + bj/np-1 

v(8j , 8) = - ln('Y�; + exp( -J;h�;-i) 
(j) 

- (j) 'Ynp - l..... (j) (exp(-8i) - exp(-J;)) 1n,, + exp( -oi )'Yn,,-i 

'Y
(j) - (j) np-l� (j) exp(-8i)) 

,Ynp + exp( -Oj hnp-1 
= r + s exp(-8j), 

where r and s are constant with respect to Oj , depending on the ,y's and the sup­
porting point. 

In Figure 7 we see that independently of the supporting point, the implicit 
equations minorization is better than the quadratic minorization if 8i gets very large, 
and worse if 8i gets very small. In these graphs, it holds that if the supporting point 
l; is positive, the implicit equations minorization seems better than the quadratic 
minorization around this supporting point. In case the supporting point is negative, 
the quadratic minorization seems better in this area. 

To see if one minorization dominates the other close to the supporting point, we 
compare the second-order derivatives of these terms. The dominating function has 
the largest second-order derivative at the supporting point. We derive the second­
order derivatives of the implicit equations minorization, where we use the fact that 
its value and the value of its first-order derivative are equal to the values of the 
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Comparison between two terms of both minorizations. 

quadratic minorization. 

� �2 � 
u(dj , 6) = adi + Mi + c, 

where the last equality follows from the equal first-order derivatives. We want to 
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know the sign of the difference of the second-order derivatives at 8j: 
u"(8; , «5) - v"(8; , «5) = 2a + 2a8j + b 

= 2a + 2a8; + k'(8;) - 2a8; 

where k'(8;) comes from the previous section. k' (8;) is always positive, whereas a is 
always negative. The difference only depends on two supporting points 8j2 , and their 
derivatives. To get a better insight in the sign of the difference, we rewrite 8j2 , k'(8;) ,  

and k'(8j2 ) ,  where we again write 10, and 11 instead of ,np and /np-l respectively: 
8 j2 = 2 ln ( �:) - ;f; 

k' (8;) = ,1 exp(-;f;) � ,o + 11 exp( -8j ) 

exp(-8;) 
- � + exp(-;f;) 

k'(8j2) = ,1 exp(-i5,;;) ,o + 11 exp( -8j2)  

11 exp(-2 ln (�) - ;f;) 
= ,o + ,1 exp(-2 ln (�) - 8;) 

exp(-2 ln (�) - 8;) 
= � + exp(-2 ln (�) - 8;) 

These terms all depend on only 8; and the ratio of 10 and 11 . Therefore, we expect 
the same for the difference between the second-order derivatives. We show this in 
Figure 8. 

This figure confirms our expectations that the difference between the second­
order derivatives depends on the ratio of 10 and 11 , and the implicit equations 
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Difference between the second-order derivatives of two terms of both minorizations. 

minorization is better around the supporting point than the quadratic minorization 
if 8j is larger than some value. This value seems to be slightly bigger than zero, 
dependent on the ratio. When the ratio ,i/,o gets larger, the graph shifts to the 
right. This shift works in favor of the quadratic minorization, which then becomes 
better on a bigger interval. Note that the advantage of the quadratic minorization 
is usually larger than the advantage of the implicit equations minorization. 

4.4. Generalization to Exponential Family Models 
The two minorization techniques which are used for the Rasch model can also 

be applied in the estimation of the parameters of other Exponential Family Models 
with finite, discrete data. We show this after a short introduction for this class of 

30 



models, and show that its likelihood functions have a comparable shape to the Rasch 
model. This is hardly surprising, since the Rasch model belongs to this family. 

The likelihood of Exponential Family Models with discrete data has the following 
form: 

P( IA.) = b(x) exp(q,T d(x)) 
X 'I" a(cp) ' 

where x symbolizes the data and </J a vector of parameters, b(x) is a function of 
the data, d(x) a vector of the sufficient statistics, and a(</>) a scaling function. A 
property of a density is that the probability of being somewhere in the whole domain 
is equal to one: 

� b(x) exp(</JT d(x)) = 1 
7 X a(</J) 

This restriction leads to the definition of a( </J) : 
a( <P) = L b(x) exp( </JT d(x)) , 

with first-order derivative 

where di(x) denotes the i-th element of d(x) . We can compare this with the Rasch 
model. Here, b(x) is equal to 1, </J is the vector [!6 ] ,  d(x) is [;:] ,  and the denominator 
also sums over all possible values. To find the maximum of the likelihood, one usually 
takes the logarithm (one-one transformation), and differentiates this function to 
<Pi · The maximum of the (log)likelihood function is reached when di(x) equals its 
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expected value (Andersen, 19 80) : 
ln P(xl</J) = ln b(x) + <PT d(x) - ln a(<J,), 

{) o<J,i 
ln P(xl</J) = di (x) - E[di (X)], 

o<J,�;<Pi 
ln P(xl</J) = -(E[d�(X)] - E[di (X)]2) 

= -V[di(X)]. 
The second-order derivative is equal to minus the variance of di (x) ,  which is positive 
by definition. Therefore, the log-likelihood function is concave, and the likelihood 
itself log-concave. This log-likelihood consists of an easy part, and a difficult loga­
rithmic part, - ln a( </J). We show that for finite data, one can minorize the latter 
part by rewriting this part with cpi as free parameter. 

- ln a(<J,) = - ln(E b(x) exp(L c/>idi (x))) 
X j 

= - ln(I: b(x) exp(L cpjdj (x)) exp(cpidi (x))) 
X j,/-i 

= - ln(I: L b(x) exp(L cpjdj (x)) exp(cpid)) 
d x:<1i(x)=d #i 

= - ln(L Ydtf), 
d 

where Yd =  I:x,tt-; (x)=d b(x) exp(I:#i cpjdj (x)) and ti = exp(cpi) - It takes some rewrit­
ing to find a familiar formula. 

- ln(I: ydtf) = - ln(Il ( ti + zd)) 
d d 

= - L ln( exp( cpi) + zd). 
d 

(11) 
These terms are concave as functions of cpi and convex as functions of exp(cpi) ­
Therefore, we have two options: 
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1. Take the first-order Taylor expansion to estimate exp( </Ji) as in the implicit equa­
tions algorithm. 

2. Use quadratic minorization to estimate </Ji - Namely, - ln(exp(</Ji) + zd) is exact 
k(x) (1 0) with x = -<pi, 10 = Zd and ,1 = 1. 

Some of the steps could give problems, like finding the values for Z8. The Rasch 
model, however, proves that in practice these problems can be overcome. Another 
simple example is provided by a test with n items of the same difficulty. If the item 
responses are independent, the number of correct answers of a person, �i Xpi, is a 
binomial random variable with probability 

P(I; Xp; - xl8) - (;\7(x7 ) for x - 0, . . .  , n. 
i �j=l ; exp JO 

In this case, the denominator is the scaling constant a( o) . It follows from the Bino-
mial Theorem that 

a(8) = t (; ) j  exp(o) = [1 + exp(o)t, 

where (;) is indeed the elementary symmetric function of order j with unit argu­
ments. It can be seen that - ln(a(o)) has the same form as (11). 

5. Interval algorithms 
Minorization algorithms update the current likelihood value at every iteration 

by finding a better point. For concave functions, one can also choose to update 
the interval in which the optimum has to lie. The interval updating continues until 
this interval is very small. Multiple steps have to be taken before continuing with 
a new parameter, whereas in iterative minorization one can continue with another 
parameter whenever one chooses to. 

The idea is that the slope indicates at which side of the optimum a point lies. If 
one starts with two points on both sides of the optimum, one has to estimate a new 
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point somewhere in the middle. This point then replaces the one of which the slope 
has the same sign. We discuss two methods to determine this new points. In Section 
5. 1 we discuss the False Position method, also known under the name regula falsi, 

which only uses the first-order derivatives to shrink the interval, whereas in Section 
5.2 we discuss the Tent method, which also makes use of the value of the likelihood 

function. Both methods are one-dimensional. 
5. 1. False Position method 

We start with two points at both sides of the optimum, of which we calculate 
the first-order derivatives. At every iteration we draw a straight line through the 
points (fi ; 8J(fi)/8x) and (xr ; 8J(x;.)/8x). The new point X8 is the point where this 
line meets the horizontal axis. The sign of its slope indicates on which side of the 
optimum this point lies, and thus which point has to be replaced. If the slope is 
positive, this point replaces the point on the left side of the optimum. If the slope is 
negative, this point replaces the point on the right side of the optimum. Now, again 
a new point c.:1n be computed. In this way, iteratively the ( one-dimensional) interval 
is shrank until it is small enough. Press, Flannery, Teukolsky, and Vetterling (19 8 9) 
give the formula that is used to find X8 : 

For the Rasch model, the first-order derivative with respect to Oj is 
(j) 8lmjn(6) _ 

L 
exp(-bj),np- 1 88 - - -mi + '"\((;) + exp(-b -)--./i) J P ,nv J r-n"-1 

(12) 

Because all parameters are constant except for bi, it proves more convenient to write 
lmln (bi) instead of lmln ( 6). The point 8j,s can be found with: 

8 - = f:- _ 8lmjn(�) (f:-" _ f:-) (almjn(�) _ 8lmjn (�) ) -l 
J,B J,l 88. J,r J,l ab . ao . J J J 
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FIGURE 9 .  

2 3 4 5 

Two steps of the False Position method with starting points -4 and 2. 

6 

Figure 9 gives an illustration of the False Position method. We start at the points 
with 8's equal to -2 and 4. We draw a straight line between these points. The new 
point, where the line meets the x-axis, is circa 0.4. This point replaces the right 
point with delta equal to 4, because the values of the slope of these points have the 
same sign. Now, we repeat this procedure by drawing a straight line between the 
points -2 and 0. 4. This continues until a point is found which is close enough to the 
optimum . In other words, a point for which the value of the slope is small enough. 

5.2. Tent method 
In section 2.1, we saw that a convex function can be minorized by a tangent line 

(2). By taking two tangents at supporting points on opposite sides of the optimum, 
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FIGURE 10. 

Illustration of the Tent method with tangent points -4 and 2. 

we can cover a concave function. These two tangents form a tent above the function. 
In literature, this tent is used to approximate a concave function. This procedure 
is known as the maximum error rule of the Sandwich algorithm (Rote, 1 992). The 
supporting points of these two tangents lie on both sides of the optimum. The 
point where the two tangents meet, is the new point X8 • We compute the first-order 
derivative to see which point it replaces. To the best of our knowledge, it has not 
been used as an algorithm to find the optimum before. The point X8 can be found 
as follows: 

_ !(-) _ !(�) � 8f(xt) _ _  8f(£;) 
(8f(xt) _ Bf(£;) ) -i 

Xs - Xr X1 + X1 Bx Xr Bx Bx Bx 

Figure 10 shows how such a tent looks like for the CLLF. With the left point 
36 



�' and the right point f;;, we construct two tangents of the following form: 

The point &j,s where the two tangents meet, is now computed as follows: 

6. Newton-Raphson 
Newton-Raphson is a well-known algorithm that is generally used to find the 

optimum of a function. It estimates this function with its second-order Taylor ex­
pansion at the supporting point, which is then optimized by derivation. Therefore, 
it works well when a function is close to quadratic. When a function is close to linear 
at the supporting point, it is more difficult to get a good estimation of the optimum. 
The reason is that the second-order derivative is close to zero; the optimum found 
by Newton-Raphson can have a larger distance to the real optimum than the old 
point. Therefore, there is no guarantee of convergence. 

In Exponential Family Models, the (log)likelihood functions sometimes are quite 
linear in the tails, but quadratic when close to the maximum. Therefore in practice, 
one usually employs Newton-Raphson only after having taken some steps with a 
ascent algorithm which is guaranteed to converge. 

We distinguish Newton-Raphson on the likelihood function with all parameters 
free (multidimensional) ,  and the likelihood function for a single free parameter (one­
dimensional). We briefly introduce both algorithms in the following sections. 
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6. 1. One-dimensional N ewton-Raphson 
Newton-Raphson estimates a function by its second-order Taylor expansion from 

which the optimum, and thus new value, can be found: 
g(x) = f(x) + f'(x) (x - x) + 0.5f"(x) (x - x)

2 . 

The optimum of g( x) is found by setting the first-order derivative equal to zero, and 
solving it for x: 

� f' (x) 
X = X -

f"(x) . 

We already know the first-order derivative of the CLLF, see (12). The second-order 
derivative can be computed by 

{)2l (j) (j) ( J. ) mln = - L 'Yn,, 'Ynp-1 exp -uj 88i88i p ( ,!!j + exp(-oi ),�L 1 )2 
• 

(13) 
Figure 11 graphically illustrates the second-order Taylor expansion of the CLLF . 

6.2. Multidimensional Newton-Raphson 
If we choose to update all parameters at once, we use the following algorithm: 

where g is the vector of first-ord�r derivatives (Gradient), and H is the matrix of 
second-order derivatives (Hessian). The diagonal elements of the Hessian can be 
derived by (13), and the off-diagonal elements (i,j), for i i=  j, are equal to 

82lxln = L 
'Ynp-l'Yn,,-1 exp(-c5i - 8j) - 'Yn,,-2 exp(-8i - 0j) 

( 
(i) (j) (ij) 

) 88i88i p ( ,iVj + exp( -8i ),iV}_1 )2 ,iV; + exp( -oi ),iV}_ 1  • With this method, a whole matrix of second-order derivatives has to be calculated 
and inverted, which takes quite some time. Computation of this Hessian lets the 
convergence time of Newton-Raphson be quadratic in the number of items. Inverting 
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the Hessian can be avoided, by solving the system of linear equations 
H( �n-1 - �n) = g. 

The total count of solving this system even is of order N3 (Press et al., 1 9 8 9) .  
7. Simulation study 

To give an idea how fast every algorithm works, we perform a small simulation 
study. We simulate data to test the algorithms for the Rasch model. Before the 
simulation, we first show that the performance of the minorizations depends on 
the (one-dimensional) shape of the graphs. Then, we study what determines these 
shapes, so we know what we have to vary to give a complete comparison between all 
algorithms. After the simulations, we test the methods on three empirical datasets. 
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Difference in steps of quadratic minorization due to other curvatures. 

Figures 12 and 13 show that the fit and the optima of the two minorizations are 
influenced by the shape of the graphs. The quadratic minorization seems to have an 
optimum closer to the real optimum if the graphs are more symmetric, whereas in 
the implicit equations algorithm, the steepness of the graph plays an important role. 
In two ways, we determine the factors that influence these shapes. First, we derive 
these from the CLLF; secondly, we make some plots, varying all kinds of parameters . 
We do not take the ability parameters into account, because a change in mean or in 
variance of the population can also be created by changing the difficulty parameters. 
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Difference in steps of implicit equations due to other curvatures. 

Recall the CLLF (6) 
lmln(�) = - L mi<)i - L ln(,�; + exp(-<5j),�;- 1) 

i p 

= - L mi<)i - mi<)i 

ifj 

and its first-order derivative (12) 

of which the limits are 

3 4 

(15) 
(16) 

where P is the number of persons. To focus more on the proportion of persons, the 
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CLLF can also be written as 

where s are the possible scores, and rs the number of persons who have score s. 

md P represents the proportion of persons who made item i correctly, whereas rs/ P 

represents the proportion of persons who have score s. One can see that the limits 
of the derivative are influenced by the former. 

Using these functions, we can describe three factors that seem important for the 
shape of a one-dimensional graph (for 8j free): 
1. The number of persons; more persons cause the graph to be lower, and steeper. 

This can be seen from the limits of the derivative (15) and (16). While P increases, 
the ratio mi/ P remains the same. 

2. The difficulty parameter bj ; a smaller ()j causes a higher proportion of persons 
who have made the item correctly. The larger mi/ P, the more the graph leans to 
the right, which can be seen from (15) and (16). 

3. The other difficulty parameters; a larger 8i ( i =J. j) causes the graph to move down 
because of the first term, and to move upward, because all ,-functions, which 
are monotonic increasing in exp(-<5i), decrease. The sum of these two changes 
determines the vertical shift. It also causes the graph to shift horizontally, and 
to change shape. The direction of these changes, however, cannot be predicted 
without more knowledge. The direction for instance depends on the number of 
people who have a certain score, and the size of the other ()i's. 

This score-distribution depends on the items in relation to the population, which 
includes the three previous factors. The ,-functions are single peaked, see Corollary 
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5. If more persons score either very good or very bad, rs decreases for average s, 
but increases for low and high s. The fact that the ,-functions for these values are 
generally lower, implies that the graph becomes lower. However, whereas the change 
of the first-order derivative depends on the relation between 'Ynv and 'Ynv-l, its limits 
are not affected. 

More items do not change the shape of the graph much, because they do not 
affect the limits of the derivative. However, the terms ln(,�;-i/,�;) - i5i (1 4) change 
for every p, which means that the shape around the optimum is changed in a non­
predictable way. The graph becomes lower for two reasons: the ,-functions increase, 
and per extra item k the graph moves down by mki5k. 

To get more certainty, we make six one-dimensional plots for i5i . We vary the 
number of persons, the number of items, mi, and the i5i 's ( i i- j)  to get a better 
insight. In every plot, we cover the graphs with straight lines which represent the 
limits of the derivative. 

The pict-ne of the graph in the upper left corner of Figure 1 4  is the basic picture. 
Here, we have 1 0  persons, 1 0  items, mi = 5 and all i5i equal to zero. For all other 
graphs, we change one aspect of the function. We discuss the effect of each change 
separately, except for the changes in <>'s. Namely, we compare the changes caused 
by diversification and increasing under one bullet. 
• For the graph in the upper middle the number of persons has been doubled. The 

shape sustains that more persons let the graph be steeper and lower. 
• In the picture on its right, the number of items has been doubled, which results 

in a lower graph, which is shifted to the right. As expected, the limits of the 
derivatives are not influenced. 

• In the picture in the down left corner, mi is equal to 9, which clearly causes the 
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• If we compare the last two pictures, we see that diversifying the 8's ( down right) 
causes the graph to be lower and flatter than increasing all 8's (down middle) , 
On the other hand, the latter causes the graph to move to the right, whereas the 
former does not cause a significant horizontal shift. 

In this simulation study, we perform every simulation one hundred times on a 
Toshiba Notebook with a 1.6 0  GHz Intel Pentium M processor. The study is divided 
in five parts. The root simulation is: 
• 1000 persons, 
• 1 00 items, 
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• All 8 = 0. 
The ability parameters 0 of the persons are drawn from a normal distribution with 
mean zero and variance 1. We create a matrix of answers which are either right 
or wrong, where we use the probability given in (1). The starting values for all 
algorithms are zero for all 8's. 

In the first simulation, we vary the number of persons to see if a steeper function 
increases the speed of convergence: 
• 100 persons; 
• 10000 persons. 
In the second simulation, we vary the number of items: 
• 2 0  items; 
• 6 0  items. 
In the third simulation, we investigate the influence of the m's on the speed. To 
isolate the effect of the m's, we want the estimated 8's to be the same as before 
(around zero), and the m's to be larger. Taking all 8 equal to 1 provides the solution. 
Because they are all estimated relatively to the first item, and 81 is set equal to zero 
in the estimation, the only difference are the m's. To gain insight in what happens 
to the speed if the 8's get larger or smaller, in the fourth simulation, we keep 81 

equal to zero, but vary the other 8's: 

• 81 = 0, 8=-1; 
• 81 = 0, 8=1. 
The fifth simulation investigates the influence of diversification in the 8's by again 
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taking 81 equal to 0, 5 0  8's equal to -1, and 49 equal to 1 .  
We test the six one-dimensional algorithms, including implicit equations accel­

erated by Aitken's method, together with multidimensional Newton-Raphson. They 
all stop when the progress in the log-likelihood is smaller than 1 0-5 , and the absolute 
change per bi is smaller then 1 0-4 . The evaluation is performed after all parameters 
have been updated once. 

At every run, we have to recalculate the ,-functions a large number of times. To 
save time, we recursively compute them out of the old ,-functions, which we rebuild 
after updating all items. We shortly describe how all algorithms are implemented in 
Visual Basic: 

Minorization algorithms 

In every iteration one difficulty parameter is updated. After this update, we 
continue with the next parameter. 

Implicit equations accelerated by Aitken's method 

For notational convenience, we refer to this method by Aitken. Two new values 
are computed for one parameter. A third value is only computed if the second step 
is smaller than the first step. In this case, we calculate the new likelihood. If this 
likelihood is larger than the old likelihood, the Aitken-value is the new value. If the 
second step is smaller than the first step or if the likelihood is smaller, we take the 
second value as the new parameter value. After this update, we continue with the 
next parameter. 
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Interval algorithms 
For every parameter update, the difficulty lies in finding a value on the other side 

of the optimum. We start at the old value and perform a line search. In this search, 
we take steps in the direction of the optimum. If the new value, is on the same side, 
it replaces the old value. If it is on the other side, the algorithm starts. The steps 
are 0. 02 for the Tent method and 0.15  for the False Position method, because these 
have performed well in pre-testing. Another idea which we have not used is to vary 
these steps. For instance, it might be a good idea to take smaller steps when being 
closer to the optimum. The parameter is updated when the absolute value of the 
first-order derivative of a new point is smaller than 10-3 . 

One-dimensional N ewton-Raphson 
Like in the minorization algorithms, in every iteration one difficulty parameter 

is updated. If the new likelihood value ( computed after updating all parameters) is 
smaller than the old value, the algorithm stops. 
Multidimensional N ewton-Raphson 

Multidimensional Newton-Raphson involves solving a system of linear equa­
tions. We solve them by computing the Choleski-decomposition of the Hessian, and 
then using back-substitution. More details can be found in Press et al. (19 8 9). All 

values are updated in one iteration. If the new likelihood value is smaller than the 
old value, the algorithm stops. 

In every run, we measure the CPU-time an algorithm lasts, and how many 
iterations it needs. We also keep track of the algorithm which is fastest in time 
and number of iterations. We do not take into account multidimensional Newton-
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Raphson, because the starting values have been chosen in the advantage of this 
algorithm. Namely, they are in the approximately quadratic area of the likelihood, 
which makes this algorithm always the fastest, both in speed as well as in number of 
iterations. The number of iterations counts here the number of times all parameters 
are updated. In case of updating the algorithm which uses the least number of 
iterations, there is a small bias. Namely, if the number of iterations is smaller than 
the number of iterations of a previous algorithm, we replace the one which is fastest. 
It follows that when the number of iterations is equal, the algorithm which has been 
run first, remains the fastest. Therefore, the earlier an algorithm is run, the more 
likely it is that it comes out as the one with the least number of iterations. 

7. 1 .  Results 

The results are presented in five separate tables, each corresponding to a simu­
lation. We first discuss only the guaranteed converging algorithms. Then, we com­
pare them shortly with Newton-Raphson, and determine when the Aitken Accelator 
helps to fasten the implicit equations algorithm. After the simulations, we test the 
algorithms on three empirical datasets. In the tables, the most striking results are 
oblique. 

In Table 1, the False Position method is the fastest algorithm, whereas the Tent 
method is the slowest algorithm. We see that the average number of iterations of 
the quadratic minorization is about the same as the average number of iterations of 
the interval algorithms. This finding suggests that the optimum of the minorization 
is quite close to the real optimum. 

More persons cause the (one-dimensional) graphs to be steeper. The speed of 
the interval algorithms decreases, because it takes longer to come close to the tops of 
these graphs per iteration. Namely, in the implemep.tation we have chosen the slope 
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TABLE 1 .  

Speed and number of iterations when varying the number of persons. 

# persons 100 1000 10000 

Average time 

lrnpl eq 1.777 1 .856 1 .794 

Quadratic 4.990 4.402 4.101 

False Pos 1 .389 1 .396 1 .433 

Tent 6.281 7.533 9. 255 

Average # iterations 

lmpl eq 420.06 422.73 398.32 

Quadratic 188.69 169.24 157.60 

False Pos 184.45 167.18 155.74 

Tent 217.12 167.28 155.58 

as criterium of closeness to continue with the next parameter. However, this choice 

does bring down the number of iterations, because the values after an iteration 

are more accurate. The algorithm which profits most from the steeper graphs is 

the quadratic minorization. The speed of the implicit equations algorithm does not 

change significantly. For 10000 persons, however, the number of iterations becomes 

fairly smaller. 

A remarkable result is that with hundred persons the number of iterations of 

the Tent method is significantly larger than the number of iterations of the False 

Position method, while they are both programmed to come close to the top per 

iteration. We can think of two possible causes: 

1 .  The smaller steps of the line search of the Tent method let this method stop at 

values further from the optimum than the False Position method. 

2. The criterium for closeness is not strong enough when the number of persons is 
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ten times smaller. The decrease in the number of persons lets the slopes of the 
derivative also become ten times as small, see (15) and (16). 

We test both assumptions by two new simulations with the interval algorithms. In 
the first simulation, we swap the steps of the line search, and in the second, we 
let the criterium of the slope be ten times smaller. We keep track of the one with 
the least number of iterations. If both numbers are the same, we add one for both 
algorithms. 

TABLE 2 .  

Speed and number of iterations with swapped line search and more severe criteria. 

Line search Criteria 

Average time 

False Pos 1 .377 1 .452 

Tent 7.780 7.557 

Average # of iterations 

False Pos 184.44 185. 11 

Tent 217.17 185.24 

# least iterations 

False Pos 91 60 

Tent 11 59 

Table 2 shows that the line search has no significant influence on the number 
of iterations. This number remains fairly larger for the Tent method, and the False 
Position method needs the same number or less in 91 runs. The more severe cri­
terium for the slope, however, lets both algorithms use around the same number of 
iterations. This criterium seems more important for the Tent method. A possible 
explanation is that in every iteration, the False Position jumps to the maximum 
when being close to it, whereas the Tent method takes smaller steps, and is inclined 
to stop further from the one-dimensional optimum. 

5 0  



TABLE 3. 

Speed and number of iterations when varying the number of items. 

# items 20 60 100 

Average time 

Impl eq 0.027 0.457 1 .856 

Quadratic 0.044 1 .000 4.402 

False Pos 0.023 0.359 1.396 

Tent 0. 118 1 .947 7.533 

Average # iterations 

Impl eq 1 10.40 269.41 422.73 

Quadratic 42.70 106.90 169.24 

False Pos 40.30 104.79 167.18 

Tent 40.31 105.37 167.28 

Table 3 shows that the influence of the number of items on the speed is more 
than linear. The interval algorithms seem to be most stable for these changes. For 
instance, if we divide the speed at 100 items by the speed at 2 0  items, the outcome is 
for the Tent method only 63. 81, whereas for the quadratic minorization, the outcome 
is 100. 0 5. 

As previously stated, the simulations with all 8 equal to one isolate the effect of 
smaller m's. They become lower, so the graphs lean to the left. In Table 4, it can be 
seen that all algorithms become faster, except for the quadratic minorization, which 
needs a little more iterations. F igure 12 suggests that the speed of this algorithm 
is less affected by the distance to the optimum ( top graphs), as it is by the skew­
ness (lower graphs), which heavily influences the distance to the optimum of the 
new point. Here, this distance remains the same. The skewness, however, is larger, 
because the differences between the absolute values of the limits of the first-order 
derivatives ( l (P - mi) - (mi) I )  become larger. Namely, this difference is close to zero 
if the mean of the 0's is about the same as the value of the 8's, which causes every 
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TABLE 4. 

Speed and number of iterations when varying the m's. 

b's 0 1 

Average time 

Impl eq 1.856 1. 054 

Quadratic 4.402 4.474 

False Pos 1.396 1.185 

Tent 7.533 6.083 

Average # iterations 

lmpl eq 422.73 242.31 

Quadratic 169.24 171 .98 

False Pos 167.18 141.53 

Tent 167.28 141.31 

item to be made correctly by circa 50% of the persons. In contrary to earlier intu­

ition, this skewness only slightly slows the algorithm down. In the next simulation, 

we show that the distance to the optimum plays a more significant role than the 

skewness. 

The implicit equations algorithm now is the fastest. Although it still uses most 

iterations, this number is so much reduced that it is now more than compensated 

by the low time per iteration. This remarkable result can be explained by Figure 

13. This figure shows that the graph is quite different for positive and negative o's. 

For higher o's, the graph is much steeper in the b-parameterization, which let the 

optimum of the implicit equations algorithm be closer to the real optimum. 

For all algorithms, the speed and number of iterations become larger when 81 = 0 

and the other t5 are not equal to zero. This increase can be explained by the fact 

that the starting values are now further away from the optimum. 

In contrast to the previous results ,  the number of iterations of quadratic mi­

norization is significantly higher than the number of iterations of the interval al-
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TABLE 5. 

Speed and number of iterations when varying the optima. 

8 (81 = 0) 0 1 -1 

Average time 

Impl eq 1.856 2.120 5. 750 

Quadratic 4.402 8. 849 9.281 

False Pos 1.396 2.353 2.352 

Tent 7.533 1 1.465 11.512 

Average # iterations 

Impl eq 422.73 491.89 1333.58 

Quadratic 169.24 335.29 334 .99 

False Pos 167. 18 272.05 271.83 

Tent 167.28 271 .86 272.28 

gorithms. Starting at a greater distance from the optimum apparently does let the 
optimum of the minorization be further away from the real optimum. Our earlier 
intuition that the skewness plays a more important role than the distance between 
the optimum and the supporting point seems to be wrong. 

In contrast to the other algorithms, the results for the implicit equations algo­
rithm differ a lot for positive and negative 8. If we let 81 be equal to zero, and we 
set all other 8 equal to one, the implicit equations algorithm becomes only a little 
slower, whereas all other algorithms last about twice as long. This result can be 
explained since the distance from the starting values towards the optimum on the 
b-scale is not so big, and also the graph is steeper, as previously stated. If we instead 
let all other 8 be equal to minus one, the implicit equations algorithm becomes much 
slower, because the distance between the starting values and the optimum on the 
b-scale becomes much larger. Figure 13 shows that this distance is larger, and that 
the shape of the graph is also less steep. 

For all algorithms the convergence time is lower than the average time of the 
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TABLE 6. 

Speed and number of iterations when diversifying the o's. 

8 (81 = 0) 0 50 8 = - 1  

49 8 = 1 

Average time 

Impl eq 1.856 2.854 

Quadratic 4.402 7.865 

False Pos 1.396 2.135 

Tent 7.533 10.342 

Average # iterations 

Impl eq 422.73 647.66 

Quadratic 169.24 293.85 

False Pos 167. 18 241.98 

Tent 167.28 242.17 

two previous simulations. The diversity of the 5's lets the values of the parameters 
converge faster to their optima. 
Empirical datasets 

The next simulations are performed with empirical datasets. The first set stems 
from a larger dataset (Baumert, Heyn, Koller, & Lehrke, 1992). Rost {1996) has 
selected this dataset for expository purpose. The other two are the results from 
state examinations for Dutch as a second language. 

The time measurements in Table 7 are less secure than before, because each 
observation stems from only one run. However, because the results are quite simi­
lar to what we previously have observed, they provide a strong indication that the 
False Position method indeed is the fastest. In contrary to the speed, the number 
of iterations still is reliable. Again, both interval algorithms use the least number of 
iterations. The number of iterations of the quadratic minorization is higher for a fac-
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TABLE 7. 

Results from real datasets. 

# items 15 40 12  

# persons 300 2197 3262 

Time 

Impl eq 0.111  0.591 0.070 

Quadratic 0.090 0.722 0.020 

False Pos 0.020 0.220 0.010 

Tent 0.100 1 .362 0.060 

# iterations 

Impl eq 360 635 347 

Quadratic 1 18 155 65 

False Pos 64 107 40 

Tent 65 105 40 

tor between 1.5 and 2. The implicit equations algorithm uses by far most iterations, 
but its time per iteration is again very small. 
Not guaranteed converging algorithms 

TABLE 8 .  

Selection of results for Aitken and Newton-Raphson. 

o =  -1 

Avg. time 

Aitken 1 .46744 1 .22429 2.26188 2.2666 2.04614 

1-dim N-R 1.81953 1 .55879 2.87431 2.8763 2.54995 

M-dim N-R 0.86892 0.8415 0.72986 0.74756 0.93748 

Avg. # its. 

Aitken 167.18 141 .48 271 .82 272.05 242.49 

1-dim N-R 167.2 143.36 272.26 272.42 240.73 

M-dim N-R 3 3 3,22 3.3 4 
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Table 8 shows the results for the simulations with the three remaining algorithms 
in which the 8's have been varied. As expected, multidimensional Newton-Raphson is 
by far the fastest algorithm, both in speed as well as number of iterations. The accel­
erated implicit equations algorithm is the fastest of all one-dimensional algorithms. 
However, the Aitken Accelator does not fasten the implicit equations algorithm when 
the 8's are positive. Then, there is relatively less gained in the number of iterations, 
probably because the implicit equations algorithm already is very fast. The implicit 
equations algorithm accelerated by Aitken and one-dimensional Newton-Raphson 
need about the same number of iterations as the interval algorithms. This observa­
tion points out that all these algorithms come close to the one-dimensional optimum 
in every iteration. The interval algorithms are created in this way, but for Aitken 
and one-dimensional Newton-Raphson this fact is less obvious. 

8. Conclusion 
The goal of this thesis was to improve the current package OPLM. Here, a 

combination of implicit equations and multidimensional Newton-Raphson is used. 
We have found that the implicit equations algorithm is in fact a minorization 

algorithm. This algorithm needs most iterations in general, whereas the time per 
iteration is the smallest. This algorithm is unstable in relation to the difficulty 
parameters. More difficult items let the algorithm become faster. If more items are 
made correctly, the Aitken Accelerator helps creating a much faster algorithm. 

Multidimensional Newton-Raphson becomes problematic in case there are many 
items. The number of computations of the algorithm increases quadratically with 
the number of items, and the solution of a linear system becomes unstable for a 
large number of items. However, if the algorithm converges, it does so rapidly. 
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To combine the best properties of both algorithms, we have presented four al­
ternative one-dimensional algorithms: 
1. Quadratic minorization; 
2. False Position; 
3. One-dimensional Newton-Raphson; 
4. Tent method, 

of which the first three are quadratic approximations of the function. 
We have shown that the quadratic minorization we used minorizes the difficult 

terms the best of all possible quadratic minorizations. The quadratic minorization 
algorithm works well if the starting values are close to the optimum. Then, it is 
about as fast as the interval algorithms in number of iterations. If the starting 
values are further away, the distance between the optimum of the minorization and 
the one-dimensional optimum becomes fairly large. 

The False Position method proves to be the fastest algorithm for the Rasch 
model. This algorithm needs about the same number of iterations as the other 
interval algorithm, the Tent method. This result is not surprising since they are both 
programmed to continue updating until they are very close to the one-dimensional 
optimum. Per iteration, however, the False Position method is circa a factor five 
faster than the Tent method. Here, the gain of knowing the value of the CLLF does 
not counterbalance the cost of calculation time. The Tent method is the slowest 
monotonic converging algorithm. For all algorithms, the speed is about the same for 
every simulation, not including a different number of items, except for this method. 
Criteria for being close to the optimum which depend on the number of persons 
keep the speed more stable. 

The simulation shows that the speed of the algorithms, and the number of iter-
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ations greatly depend on the shape of the function. We have shown this dependence 
for the minorization algorithms, and the observations make clear that this depen­
dence also holds for the other algorithms. 

Final remarks 
We now give some ideas to improve the convergence rate of the other algorithms. 

We also provide some suggestions for further research. 
If a large proportion of the items is made incorrectly, the implicit equations 

algorithm becomes faster. This algorithm converges faster for difficult items. It might 
be interesting to see what happens if, instead of the first item parameter, one sets 
the difficulty parameter of the item which is made correctly the most equal to zero. 
The other items are estimated relatively to this item, and therefore their estimates 
are larger in the 8-scale, and smaller in the b-scale. In this method, one is sure that 
the differences between the starting values and the optima are not larger than one. 
A second option is to use another parameterization for easy items. For these items, 
instead of using bi = exp(-8i), one uses bi = exp('5i) -

lt might also be interesting to construct a multidimensional minorizing function 
to update all parameters at the same time. For the Joint Maximum Likelihood, an 
algorithm has been proposed by Groenen et al. (2 003). However, for CML it is not 
clear how and if it can be done. 

We have shown that the Aitken Accelerator in certain cases helps to fasten the 
implicit equations algorithm. Other algorithms may also be helped by this Acceler­
ator. If for instance two values of the Tent method are known which lie on the same 
side of the optimum, this optimum can be approximated with Aitken's method. 

Another suggestion to create a fast algorithm is to use a combination of multiple 
algorithms. For instance, the two interval algorithms now begin with a line search 
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starting at the current point, and then update the parameter until being close enough 
to the optimum. It might be interesting to see what happens if one starts with two 
points very far away on both sides of the optimum, and calculates one new value 
with one of the methods. We expect this value to lie in the quadratic area around 
the optimum. One can use this point together with the current point in the Secant 
method (Press et al., 19 89), which is quite similar to the False Position method, but 
does not require that the two points are on the same side of the optimum. Another 
option is to use one-dimensional Newton-Raphson at this point. A second example 
follows from the problem that multidimensional Newton-Raphson is not guaranteed 
to converge. Therefore, it is wise to first take a few steps with a minorization or 
interval algorithm to get closer to the optimum, before using Newton-Raphson. In 
this case, it is interesting to know how many iterations of the monotonic algorithm 
are needed, and which algorithm takes these steps the fastest. 

Some other ideas for further investigating the performance of these algorithms 
are: 
• Use other accelerators; 
• Compare the algorithms with other monotonically converging algorithms; 
• Test the methods for other models. 

References 
Aitken, A. (1926). On Bernoulli's numerical solution of algebraic equations. Proc. 

Roy. Soc. Edinburgh, 46, 2 89-30 5. 
Andersen, E. B. (19 8 0). Discrete statistical models with social science applications. 

Amsterdam: North-Holland Publishing Company. 
Baumert, J., Heyn, S., Koller, 0., & Lehrke, M. (1992). Naturwissenschaftliche und 

psychosoziale Bildungsprozesse im Jugendalter (BIJU)-Testdokumantation 
59 



{Scientific and psychosocial developmental processes in young children}. Kiel, 
Germany: IPN. 

Borg, I. , & Groenen, P. J. F. (1997). Modern multidimensional scaling: Theory and 

applications. New York: Springer. 
De Leeuw, J. (1994). Block-relaxation algorithms in statistics. In W. L. H. H. Bock 

& M. M. Richter (Eds.), Information systems and data analysis (p. 30 8-32 5). 
Berlin: Springer-Verlag. 

Fischer, G. H. (197 4) . Einfuhrung in die Theorie psychologischer Tests. Bern: Verlag 
Hans Huber. ((Introduction to the theory of psychological tests.)) 

Groenen, P. J. F., Giaquinto, P., & Kiers, H. A. L. (2 003). Weighted majoriza­

tion algorithms for weighted least squares decomposition models (Econometric 
Institute Report No. EI 2 003- 9). Erasmus University Rotterdam. 

Heiser, W. J. (1995). Convergent computation by iterative majorization: Theory and 
applications in multidimensional data analysis. In W. J. Krzanowski (Ed.), 
Recent advances in desriptive multivariate analysis (p. 1 57-1 8 9). Oxford Uni­
versity Press. 

Hunter, D., & Lange, K. (2 00 4) .  A tutorial on MM algorithms. American Statisti­

cian, 58, Issue 1, 30-37. 
Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator 

in the presence of infinitely many nuisance parameters. Annals of Mathematical 

Statistics, 27, 8 87- 906. 
Lange, K., Hunter, D., & Yang, I. (2 000). Optimization transfer using surrogate 

objective functions. Journal of Computational and Graphical Statistics, 9, 

1-2 0. 
6 0  



Lehmann, E. L. (19 86). Testing statistical hypotheses (Second ed.). New York: John 
Wiley & Sons. 

Neyman, J., & Scott, E. L. (194 8) . Consistent estimates based on partially consistent 
observations. Econometrica, 16, 1-32. 

Press, W. H., F lannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (19 8 9). Numer­
ical recipes: The Art of Scientific Computing (Fortran Version). Cambridge: 
University Press. 

Rasch, G. (1 96 0) .  Probabilistic models for some intelligence and attainment tests. 
Copenhagen: The Danish Institute of Educational Research. (Expanded edi­
tion, 19 8 0. Chicago, The University of Chicago Press) 

Rost, J. (1996). Testtheory, testkonstruction [test theory, test construction}. Bern, 
Germany : Verlag Hans Huber. 

Rote, G. (1 992). The convergence rate of the sandwich algorithm for approximating 
convex functions. Computing, 48, 337-361. 

Verhelst, N. D., & Verstralen, H. H. F. M. (1 997). Modeling sums of binary responses 
by the partial credit model (Tech. Rep. No. 97-7). CITO: Arnhem. 

9. Appendix 
Proof of Theorem 1 

In this proof, we consider polynomials of the form axk + bx +  c for k �  2, even 
and finite. We proof Theorem 1 and its corollaries. 
Theorem 3. For a given function, consider minorizing functions of the following 
form: 
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where x is the supporting point and k is a fixed integer constant greater than or equal 

to 2, that is even and finite. There is no value y =/- x such that mik(Y, x) = mjk(Y, x), 

for i =/- j .  Furthermore, for any two such functions one minorizes the other. 

Proof. Suppose target function f(x) has two minorizing functions, g(x ,  x) and 
h(x, x) , with the following properties: 

g(x, x) = axk + bx +  c, 
h(x, x) = rxk + sx + t, 

g(x, x) = h(x, x) = f(x) , 

g'(x, x) = h'(x, x) = J'(x) , 

for k � 2, even and finite. We first rewrite h(x, x) to make it easier to compare it 
with g(x, x) . Then, we show that the difference between the two functions is only 
zero at the supporting point, and that at all other points, one function minorizes 
the other. 

Assume the difference between a and r is equal to z,  thus r = a +  z. Now we 
can write: 

h(x, x) = (a +  z)xk + sx + t, 

h'(x, x) = k(a + z)xk-l + s .  

Setting the first-order derivatives g'(x, x) and h'(x, x) equal, and solving for s gives: 
k(a + z)xk-l + S = kaxk-l + b =} S = b - kzxk-l _ 

t can now be found by setting h(x, x) equal to g(x, x) : 
(a + z)xk + (b - kzxk-l)x + t  = axk + bx +  C =} t = c+ z(k - l)xk . 
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Now, we can derive at which points g(x ,  x) and h(x, x) meet, by solving 
d(x ,  x) = h(x, x) - g(x,  x) = zxk - zkxk-lx + z(k - l)xk = 0. 

By definition, a solution of this equation is x (z =f. 0). Because the first-order deriva­
tive of d(x, x) is zero at x,  and d(x,  x) is monotonic, this solution is unique. In other 
words, x is the only point where the two functions meet. Because both functions are 
continuous, g(x ,  x) minorizes h(x, x) for positive z, and h(x, x) minorizes g(x,  x) for 
negative z. □ 

From the latter theorem and its proof follow two corollaries: 
Corollary 3. If the minorization mik (x ,  x) of a certain target function has a second 

supporting point, this second supporting point is unique, and this is the only function 

with multiple supporting points for given k. 

Corollary 4. The unique minorizing function mik (x ,  x) with two supporting points 

is better than any other minorizing function of the same order k. 

Proof. Let the minorization of f(x) ,  g(x ,  x) , have a second supporting point called 
xk . We want to know whether h(x, x) , being different from g(x,  x) , can minorize 
f(x) , and touch f(x) at two points, including x. We have to consider two cases: 
1. g(x ,  x) minorizes h(x, x) ;  

2. h(x,  x) minorizes g(x, x) . 

We show that in the former case, h(x, x) does not minorize f(x) ,  and in the latter 
case, it cannot have a second supporting point. The fact that other minorizing 
functions of the same form cannot have a second supporting point, implies that this 
point is unique. Because the minorizing function g(x,  x) is minorized by all other 
minorizing functions of the same form, it is the best possible minorizing function of 
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the form axk +bx+ c for given k. 
• In the former case we use the fact that at the second supporting point g(xk, x) = 

f(xk) - Because g(x, x) minorizes h(x, x) , and they are only equal at x, h(xk, x) 
is larger than g(xk, x) . Now, we obtain that h(xk, x) > g(xk, x) = f(xk), and 
therefore h(x, x) is no minorizing function of f(x). 

• In the latter case we use the fact that g(x, x) minorizes f(x), and h(x, x) minorizes 
g(x, x) with unique supporting point x. Because at all other points, h(x, x) lies 
beneath g(x, x) , it also lies beneath f(x) at other points than x. 

Elementary Symmetric Functions 
The elementary symmetric functions for one element of b are equal to 

,o(b) = 1, 
,1 (b) = b1 .  

□ 

For notational convenience, we leave the (b). When we add the element b2 , we also 
get a new 1, called 12. The value of 11 also changes. The new values can be computed 
recursively as follows: 

This recursion starts here with 12 and ends with 11. The outcome is 
,o = 1, 
,1 = b1 + b2, 
12 = b1b2. 
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Adding b3 leads to 
,o = 1, 

When one adds new elements bk , the same procedure is executed . In case one needs 
to calculate a new value, and does not want to start at the end, the recursion 
generalizes to: 

_ (k) (k) 
"Yi - "Yi + "Yi-1 bk, (17) 

where ,?) is used to denote the j-th elementary symmetric function of b without the 
k-th element. One refers to the values of formula 17 with ,b11 and ,111 . ,jkl denotes 
the j-th elementary symmetric function until element bk . The elementary symmetric 
functions stern from the following generalization of the Binomial Theorem: 
Theorem 4. 

N N 
II (1 + bit) = L ,jti . 
i=l' j=O 

Proof. Assume that ,t1 equals zero for j < 0 and j > k. Using (17) in combination 
with: 

= ,b11 + ( ,111 + ,b11 b2)t + ,111 b2t2) 

_ [2] + [2] t + [2] t2 
- 'Yo 11 12 , 
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we obtain: 

k-1 k-1 
= L ,t-11 tj + L ,Jk-l]bktj+l 

j=O j=O 

k k = L [,t-1] + ,J�-;:llbk] ti = L [,Jkl ]  ti' 
j=O j=O 

Observe that in general ,t1 = rrt=l bi and ,bk] = 1. □ 

If all k arguments of the elementary symmetric functions are equal to 1 we find 
that the elementary symmetric functions are the binomial coefficients: 

,s (l, 1, . . .  , 1) = (:) . 

This result, of course, is hardly surprising since in that case Theoreni 4 reduces to 
the Binomial Theorem. 

It is readily found that differentiating an elementary symmetric function with 
respect to one of its arguments has the following effect: 

a - (j) 8b - 's - rs-1 · 
:J 

In Verhelst and Verstralen (1997) the following theorem and corollary are proved: 
Theorem 5. The logarithm of the elementary symmetric functions of k positive 

arguments b1 , . . .  , bk, considered as a function of their order is strictly concave, i. e., 

, s = 1, .. . , k - 1. 
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Corollary 5. The elementary symmetric functions of k positive arguments b1, . . . , bk , 
considered as a function of their order, are single peaked in the following sense : 

1. /8 :S: 'Ys+l =} 'Ys-1 < 'Ys , 0 < S < k; 
2. /8 :S: 'Ys-1 =} 'Ys+l < 'Ys , 0 < S < k. 

The following Corollary of Theorem 5 is easily obtained: 

Corollary 6. The ratio of two elementary symmetric functions of k positive argu­
ments b1, . . .  , bk of consecutive order s - 1 and s (,s-i/,s) is strictly increasing in 
s. 

Proof. The proof is obtained from Theorem 5 as follows: First, observe that the 
result from Theorem 5 can also be formulated as follows 

,; > /8-l'Ys+l , 0  < s < k. 

Second, this formulation is equivalent to saying that the ratio rs- I /rs is increasing: 
2 

'Ys-1 'Ys Is 2 -- < -- {:} /8-1 < -- {:} 'Ys-Irs+l < 'Ys · 
rs rs+l rs+I 
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C, items 100 100 100 20 
I I  

60 100 100 100 100 Avg. 

I persons 100 1000 10000 1000 1000 1000 1000 1000 1000 
;' 
'11 
0 

6 0 = 0  0 = 0  6 = 0  0 = 0  0 = 0  6 = 1  61 = 0 01 = 0 61 = 0 
C, 

O =  -1 6 = 1  6a 2 
I I  .... # fastest --

Impl eq 1 1  4 5 19 8 92 0 100 4 27 

Aitken 1 0 56 48 42 0 100 0 96 38.1 1  

Quadratic 0 0 0 0 0 0 0 0 0 0 

False Pos 88 96 39 14 50 6 0 0 0 3.62 0 

>3 ..., � <+ 
� ::,- 0:, Tent 0 0 0 0 0 0 0 0 0 0 (1) t" ('r.> 00 

[» l"J i;e 

t :" 1-dim NR 0 0 0 19 0 2 0 0 0 0.26 ('r.> 

::l-<+ 
Avg. time 

Impl eq 1.777 1 .856 1 .794 0.027 0.457 1 .054 5.750 2.120 2.854 1 .965 
:" 

Aitken 1 .510 1 .467 1 .430 0.020 0.361 1 .224 2.262 2.267 2.046 1 .399 

Quadratic 4.990 4.402 4.101 0.044 1.000 4.474 9.281 8.849 7.865 5.001 

False Pos 1 .389 1.396 1 .433 0.023 0.359 1 . 185 2.352 2.353 2.135 1 .403 

Tent 6 .281 7.533 9.255 0 .118 1 .947 6.083 1 1.512 1 1 .465 10.342 7.171 

1-dim NR 2.005 1.820 1 .699 0.020 0.416 1 .559 2.874 2.876 2.550 1 .758 

M-dim NR 0.752 0.869 0.632 0.009 0.219 0.842 0.730 0.748 0.937 0.638 



0., items 100 100 100 20 60 100 100 100 100 Avg. 
I I 
I persons 100 1000 10000 1000 1000 1000 1000 1000 1000 

;' 
01 8 8 = 0  8 = 0  8 = 0  8 = 0  8 = 0  8 = 1  81 = 0 81 = 0 81 = 0 
0 
0., 8 = -1 8 = 1  8a 

3 

II ..... # least its. 
z 

Impl eq 4 3 0 1 3 4 0 0 0 1 .67 

Aitken 70 94 81 94 94 40 87 76 0 70.67 (!) "1 
0 

Quadratic 2 0 2 0 0 0 0 0 0.56 1 �-

False Pos 
"1 

>3 13 2 2 3 2 2 0 0 2 2.89 � 
O'l g· tc 

Tent 3 1 16 0 0 14 13 24 17 9.78 t"" <:.o "' ti:l 

g, 1-dim N-R 8 0 0 0 1 40 0 0 81 14.44 c+ p 

Avg. # its. 
if 
� 

Impl eq 420.06 422.73 398.32 110.40 269.41 242.31 1333.58 491.89 647.66 481.82 � 
::l. 

Aitken 185.08 167.18 155.76 40.29 104.78 141.48 271 .82 272.05 242.49 175.66 

Quadratic 188.69 169.24 157.60 42.70 106.90 171.98 334.99 335.29 293.85 200. 14 

False Pos 184.45 167.18 155.74 40.30 104.79 141.53 271.83 272.05 241.98 175.54 

Tent 217.12 167.28 155.58 40.31 105.37 141.31 272.28 271.86 242.17  179.25 

1-dim N-R 185.08 167.20 155.74 40.29 104.78 143.36 272.26 272.42 240.73 175.76 

M-dim N-R 3.00 3.00 2.00 2.46 3.00 3.00 3.22 3.30 4.00 3.00 



# items 15 40 12 

# persons 300 2197 3262 --
Time 

Impl eq 0.111 0.591 0.070 

Aitken 0.040 0.240 0.010 

Quadratic 0.090 0.722 0.020 

False Pos 0.020 0.220 0.010 

Tent 0.100 1.362 0.060 a, 

1-dim NR 0.020 0.190 0.000 i >3 
-.:J 
0 .... tz:1 

M-dim NR 0.000 0.090 0.010 

# its. 

Impl eq 360 635 347 

Aitken 69 104 42 

Quadratic 118 155 65 

False Pos 64 107 40 

Tent 65 105 40 

1-dim NR 72 113 35 

M-dim NR 4 4 5 
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