
Measurement and Research Department Reports 2005-2 

Fuzzy Set Theory c Probability Theory? 
A Comment on 'Membership Functions and Probability Measures of Fuzzy Sets'. 

Gunter Maris 





Measurement and Research Department Reports 2005-2 

Fuzzy Set Theory c Probability Theory? 

A Comment on 'Membership Functions and Probability Measures of Fuzzy Sets'. 

Gunter Maris 

Cito groep 

Postbus 1034 6801 MG Arn hem 

Cito Kenniscentrum 

Amhem, 2005 



This manuscript has been submitted for publication. No part of this manuscript may be copied 

or reproduced without permission. 



Abstract 

From both a theoretical and practical perspective, the integration of fuzzy set the­

ory and probability theory is of particular importance. Both fuzzy set theory and 

probability theory come with their own formalism for dealing with uncertainty and 

the question naturally arises whether, and to what extent, these formalisms are dif­

ferent. In this paper we show that formally fuzzy set theory can be formulated in 

terms of probability theory. This integration is practically significant as it makes 

results from one world available to researchers in the other world. 
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1. Introduction 

Singpurwalla and Booker (2004) attempt to make fuzzy set theory and probabil­

ity theory work in concert. The reason for making such an attempt is the alleged 

incompatibility of fuzzy set theory and probability theory. In this paper we show 

that fuzzy set theory can be formulated in terms of probability theory. Specifically, 

we define the membership function m..4.(x) for the fuzzy set A as follows: 

m,4.(x) def P((X, Y) E AIX = x) (1) 

= f f(ylX = x)dy with A(x ) = {y: (x, y) E A} 
lA(x) 

It is important to observe that A is a crisp set and that x may either be interpreted 

as a value of the parameter X or as the realization of the random variable X. In 

general, we use A to denote the fuzzy set corresponding to the crisp set A. 

In Section 1 we show that every membership function can be written in this 

form and that the algebra of membership functions supports a probabilistic inter­

pretation. In Section 2 we show that both the probability measures of Zadeh (1968) 

and Singpurwalla and Booker (2004) are, distinct, valid probability measures. 

According to our definition of the membership function in (1), the membership 

function can be formulated in terms of probability theory. We see that if we were to 

observe both x and y it would be possible to classify with respect to the crisp set 

A. That is, fuzzy sets are the result of a missing data situation. The distribution 

of Y conditionally on X = x characterizes the inference about the missing data 

y on the basis of the observed data x.  Singpurwalla and Booker (2004) reserve a 

key role for the Laplacean genie. In our conception of the membership function (1), 

the Laplacean genie is he who knows y, and hence is able to classify with precision 

according to the crisp set A. 
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2. The algebra of membership functions 

Zadeh (1965) introduced the following fuzzy set operators: 

mAc(x) def 1 - mA(x) 

mAus(x) def max(mA(x), ms(x)) 

mAns(x) def min(mA(x), ms(x)) 

mA•B(x) def m,4(x)m.a(x) 

mA+B(x) def m,4(x) + ms(x) -mA(x)ms(x) 

We show that these fuzzy set operations logically follow from the conception of the 

membership function as a (conditional) probability. Singpurwalla and Booker (2004) 

observe that they are unable to interpret the product ( •) and sum ( +) of fuzzy sets. 

It will become clear in the sequel that the interpretation of the product and sum 

pose no special difficulties from our point of view. 

Let y, z, ye, and ze be scalar valued variables, and define A(x) and B(x), as well 

as Ae(x) and Be(x), as follows, for all x: 

Furthermore, assume that 

A(x) = {y : y $ mA(x)} 

B(x) = {z : z $ m8(x)} 

Ae(x) = {ye : ye $ mAc(x)} 

Be(x) = {ze : ze $ mi3c(x)} 

(2) 

Notice that ye is not necessarily some form of complement, such as 1-y, of y. In the 

following we discuss their relation in more detail. Under these conditions, it holds 



that 

m,4(x) = P(Y E A(x)IX = x) = P((X, Y) E AIX = x) 

m13(x) = P(Z E B(x)IX = x) = P((X, Z) E BIX = x) 

m,4c(x) = P(Yc 
E Ac(x)IX = x) = P((X, ye) E Ac !X = x) = 1 - m,4(x) 

m13c(x) = P(zc 
E Bc(x)IX = x) = P((X, zc) E nc 1x = x) = 1 - m13(x) 
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The union (or) and intersection (and) operations satisfy the following relation­

ship: 

P((X, Y) E AIX = x) + P((X, Z) E BIX = x) 

= P((X, Y) E A  and (X, Z) E BIX = x) 

+ P((X, Y) E A  or (X, Z) E BjX = x) 

which can be expressed in the notation of fuzzy set theory as follows: 

It is readily observed that this relationship is satisfied both by the pair (n, U) and 

by the pair ( •, +). That is, both + and U are valid union operators, and both • and 

n are valid intersection operators. To us, this reflects that fuzzy set theory is not 

conceptually rich enough to uniquely define its concepts. It will become clear that 

this lack of uniqueness is the reason why the union and sum, and for that matter, 

the intersection and product operators of Zadeh (1965) are difficult to interpret. 

From our point of view, the problem with defining the union and intersection 

is that we have considerable freedom in specifying the joint distribution for Y and 

Z conditionally on X = x subject to the constraint in (3). It is well known that 

the joint distribution of Z and Y conditionally on X = x, obeys the following 
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constraints: 

max(O, P(Y :S ylX = x) + P(Z :S zlX = x) - l) 

:S P(Y :Sy, Z :S zlX = x) :S 

min(P(Y :S ylX = x), P(Z :S zlX = x)) 

where the lower and upper boundary distributions are the Frechet distributions 

corresponding to maximal negative and positive dependence, respectively. In the 

present setting maximal negative dependence corresponds to setting Y equal to 

1 -Z, whereas maximal positive dependence corresponds to setting Y equal to Z. 

If we let Y be equal to Z we obtain the intersection operator n of Zadeh (1965) for 

the intersection 

P((X, Y) E A  and (X, Z) E BIX = x) 

= min(P((X, Y) E AIX = x), P((X, Z) E BIX = x)) 

and the union operator U for the union: 

P((X, Y) E A  or (X, Z) E BIX = x) 

= max(P((X, Y) E AIX = x), P((X, Z) E BIX = x)) 

If we let Y and Z be independent we obtain the product operator • of Zadeh (1965) 

for the intersection 

P((X, Y) E A  and (X, Z) E BIX = x) 

= P((X, Y) E AIX = x)P((X, Z) E BIX = x) 



and the sum operator + for the union: 

P((X, Y) E A  or (X, Z) E BIX = x) 

= P((X, Y) E AIX = x) + P((X, Z) E BIX = x) 

- P((X, Y) E AIX = x)P((X, Z) E BIX = x) 

5 

Finally, if we let Y be equal to 1 - Z we obtain the bounded difference ml for the 

intersection 

P((X, Y) E A  and (X, Z) E BjX = x) 

= max(O, P((X, Y) E AIX = x) - (1 - P((X, Z) E BIX = x))) 

and the bounded sum lW for the union 

P((X, Y) E A  or (X, Z) E BIX = x) 

= min(l, P((X, Y) E AIX = x) + P((X, Z) E BIX = x)) 

It is clear that the same reasoning applies when Ac is considered rather then B. 

For instance, with Y equal to ye the intersection is not empty but can be expressed 

as follows: 

"l P((X, Y) E A  and (X, ye) E AclX = x) 

= min(P((X, Y) E AjX = x), P((X, ye) E Ac lX = x)) 

= min(P((X, Y) E AIX = x), 1- P((X, Y) E AIX = x)) 

�ummarizing, we have shown that for any pair of membership functions we 

specify crisp sets A, B, AC, and BC, and a distribution for Y, Z, ye, and zc 

nditionally on X = x such that the normal algebra of fuzzy sets holds. We have 

jfo shown that the sum and product operators of Zadeh (1965) are nothing but 

,1he union and intersection operators for a particular joint distribution for Y and Z 
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conditionally on X = x. 

3. Probability Measures Associated with Fuzzy Sets 

Zadeh (1968) proposed the following probability measure for a fuzzy set A 

11(.A) = £(mA(X)) 

= f P((X, Y) E AIX = x)P(X = x)dx 

= P((X, Y) E A) (4) 

It is seen that from our point of view II(.A) is nothing but the probability measure 

associated with the crisp set A. Singpurwalla and Booker (2004) claim that II(.A) 

is not a valid probability measure. However, their objections stem from the lack of 

conceptual power of fuzzy set theory alluded to in the previous section. Specifically, 

they claim that the fact that II(.A) together with II(.B) are sufficient to determine 

II(.A n .B) contradicts probability theory. However under maximum positive or nP 

ative dependence as well as under independence the marginals uniquely deter 

the joint distribution. Furthermore, they claim that II(.A + .B) has no ar. 

probability theory. We have found however that the sum operator has an a 
~ ~ l 

probability theory, and hence so does IT(A+B). Notice that because the intl 

operator is not uniquely defined, the same holds for conditional probability 

notion of independence. 1 

Singpurwalla and Booker (2004) propose another probability measure ¥l 

fuzzy set A. Adopting our notation and viewpoint, their measure can be writt 



a slightly more general form as follows: 

P((X, Y) E Al(X, Z) E B) 

= L P((X, Y) E AIX = x)P(X = xl(X, Z) E B) 

= L P((X Y) AIX = ) 
P((X, Z) E BIX = x)P(X = x) 

x 

' E x 
Lx P((X Z) E BIX = x)P(X = x) 

Lx 
P((X, Y) E AIX = x)P((X, Z) E BIX = x)P(X = x) 

Lx 
P((X, Z) E BIX = x)P(X = x) 

ex L P((X, Y) E AIX = x)P((X, Z) E BIX = x)P(X = x) 
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It is important to observe that in this derivation we tacitly assumed that Y and Z 

are independent conditionally on X = x. Singpurwalla and Booker (2004) consider 

the situation where A = B and interpret it as the probability of the fuzzy set A 

after having been supplied with the membership function m,4(x) of an expert. 

The only relevant difference between the probability measures proposed by 

Zadeh (1968) and Singpurwalla and Booker (2004) is that the former considers 

the marginal probability of the set (X, Y) E A, whereas the latter consider this 

probability conditionally on the event (X, Z) E B under the additional assumption 

that Y and Z are independent conditionally on X = x. 

From the viewpoint developed in this paper we can also address other probability 

measures. For instance, given my membership function for the fuzzy set B we get 

the updated fuzzy set probability measure for the set A: 

P((X, Y) E Al(X, Y) E B) 
= "°' . 

(
P((X, Y) E AIX 

= 
x) i) P(X = l(X Y) B) '7' mm P((X, Y) E BIX = x)' 

x ' E 

In writing the last equation we have assumed that the same Y is used both for 

classifying in the set B as for classifying in the set A. 
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4. Discussion 

We have shown that fuzzy set theory can be formulated in terms of probability 

theory. Here we put our formal results in perspective. It is important to observe 

that probability theory is treated from a purely formal point of view as part of 

mathematical measure theory. That is, the usual parlance of betting and random 

experiments is not necessarily invoked by probability theory. The question we tried 

to address in this paper is whether fuzzy set theory is a different formal system than 

probability theory. We found that, in fact, the answer to this question is no. 
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