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Abstract 

In the one parameter logistic model (OPLM), the discrimination indices of 

the items are considered known constants which are part of the model 

hypothesis. Suitable values for these indices can be estimated from (part) of 

the data by a weighted least squares algorithm. It turns out that the same 

algorithm can also be used with a slight modification to obtain good initial 

estimates of the item parameters. The algorithm is applicable for binary as 

well as for polytomous data, in complete as well as in incomplete designs. In 

case of complicated designs a two-step procedure can be used, which needs far 

less computer storage than the original algorithm. Two examples are given. 

Key words: IRT, Weighted least squares, logistic models. 





Introduction 

In educational testing, the Rasch model is a much celebrated model 

because of its mathematical elegance and because of the possibility to 

yield consistent estimates of its parameters independently of any 

assumption on the distribution of the latent ability or the way the 

sample of respondents is drawn. On the other hand it lacks flexibility, 

mainly because of the very stringent condition that all items in a test 

have equal discriminating power. A natural generalization of the Rasch 

model, which repairs for this rigidity is the two-parameter logistic 

model or Birnbaum model (Lord & Novick, 1968), where a discrimination 

parameter as well as a difficulty parameter is associated with each 

item. However, the latter model does not belong to the exponential 

family, and therefore does not share the mathematical elegance of the 

Rasch model. In an attempt to combine the mathematical advantages of 

the Rasch model and the flexibility of the Birnbaum model, the one­

parameter logistic model (OPLM) and a powerful computer program with 

the same name were developed (Verhelst, Glas, & Verstralen, 1991). In 

case of binary items, OPLM is formally identical to the Birnbaum model, 

but the discrimination parameters are treated as fixed constants, and 

are called discrimination indices. In case of polytomous items, OPLM is 

a generalization of the partial credit model (Masters, 1982). The model 

is defined by its so-called category response functions, which give the 

probability of the score j (j E (O, l, ... , m1}, 

m1 > O) on an item i (i=l, ... , k), conditional on the value of a so­

called latent variable, denoted�, and by the axiom of local 

independence which states that any two item responses are independent 

given�- Letting x1 denote the random variable 'item score', the 

category response function of OPLM is given by 

exp [ a 1 ( j ft - t P ig) ] 
g=-0 

( 1) 
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where �
io 

is defined to be zero. The quantities ai are the discrimination 

indices. Although OPLM is - in the dichotomous case - formally identical to 

the two-parameter logistic model (Birnbaum, 1968), it is quite different 

from a statistical point of view. In OPLM the discrimination indices are 

treated as known quantities and not to be estimated, thus making the 

estimation problem in OPLM much easier than in the two parameter model. 

Moreover, since the sufficient statistic for�, the test score, depends on 

these indices, the test score is a mere statistic and not a function of 

unknown parameters. This means that the category parameters� can be 

estimated by the method of conditional maximum likelihood (CML), which 

amounts to maximizing the likelihood conditional upon the observed 

frequencies of the test scores. Andersen (1973) showed that under rather 

mild conditions this method gives consistent estimates. 

Inspection of (1) shows that the model as stated is unidentified. 

Addition of an arbitrary value to� and to the �•s (for j > 0) does not 

change the function value. We should therefore fix the zero of the scale, 

for instance, by fixing an arbitrarily chosen� at some value, or by making 

the sum of the �•s equal to zero. Moreover, multiplying the discrimination 

indices with an arbitrary positive constant and dividing� and the �•s by 

the same constant does not alter the function value either. Restricting the 

a's to the positive rationals (which is not of any practical meaning) makes 

it possible to choose the multiplicative constant in such a way that the 

discrimination indices are all integer valued for a given collection of k 

items. In the sequel we will assume integer valued discrimination indices. 

The details of the estimation procedure are described in Verhelst, Glas, 

and Verstralen (1991). 

The present report deals with two problems which at first seem to be 

unrelated, but which turn out to be solvable in an elegant way by the same 

technique. The first problem is concerned with the initial estimates of the 

�-parameters for the iterative procedure that solves the estimation 

equations. The second problem is to find appropriate values of the 

discrimination indices used in (1). Treating these indices as known 
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constants is easy, but choosing an adequate value for them is not. 

Considering (1) as a statistical hypothesis, tested by goodness of fit 

tests, it will be clear that since the discrimination indices are 

fixed, their specified value is part of the hypothesis. Verhelst et al. 

(1991) developed statistical tests which are especially sensitive 

against misspecification of the indices, and also give an indication on 

how to alter them. However, this indication is useful only in case the 

discrimination indices are not grossly inadequate. The reason for this 

is that, although the statistical tests are item oriented, they are not 

independent of each other. This means that every statistical test on 

the adequacy of a particular discrimination index is influenced by the 

adequacy of the others, and if they are all inadequate, the tests 

become useless. It is therefore important to have a good approximation 

to the discrimination indices. This report offers a technique to 

extract a fairly good hunch from the data. The technique is first 

described in its generality. A variant, which is actually implemented 

in the program OPLM to estimate the a's is discussed in a separate 

section. An example is presented next and in the final section the 

whole procedure is discussed. 

A Least Squares Estimation Procedure in OPLM 

Consider a collection of k items and the index set I={l, . . .  ,k}. If 

k is large, it becomes very impractical to administer each item to each 

respondent in the sample. In many practical applications each 

respondent answers only to a subset of the items. These subsets will be 

called booklets, and they can formally be indicated as subsets of I. 

Assume there are B booklets, each subset being described by Ib k I. As 

will be immediately clear, two numerically equal scores obtained on 

different booklets are not comparable. So in incomplete designs, every 

score has meaning only if it is associated with a booklet Ib. In OPLM 

the test score is defined as follows: Let X be a k-dimensional random 

variable with elements x1 (i=l, . . .  ,k), taking values from {O,l, . .. ,m1} 

3 



if the item is responded to, and taking a not specified value * if the item 

is not presented. The test score obtained on booklet b is given by 

E a.x .. 
iEib l. l. 

( 2) 

Since the item scores are weighted with the discrimination indices, this 

score will be called the weighted score.. It will prove useful to work also 

with unweighted test scores ub defined as 

= Ex .. 
iEib l. 

Now consider the conditional probability of obtaining score j on item i 

(j=l, ... , m1) conditional on� and on the item scores j and j-1: 

Prob (Xi =j -1 IO) • Prob (X1 =j IO) ' 
(j=l, ... ,m). 

Substituting (1) in (4), and taking the legit transformation gives 

By replacing the probability in the left-hand side of (5) by the 

corresponding observed proportion, an approximate equality which can be 

( 3) 

(4) 

(5) 

used to estimate the �•s is obtained. However, since (5) depends on the 

value of the latent variable�, it is impossible to group respondents �nto 

classes of equal�, and therefore the corresponding proportions cannot be 

computed. However, we can use an approximation, based on the following 

result: If the number of items responded to is not too small, then var (�ls) 

becomes rather small and the regression of s on� is well approximated by a 

linear function. Using this approximation and neglecting the conditional 

variance we get 

(6) 
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Considering (6) as a strict equality, one can in principle replace the 

probabilities by proportions and use these to estimate the parameters, 

where B and A are now also to be considered as parameters. However, 

there are two obj ections to the use of (6) , and neglecting them may 

cause gross distortions in the solutions. First, the linear 

transformation Bs + A is used as an approximation of the regression of 

� on s. Even if the regression of s on� is approximately linear, the 

regression of� on s may be very nonlinear. While the regression of s 

on� is completely specified by the measurement model (1) , the 

regression of� on s also depends on the distribution of�, so that the 

adequacy of (6) may differ grossly from application to application. 

Therefore, it might be safer not to assume anything about this 

regression. So we replace (6) by 

( 7) 

where the �s are considered as parameters. But using different 

discrimination indices, many of them being larger than 1, causes the 

score range to be much larger than the number of items, so that the 

number of parameters �s may become quite large. Moreover, and this is 

the second problem with (6) as well as with (7) , many score frequencies 

will inevitably be low, causing the conditional proportions to be 

unstable and in many cases to be zero or one, requiring ad hoe 

corrections for the legit transformation to be defined. These 

corrections though relatively harmless if used with large samples, will 

influence the solutions in an inadmissible way if the score frequencies 

are low. It seems therefore useful not to condition on separate scores 

but on homogeneous classes of scores. For a single test (booklet) , let 

all scores from o to the maximum score be partitioned into G subsets s
9 

(g=1, . . .  ,G) such that 

(8) 
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and (7) can be replaced by 

(j=l, ... ,mi;g=l, .. . ,G). (9) 

Letting nbgij denote the number of respondents answering booklet b,  

belonging to group g (within booklet b) and having score j on item i,  and 

let nbg be the number of respondents in group g of booklet b and define 

(j =1, 
g=l, 
b=l, 

• I mi; 

• I Gb; 
• I B) , 

then it is clear that the corresponding proportion is given by 

Pbgij = 

(10) 

(11) 

For the legit transformation to be defined in any case, we apply a common 

correction, and define 

1 

- +nb ,, 2 gl.J (12) 

So (12) can be considered as the observed proportion corresponding to (10), 

and its legit transformation can be used as an estimate of the right-hand 

part of (9). It will be obvious that a suitable loss function is given by 

(13) 

where wbgij is some suitable weight. Before discussing the weights, it 

should be noted that the parameter estimates given by minimizing F are not 

consistent. Equation (9) is almost never strictly true, not even if k goes 

to infinity if we hold Gb fixed , because (9) implies that within a 

homogeneous score group the variance of� vanishes, which holds only if the 

distribution of� is degenerated. So in general, (9) is not equivalent with 

(1) , and it seems a little bit pointless to look for the 'best' weights, 
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which might be taken here to mean variance minimizing weights. on the 

other hand, it seems natural to give less importance to proportions 

which are based on a small number of observations than on a large 

sample. Least squares estimates have minimum variance if the inverse of 

the variance-covariance matrix of the random variable is used as a 

weight matrix. Here this means that we have to determine the variance­

covariance matrix of all logit (Pbgijl. Referring to (12) , it is easily 

seen that this matrix is not diagonal, because nbgij (O<j<m1) is used in 

two proportions. Because the estimates need not be very accurate it 

seemed appropriate to neglect the covariances and to take the weights 

proportional to the inverse of the (estimated) variance of logit (Pbgij) . 

By the univariate delta method (Bishop, Fienberg & Holland, 1975) it is 

easy to show that 

vai: [logi t (pbgij)] = [nbg 1tbgij ( 1-1tbgij)] -i. 

Replacing 11'bgij by Pbgij in ( 14) gives as weights 

(14) 

(15) 

When initial estimates of the �•s are needed, and the discrimination 

indices are fixed, one minimizes (13) with respect to the �•s and the 

�•s, where the construction of homogeneous score groups is based on the 

weighted scores s, given by (2) . The estimated �•s then simply are not 

used. As the correlation between weighted and unweigted scores is 

usually very close to one, a grouping based on the unweighted scores 

may give useful results as well. So, when one needs an indication of 

suitable discrimination indices, one may minimize (13) with respect to 

the a's, the �•s and the �•s with the grouping based on the unweighted 

scores, and neglect the estimates of the �•s and the �•s. The technique 

used to minimize (13) is a simple alternating least squares procedure. 

If two sets of parameters are to be determined, for example, the �•s 
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and the �•s, then in each iteration F is minimized twice: the first time 

with respect to the first set, the �•s say, while the other set is fixed at 

its current value. The second time F is minimized with respect to the 

second set, while the first set is fixed at the value j ust found. 

A Two Stage Estimation Procedure 

The computer program OPLM is designed to analyze data in an incomplete 

design for rather large numbers of items. At Cito, an analysis on 250 items 

distributed over as many as 25 booklets is a common enterprise. As may be 

seen from the quadruple subscripts of the w's and the p's in (13), the 

total number of weights and conditional proportions, which are all needed 

within a single iteration, may be too large to store them all in the 

available RAM of the machine. So, of necessity, part of them will be stored 

on an external memory device, a disk say, with the consequence that in 

every iteration a substantive number of disk accesses will be necessary, 

making the total processing time a multiple of the actual computing time. 

Moreover, it appears that when the booklets are poorly linked, that is, the 

number of common items in any pair of booklets is small, the alternating 

least squares algorithm converges rather slowly, so that the number of 

iterations may grow quite substantially. In order to avoid these problems a 

two stage procedure was devised, which will be discussed for the case of 

the a-estimates. In the first phase, the a's are estimated per booklet. But 

as has been argued earlier, the a's are determined up to an arbitrary 

(positive) multiplicative constant. This means that in every booklet the 

unit of measurement is arbitrary, so that two estimates for the same item 

are not on a common scale, and thus cannot be compared with each other. So 

the second phase is meant to bring the a-estimates from different booklets 

on a common scale. 

Let abi denote the estimate of the discrimination index for the i-th 

item in booklet b, then the rationale says that for any two booklets b and 

b' where item i appears, there should be a positive constant ebb' such that 
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C 

(16) 

where the equality is not strict because of the sampling error in the 

estimates. Assuming strict equality, it follows that 

(17) 

So, if for all b one knows ebb" for some b", all c' s are known. Because 

cb"b" = 1, only B-1 free parameters are to be estimated. For the sake of 

notational convenience, assume b" = B. 

Estimating a common unit for the a's corresponds to estimating a 

common zero for their logarithms, which seems more natural when 

applying least squares procedures. Therefore, define 

(b=l, ... ,B-1), 

(18) 

otherwise. 

The loss function to be minimized with respect to �b• (b=l, .. . ,B-1), is 

given by 

k Ewbdbi[<Xbi + yb-«J
2 

F 2 = L _b __________ _ (19) 
i=l 

where 

( 20) 

and wb is some suitable weight. It seems reasonable to take the weights 

proportional to the number of respondents answering to booklet b. The 

interpretation of (19) is straightforward: (20) gives the average ai 

after adjustment, and the numerator in the fraction of (19) gives the 
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(weighted) squared distance of the individual adj usted abi's to their 

adjusted average. So the fraction in (19) is the within item variance of 

the adjusted abi' s. 

The partial derivative of F2 with respect to the �-parameters is given by 

= 2 t 
w j dj i ( a: j i + y j - ii J 

i=l 

Defining 

and using this in (20) yields 

(j =1, ... ,B-1). 

(i=l, ... ,k). 

( 21) 

(22) 

(23) 

Substituting (23) into (21) , and equating to zero gives a system of linear 

equations 

B-1 k Ew. rL . 
. J jl. 

LYbL 
wbwj dbi dji 

(�wg dgir 

1 

- yj ----
= 

b=l i=l 

w j dj i ( a: j i - ex i ) 

l:wgdgi 
g 

(j=l, ... ,B-1). 

Letting�= (�
1
, ••. , �8_

1
) ,  z a (B-1) vector with elements 

wj dji (a:ji - ex J 

l:wgdgi 
g 

(j =1, ... ,B-1), 

and H a  square matrix of order B-1 with elements 

wbwj dbi dji 

(�wg dgir 

(j ,b=l, ... ,B-1), 

(24) 

(25) 

( 2 6) 

where 6bj is the Kronecker delta, then (24) can be equivalently written as 
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Hy= g, (27) 

and the solution is given by 

(28) 

The final solutions for the discrimination indices are given by 

(29) 

These a*•s will in general not be integer values, they have to be 

rounded to the nearest integer. Since only the ratios of the a*•s do 

really matter, they could be multiplied by a large constant before 

rounding, so that the ratios of the rounded a*•s are almost the same as 

the ratios before rounding. However, this will in general result in 

large discrimination indices, resulting in turn in very large score 

ranges and thus increasing the risk that CML estimates of the category 

parameters do not exist. On the other hand, choosing a small 

multiplicative constant will map really different discriminations on 

the same integer. In practice, the multiplicative constant is chosen in 

such a way that the geometric mean of the transformed a* equals some 

specified constant J. If G represents the geometric mean of the a*'s, 

then the final values of the discrimination indices are given by 

= max[l, int(0.5 + Ja;)] 
G 

The only problem that remains is to choose a suitable value for J, 

Practice showed that acceptable values mostly range from 1.5 to 5, 

Examples 

In this section two examples of the estimation of the 

discrimination indices will be discussed. The problem with the 

11 
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procedure, however, is that there are no objective criteria to evaluate it. 

In an analysis of the same data set with two different sets of 

discrimination indices, the likelihood function values at the solution 

cannot be compared by a formal statistical test because the number of 

degrees of freedom is equal in both cases. So we should have recourse to 

informal criteria, or to artificial data. 

Both will be discussed. 

An analysis of artificial data is discussed as a first example. The 

item collection consists of k=l5 items, each allowing a score of o, 1 or 2; 

so m1 = 2 for all i. The items are distributed over two booklets, booklet 

one consisting of the items 1 to 10 and booklet two of the items 6 to 15. 

The category parameters �11 and �12 are -1 respectively 1 for items 1 to 

5; -. 5 respectively . 5  for the items 6 to 10 and both zero for the items 11 

to 15. The •true' discrimination indices are 1 for odd numbered items and 2 

for the even numbered ones. Responses for thousand artificial subjects were 

generated according to (1), where the �-values were randomly and 

independently drawn from a standard normal distribution. Five hundred 

subjects responded to booklet 1 and five hundred to booklet 2. 

In estimating the discrimination indices with the two stage algorithm 

described above, the only variable which is under the control of the user 

is the geometric mean J of the estimated indices (before rounding). The 

indices were estimated three times with J equal to 1. 5, 3 and 6 

respectively. The rounded estimates are displayed in Table 1. The geometric 

mean of the true values is 1. 38. Setting J to 1. 5 estimates the indices 

correctly, whereas for J = 3 the index for item 7 is somewhat overestimated 

while the index for item 10 is underestimated. For J = 6, the general 

pattern is still there, the estimates for the even items being 

systematically larger than the estimates for the odd items, but there is a 

remarkable deviation from the true ratio of 2. The ratio of the geometric 

mean of the even numbered estimates to the geometric mean of the odd 

numbered estimates is only 1. 58, displaying some sort of regression towards 

the mean. The ratio before rounding is 1. 65, so the rounding with J=6 
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strengthens the regression, whereas in the other two cases the rounding 

tends to neutralize the regression effect. Although the precise 

cause of this regression is not quite clear, it may well be due to the 

coarse grouping (G=6 in both booklets), which implies ignoring a 

substantial part of the variance of�- Further research on this topic 

may be needed. 

TABLE 1 
Estimates of the discrimination indices 

in the artificial example 

item J=1. 5 J=3 J=6 before rounding 

1 1 2 5 0. 7128 
2 2 4 8 1. 3065 
3 1 2 5 0. 7667 
4 2 4 7 1. 1429 
5 1 2 5 0.7500 
6 2 4 9 1. 3656 
7 � 3 5 0. 8058 

2 4 8 1. 2729 
9 1 2 5 0. 7340 

l" 2 3 7 1.0735 
11 1 2 4 0. 6587 
12 2 4 8 1. 1936 
13 1 2 5 0.7572 
14 2 4 7 1. 1520 
15 1 2 5 0.6983 

Of course, one cannot expect that the ratio of the estimates will 

reflect the true ratio, since the sample is finite, and the estimates 

will reflect the peculiarities of the sample. Therefore, the�­

parameters were estimated with the CML-procedure, holding the a's fixed 

at the values given in Table 1. Since the program yields a number of 

statistical tests per item and the log-likelihood for the total data 

set, the three analyses may be compared by counting for instance the 

number of significant test statistics at a predetermined significance 

level. The results are summarized in Table 2. The computer program 

computes m1 general test statistics per item which are asymptotically 
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chi-squared distributed. These tests are not sensitive against specific 

alternatives. Besides 3xmi, so-called M-tests are computed, which are 

sensitive to misspecification of the discrimination index. However, these 

tests are not independent and their degree of dependence varies depending 

on the two tests being concerned with the same item or with different 

items. 

TABLE 2 
Number of significant tests and log-likelihood 

in the artificial example 

J=1.5 J=3 J=6 

general test a=.05 1 0 
a=.01 0 0 

M-tests a= .05 0 1 
a= .01 2 2 

1 
0 

4 
0 

log-likelihood -5584 -4952 -4324 

Two tests on the same item are highly dependent, while two tests concerned 

with different items are quasi independent. (For a detailed discussion, see 

Verhelst et al., 1991). Therefore we counted the items for which at least 

one of the tests (the general test or one of the M-tests) was significant. 

Note that an entry in a row labelled a= .05 refers to the number of items 

for which at least one of the tests yielded a result significant at the 5% 

level, and none was significant at the 1% level. 

It can be concluded that all three sets of estimates do an excellent 

j ob in view of the purpose they were devised for: giving a good hunch at 

the true discrimination indices such that only minor adaptations, based on 

the statistical tests are required to arrive at an acceptable model. The 

very clear trend in the last line of Table 2 will be commented upon in the 

discussion section. 

A pilot study for the Dutch national assessment program in geography 

will be taken as a second example. Four groups of items were arranged in a 
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balanced inco�plet� block design with two groups per block yielding six 

different booklets. The design is presented in Table 3. 

TABLE 3 
Design of the geography pilot study 

group A B C D 
number of items 25 25 24 25 

booklets 
X X 

2 X X 

X 

X X 

5 X X 

X X 

The six subsamples, one for each booklet, consisted of approximately 

250 students, so that each item was presented to approximately 750 

respondents. Fifteen items consisted of a short introduction story, 

followed by four to nine true-false questions. In order to avoid or at 

least to lessen the difficulties caused by interdependencies between 

these questions, it was decided to treat these multiple question items 

as single polytomous items. The analysis started with values of the 

discrimination indices computed by a heuristic which did not do a good 

j ob with polytomous items, and which will not be discussed here. The 

important point is that seven analyses were required, each with a 

modification of the discrimination indices of the preceding one, in 

order to get an acceptable solution. Since with real data it is 

impossible to know what the 'true' solution is, and since acceptance of 

the model is the result of a quite complicate decision process 

involving content oriented and statistical considerations, these 

criteria will not be described here in great detail. In general the 

iterative reanalysis of the data is decided upon by clear cut 

indications of the M-tests that one or more item fits may be improved 

by altering the discrimination index in the direction indicated by 

these M-tests. 
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The method of estimating the discrimination indices described in the 

present paper became available after the analyses on the geography data 

were carried out. In order to test the quality of our algorithm, the 

discrimination indices were estimated with taking for J the value of the 

geometric mean of the a's used in the final analysis. out a total of 99 

indices, the algorithm found 77 identical values and the remaining 22 

differed one unit from the ones in the final analysis. An analysis with 

these estimated indices was carried out, and of the 22 items with deviant 

discrimination indices, the associated M-tests of 8 of them pointed clearly 

to a change in the direction of the final solution, while the others 

yielded acceptable values. Although it is quite common that by changing a 

few discrimination indices, the M-tests for some formerly accepted items 

may become significant as the result of the mutual dependence of the 

statistical tests, the analysis with the estimated a's certainly yielded a 

very good approximation, as only one of the M-statistics, which are to be 

interpreted as standard normal deviates, exceeded 3. 

Discussion 

Equation (9), where the probability in the left-hand member can be 

replaced by the corresponding proportion, is the basic equation used in the 

algorithm. A (weighted) least squares loss function then is readily 

constructed, see (13). If initial estimates of the �•s are needed, (13) is 

minimized with respect to the �•s and the �•s, while the a's are kept 

fixed. The grouping of respondents is based on the weighted scores. If the 

a's have to be estimated, (13) is minimized j ointly with respect to the 

�•s, the �•s and the a's and the grouping is based as the unweighted 

scores. A practical constraint with respect to computer memory and 

computing time arises with this latter procedure if the number of booklets 

is too large. In such a case recourse can be taken to a -�wo-step procedure: 

the first step consists in minimizing (13) separately per booklet, and in 

the second step the estimated a's are brought to the same scale by 

minimizing (19). However, it should be kept in mind that considering (9) as 
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a strict equality implies a specification error. Equation (9) is not 

equivalent to (1), and using the minimization of the derived loss 

function (13) as a genuine parameter estimation method will inevitably 

yield inconsistent parameter estimates. As has been pointed out, the 

specification error is that the conditional variance of� given the 

score is considered as being zero, while in (1) it is definitely non­

zero for all nondegenerate �-distributions. Therefore, it is not hoped 

that some clever refinement of the least squares method will yield 

estimates with acceptable statistical properties. 

Using the �•s resulting from the minimization of (13) as start 

values for the algorithm which yields the maximum likelihood estimates 

is, of course, only a numerical recipe whose merits are to be j udged on 

empirical results. In fact, it turns out that in the large number of 

analyses carried out thus far at Cito, these starting values do a good 

j ob in that they closely approximate the CML estimates, requiring a 

small to moderate number of iterations to find the maximum likelihood 

estimates. An exception to this rule is formed by poorly linked 

designs, where usually a larger number of iterations is required. 

As to the use of the estimates of the discrimination indices, 

either by minimizing (13) directly with regard to the �•s, the �•s and 

the a 's or by using the two stage procedure, the question on the 

statistical status of these indices remains. In the model, as defined 

by (1), the a's are treated as known constants being an integral part 

of the null hypothesis, while in the least squares procedure the a's 

are treated as unknown parameters whose value are estimated from the 

data, usually the same data that are subsequently analyzed under the 

hypothesis of known a's. Formally speaking this implies a contradiction 

which invalidates to an unknown degree the statistical tests used in 

evaluating the goodness of fit of the model. However, the estimation of 

the discrimination indices is not part of the model and the estimation 

procedures it implies. Using the same data to estimate the a's and then 

to analyze them with the a's given the status of known constants is 
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chance capitalization. This can clearly be seen in the bottom row of Table 

2: with a large value of J, the rounded a's better approximate the 

estimated ones and hence should generally give a better description of the 

data. On the other hand, there are arguments which may make the present 

procedure acceptable to a certain level. First, extracting hypothetical 

values for certain parameters is common use. Take a simple model such as 

factor analysis. The number of factors used is a discrete parameter which 

in many cases is estimated from the data which are being analyzed, but is 

nevertheless treated as a fixed constant. (See, for example, Schonemann 

(1981) for a discussion). Yet those who make a 'sharp' distinction between 

exploratory and confirmatory factor analysis or some broader class of 

structural models usually derive their 'final' hypothesis from one or more 

analyses on the same data (see, for example, Joreskog, 1974). An analogous 

way of working is found in loglinear analysis (e. g., Fienberg, 1977) where 

a 'best fitting' model is chosen from among a number of tested models on 

the same data, and where the test statistic used to select the preferred 

model is also presented as evidence for the goodness of fit of the chosen 

model. Although such practice is to be rej ected from an orthodox 

statistical point of view, a good alternative is mostly not available, 

since it would imply a new and independent data collection for every new 

hypothesis which is not entirely independent of the former one (s). And this 

gives us a second argument: it is by no means necessary for the an�lysis 

with the model described by (1) to extract the values of the a's and the 

estimates of the �•s from the same data set. Any values provided by the 

user are acceptable as a hypothesis. This could be values dictated by 

content oriented theory, or by a least squares procedure as described above 

from some independent data set. Ultimately the user decides where his 

hypotheses stem from, and it is the user's risk to take a chance 

capitalization by extracting his hypotheses from the very data to be 

analyzed. As a third argument, one should not exaggerate the risk of chance 

capitalization. Since the acceptance or rej ection of any statistical model 

is never free of risk, a decision based on statistical criteria if it has 
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serious theoretical or practical implications, will always be cross 

validated; so the hypothesized invariance of the discrimination indices 

will almost automatically be investigated in a cross validation study. 

In summary then it can be concluded that if the discrimination indices, 

as estimated with the weighted least squares algorithm, lose by 

definition their status of hypothesis, they cannot be denied to yield 

at least valuable suggestions. 
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