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Abstract 
This chapter is about a psychometric model for multiple choice items based upon the 
idea that the test-taker responds to a MC question by first eliminating the answers 
he recognizes as wrong and then guesses at random from the remaining answers. We 
focus on theoretical properties of the model. Estimation and testing are described 
briefly. 
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1. Introduction 

Traditionally, multiple choice (MC) items are scored binary; one point is earned 
when the correct answer is chosen and none when any of the incorrect options 
( called "distractors") is chosen. This facilitates data analysis but it also entails loss 
of information (e.g., Levine and Drasgow, 1983). There have been various attempts 
to include the incorrect options into an IRT model (e.g., Bock, 1972; Thissen and 
Steinberg, 1984). Here, we discuss a novel model called the Nedelsky model (NM). We 
focus on the theoretical properties of the NM. Estimation and testing are described 
briefly. An application to real data can be found in Verstralen (1997) and Verstralen 
and Verhelst (1998), who invented the model. 

The model derives its name from a method for standard setting suggested by Leo 
Nedelsky in 1954. Nedelsky's method is based upon the idea that the borderline test­
taker responds to a MC question by first eliminating the answers he recognizes as 
wrong and then guesses at random from the remaining answers. The NM generalizes 
this idea in the sense that the selection of the answers is probabilistic and applies 
to all levels of ability. It is further assumed that the correct alternative is never 
rejected, that is, respondents will never think that the correct answer is wrong. 

The present discussion is focussed on the theoretical aspects of the NM ( esp. 
Theorem ( 1) and (2)) and structured as follows. Section 2 provides a brief description 
of the NM. Some of the psychometric properties of the model are discussed in detail 
in Section 3. In Section 4, the NM is related to the two- (2PL), the three parameter 
(3PL) logistic models, and the DECIDE model proposed by Revuelta (2000). Section 
5 describes how different scoring rules lead to different amounts of information about 
the latent ability. Section 6 describes marginal maximum likelihood estimation of the 
model using an EM-algorithm. Section 7 describes a model test. Section 8 describes 
the NM as a signal detection model. This topic will explored in more detail in the 
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ensuing chapter. The chapter is concluded in Section 9. 

2. The N edelsky Model 
Consider a MC item i with J; + 1 options arbitrarily indexed 0, 1, ... , J;. For 

convenience, 0 indexes the correct alternative. Let the random variable S;j indi­
cate whether alternative j is recognized as wrong, and define S; by the vector 
(0, S;1 , ... , S;J.). The first entry is fixed at O because it is assumed that the correct 
alternative is never rejected. We refer to S; as a latent subset. The random variable 
St - Ef �1 S;j denotes the number of distractors that are exposed. Realizations of 
random variables are denoted with lower case letters. 

The probability that alternative answer j is recognized as wrong by a respondent 
with ability () is modelled as 

exp(0 - (ij) Pr(Sii = 1l0) = 1 (O ( )' + exp - ij 
(1) 

where (ij represents the difficulty to recognize that option j of item i is wrong; 
S;0 = 0 implies that (;0 = oo. One may think of each distractor as a dichotomous 
Rasch item, where a correct answer is produced if the distractor is recognized to be 
wrong. This specification implies that E[S;IO] = Ef�

1 Pr(S;j = 110) is increasing 
in 0. The assumptions that give rise to the Rasch model are discussed by Fischer 
(1995a). 

As explained in the introduction, the process that generates the response is 
assumed to consist of two stages. In the first stage, a respondent eliminates the 
answers he recognizes to be wrong. Formally, this means that he draws a latent 
subset from the set of possible subsets !18,. Assuming independence among the 
options given 0, the probability that a subject with ability 0 chooses any latent 
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FIGURE l. 

Pr(S1 = s1jO) against 0. 

subset Si E 0s; is given by the likelihood of Ji independent Rasch items; i.e., 
Pr(Si = Si 10) = IT exp( 0 - (ii ) s;J 

j=l 1 + exp(0- (i;) 
_ exp [est - Ef�1 Sij(ij] - nf� 1 [1 + exp(0 - (ij)]' 
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(2) 

(3) 
where the sum Ef�1 Sij(ij could be interpreted as a location parameter for the subset 
Si (see Figure (1)). Once a latent subset is chosen, a respondent guesses at random from the re­
maining answers. Thus, the conditional probability of responding with option j to item i, given latent subset si, is given by: 

(4) 
where X; = j denotes the event that the respondent chooses alternative j, and v(st) = Et�

0
(1 - s;h) = J; + l - st the number of alternatives to choose from. 



4 This second stage involves a randomization not involving (), and hence can carry no information about fJ. For later reference, Pr(Xi = jlSi = si) is called the response 

mapping. Note that Equation ( 4) implies that 
Pr(Xi = OISi = si) 2 Pr(Xi = jlSi = si), and 

(Ji+ 1t 1 
:::; Pr(Xi = O1si = Si) :::; 1. 

(5) 

Note further that, once a subset is chosen, each alternative in the subset is equally likely to be chosen. This assumption can be relaxed by changing the response map­ping as in Equation (16), below. 
Combining the two stages of the answer process, we find that the conditional probability of choosing option j with item i is equal to 

(6) 

(7) 

The second equality is ascertained using the fact that St is a sufficient statistic for () and Pr(Si = silB) may be written as Pr(Si = silSt = st) Pr(St = 410). 
Remark 1. Since Pr(Sij = 1 IB) is modelled by the Rasch model, expressions for Pr(Sij = OISt = st) and Pr(St = stl0) are well known. Specifically, if we define 

Eij = exp( -(ij), 
(8) 

where !sf ( ci) denotes an elementary symmetric function of order st with argu-• 
ment Ei= (cii, ... ,EiJ.). This is a special case of Equation (7) and ways to calculate Pr( St = st IB) were discussed in the first chapter. Further

1 (ij) 
Eij/8+_1(ci) Pr(Sij = OISt = st) = 1 - ; ( ) lsf Ci • (9) 
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where the subscript ( ij) in 1;1�1 ( .si) denotes that .Sij is ignored in the argument. If 

we make use of the result that 14 (.si) - .sin;¥� 1 (.si) = 1;1\.si), it follows that 
' ' 

( .1 ) � ( ( ) (ij) ) exp(stO) Pr xi = J 0 = L....J 14 Ci - Cij/sf-1(,:i) ( f) TIJ; [1 + . . (0)] s+ V sl J=l CtJ exp 
' 

This formulation is chosen to indicate that Tif�1 [1 + c;j exp(0)] is build up summing 

over values of st to calculate the second factor. 
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FIGL'RE 2. 

Pr(X; = jjO) against 0. 

There are four properties of the model that are readily seen in Figure (2). First, 
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Pr(St = 010) -+ 1 if 0-+ -oo which implies that, for j = 0, ... , Ji, 

1 lim Pr(Xi = il0) = -1 1. 
B➔-oo i + 

Second, if 0---+ oo, Pr(St = Jil0)-+ 1 and 
lim Pr(Xi = 010) = 1. 

B➔oo 

Third, 

(10) 

(11) 

Pr(Xi = 010) - Pr(Xi = jl0) = Z:: 8
\ Pr(Si = s;l0) > 0 (12) 

s, v(si ) 
and the probability of a correct response is always larger than the probability to 
choose a distractor. Finally, Figure (2) suggests that Pr(Xi = 010) is an increasing 
function of 0. This is proven in Corollary (2), below. 

3. Psychometric Properties of the Nedelsky Model 
3.1. Monotone Option Ratios 

The option ratios are defined as: 
(13) 

The model has monotone option ratios (MOR) if all option ratios are monotone in 
0. MOR means that 

. Pr(X; = t10) Pr(Xi = tlX; E {t,J}, 0) = Pr(Xi = t10) + Pr(X; = jl0) 
'/Pitj( 0) 

1 + '/Pitj ( 0) 

(14) 

is monotone in 0. Hence, there exists an ordering of the alternatives so that the 
model classifies as a nonparametric partial credit model (Hemker, Sijtsma, Molenaar, 
and Junker, 1997). For the NM it can be shown that this ordering is given by the 
ordering of the location parameters; that is, '/PitA0) (and Pr(Xi = tlXi E {t,j}, 0)) 
is increasing in 0 if (it > (ij• To proof MOR, we use the following lemma: 
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lemma 1. Assume that Ji > 1 and let ns(i,t) denote the set of latent subsets without 

alternative j and t. 

Pr(Xi = jl0) 
Pr(Sii = 010) 

I 

When summing over !18(t,i) 1 all quantities are calculated as if alternatives are miss-
• 

ing. Note that Pr(Sio = 010) = 1 .  Note further that the ratio on the left side equals 

the probability that Xi = j conditional upon 0 and Sii = O; the alternative is taken 

into consideration. 

Proof. Let 1t(0; si) - ITf#t Pr(Sih = 0I0)1-s,h Pr(Sih = 1 l0)9
•h I and let 1t,j(0; Si) = 

rri#t ,j Pr(Sih = 010)1
-s,h Pr(Sih = ll0)9•h. 

1 J· 

Pr(Xi = jl0) = L -�ij IT Pr(Sih = 0l0)l-s,h Pr(Sih = ll0)8•h 
Sj v(si ) h=l 

Pr(Sit = 110) '°' Pr(Sit = 010) 
- s,;t:=l (1 - Sij) v(st) "/t(0; si) + s,;t'=o 

(1 - Sij) v(st) ,t(0; Si) 

Pr(Sit = 110) Pr(Sit = 010) = L (1 - Sij) v(sf) 1t(0; si) + L (1 - Sij) v(sf) + 1 1t(0; Si) 
Si ES1 (t) ' s,ES1 (t) ' 

s, s, 

_ '°' ( _ _ ·) (
Pr( Sit = I 10) Pr(Sit = 010)

) (0· ·) - L.,; 1 8'3 v(st) + v(sf) + 1 it ' s, 
s,ES1 (t) 1 , 

s. 

'°' p (S·· _ 0l0) (
Pr( it = 110) Pr(Sit = 010)) ·(0· ·) L.,; r ,3 - ( +) + ( +) + 1 ,t,J , s, 

V • V S· s;ES1 (t) ;s,j=O t 1 
s 

= p (S·· = 0l0) '°' (
Pr(S'it = 110) Pr( it = 010)

) p (S· = ·I0) r '3 L.,; v(st) + 1 + v(sf) + 2 
r ' s, • 

s,E!\(t,j) 1 i 

Theorem 1. The NM has MOR. 

Proof. Some algebra (see Appendix) shows that 
�., .. 

·(0) = Pr(Xi = t10) Pr(Sii = 010) - Pr(Xi = jl0) Pr(S;t = 010) 
a0 '1-'•tJ Pr(X;=jl0)2 

• 

□ 



8 
This function has the same sign as 

Pr(X; = t10) Pr(S;t = 0 10) Pr(X; = jl0) Pr(S;j = 0 10) ' 
Now, Lemma (1) implies that (*) equals 

where 
}: Ctj (0, s;) Pr(S; = s; l0), 

s,E!\U,t) 

(*) 

If (it > (ij, Pr( S;t = 1 I 0) < Pr( S;j = 110), and it follows that ;0 '1/)itj ( 0) > 0 for all 0. 
Using (15) the reader may verify that, if J; = l,  'lp;0j{0) = ½ Pr(S;1 = 110), which is 
increasing in 0. □ 

Corollary 1 .  If (;t > (;j , Pr(X; = t10) > Pr(X; = jl0). 
Proof. It follows from (1 0) that limo➔-oo 'Pitj ( 0) = 1. Hence1 MOR implies that 

'Pitj (0) > l for all 0 and the result follows. □ 

Corollary (1) implies that the ordering among the option parameters can be 
inferred from the marginal probabilities. 
Corollary 2. Pr(X; = 0 10) is an increasing function of 0. 

Proof. MOR implies that 
J, }: 'Pijo = Pr(X; = Ol0t 1 (1 - Pr(X; = 0 10)) 

j=l is decreasing in 0 .  
a -1  lo Pr(X; = 0 10) 00 Pr(X; = 010) (1 - Pr(X; = 010)) = - Pr(� ri = O I0)2 

• 



Hence, f0 Pr(Xi = 010) > 0 and Pr(Xi = 010) is be increasing in 0. 
Further consequences of MOR are discussed in the next paragraph. 

3.2. Monotone Likelihood Ratio in the Item Score 

9 
□ 

An item score is a discrete random variable Ci : {O, 1, ... , Ji} -+ ll such that 
the value Ci (j) represents the credit given to the event Xi = j. If Ci is such that 
Ci(t) > Ci (j) if (it > (ij and Ci(t) = Ci(j) if (it = (;j , MOR is equivalent to monotone likelihood ratio (MLR) in C; (Lehmann, 1959, p. 68). MLR in Ci implies 
two useful properties: stochastic ordering of the latent trait by C; (SOL in C;), and 
stochastic ordering of the item score by the latent trait (SOM in C;) (Lehmann, 
1959, p. 74; Junker, 1993, Proposition 4.1). 
Corollary 3. SOL in C; : If (it > (;j , Pr(0 > a lXi = t) > Pr(0 > a lX; = j) for any constant value a of 0. 

Proof. It follows from Bayes ' theorem that 
Pr(B IX, = t )  Pr(0 IX; = j) = C.,Oitj(0) {:} 

Pr(0IX; = t) = C.,Oitj(0) Pr(0IXi = j) =} 

1
00 Pr(B IXi = t)d0 = 1= C.,Oitj(0) Pr(01Xi = j)d0. 

Since C.,Oitj ( 0) > 1 it may be concluded that 
100 Pr(BIXi = t)d0 > 1

00 Pr(B IXi = j)d0. 

is a value in the range of C; . 

□ 
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Plot of E[C; l0] for different scoring functions. 

Proof. Let M _ max( Ci) .  MOR implies that 
M M 

E 'PijM( 0(2) ) > E 'PijM( 0(
1) ) � 

j=y j=y 

Pr(Ci � v 1 0(2))  
> Pr(Ci 2': y l 0( 1 ) ) � Pr(C; = J\II I0<2> ) Pr(C, = M·10< 1 ) ) 

Pr(Ci 2': y l0 (2))  Pr(C; = M i0<2> )  1 Pr( C; � y l(} ( l ) )  > Pr( C. = M 10( 1 ) )  > 

6 

Pr( Ci = MIO) equals the probability of a correct response and the last inequality 

follows from Theorem (2). □ 

SOL in ci implies that (} is stochastically increasing in ci so that E [OIC;] is an 
increasing function of C; (Ross, 1996, Lemma 9.1.2), and Corr(0, Ci) � 0 .  SOM in 
C; implies that Ci is stochastically ordered by (} so that E[Cd0] is monotone non­
decreasing in 0; a desirable property in practical applications. Figure (3) illustrates that E[OICi] need not be increasing in (} for just any scoring rule. 
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Let the test score C be defined as f (C1 , C2 , • . .  , C1) ,  where f is an increasing function. 

Proposition 1 .  SOM in Ci implies SOM in C. 

Proof. Let 0(2) > 0(1 ) .  Consider C1 , C2 , . . .  , C1 given 0(2) and C1 , C2 , . . .  , C1 given 

0(1) which are both independent. Example 9 .2. (a) in Ross (1996) shows that SOM in 

Ci implies that 

i .e . ,  SOM in C .  □ 

SOM in C implies that E[C l0] is increasing in 0. Unfortunately, SOL in Ci is 
not a sufficient condition for SOL in C (Hemker, et. al. ,  1 997). Lemma (2) , below, implies SOL in the number of correct responses but it remains a topic for future study to describe the class of functions J( -)  that give SOL in C. 

4. Relations between the Nedelsky Model and Other IRT Models 
Relations to the Two- and Three Parameter Logistic Models If the item is di­chotomous (i.e., Ji = 1)  

Pr(Xi = 0 10) = 1 + (1 - 1) Pr(Sil = 1 10), (15) 
where ½ = Pr(Xi = OISi1 = O); the probability to find the correct answer by guessing. Pr( Sil = 1 I 0) is the probability that the respondent knows the correct answer. The probability to find the correct answer by guessing is fixed at ½ because respondents who failed to eliminate the wrong answer find both alternatives equally attractive. To 
relax this assumption, we include parameters Tij > 0 to represent the attractiveness of distractors relative to the correct alternative. In general, the response mapping 
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would then become 

(16) 
with Tio = 1. It follows that, in the dichotomous case, 

Pr(Xi = 010) = 1 + (1 - 1 ) Pr(S;1 = 110). (17) 1 + Tit 1 + T;1 

Note that this model is not identifiable. Specifically, for any constant c, the trans­
formations 

0* = ln(exp(0) + c) 
(;1 = ln(exp((i1) - c) 

* exp((i 1 ) + c  
Til = Til exp((i1 ) - c(l + Tii )  

(18) 

leave the probability Pr(Xi = 010) unchanged. This problem remains if the value of 
(;1 is fixed (Maris, 2002). 
Remark 2 .  To see where these transformations come from it is useful to reparame­
terize the model as follows: 

Pr(X; = 0 10) = A; + (1 - A i) exp(O - (,j ) 1 + exp(0 - (i;) 
= Ai +  (l _ A;) exp(0) exp(-(ij) 1 + exp(0) exp(-(;j) 
_ A · +  (l _ A ·) exp(0) - ' ' exp((;j) + exp(0) 

A; exp( (ij) + A; exp( 0) + exp( 0) - A; exp( 0) exp((ij) + exp(O) 
exp( 0) + Ai exp( (ij) exp((ij) + exp(0) 

exp( 0) + Ai exp( (ij) 
= -------'----------exp(0) + A; exp((ij } + (1 - A;) exp((;j } 



Then reparameterize using the following definitions: 
t = exp(0), t E JR+ 

such that; t = exp( 0) , (ij = ln( ai + bi), Ai = a,+b, 1 and we may write: 
Pr(Xi = 0 10) = t + a; t + a; +  b; 
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With this parameterization it is relatively easy to see, that e.g., simultaneous trans­lations of t and a; would not change the probability Pr(X; = 0 10); the details are in 
Maris {2002) . This parameterization turns out to be quite useful in some situations and it will be used in the final chapter of this booklet. 

The 3PL (Birnbaum, 1968) is obtained if we further include an item-specific 
discrimination parameter a; > 0 so that 

(19) 
Thus, the NM is a special case of the 3PL where Til = a; = 1, for all items. The 
2PL is obtained when r;1 ---+ oo; meaning that respondents who did not exclude the 
incorrect alternative will never choose the correct alternative by guessing. Including 
an option-specific discrimination parameter would establish the identifiability of the 
NM with attractiveness parameters but we will not consider this possibility. 

4 - 1. Relations Between the NM and the DECIDE model 
Revuelta (2000) has developed the DECIDE model for MC items which appears 

to behave very similar to the NM. The DECIDE model assumes that 
(20) 
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Let ns\il denote the set of latent subsets not involving alternative j .  Using Equations • (12), and (6), it is readily seen that 

(21) 

under the Nedelsky model. We see that the NM is never exactly equal to the DECIDE 
model but the selection ratio under the NM is well approximated by 1 + exp ( 0 - (ij) 
(see Figure (4)). This means that, in practice, the two models will hardly be distin­
guishable. 

15 

10 

- - log selection rabo 
++ approximation 

FIGURE 4.  

Two plots for each of four incorrect options. One of ln tp;oj (0) and one of ln(exp(0 - (;j) + 1) using 

the same parameters as the previous figures. 

The close resemblance between the Nedelsky and the DECIDE model is useful 



15 for two reasons: First, Revuelta has established many relations between the DECIDE 
model and other models. Second, it allows us to generalize the results of Revuelta's 
simulation studies to the Nedelsky model. These results support for instance, the conclusion that estimating a NM with option-specific discrimination parameters is 
unfeasible unless one has a huge sample. 

5. Information About 0 Provided by Different Types of Data 
In this section we consider item information functions for: option scoring, where 

we register the answer that the respondent has chosen, binary scoring, where it 
is registered whether the answer was correct or not, and subset scoring, where we have somehow been able to observe the respondents latent subset. It will be shown that subset scoring will provide more information than option scoring and option 
scoring will provide more information than binary scoring unless there are only two alternative answers. 

In general, the item information function is defined by 

lnfx(0) = Eo [ (:e ln L(0IX)) 2] 
= 

L 
[fo Pr(X = x l0)] 2 , 

x Pr(X = xl0) 
(22) 

(23) 

where subscript X refers to the type of data used. This equation will be used to 
derive the information. First, the expected information that would be obtained about 0 if the latent 
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subset would be observed is 

( )  '""" (f0 Pr(Si = si l0)) 2 Infs - 0 = L...t 
• s; Pr(S; = s; l0) 

= L Pr(Si = si \0)(st - E[St l0])2 

Sj 

= Var(St \O), 

(24) 

which is what one expects since Pr(Si = si \O) belongs to the exponential family. 
Note that the cardinality of a respondent 's subset contains all information about 
0. Thus, if we observe the latent subsets we have complete data. 

The information function for option scoring is equal to 
( ) _ 2 � (E[v(St)\0] Pr(Xi = j \0) - Pr(Sii = 1 \0)) 2 lnfx; 0 - ai L...t p (X · _ . 10) , 

j=O r t - J . (25) 
where Pr(SiO = 1 \0) = 1. With option scoring we no longer know the latent subset. 
We do know that the subset must have contained the alternative that was chosen. 
The missing information principle implies that Infx; (O) < Infs;(O). 

The information function for option scoring can be compared to the information 
with binary scoring; when only correct and incorrect are registered. Let Zi denote 
a random variable that is 0 is Xi = 0 and 1 otherwise. W ith binary scoring the 
information function is equal to 

lnfz (O) = 
[lo Pr(Xi = 0\0)] 2 

+ [lo (1 - Pr(Xi = 010))] 2 
' Pr(X; = 0\0) 1 - Pr(X; = 0 \0) 

[;0 Pr(Xi = 0 \0)] 2 

Pr(Xi = 0 \0)(1 - Pr(Xi = 010)) 
(E[v(St) l0] Pr(Xi = 010) - 1) 2 - Pr(Zi = 010)(1 - Pr(Zi = 010)) ' (26) 

where v(St) = Ji - St + l. With binary scoring, we only know that a respondent 
with a wrong answer, included one or more wrong answers in his subset. Thus, 
more data is lost compared to option scoring, and it can be shown that in general, 
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Infs; (O) > Infx. (0) � In/z; (O) (Maris & Bechger, 2003). It is easy to see that the 
information functions for binary- and option scoring coincide if Ji = 2, or when all 
options are equally difficult. 
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Figure (5) shows item information functions for option-, binary- and subset 

scoring. It clearly suggest that subset scoring provides much more information than 
the other approaches while option scoring does slightly better than binary scoring. 
Noteworthy is also that the information functions are not single peaked as in the 
Rasch model. Verstralen and Verhelst (1998) report a very similar figure using a real 
data set. 

6 .  Marginal Maximum Likelihood Estimation By Means of a Generalized 
EM-Algorithm 

6. 1 .  Introduction 

Consider a random sample of N respondent from a normal population with zero 
mean and variance of Let v denote an arbitrary respondent. Each respondent is 
administered I items resulting in a data matrix denoted by x which constitutes 
observed data. The rows of x are denoted by Xv . The latent subsets and the abilities 
constitute latent data. Abilities are in a vector () and the latent subsets are gathered 
in a latent subset matrix s. The rows of s are latent subset vectors Sv = (sv1 , . . .  , SvJ) , 

where Svi = (svil , . . .  , SviJ. ) is a latent subset. Further, let s;¾ = 'E,f;,,
1 Svij , s; = 

'E,{=
1 

s;¾ , and s+ = (sf , . . .  , st) . The entry corresponding to the correct alternative 
is now ignored and an index for the respondent is added. When possible, Svi is used 
in place of Svi = Svi , Xvi in place of Xvi = Xvi , etc. to avoid excessive notation. 

Complete data is defined as observed data plus latent data. Ignoring the proba­
bility Pr(xvlsv) that is independent of the parameters, the logarithm of the complete 
data likelihood for a respondent is given by : 

I 
J, I 

J, 
= ln </>( 0v;  a5) + 0vst - L L (ijSvij - L L ln [1 + exp( 0v - (ij )] , 

i=l j=l i=l j=l 

(27 )  
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where </>(0v; at) denotes the normal p.d.f. with mean zero and variance at, and Am 

= (>. 1 , . . .  , >.1) ,  where >.i ((;i ,  . . .  , (iJ.) contains the location parameters of item i. 
Note that Clv is independent of Xv · Respondents are assumed to be independent (i.e., 
cribbing is not allowed) so that the complete-data loglikelihood ClN = �:= l  Clv , 

The EM-algorithm (Dempster, et al ., 1977) entails the maximization of the 
conditional expectation of the complete-data likelihood over the distribution of the 
latent data, given the observed data and a preliminary estimate of the parameters. 
This conditional expectation is called the Q-function. Determining the Q-function 
is called the E (expectation) step. Finding parameter values that maximize the Q­
function is called the M (maximization) step. Iteration of these steps then yields the 
EM-algorithm. The EM-algorithm continues until the change between the parameter 
values from the previous and the present iteration is considered small enough. It can 
be shown that the resulting estimates are marginal maximum likelihood estimates 
and we assume that these are consistent. Estimation of latent abilities is discussed 
in Verstralen (1997). Note that the extension to incomplete designs and multiple 
populations is straightforward, but we have yet to decide which formulation is most 
efficient for presentation and/or programming. 

6.2. The E-step 
Let h(s, 0 lx; >.0) = h(0ls; >.0)h(slx; >.0) denote the distribution of the latent 

data given the observed data, where 0 = (01, . . .  , 0N) , 1 Let Q(>.; >.0 ) denote the 

1Verstralen (1997) , and Verstralen and Verhelst (1998) factor h(s,  0 lx ;  .X.o) as 

h (s 10 ,  x; .X.0)h(0Jx; Ao) .  This leads to a different EM-algorithm . 



20 Q-function. By definition, 
Q(.X; Ao) - E {CLNlx; Ao} (28) 

= L r . . .  r ClNh(s, O Jxv ; Ao)d01 . • . d()N 
s 101 J0N 

= L [ r . . .  r ClNh(O Js; Ao)d01 • • •  d()N] h(sJx; Ao) 
s 101 JoN 

(29) 
where Ao denotes a preliminary estimate of A -(Am , ai). Note that E [ Cl NI s; Ao] is the Q-function in the EM-algorithm for the marginal Rasch model. It is known (e.g. ,  
Glas, 1989) that 

E [ClNl s; Ao] = t, [E[�(O) l st ; Ao] - t t. \;;s.,;;l ,  (30) 
where rJ(O) = Clv+ Ei Ej (ij Svij = ln <j,(O; ai)+ Ost - Ef=l Ef�1 ln [1 + exp(0 - (ij)], and E[rJ(O) J st ; -Ao] is the expectation of rJ(0) taken over the posterior of 0 given st : that is, 

+. _ Pr(st JO ; Am,o)</>(0; a],0 ) h(O Jsv ' Ao) - J Pr(st J0; Am,o )c/>(0; ai,0)d0 • (31 ) 
Since Pr(Sij = l j ()) is modelled as a Rasch model, the probability Pr(st J0; Am ,o) has 
a well-known expression. 
Remark 3 .  Equation {30} is well-known but it may be helpful to know how it can 

be derived. Jior simplicity, assume that there are only two respondents. Hence, 

= { { (Cl1 + Cl2)h(01 , e2 Js; Ao)d02d()1 
101 102 

= { { (Cl1h(ei ,  02 Js; Ao)+ Cl2h(01, 02 J s; Ao))d02d()1 
101 102 



Since C lv is a function of Bv only we may write 
{ Cl1 { h(81, 82 / s; >..o)d82d81 + { Cl2 { h(81, 82 /s; >..o)d0id02 

101 lo2 102 101 

= { Cl1h(81 /s; >..o)d81 + { Cl2h(82 / s; >..o)d82 
101 102 

= L { Clvh(O js; >..o)d{) 
V 10 

[ I J

; l = � lo 19(0)h(0j s; >..o)d0 - � J; (ij Svij 
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Note that 'l'J(O) only depends on st . Since respondents are independent, h(0/s; >..0) may be replaced by h(O /sv ; >..a). Further, since st is sufficient for 0, h(O / sv ; >..a) can be replaced by h(O /st ; >..0). The result is Equation (30) . 
Using (30) the Q-function may be written as: 

where 
P (s . .  _ l j + ) _ (l Pr(xv /Svij = 0, st ) Pr(Svij = 0 /st)) - l  r v,J - sv , Xv - + P ( 1 s  + )  P (S I +)  , r Xv vij = 1, Sv r vij = 1 Sv + . _ Pr(xv /st) f Pr(st /0; >..m,o)</>(0; o-J,O)d0 Pr(sv lxv, >..o) - I: Pr(x jS+ = h) f Pr(S+ = h /0· >.. )</>(0· 0"2 )dB ' h v v v , m,O , 0,0 

Pr(xvlSvij = u, st) = L s�ij( l - Svij )1-u Pr(xv / sv), and s. JsJ 
Pr(xv /st) = L Pr(xvlsv)· s. JsJ 

(32) 

(33) 
(34) 

(35) 

(36) 

The symbol I:s. Jst denotes summation over all possible subset vectors Sv whose 
entries sum to st and I:st summation over all values of st ; i.e., from 0 to I:{=1 J;. Details of the derivations are presented in the Appendix. Note that 

(37) 



22 Hence, Pr(xv / st) is an elementary symmetric function of order st with argument Svi ·  The probability Pr(Svij = 1 /st; Am ,o) equals the conditional probability of a correct response on item (i, j) given a sum score of st under the Rasch model, which has a 
well-known expression that was given earlier. 

6. 3. The M-step 
Let Oih and Oa-2 denote differentiation with respect to (ij and ai , respectively. 

9 The symbol 8 is used for Oih or 8u2 .  In the M-step, the values of the parameters 
9 are changed in such a way that the value of the Q-function increases (Tanner, 1993, p.43). For the item parameters this is done with a single Newton-Raphson (NR) step. That is, 

OihQ(Ao;  >-o) Aih = Aih,O - a;h Q ( >-0 1 Ao) , (38) 
where subscript O now denotes a parameter value from the previous M-step. Using (32) it is straightforward to derive that OihQ( A; Ao) equals 

N L L [E[Pr(Sih = 1 /0; (ii) / s; ; Ao] - Pr(Svih = l ls; , xv)] Pr(s; /xv; Ao)- (39) 
v=l st The second order derivative is 

N a;hQ(A; Ao) = - }: }: E[Var(Sih / O; (ii ) /s;; Ao)]Pr(s; lxv ; Ao) , (40) 
v=l st Second order derivatives with respect to different item parameters are zero and this enables us to do a separate M-step for each item parameter. 

Remark 4. The derivatives should look familiar to those who use the Rasch model. First, it is clear that 
N = LL [aihE[19(0)ls;; Ao] - Pr(Svih = l ls;, xv)] Pr(s; lxv ; Ao), 

v=l st 



I J; = - j h(0 l s; ;  Ao) L L Oidn [1 + exp(0 - (ii)] d0 
i=l j=l 

= - j Oih ln [1 + exp(0 - (ih)] h(0ls; ; Ao)d0 
= j Pr(Sih = 1 10;  (ih)h(0ls; ; Ao)d0 
= E[Pr(Sih = l l0; (ij) l s;; Ao] 
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The same derivations must also be made when the marginal Rasch model is estimated by means of an EM-algorithm. 
A NR step is not required to update ai . Straightforward differentiation shows 

that 

It follows from (42) that Oa2Q (A ;  Ao) = 0 if 
9 

( 43) 
As expected from (29) , the estimation equations in the M-step have the form 

E { oE [ Cl NI s; Ao]I x; Ao} = 0, where oE [ Cl NI s; Ao] = 0 are the corresponding equa­
tion for the marginal Rasch model. We hope that the reader who knows the Rasch 
model has recognized the form of the derivatives. Routines for the marginal Rasch 
model may be used to calculate oE [ ClN I s; .\0]. The main technical problem here is 



24 the numerical approximation to the integrals in expressions of the form 
E[g(B)ls;]  = j g(0)h(0ls; ;  Ao)d0 J g( 0) Pr( st 10)</>( 0)d0 

f Pr(st l0)<f>(0)d0 ' 
(44) 

where g( 0) is some smooth function of 0. It is customary to use Gau,Bian quadra­
ture to this aim. An alternative approximation, called the Laplace method, is briefly 
discussed in the appendix. We are currently investigating whether the normal dis­tribution can be replaced by a similar distribution that would give closed form 
expressions for the integrals (Maris, in preparation ) .  

6.4 ,  Approximating the Observed Data Information Matrix 

From (39) and (41) it can be seen that aihQ(A; Ao) and 8u2 Q(A; Ao) can be written 
0 

N N . A A as Lv=l OihQv(A; Ao) and Lv=l Ou� Qv(A; Ao), respectively. Let lnj(A, A) denote an approximation to the information matrix with elements: 
( 45) 

( 46) 

( 47) 
The hats indicate that the quantities are evaluated at the final estimates. The hats indicate that the quantities are evaluated at the final estimates (see also Redner and Walker, 1984; Meilijson, 1989; Friedl and Gauermann, 2000). To see why this approximation works, one should first note that 8Qv(�; �) equals 8 ln Pr(xv; �) which is the first-order derivative of the marginal log-likelihood. Second, Inf((ih, (jk), for instance, is calculated as -k I::;;= 1 ( Oih ln Pr( Xv i �) ) 2 and this is a consistent estimate of E[(oih ln Pr(xv))2 ; A]; by definition the information with respect to (ih · It can be shown that this approximation becomes equivalent to the one proposed by Louis 
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(1982) if N becomes large. 

The diagonal elements of the inverse of lnJ(>i, ).) can be used to calculate ap­
proximate confidence intervals of the parameters. Specifically, if lnJ(j))--;1/ih de-, 
notes a diagonal entry of the inverse of lnJ(j, j) corresponding to (ih, an approxi­
mate 95% confidence interval is 

( 48) 
The approximation may also be used in Lagrange multiplier (LM) tests (Rao,1947; 
Aitchison and Silvey, 1958) for the NM against more general alternatives. Note that 
a LM test may not be used to test for unity of attractiveness parameters since the 
model with attractiveness parameters is not identifiable. 

7. A Test Based Upon MOR 
Consider a test with I items. Let X-i denote a vector of item responses except 

for the ith item and #0-i denote the number of correct responses in X-i · 
lemma 2. Let 82 > 81 . Under the NM 

(49) 
for all increasing functions J 

Proof. With binary scoring, the NM is monotone, unidimensional and responses 
to different items are independent given 0. It then follows from Theorem 2 in Grayson 
(1988) that #0-i has MLR; that is, 

Pr(#O-i = 8210) Pr( #0-i = 81 10) 
is non-decreasing in 0 if 82 > s 1 .  MLR implies SOL in #0-i which is equivalent to 
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for all increasing functions f (Ross, 1996, Proposition 9.1.2). □ 

Let Xi E { t ,  j} denote the event that a respondent chooses either option t or 
option j. Note that 

Pr(Xi = t1Xi E {t, j}, #0-i = s) 
= j Pr(Xi = tlXi E { t,j}, 0)f(0l#0-i = s )d0 
= E[Pr(Xi = t1Xi E {t, j}, 0)1#0-i = s]. 

(50) 

If (it > (ij, Pr(Xi = tlXi E {t, j}, 0) is increasing in 0 and Lemma (2) implies 
that Pr(Xi = t1Xi E {t, j}, #0-i) is increasing in #0-i. Similarly, Pr(Xi = tlXi E 
{t, j}, #0-i) is decreasing in #0-i when (it <  (ij , and constant if (it = (ij • Thus, the 
NM is violated if Pr(Xi = t 1Xi E {t, j}, #0-i) is a non-monotonic function of #0-i ,  
For later reference this is  stated as a theorem. 
Theorem 2 .  The NM is violated ifi for some t and j,  Pr(Xi = t1Xi E {t ,j}, #0_i) 
is not a monotonic function of #0-i .  

How may we employ this result to obtain a statistical test for model fit? Consider 
a table of the following form: 

#0-i : 0 1 
Xi = t  n (t , 0) n(t, 1) 
xi = j n (j, 0) n(j, 1) 

I 
n (t, I) 
n (j, I) 

In this table, n(t,  #0-i) denotes the number of respondents that have chosen re­
sponse t to item i and #0-i correct responses to the items in X-i· The percentage 
Pr(Xi = tlXi E {t, j}, #0-i = s) can be consistently estimated by the statistic 

n(t, s) n(t, s) + n(j, s) (51) 
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The rank correlation between the ranks of these estimates and #0_; provides an 

appropriate statistic to test whether the relation is monotone. Specifically, the rank 

correlation may be 1 ,  - 1  or 0. To limit the number ·of test we may consider only 

pairs where t = 0 and j =/:- 0. Then, the rank correlation should be 1 and we obtain 

a consistent test for rising selection ratios. There are J; such tests for each item. To 

avoid chance capitalization it is recommended to look only at items and alternatives 

that are a priory considered suspicious. Further research is directed at finding ways 

to thicken the information in the tables and obtain a test for the model as a whole. 

8. The Nedelsky Model as a Signal Detection Model 

Consider a MC item that consists of a "signal" (or stimulus) , an instruction to 

respond, and a number of alternative answers that give interpretations of the signal 

one of which is the correct interpretation. The signal can take many forms; for 

example, a picture, a speech fragment , a newspaper article, etc. It is characterized 

by a number of key properties or "content elements" (CEs) that respondents must 

recognize in order interpret the signal correctly and be certain to choose the correct 

answer. Each alternative answer provides an interpretation of the signal. The correct 

alternative has all relevant properties of the signal while the item writers have been 

careful to ensure that distractors lack one or more. 

Consider, for example, an item showing a picture of a car on a traffic circle 

with his right blinker on; this is the signal. This item is administered to people who 

apply for a drivers licence. Respondents are instructed to choose the alternative 

that provides a correct interpretation of the situation. Response alternatives are, 

for instance, a) the driver may turn off the traffic circle, b) the driver should give 

priority to the cyclist, etc. A similar situation arises in examinations for vine tasters, 

where the stimulus would be say a white wine produced in the hills around the Musel 



28 river and examinees are supposed to recognized its particular taste. Using the basic notion of the NM, it is assumed that an alternative is left out 
of consideration if a respondent recognizes any CE that is missing. That is, we interpret Pr( Sij = l /0) as the probability that the respondent recognizes at least one 
of the CEs that are missing in alternative answer j.  A respondent who recognizes all 
CEs will consequently reject all distractors and choose the correct alternative with probability 1. 

We ignore the item index for a moment and introduce some notation. Assume that there are c CEs and each CE is indexed with f, where f = 1, ... , c. Let (E1 = 1) denote the event that CE f is recognized. Further, define Tjf as an indicator of 
missing CEs; that is, Tjf equals 1 if CE f is missing in alternative j, and O otherwise. Since the correct alternative has all relevant properties, To1 = 0 for all f. The TjJ may be considered as the entries of a matrix which represents the content structure 
of the item. It follows that 

(52) 
where EB denotes the Boolean sum (OR) over f,  and ffiTjJEJ = l the event that one or more of the missing CEs are recognized. Since there are no CEs missing in the 
correct alternative, it cannot be excluded and Pr( S0 = l /0) = Pr(O = 1 /0) = 0 .  Note that Sj = 0 if none of the missing CE i s  recognized. Since Si = 0 is the negation of Sj = 1, it follows from De Morgan's Laws that 

(53) 
where ® is the Boolean product (AND) over f, and ® (l - 1J1E1) = l denotes the event that none of the missing CEs is recognized. This probability simplifies to Pr(Sj = 0/0) = TT1 Pr(E1 = 0/0f11 if we assume that respondents evaluate each CE 
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independently. Given this assumption, it is readily seen that the NM equals a signal detection model when the content structure of the item is such that 

Pr(Si = 0 10) = Pr(E1 = 0 10), (54) 
for each j = 1, . . . , Ji, and Pr(Ej = 0 10) is modelled as in (1). This means that there is only one CE missing in each distractor. Consider, for example, an item where respondents are assumed simply to "see" the correct answer or not. Hence, 
there is a single CE, Tj1 = 1 for j = 1, . . .  , Ji, and Pr(Sj = 0 10) = Pr(E1 = 0 10). It is seen that all option location parameters are equal if we apply the NM to an item with this content structure. 

The development of the signal detection version of the NM is a topic for future research. A first attempt is described in the next chapter. Among other things, it will be shown that Bock's (1972) nominal response model can be considered a signal detection NM model. 
9. Conclusion 

The NM is a restrictive model based upon a simple theory about the response 
process. The advantage of a theory-based model is that the theory guides the inter­pretation of the parameter estimates. Estimated abilities may, for example, be used to predict which alternatives respondents reject. The advantages of a simple model 
are clear. Simulation studies by Revuelta (2000) show quite dramatically that the inclusion of option-specific discrimination parameters, for instance, would require huge numbers of respondents. On the other hand, a parsimonious model, however beautiful, may be inadequate for many (if not all!) data and should be tested before it is accepted. We have discussed a possible test but it is clear that further tests must be developed before the NM could be brought in for our daily work. Note that, even when the model fits the data, the process interpretation need not be valid. Farr, 



30 Pritchard and Smitten (1990), for instance, found no evidence in support of the theory underpinning the NM. 
In the introduction it was noted that binary scoring entails loss of informa­tion. Using the missing information principle (Orchard and Woodbury, 1972; Louis, 

1982), it has been shown that binary scoring will indeed provide less precision in estimated abilities than option scoring, provided the distractors differ in difficulty. It was also shown that precision could be increased further if we could somehow entice respondents to reveal their latent subsets. This observation led Verstralen and Ver­helst (2000) to develop a model for subjective probabilities given by respondents to each of the alternative answers. Their work shows that careful construction of MC 
items may be a good way to enhance the precision of estimation. We believe that, speaking in general terms, "richer data" is key to estimate more complex models and make more specific statements about test-takers. The same purpose is served by the signal detection NM which makes use of the content structure of the items. 
To get the latent subsets we might consider, for instance, offering the alternatives 
one by one and ask respondents if they think that the alternative is incorrect. It is a small step from here to ask them to provide a subjective probability. In the NM the subjective probabilities are implicitly assumed to be either O or 1 divided by the number of alternatives minus the alternatives considered wrong. Finally, although we have described an estimation procedure we have not for­mally proven that the NM is identifiable and the regularity conditions required for consistency are met. These are essential issues that must be addressed in future research. 



First, 

10. Appendix: 
10. 1 . Deriving %o '1Pitj (0) in Theorem (1) 

8 1 - s · · 8 
80 Pr(Xi = j /0) = f v(st) 80 Pr(Si = si /0)  

1 - s - - 8 = L ( f) Pr(Si = si /0)  ,(;10 ln Pr(Si = si /0) 
s ;  V S 1  u 

'°' 1 - Sij ( _ / ) ( + [ + / ] ) = � v(st ) Pr S; - s; 0 s; - E S; 0 
1 - s - -= � v(st) Pr(Si = si /0 )  (E[v(St ) /0] - v(st )) 

= E[v(S;) / 0] Pr(Xi = 0 /0)  - l + Pr(Sii = 1 / 0 ) .  
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The fourth equality holds since E[v(St ) /0] - v(st)  = Ji - E[St /0] + 1 - Ji + st - 1  = 
st - E[St /0] . Now, 

!_ --( ) _ }o Pr(Xi = t /0) Pr(Xi = j /0 )  - Pr(Xi = t j0)fo Pr(X; = j /0 )  
80 1/JitJ 8 - Pr(Xi = j /0)2 

which simplifies to the expression in the proof of Theorem (1 ) .  

10.2. Simplifying the Q-function 

the Q-function can be written as: 

L h(s /x; Ao) L h 1'J(0 ,  st)h(0 / st ;  Ao)d0 - L h(s /x; Ao) L � � (;jSvij 
S V S V t J 
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Let s(-v) denote the latent subsets without sv ; the subset vector of respondent v .  

EE h(s lx; Ao) f rJ (0, st)h(0 lst ; Ao)d() 
v s lo 

= E E  E Pr(s(-v) lsv , x; Ao) Pr(sv lx) Jo iJ((), st)h(0 lst; Ao)d() 
v Sv 8(-v) 

= E E  Pr(sv lx) lo iJ((), st)h(0 lst ; Ao)d() [ E Pr(s(-v) isv , x; Ao)] 
v s., 8(-v) 

= E E  Pr(sv lx) { iJ ((), st)h(0 ist;  Ao)d() 
V Sv 1° 

= E E  E Pr(st ixv ) Pr(s l st ,  xv) Je iJ (0, st)h(0 lst ; Ao )d() 
v s;!" sv ls;!" 

= E E  Pr(st lxv) lo rJ((), st )h(0 l st ; Ao)d0 lE Pr(s lst,  Xv)] 
v s;!" v is;!" 



Further, 

L L h(slx; -Xo) L L (ij Svij 
V B i j 

= L L Pr(sv /xv) L L (ijSvij 
V Bv i j 

= L L L L Pr(sv lxv)(ij Svij 
V Bv i j 

= L L L (ij L Pr( Sv lxv )svij 
V i j Bv 

= L L L L (ij Pr(Svij = l lst , xv) Pr(st lxv) 
V st i j 

It follows that the Q-function may thus be written as 

L L  [!e iJ(O, st)h(O lst ; -Xo)dO - � � (ij Pr(Svij = llst , xv)] Pr(stlxv) 
V sJ i J 

It remains to work out the probabilities Pr(Svij = l lst, xv) and Pr(stlxv). First, 
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where 

P (S . .  _ l l  + ) _ Pr(Svij = l , st , xv) r VtJ - sv ' Xv - p ( + ) r s
v 

, xv 

Pr(Svij = 1 , st, Xv) 
1 

1 
1 - l + Pr Xv S,; ·=o,s+ Pr s.; =Oist ' 

Pr(xv ISv ,j=l,s ) Pr(Sv,j=lls, ) 

Pr(xv lSvij = 1, s!) = L Svij Pr(xv l sv), and s. Jsj 

which leads to the expression in the text. Finally, Pr( st !xv) = Pr(x11J:f J...�r(sj l .  

1 0. 3. Laplace Approximation 

An important technical issue involved in the EM-algorithm is the evaluation of 
a ratio of integrals of the form: 

E[g(0)1s!] = j g(0)h(0 1s!; >.o)d0 
J g( 0) Pr( st 10)</>( 0)d0 J Pr( st 10)</>( 0)d0 

where g( 0) is a function of 0, and </>( 0) the p.d.f. of the normal distribution with zero 
mean. We see that E[g(0) lst] has the form of a ratio of two univariate integrals. 



This ratio can be written as 
J g(0) exp {ln [Pr(st l0)cp(0)]} d0 

J exp {ln [Pr(st l0)cp(0)]} d0 
J g(0) exp {-L(0)} d0 

J exp {-L(0)} d0 
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(55) 

(56) 

where exp {-L(0)} = Pr(st l0)cp(0) is the posterior of 0 given st with a maximum 
at 0. The idea is to expand around 0 to obtain: 

f g(0) exp { -£(0)} d0 "' f  g(0) exp { - [ L(0) + (0 - 0)L'(li) + (0 � 6)' L"( 0)] } d0 
= g(ii) f exp { - [ L( ii) + (0 � b)' L"(ii)] }  d0 
= g(O) exp (-L(O)) f exp { - (\}}e 
= g(0) exp (-L(0)) 

where a2 = (L"(0)) -1
. Intuitively, if exp (-L(0)) is very peaked around 0 the in­

tegral can be well approximated by the behavior of the integrand near 0 . This is 
the case when there are many items. Formally, it was demonstrated by Tierney and 
Kadane (1986) the error of approximation is of order O((L; J;)-2). It follows that 

J g(0) exp { -L(0)} d0 ~ g(0) exp (-L(0)) 
J exp { -L ( 0)} d0 ~ exp ( -L ( 0)) 

= g(0) 

Thus, the important part is to find 0 that maximizes ln [Pr( st l0)cp( 0)] .  (See also 
Tanner, 1993, p. 24-25). 

If we apply this scheme in the present situation, we find that Laplace's method 
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(Tanner, 1993) gives the following rough approximations: 

P ( + j . , ) ~ Pr(xv /s;) exp(-0s,t) r Sv Xv , AO ~ ,. , 
I:h Pr(xv !S,t = h) exp(-0h) 

E[Pr(Sih = l /0) /st ;  Ao] � Pr(Sih = l /0), and 
E[Var(Sih /0) /st;  Ao) � Pr(Sih = 1 /0)(1 - Pr(Sih = l /0)), 

where 0 is the unique maximum of the function st0 - Li Lj ln[ l  + exp(0 - (ij)] -
½ C:,o ) 2 • This maximum can be found using Newtons method; that is 

where i denotes iteration and iterations continue until l0i+1 - Oi l is sufficiently small. 
To start up the iterations at the first iteration of the EM-algorithm we need initial 
estimates. Here is a suggestion. For O < st < Li Ji, 

provides a reasonable initial estimate of 0 (see Cohen, 1979) . For st E {O , Li Ji} we 
use 0 from the adjacent sum-score. For further iterations of the EM-algorithm we 
simply use the estimated values from the previous one. 
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