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General Introduction 

The purpose of Project 'Optimal Item selection' is to solve a number of 

issues in automated test design, making extensive use of optimization 

techniques. To this end, there has been a close cooperation between the 

project and, among others, the department of operations Research at 

TWente University. In each report, one or several theoretical issues are 

raised and an attempt is made to solve them. Furthermore, each report is 

accompanied by one or more computer programs, which are the 

implementations of the methods that have been investigated. In due time, 

requests for these programs can be sent to the project director. 

T.J.J.M. Theunissen, 

project director. 
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Introduction 

In this report a method is presented to find a solution to a simpli

fied version of the item selection problem. Based on a special 

relaxation and an aggregation method, a heuristic is developed that 

solves the problem fast and accurately. Test results will be presented 

and compared with the results of several (quasi) exact and heuristic 

solution methods. Some concluding remarks will be given on the 

algorithm and the test results. The Rasch model is the item response 

model that is the basis of the mathematical model. 
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l Specification of the item selection problem and an LP-relaxation 

The item selection problem is the problem of selecting a number of 

items from an item bank (a set of available items), such that the 

resulting test satisfies several conditions. An item in the item bank 

is characterized by its difficulty parameter - recall that we use the 

Rasch model - and the categories the item belongs to. The item bank 

can be represented by a layered network (see figure 1). 

(1.1) Example of a network representation of an item bank 

Top level General knowledge 

.....--La-n_g_u_a_g_e_s_...,I Mathematics I Technics 

Bottom level 

Every level of the network is a specification of the higher level, and 

the bottom level represents the individual items. In general we can 

specify conditions on each level of the network. For example: 

- individual items (bottom level): IF item i in test THEN NOT item j; 

- categories (subsets of items): the number of items selected from 

category k is at least a fraction fk of the total number of items in 

the test; 

- item bank (top level): the test information function must exceed the 

target information function. 

Other restrictions we can think of are for example a maximum on the 

total duration of the test or a maximum number of items in the test. 

Besides there are several objectives possible. 
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In this report we will study a simple version of the item selection 

problem. The objective is to minimize the number of items in a test 

while reaching a target information for several ability levels. This 

problem, which has been studied by several authors ( [ 4), [ 5), [ 6], 

[ 9), [11)), can be represented by the following model: 

(L 2) IP min f (x), 

Ax.!: b 

such that 

Xj e (0,1}, j - l, . .  ,n 

where f (x), b and A are specified as follows: 

n 
(1. 3) f (x) - l Xj 

j-1 

bi T(91), i - 1, . .  ,m 

the target information for ability level 91, 

aij - I (91,j), i - l, .. ,m 

j 1, . .  ,n 

- the item information of item j for ability level 91 

based on the Rasch-model (e. g. see [ 7)) 

The interpretation of the decision variables Xj is as follows. With 

every item j in the item bank corresponds a (0,1) decision variable 

Xj: Xj=O means that item j is not selected in the test, Xj-1 means 

that item j is selected. 

A relaxation of problem IP that has been extensively studied is: 

(1.4) LP 
n 

min l Xj 
j-1 

Ax .!: b 

such that 

0 :S Xj :S 1, j - 1, .. , n 

LP is a linear programming problem with just a few constraints. 

Therefore we can obtain a feasible solution to IP by solving LP with 

for example the simplex method and use a rounding method. But apart 

from the fact that this solution is not always optimal, the compu

tation time is high in comparison with heuristics. A solution of LP 
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can eventually be used as a starting-point for a branch-and-bound 

procedure to produce a solution to IP. 

When we look at the tests that result from applying (quasi) exact 

methods to solve IP (for example by first solving LP), we observe that 

the items are always selected in one or more groups of items with 

about the same difficulty level of the items in one group. Therefore 

we refer to those groups by the term clusters, since the selected 

items cluster around several difficulty parameter values. The number 

of clusters can differ from 1 to at most m (the number of target 

information points, that is the number of constraints), depending on 

the item bank and the target information points. 

Razoux Schultz ( [ 9]) developed a heuristic that is based on this 

observation. In that heuristic two cluster points (i.e. difficulty 

parameters) are calculated using a special function. These cluster 

points are such that if a test satisfying the target information 

restrictions is constructed from an item bank which is assumed to 

contain an infinite number of items at each difficulty level (an ideal 

item bank, that of course does not exist in practice) and if this test 

consists of at most two clusters, then all selected items will have 

difficulty parameter values equal to one of the calculated cluster 

points. If in a real test construction problem the condition of having 

at most two cluster points using an ideal bank is satisfied, then the 

optimal solution of such a problem using the real item bank will be 

found by selecting only items with difficulty parameter equal to or 

near one of the calculated cluster points. The heuristic of Razoux 

Schultz selects items pairwise with difficulty level around the 

calculated cluster points until a feasible solution is obtained. 

The following complications may occur when this heuristic is applied: 

the theoretical number of clusters (using a ideal item bank) is 

larger than 2. In this case the solution will in general not be 

optimal. 
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- The target information function is not symmetrical. In that case the 

items indeed have to be selected near the cluster points but not 

pair wise, i.e. the number of items in the two clusters can differ 

significantly. This will not be detected by the heuristic since no 

information about the relative or absolute number of items in each 

of the clusters is available and the items are always selected pair 

wise. 

The number of available items with difficulty level near a cluster 

point differs considerably for the two cluster points. In that case 

the information of the items selected near the cluster points is not 

the same for both points, so the number of items that have to be 

selected can also differ considerably for the two clusters. This is 

also not detected for the same reasons as mentioned above. 

- obviously a combination of the foregoing situations might cause 

complications as well. 

In the next section another relaxation of the integer programming 

problem IP is introduced, which will be shown to have some useful 

properties. 
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2 A linear relaxation with useful properties 

A relaxation of IP that will appear to be very useful is given by: 

(2. 1) RP min f (x) 

Ax:!!:. b 

such that 

Xj � 0, j - l, .. , n 

A is the coefficient matrix of an item bank with one item at every 

possible difficulty level in the range [ -3. 0, 3.0]. Since there are 

infinitely many levels in that range this is only a theoretical 

assumption. However we could approximate such an item bank by an item 

bank that contains one item of every difficulty level from -3. 00 to 

+3. 00 with an increment of a. So difficulty levels -3. 00, -3. OO+a, 

-3.00+2a, .. . ,3.00 are present. It is clear that the approximation gets 

better when a gets smaller. We denote the primal solution to RP by x* 

and the associated dual solution by w*. We may remark that problem RP 

is the only problem in this report that uses (approximately) ideal 

data. The other problems that are specified use the real data of the 

item selection problem that has to be solved. 

What is the interpretation of the relaxation RP? Well, since a 

decision variable can assume any non-negative value, available items 

can be selected more than once. Therefore problem RP is the same as 

the LP relaxation (1.4) for an ideal bank, where in RP all items with 

the same difficulty parameter are represented by just one decision 

variable Xj. And since an ideal item bank contains items at all 

difficulty levels, the optimal solution to RP will consist of only 

items with difficulty level equal to a cluster point. So the solution 

x* provides us with the cluster points, namely the difficulty para-

meters dj of the items j with Xj > 0. If we define xI for example as 

follows: 

(2. 2) xI :- rx*l (i. e. x* rounded up component wise) 

we also obtain an indication of the number of items in the various 

13 



clusters, namely approximately x1j items in the cluster around dj, (A 

different rounding method to define x1 can be used but that is not 

really relevant at this moment. ) Another interesting property is that 

we can easily derive a lower bound Z1b to IP from x*: 

(2.3) 
r n *7 
r x· 

j-1 J 

We could use the obtained information about the clusters to adapt the 

cluster point method of Razoux Schultz. A minor problem remains if we 

do so. For we know (approximately) the number of items to be selected 

in the clusters, but we do not know which items have to be selected. 

We need a decision rule to decide which of the items with item 

difficulty parameter near but not equal to a cluster point, should be 

selected. 

Now for a moment we shall let these results rest and investigate in 

what way we can use ,r*, the optimal dual solution to RP. For that 

purpose we specify the following problem: 

(2.4) AP 
n 

min L Xj 
j-1 

1r*Ax � 1r*b 

X E (0,1} 

such that 

Problem AP is derived from IP by aggregating the constraints using 

weights 1ri. We recall that only problem RP uses ideal data, so the 

matrix A in (2.4) is again the matrix with real data. AP is closely 

related to the well-known knapsack problem and can as such be easily 

solved by sorting the items j such that: 

and subsequently setting Xj to: 
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(2.6) Xj - 1 

0 

j 

j 

l, . .  ,r , 

(r+l), .. ,n , with: 

l (w*A)j i?; ,r*b, 
j-1 

r-1 

l (,r*A) j < ,r*b 
j-1 

The following theorem gives a useful property of the solution x of AP. 

(2. 7) Theorem: if the solution x of AP satisfies: Ax i?; b, 

then x is optimal for IP. 

Proof: suppose x is not optimal for IP. 

Then there exists a feasible solution y for IP with 

f(y)<f(x). But then the following implications hold: 

y is feasible for IP � Ay i?; b � ,r*Ay i?; ,r*b � 

y is feasible for AP � x is not optimal for AP, 

which leads to a contradiction CJ 

So theorem (2.7) tells us that a solution to AP is also optimal for IP 

if it is a feasible solution for IP. If the solution is not feasible 
* 

for IP we have to adjust the weights "'i. It is obvious that the 

restrictions that are not satisfied, should get a relatively higher 

weight and that the restrictions that have slack should get a rela

tively lower weight. 

If we define xt as the solution found after k adjustments of the 

weights and ,rt as the vector of corresponding weights, the iterative 

adjustment of the weights can be given by: 

(2.8) yk :- Axt - b 
k+l 

"'i :- max k k k 
0 , "'i + t * Yi } 

The problem is how to choose a proper value for tk . 

The adjustment (2. 8) is often used in so-called subgradient optimi

zation where a Lagrange relaxation of IP including weights w! is 

applied instead of problem AP. This Lagrange relaxation is given by: 
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- l C· 
j-1 J 

k It * Xj + ,r * b ' such that 

k Xj e { 0 , 1 }, j - 1, .. ,n 

The solution to LGR is given by: 

(2.10) if 

if 

if 

The solution process using LGR and adjustments 2.8 is called 
k k subgradient optimization because y is a subgradient of L (x) in x . It 

k can be shown ( [ 8)) that { L (x ) ) converges to the optimal value of 

f (x) if the factors {tk ) satisfy the following conditions: 

(2.11) tk 
➔ 0 for k ➔ oo, 

l tk - 00 

k-1 

A choice for tk that satisfies 2. 11 and that is often successful, is: 

Zub - Z1b 
(2.12) tit - f * -----

11 l 11 

m 
, with: 11 i II - l (yt)2 

i-1 

Subgradient optimization according to (2.8) . .  (2. 12) was implemented 

by Kester ( [ 6)), following (exactly) an article by Beasley ( [ 3]). 

For the factor f in (2. 12) an initial value of 2 .0 was chosen and f 

was halved whenever there was no substantial improvement in the 

solution. The algorithm was halted when f < 0. 008. The algorithm 

happened to converge very slowly due to a zig-zag motion that did not 

damp very well. This can be explained if we examine the results of a 

trial-and-error process to adjust the weights ,r!. For it appeared that 
00 

the optimal weights "'i differed often only significantly from the 

start weights "'i in the fourth or fifth decimal and that the solution 

was always very sensitive for changes in these decimals, which implies 

an adjustment using (2 .12) with f < 0. 001. Therefore starting the 
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iterative process with f - 2 .0 often first leads to a detoriation 

instead of convergence to the optimal value ,r ao, and stopping when 

f < 0.008 is too soon. 

The fact that ,r* and ,r co differ only slightly means that sorting the 

items such that (,rA)1 � .. � (,rA)n will lead to more or less the same 

sorted sets for ,r - ,r* and for ,r - ,rao. So if we sort the items using 

,r*, the optimal items will be "somewhere in front of the sorted list 

of items". 

A final remark we make is that problems AP and LGR do not differ 

essentially since for both problems the solution consists of those 

items j for which (,rA) j is the largest. The only difference is that 

the solution of AP can also contain items for which (,rA)j < 1. 

In the next section a heuristic will be presented that is based on the 

results and observations from the various problems that are discussed 

so far, namely IP, LP, RP, AP and LGR. 

17 





3 A heuristic to solve the item selection problem 

The heuristic that will be presented in this section is mainly based 

on the following results and observations made so far: 

- from the primal solution x* of RP, using (approximately) ideal data 

we know how many clusters occur in the solution to IP, and around 

which difficulty parameters the items cluster. Besides we know 

approximately the number of items in each cluster, given by xI. 

- using the dual solution w* of RP we can order the items such that 

(w*A)1 � .. � (w*A)n. If the solution to AP is feasible for IP, the 

optimal solution to IP is found. Otherwise the optimal items will be 

somewhere in front of the sorted list of items. 

The resulting heuristic is given by: 

(3.1) Heuristic to solve the item selection problem IP 

Step 1 Solve RP. Solution: x*(primal), w*(dual). 

xI :- rx*l 

Step 2 Sort items such that (w*A)1 � 

Step 3 j: -0; 

Xj : - 0, j - 1, .. , n; (no items selected) 

REPEAT j: -j+l; 

IF cluster (item j) IS NOT full 

THEN Xj : - 1 (select item j) 

UNTIL all clusters full (xj items in cluster j for all j) 

OR j - n (not enough items available to fill all 

clusters); 

Step 4 IF x feasible 

THEN go to step 5 

ELSE REPEAT select item "greedily" (f. e. as described below) 

UNTIL (x feasible) OR (all items selected) 
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Step 5 IF x feasible 

THEN backtrack (check whether selected itern (s) can be removed 

without violating a restriction of IP) 

ELSE there is no solution for IP 

There are several versions possible for the rounding procedure to 

determine xI in step 1. Another possibility is e.g.: 

(3.2) xI : - ROUND (x*), j - l, . . , n. 
j j 

The "greedy" selection of items in step 4 can be implemented in 

various ways. The method used in the testing of the algorithm is 

selecting those items that give the largest contribution to one of the 

violated restrictions , so the selected item j* e (1, 2, .. ,n ) maximizes: 

(3.3) max 
i 

aij 
-----, i - 1, . .  ,m 

bi - Aix 

In the next section some test results will be presented. 
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4 Results 

In the numerical experiments we used 24 simulated item banks. The 

difficulty parameters of the items in the bank were sampled from 8 

different distributions, where only sampled parameters with values in 

the interval [-3. 2 , +3. 2] were accepted. The 8 distributions used 

were: 

(4. 1) Bank nr. Distribution 

l Uniform(-3,+3) 

2 N (O,l) 

3 N (0,2) 

4 N (0,4) 

5 N (-2,l) 

6 N{-2,2) 

7 N (-2, 4) 

8 N (l0,25) 

With each of these distributions three item banks were simulated with 

respectively 300, 500 and 1000 items, which resulted in the 24 item 

banks (8 x 3) mentioned before. 

There were 4 test problems specified. The specifications are given in 

table (4. 2), as well as the solution to the associated problems RP. 

(4.2) Specifications of the four test problems 

Problem no. Tar�ets Continuous Difficulty 

8 1(9) solution parameter 

l -2 6 25. 83 -0.81 
0 11 25. 81 0. 81 
2 6 

2 -2 5 16. 91 -1.84 
0 5 38.85 l. 84 

10 

3 -2 10 38.85 -1.84 
0 5 16.91 1.84 
2 5 

4 -2 7 26.11 -1 .66 
0 7 26.14 l .  67 

7 
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CPU time 

(in sec.) 

3. 80 

2. 90 

2. 90 

8. 80 



Ye notice that all test problems have theoretically two cluster 

points. There are both symmetric and asymmetric target information 

functions. The heuristic (3 . 1) was applied to solve the four test 

problems for all 24 item banks. So a total number of 96 problems is 

solved. The results of these numerical experiments are presented in 

tables (4. 3) to (4. 7) together with some statistics. In these tables 

the results are compared with the results of five other solution 

111ethods, namely: 

- three other heuristics: Mindev ( [  4], [ 9]), Clusterpoints( [  9]) and 

Subgradient( [  6]); 

- a quasi-exact method: Multi (Simplex for LP + rounding as in [ 5]); 

- an exact algorithm: the Land and Doig algorithm for IP ( see e. g. 

[10]) 
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(4.3) Results for problem specification 1 

Method Mindev Subgr Clust Land Multi Heur3 

Bank //items 

1 300 53 53 52 52 52 53 
500 54 54 53 52 52 52 

1000 54 54 52 52 52 52 

2 300 53 53 52 52 52 52 
500 53 53 52 52 52 52 

1000 54 54 52 52 52 52 

3 300 54 54 52 52 52 53 
500 54 54 52 52 52 52 

1000 54 54 53 52 52 52 

4 300 53 53 53 52 52 52 
500 54 54 52 52 52 52 

1000 54 54 52 52 52 52 

5 300 98 98 - 98 98 98 
500 84 84 84 84 84 84 

1000 55 55 60 53 54 54 

6 300 54 54 56 53 53 53 
500 53 53 53 52 53 53 

1000 54 54 52 52 52 52 

7 300 53 53 52 52 52 53 
SOO 54 54 53 52 52 53 

1000 53 53 52 52 52 52 

8 300 54 54 53 52 52 53 
500 53 53 53 52 52 52 

1000 54 54 52 52 52 52 

Optimal 2 2 14 24 22 17 

+l 9 9 7 2 7 

+2 13 13 

> +2 2 

No solution 1 

Rank 1 2 2 14 24 22 17 

2 1 1 1 2 2 

3 2 2 

4 6 6 4 3 

5 15 15 

6 3 
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(4.4) Results for problem specification 2 

Method Mindev Subgr Clust Land Multi Heur3 

Bank {/items 

1 300 57 57 62 57 57 57 
500 57 56 63 56 56 56 

1000 57 57 62 56 56 56 

2 300 58 58 63 58 59 58 
500 58 58 63 57 58 58 

1000 57 57 63 56 57 57 

3 300 57 57 63 57 57 57 
500 57 56 62 56 57 57 

1000 57 56 62 56 56 56 

4 300 57 57 62 57 57 57 
500 57 57 63 56 57 57 

1000 57 56 62 56 56 56 

5 300 86 72 98 72 72 72 

500 80 68 93 67 67 67 
1000 62 62 62 61 62 62 

6 300 62 60 61 60 60 61 
500 58 57 62 57 57 58 

1000 58 57 63 57 57 57 

7 300 57 57 63 57 57 57 
500 57 57 63 57 57 57 

1000 57 57 62 56 57 57 

8 300 58 58 63 58 59 58 
500 58 58 63 58 58 58 

1000 57 57 63 56 57 57 

Optimal 8 16 24 15 15 

+1 13 8 2 9 9 

+2 1 

> +2 2 22 

No solution 

Rank 1 8 16 24 15 15 

2 6 6 1 6 6 

3 1 1 1 

4 2 2 1 2 

5 6 2 

6 1 22 
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(4.5) Results for problem specification 3 

Method Mindev Subgr Clust Land 

Bank //items 

1 300 57 57 63 57 
500 57 56 62 56 

1000 57 56 62 56 

2 300 59 59 65 58 
500 58 57 63 57 

1000 57 57 63 57 

3 300 58 57 63 57 
500 57 57 63 57 

1000 57 56 62 56 

4 300 57 57 63 57 
500 57 57 63 57 

1000 57 56 63 56 

5 300 XX XX XX XX 

500 200 nn nn 200 
1000 92 92 96 92 

6 300 118 118 118 118 
500 65 65 74 64 

1000 63 62 72 62 

7 300 61 61 69 61 
500 59 59 66 59 

1000 57 57 63 57 

8 300 57 57 63 57 
500 57 57 62 56 

1000 57 56 62 56 

Optimal 12 20 2 23 

+l 11 3 

+2 

> +2 21 

No solution 

Rank 1 12 20 2 23 

2 2 2 

3 1 1 

4 1 

5 7 

6 21 

X - not included in statistics 
nn - not known, no results available 
xx - infeasible 
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Multi Heur3 

57 57 
56 56 
56 56 

59 59 
57 57 
57 57 

58 57 
57 57 
56 56 

57 57 
57 57 
56 56 

XX XX 

nn 200 
92 93 

118 118 
65 64 
62 62 

61 61 
59 59 
58 58 

57 57 
57 57 
56 56 

18 19 

5 4 

18 19 

2 2 

1 

2 1 

1 



(4.6) Results for problem specification 4 

Method Mindev Subgr Clust Land Multi Heur3 

Bank I/items 

1 300 55 53 53 53 54 53 
500 55 54 53 53 53 53 

1000 55 54 53 53 54 54 

2 300 55 54 54 54 54 54 
500 55 54 53 53 54 54 

1000 55 55 53 53 53 53 

3 300 55 54 53 53 53 53 
500 55 54 53 53 54 53 

1000 55 55 53 53 54 53 

4 300 55 54 53 53 53 53 
500 55 54 53 53 53 53 

1000 55 54 53 53 54 53 

5 300 136 135 -- 135 135 135 
500 108 107 -- 107 107 107 

1000 64 63 89 63 63 63 

6 300 66 62 86 62 62 63 
SOO 56 56 61 55 56 56 

1000 56 55 61 55 56 55 

7 300 55 54 57 54 54 55 
SOO 55 54 54 54 54 54 

1000 SS 53 53 53 53 53 

8 300 55 53 55 53 53 53 
500 55 53 53 53 53 53 

1000 55 54 53 53 54 53 

Optimal 12 16 24 15 19 

+1 8 10 9 5 

+2 15 2 1 

> +2 1 5 

No solution 2 

Rank 1 12 16 24 15 19 

2 1 1 1 1 

3 2 2 2 

4 1 3 5 2 

5 7 6 1 1 

6 15 7 
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In tables (4.3) to (4. 6) we see that especially for item banks of type 

5 the solutions are extreme and depend strongly on the number of items 

in the bank. This is easily explained when we notice that the distri

bution of the item difficulty parameters for these item banks is the 

worst in the sense that only a few more difficult items are available 

as compared with the number of easier items (see (4. 1)). 

(4. 7) Overall statistics for the four problem specifications 

Method Mindev Subgr Clust Land Multi Heur3 

Optimal 22 50 32 95 70 70 

+1 41 30 9 25 25 

+2 29 15 1 

> +2 3 50 

No solution 3 

Rank 1 22 50 32 95 70 70 

2 10 10 2 11 11 

3 2 3 2 4 5 

4 10 11 5 7 8 

5 35 21 1 3 1 

6 16 53 

Minimal * 3 0.4 33 0. 5 4 6 1. 0 
CPU time 5 0. 6 48 0. 5 6 11 1.6 

1 0. 7 103 0.5 82 76 3. 2 

Mean * 3 0.7 59 0.7 33 4. 0 
CPU time 5 0. 7 70 0. 7 72 4.0 

1 1.0 134 0. 7 168 6. 2 

Maximal * 3 2. 3 323 1. 2 ** 57 25.1 
CPU time 5 1.6 201 1. 1 ** 123 24.9 

1 1. 6 169 1. 3 ** 272 23.3 

Heur3 was executed on an Olivetti XT (8 Mhz) with a numeric 
co-processor , the other algorithms where executed on a 
Victor AT (8 Mhz), also with a numeric co-processor. This AT 
was about two to three times faster than the XT. 
* - in seconds , without CPU time for input and output, and 

without CPU time for solving RP for heur3 , because RP 
had to be solved only once for each of the four problem 
specifications (see (4. 2)). 

3 / 5 / 1 - item bank of 300 / 500 / 1000 items 
** - more than 3 hours, therefore computing mean CPU time 

does not make sense. 
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It has to be noted that except for Heur3 the algorithms were applied 

to item banks that were sorted in order of increasing item difficulty 

parameter values. 

From table ( 4. 7) we see that for Heur3 the mean CPU times for i tern 

banks of 300, 500 or 1000 items do not differ a lot. This is due to 

the solutions with extreme CPU times (about Max. CPU) . For these 

problems, most of the CPU time is spent to perform steps 4 and 5 of 

the algorithm, that is for those problems for which the solution to 

problem IP is much greater that the solution to problem RP, since in 

that case a lot of items are selected in step 4. The mean CPU times 

for the problems for which the solution to IP is about the same as the 

solution to RP, let's say (solution IP - solution RP) S 3) , is about: 

(4. 8) Number of items 

in the bank 

300 

500 

1000 

Mean CPU time 

(in sec. ) 

1. 3 

2.2 

4. 6 

From (4. 8) we see that the CPU time is almost linear in the number of 

items in the bank, as long as steps 4 and 5 are not significantly 

involved (CPU time for STEP 1 not included). 

For the algorithms Mindev and Clusterpoints we see that the CPU times 

are small and almost independent of the number of items in the item 

bank. For these algorithms the CPU time depends mostly on the number 

of items that have to be selected. It has to be noted that the 

algorithm Subgradient has to start with a feasible solution, and that 

this feasible solution was derived by Mindev. That explains the 

conformity of results for Mindev and Subgradient for example in table 

(4. 3) . 

From the overall results in table (4. 7) we may conclude that the 

heuristic Heur3 performs very well. Of course the exact Land and Doig 

algorithm is the most accurate, but due to its CPU times it has no 
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practical value. Of course are the results of this algorithm of 

theoretical importance to check the accuracy and reliability of the 

other algorithms. Among the other algorithms Heur3 is the most 

accurate one, and besides it is fast and reliable, since there were no 

solutions that were "far from optimal". From this we can denote Heur3 

as the best algorithm for practical use among the tested algorithms. 
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5 Concluding remarks 

In this report a new heuristic is discussed to solve a simple version 

of the item selection problem. The heuristic is based on the obser

vation of clustering of items in optimal solutions to item selection 

problems. Several operational research concepts have been used to 

obtain information about the solution and to construct the heuristic. 

The heuristic has been compared with several other solution methods. 

From this comparison we may conclude that the new heuristic is 

preferable above the other methods for practical use for this version 

of the problem, both because of its accuracy and its reliability. Some 

parts of the heuristic, that are needed especially when the demands 

(f.e. target information) and the supply (available items) do not fit 

very well, may be improved. Also a formalization of when and why the 

heuristic performs well is desirable but not yet accomplished. 
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Summary 

In this report a simple version of the item selection problem, namely 

minimizing the number of selected items while satisfying some test 

information criteria (target information), is studied. A new 

heuristic, based on the observation of clustering of items in optimal 

solutions to item selection problems, is presented. The heuristic is 

compared with several other solution methods by solving 96 simulated 

test construction problems. Several operational research concepts are 

used to construct the heuristic. 
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