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Abstract

The cluster kappa was proposed by Schouten (1982) as a measure of chance-

corrected rater agreement suitable for studies where objects are rated on

a categorical scale by two or more judges. We discuss a way to calculate

the cluster kappa which is suited even if ratings are missing. Further, we

demonstrate how the sampling error of the cluster kappa may be estimated.



1 Introduction

This paper deals with a measure of chance-corrected rater agreement that is

suitable for studies where objects are rated on a nominal or ordinal scale by

two or more judges. This measure, which is called the Cluster-kappa (Cκ),

was proposed by Schouten (1982; 1985, section 2.4). In this note we introduce

a way to calculate the Cκ which is suited even when some ratings are missing

by accident or on purpose. Furthermore, we show how the sampling error of

the Cκ (and similar measures) may be estimated.

In Section 2, we introduce our notation. In Section 3, we introduce the

Cκ. In Section 4, we discuss how the Cκ relates to Cohen�s kappa (Cohen,

1960; 1968) and a number of published measures for rater agreement. In

Section 5, we discuss how the sampling variance of the Cκ can be estimated.

In Section 6, we analyze a real data set reported in Dunn (1989). Finally, in

Section 7 we discuss and summarize our Þndings. Proofs of some statements

in the text are presented in the Appendix where we also outline a computer

program to calculate the Cκ for a given set of ratings.

2 Notation

We are interested in quantifying the agreement among multiple ratings of a

random sample of N objects. The discussion is not limited to any particular

kind of objects such as essays by foreign students, or biopsy slides. There

are R ≥ 2 raters, numbered from 1 to R, that have evaluated one or more

of the objects. We use the generic words �raters� and �ratings� here to

include observers, judges, diagnostic tests, etc. and their ratings/results. We
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assume that raters work independently from one another, and that they are

given instructions to assign an object to one of c categories. We regard each

category as being labelled with an integer in the range from 1 to c.

We consider two mutually exclusive subsets or �clusters � of raters, Ω1 and

Ω2, withR(1) and R(2) elements, respectively. Each cluster is formed by raters

that are believed to originate from a common population of raters. At least

the Þrst cluster is non-empty, i.e., Ω1 6= ∅. Although R(1) may be larger than

2, we shall consider agreement between two raters that are representative of

the available raters. When Ω2 = ∅, both raters are randomly selected from
Ω1. Otherwise, the Þrst rater is selected from Ω1, and the second rater is

selected from Ω2.

Let xij denote the number of objects that were placed in category i by

the Þrst rater and in category j by the second rater. The letters i and j will

be used throughout to denote two arbitrary categories. Let xi+ ≡
Pc

j=1 xij,

x+i ≡
Pc

j=1 xji, and x++ ≡
Pc

i=1

Pc
j=1 xij. The numbers xij are collected in

an c× c agreement matrix X = (xij). Let pij ≡ xij

N
denote the proportion of

objects that are placed in category i by the Þrst rater and in category j by the

second rater. The proportions may be gathered in a matrix of proportions

P = (pij). Let the marginal proportions be deÞned as pi+ ≡
Pc

j=1 pij, and

p+i ≡
Pc

j=1 pji for i = 1, .., c.

Let

Np ≡
 R(1)(R(1) − 1) if Ω2 = ∅

R(1)R(2) otherwise
. (1)

When there is one cluster, Np is equal to the number of ordered pairs of raters

from Ω1. When there are two clusters, Np equals the number of combinations
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of one rater from Ω1 and another rater from Ω2.

A different deÞnition is necessary when some of the possible ratings are

missing. Let v denote a generic object. Let R(f)
v denote the number of raters

in cluster Ωf that have evaluated object v. Finally, let Np,v equal the number

of pairs of raters where both raters have rated object v.

Np,v ≡
 1

2
R

(1)
v (R

(1)
v − 1) if Ω2 = ∅

R
(1)
v R

(2)
v otherwise

. (2)

The rationale for the factor 1
2
in this deÞnition will be explained in Section

5.

3 The Cluster Kappa

Many indices for chance-corrected rater agreement are of the following type:

I =
O −E
M −E , (3)

where O denotes the observed degree of agreement,M denotes the maximum

possible agreement, and E denotes the amount of chance agreement. If I = 1

there is perfect agreement (O =M), and if I = 0 the observed agreement is

merely chance agreement (O = E). I becomes negative when the observed

agreement is worse than chance.

We obtain the Cκ if we deÞne O, M , and E as follows:

O = Po ≡
cX
i=1

cX
j=1

ωijpij (4)

and

E = Pe =
cX
i=1

cX
j=1

ωijpi+p+j . (5)
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Observed agreement is deÞned as the proportion of objects that are placed in

the same category by both raters, and chance agreement as the proportion

agreement when measurements from the Þrst rater are randomly matched

to those of the second rater (Dunn, 1989, section 2.7; Fleiss, 1975). The

maximum possible agreement is 1 which can only be obtained if pi+ = p+i

for all i (Dunn, 1998, section 2.11).

The weights ωij are chosen on substantive grounds prior to the ratings

to express the relative similarities among the categories. Following Yang en

Chen (1978), we assume that 0 ≤ ωij ≤ 1, ωii = 1, and ωij = ωji, for all

i, j = 1, ..., c. This is not a serious restriction on the weights. If a researcher

decides that the numbers dij (i, j = 1, ..., c) express the difference between

the categories, the weights can be calculated as

ωij = 1− dij
maxi,j(dij)

. (6)

It follows that

Cκ =
Po − Pe
1− Pe . (7)

The maximum value of Cκ is 1. The minimum value of Cκ is −1 if Pe = 1
2
.

Otherwise, the minimum values lies between 0 and −1. Thus, Cκ can assume
values in the interval [−1, 1]. It is clear that the Cκ can not be calculated
if Pe = 1, which happens if and only if both raters assign all objects to one

category (see Appendix).

When c > 2, the value of the Cκ is dependent upon the weights. To be

more speciÞc, if we increase the value of wij, the value of Cκ increases if and
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only if

pij + pji
pi+pj+ + pj+p+i

> 1− Cκ, (8)

where Cκ is calculated using the original weights (Schouten, 1985, section

1.3; 1986, p. 455). Schouten (1985, section 3.3 and 1986, section 4) demon-

strates how this results is used to Þnd categories that are relatively hard to

distinguish (see Section 6 for an application).

How do we calculate the agreement matrix ? Suppose that we consider

agreement among R(1) ≤ R(1) raters in a single cluster Ω1. For each object,

we may randomly draw (with replacement) n pairs of ratings out of the

available ratings and count the number of pairs in each cell of X, which is

then used to calculate Cκ. In this situation, Schouten (1985) appropriately

refers to Cκ as the intra-cluster kappa. Both raters represent the average of

the raters in Ω1 and X will be symmetric. If n → ∞, ratings by each of
the Np ordered pairs of raters will be chosen N−1

p n times. This means that

if, for each object, we consider the ratings of all unordered pairs of raters,

we obtain the asymptotic results without sampling. This will usually be

preferable unless R(1) is very large. Note that in practice only 1
2
Np pairs of

ratings need to be considered (see Appendix).

The situation is different when we distinguish two clusters of raters, for

example, R(1) male and R(2) female raters. In this situation, we would Þrst

randomly choose a male rater, and then a female rater so that the Þrst rater

is an average male rater, and the second rater is an average female rater.

Similar to the one-cluster case, we get the same result if we use all NNp

combinations of a rating by a male rater and a rating by a female rater to

construct X and calculate Cκ. In the two-cluster case, Schouten names the
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Cκ an inter-cluster kappa. Now, X need not be symmetric. Following the

analysis, we could consider agreement among raters within each cluster.

When some ratings are missing, only those pairs are counted for which

both ratings are available and we assume that the average ratings are not sys-

tematically different from the average ratings that would have been obtained

with complete data. For example, when only two out of R(1) judgements have

been observed per object, we assume that the data set is actually a random

draw from the complete data with either one cluster or with two clusters.

We have recently applied the Cκ in two studies of this kind. In both studies,

only two out of thirty raters evaluated the performance of each of a group

of students. To be more speciÞc, for each student anew the two raters were

chosen randomly from the available raters. In the Þrst study, there was no

reason to assume that the raters originated from different populations and

we calculated the intra-cluster kappa. In the second study, the Þrst rating

was always done by someone who knew the student, while the second rating

was done by someone who did not know the student. In this situation, we

calculated the inter-cluster kappa; Ω1 consisted of raters that are familiar

with the students, and Ω2 of raters that are not familiar with the student.

In general, to apply the Cκ in a situation where ratings are missing, the

design of the study should be such that, for each object, ratings within a

cluster of raters are missing completely at random. Such designs may be

made automatically using a random number generator.
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4 Relations to Other Measures of Rater Agree-

ment

If no ratings are missing and R(1) = R(2) = 1, the Cκ is equal to Cohen�s

kappa (Cohen, 1960;1968). Cohen devised his measure to improve upon a

measure that was proposed by Scott (1955), which equals the Cκ if Ω2 = ∅
and R(1) = 2. Basically, all measures that are mentioned in this paper, are

based upon Cohen�s kappa. The Cκ, in particular, is equivalent to Cohen�s

kappa applied to ratings of two raters that are representative of one or two

kinds of raters.

The Cκ is also related to the Weighted Mean kappa

WMκ =

P
g,h(1− P (g,h)

e )Cκ(g,h)P
g,h(1− P (g,h)

e )
, (9)

which was proposed by Hubert (1977; Schouten, 1985). The symbol
P

g,h

indicates that we summate across Np rater pairs. Superscript (g, h) indicates

that a statistic is calculated using only ratings by raters g and h. The WMκ

is equal to the inter-cluster kappa. It equals the intra-cluster kappa when

R(1) →∞, or when P (g,h)
e = Pe for all pairs of raters in Ω1 (Schouten, 1985,

pp. 52-53).

When P (g,h)
e = Pe for all pairs of raters (either in the one � or in the

two-cluster case), the WMκ is equal to

Cκ =

P
g,h Cκ

(g,h)

Np
(10)

which was proposed as a measure of agreement by Light (1971). It follows

that WMκ =Cκ = Cκ if P (g,h)
e = Pe for all pairs of raters.
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Finally, we note that the intra-cluster kappa is equal to a measure pro-

posed by Fleiss (1971). Hence, the reader is referred to Fleiss (1971) for an

alternative scheme to calculate the intra-cluster kappa.

5 The Sampling Distribution of the Cκ

Let Cκ denote the population value, and C�κ the value found in a sample

of ratings of N objects. To determine the distribution of C�κ we use the

non-parametric bootstrap method (Efron & Tibshirani, 1998). This method

entails random sampling of the ratings of N objects from the data, without

replacement. For each bootstrap sample the C�κ is calculated. The empir-

ical distribution over the bootstrap samples is a consistent estimate of the

distribution of the C�κ and it may be used to construct a conÞdence interval

around C�κ (Efron & Tibshirani, 1998, chapters 12-14, and 22).

To estimate the variance of C�κ, the bootstrap will usually require between

50 and 200 samples. To monitor the convergence of the bootstrap we like

to plot the estimates against the number of bootstrap samples. In Figure

1 the scale was Þxed after 200 samples to see if the estimates were within

±3 |C�κ/1000| of the estimated Cκ across samples. Figure 1 also shows

the estimated sampling density. Various data sets published in Schouten

(1985) and Dunn (1989) were analyzed (see Section 6) and it was found that

the sampling distribution looks like a normal distribution, except when N is

very small. This is also what one expects from the multivariate central limit

theorem (Rao, 1973).

8



Figure 1: The Þrst Þgure is a plot of the estimated variance of C�κ against

the number of bootstrap samples. The second Þgure shows the empirical

distribution of C�κ. Further details of this analysis are in Section 6.

To test the hypothesis that C�κ = 0, we can calculate the statistic

z0 =
C�kp
σ2

0(C�κ)
, (11)

where σ2
0(C�κ) denotes the variance of C�κ when Cκ = 0. When C�k ∼

N (0, σ2
0(C�κ)), z0 ∼ N (0, 1) and the probability of Þnding C�κ, given Cκ = 0,

can be found in tables of the standard normal distribution.

We will now derive an approximate expression for σ2
0(C�κ); the variance

if Cκ = 0, and P (g,h)
e = Pe for all pairs of raters. If N is large so that the
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marginal probabilities are known

C�κ =
PN

v=1C�κv
N

, (12)

where C�κv denotes the Cκ calculated from the agreement matrix of object

v, based upon Np,v pairs of raters. The right side of (12) is no more than

an alternative way to calculate Cκ (see Equation 10). If objects are rated

independently of one another, (12) implies that C�κ is the mean of N inde-

pendently, and identically distributed C�κv�s so that

σ2
0(C�κ) =

1

N2

NX
v=1

σ2
0(C�κv;Np,v), (13)

where σ2
0(C�κv;Np,v) denotes the sampling variance of C�κv given that Cκv = 0.

With the Delta method, Fleiss, Cohen & Everitt (1969) found that

σ2
0(C�κv;Np,v) ≈

1

Np,v(1− Pe)2
cX
i=1

cX
j=1

pi+p+j(wij − ω̄i+ − ω̄+j)
2 − (Pe)2 ,

(14)

where

ω̄i+ =
cX
j=1

ωijp+j , ω̄+j =
cX
i=1

ωijpi+. (15)

When Ω2 = ∅, the factor 1
2
in Np,v (see Equation 2) is appropriate since pair

{i, j} contributes exactly the same information as pair {j, i}. We obtain an
approximate expression for σ2

0(C�κ) if we substitute (14) in (13). Note that

this approximation also applies to the other measures mentioned in Section

4.

Schouten (1985, section 4.3) and Fleiss et al. (1979) also derived σ2
0(C�κv;Np,v)

but only for the intra-cluster kappa. Our simulations and simulations by
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Fleiss, Nee & Landis (1979) suggest that the distribution of z0 approximates

a standard normal distribution when N is over 25, and the marginal propor-

tions are not very different.

6 An Application

Dunn (1989, table 7.11) reports ratings of 181 conference abstracts by eight

independent referees. Apart from missing ratings there were four categories;

(A) Strongly recommended as a spoken contribution to the conference, (B)

Recommended as a spoken contribution ,(C) Recommended for acceptance

as a short communication on a poster, and (D) Recommended for rejection.

There were 139 (about 9.6% of the data) missing ratings about 56% of which

were due to the second and third rater. We do not know anything about the

raters and we assume that they constitute a single cluster.

With a single cluster of raters, we found that C�κ = 0.0931, σ2
0(C�κ) =

(0.01099)2 and z0 = 8.5. Although we reject the hypothesis that Cκ = 0, the

observed value is quite close to zero and we feel conÞdent to conclude that

there is little agreement among the referees. The bootstrap standard error

was found to be 0.0134 and a normal theory 90% conÞdence interval for C�κ

is [0.07 − 0.12] (see Figure 1). Both the Cκ (Equation 10) and the WMκ
(Equation 9) were estimated to be 0.1. The abstracts that were not rated by

both raters were simply ignored in the calculation.

If we look at the ratio�s of observed versus expected confusion among

categories (i.e. Equation 8) we Þnd that Cκ can be increased by combining

categories A with B, and C with D. The new categories are: (A*) recommend

11



as a spoken contribution, and (B*) reject as a spoken contribution. It appears

that the referees are more unanimous in their recommendation to accept an

abstract or not; the C�κ is now 0.21 and the 90% conÞdence interval is [0.17−
0.26]. The conÞdence intervals reveal that the improvement in agreement

is statistically signiÞcantly. We may also employ the bootstrap method to

estimate the sampling variance of the difference between the C�κ(1−2,3−4) with

the categories combined and C�κ(1,2,3,4) without the categories combined. In

the present application, we Þnd that

z =
C�κ(1−2,3−4) − C�κ(1,2,3,4)q
σ2(C�κ(1−2,3−4) − C�κ(1,2,3,4))

0.21− 0.093
0.0165

= 7.25. (16)

As a next step, it is often useful to look for those objects where two

categories are confused relatively often. These objects may be discussed with

the raters in order to gain an understanding of the reason for such confusion

and to improve future ratings. To this aim, we calculated for each abstract

the product of the percentages of ratings in category 1 and category 2. The

closer this value is to 1
4
the more the categories are confused in the rating

of an abstract. This procedure points towards the abstracts which where

numbered 171 to 177 in the data.1

Considering the marginal distributions of the raters it is doubtful whether

they constitute a single cluster. To facilitate the recognition of differences

in marginal proportions we use pie-charts as in Figure 2. In Figure 2, we

immediately spot three clusters: raters 1, 2 and 3, who reject about 63% of

the abstracts, raters 2, 4, and 5 who reject slightly about half the abstracts,

1It is unclear why these abstracts have succesive numbers. It is possible that the

abstracts have somehow been ordered.
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Figure 2: Pie charts of marginal probablities of the eight referees in the data

reported by Dunn (1989, table 7.11).

and 7 and 8 who reject most abstracts that they were asked to evaluate.

To improve the analysis we consider an inter-cluster kappa with two clusters

Ω1 = {1, ..., 6}, and Ω2 = {7, 8}. The intercluster kappa was estimated to
equal C�κ = 0.169, σ2

0(C�κ) = (0.022)2 with a conÞdence interval of [0.11 −
0.23]. The agreement between the two clusters can be summarized in

P =

 0.25 0.30

0.12 0.32

 . (17)

These proportions clearly show that members of the second cluster are in-

clined to reject an abstract even when a rater from the Þrst cluster has

accepted the abstract as a spoken contribution to the conference. The intra-
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cluster kappa�s are as follows

Ω1 : {1, 2, 3, 4, 5, 6},C�κ = 0.249,σ2
0(C�κ) = (0.022)

2, [0.20− 0.30] (18)

Ω2 : {7, 8},C�κ = 0.213,σ2
0(C�κ) = (0.079)

2, [0.08− 0.35] (19)

In the absence of some �golden standard � we are unable to say whether raters

in Ω1 are more accurate than raters in Ω2. It may be worthwhile to invite

referees from both clusters and have them settle their differences.

Although it is hardly opportune in the present example, we may also

consider clustering on the basis of agreement using some algorithm for cluster

analysis (see Schouten, 1985). In general, it is quite likely that we Þnd the

same clusters that we Þnd by looking at the marginal proportions because

of the inßuence of the marginal proportions on the Cκ. To eliminate the

inßuence of the marginal proportions we could divide the cluster kappa�s by

the maximum value over the set of agreement matrices with the observed

marginal proportions (Dunn, 1998, section 2.11). Calculating this maximum

is straightforward when wij = 0 if i 6= j. In that case, Cκ is maximal if

Po =
Pc

i=1min(pi+, p+i). In general, however, when wij > 0 for some i 6= j,
there appears to be no other option than to enumerate all possible agreement

matrices with the observed marginal proportions (see Appendix). Developing

a general and fast algorithm to Þnd the maximum value of Cκ is a topic for

future research.

7 Conclusion

In this paper we have discussed an alternative way to calculate the Cκ,

which was cut out to handle missing ratings. Furthermore, we have provided
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ways to calculate the sampling variance of the Cκ that were not previously

available.

A weakness that the Cκ shares with all measures based upon Cohen�s

kappa is that its value is difficult to interpret.2 Suppose that there are

Na rater pairs that disagree on one or more objects. It can be shown (see

Appendix) that

Po = 1−
Ã
Na
Pc

i=1

Pc
j=1,j 6=i(1− ωij)x̄(a)

ij

Npx̄++

!
, (20)

where x̄(a)
ij denotes the mean number of objects in cell i, j across the Na pairs

of differing raters, x̄++ equals the mean number of objects graded by rater

pairs, and (1−ωij) denotes the difference between category i and category j.
The second term on the right side of Equation 20 is positive unless x̄(a)

ij = 0.

Hence, the value of Po is dependent upon the number of raters that disagree

with one another, and the number of objects that they disagree about. The

Cκ can only be unity if all rater pairs are unanimous. When Cκ < 1 it can

easily be adapted to provide more detailed information about the ratings.

We may look for homogeneous clusters of raters, compare different raters to

a standard, or investigate whether some categories are more often confused

than others. All this is discussed in detail by Fleiss (1981), and Schouten

(1985).

We used the bootstrap method because it is easy to implement in a com-

puter program and easily adapted to serve in non-standard situations.3 We

mention three such situations. First, suppose that raters have evaluated the
2Some rules-of-thumb for the interpretation of values between 0 and 1 are given by

Landis & Koch (1977).
3Note that Schouten (1985; 1986) recommended the jackknife procedure (Tukey, 1958).
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same objects twice, using different scales, and we wish to know on which

scale raters agree most. To get the answer, we may calculate C�κ on both

occasions, giving us C�κ(1) and C�κ(2), and investigate the signiÞcance of the

difference C�κ(1)−C�κ(2). To this aim, we may use the statistic

z =
C�κ(1) − C�κ(2)

σ2(C�κ(1) − C�κ(2))
, (21)

where σ2(C�κ(1) −C�κ(2)) denotes the sampling variance of the difference. To

estimate σ2(C�κ(1)−C�κ(2)) we can calculate C�κ(1)−C�κ(2) for different boot-

strap samples of the objects and estimate its variance. Second, we could con-

sider calculating the Cκ for different clusters or �strata � of objects, combine

those estimates to estimate a common underlying Cκ, and use the bootstrap

method to calculate the variance of the estimate (see Barlow, Lai & Azen,

1991; Lui & Kelly, 1999). The work of Barlow, et al. (1991) suggests that

failure to take account of different groups of objects may produce a mislead-

ing estimate of the Cκ. Finally, suppose that, per subject, we calculate the

median over rater pairs. The reason could be that the median is more robust

against outliers among the rater pairs, and the resulting Cκ may therefore be

called the robust Cκ. The bootstrap method can easily be used to estimate

the sampling variance of the robust Cκ.

Although we acknowledge the advantage of methods based on latent trait

models (e.g., Klauer & Batchelder, 1996), we note that estimation may break

down when there are many missing ratings. We believe that the difficulty

in interpreting intermediate values of the C�κ is counterbalanced by its wide

Although we found the jackknife to perform well, the bootstrap is to be preferred on

theoretical grounds because the Cκ is a non-linear statistic (see Efron & Tibshirani, 1998,

§11.5).
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range of applications and the possibilities it offers to investigate the reasons

for low agreement.
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8 Appendix

8.1 Pe = 1 If and Only If Raters Use Only One Cate-

gory

Assume that 0 ≤ ωij ≤ 1, ωii = 1 and ωij = ωji, for all i, j. We also assume
that wij > 0, for some i, j.

Pe = 1⇔ 1− Pe = 0⇔ (22)
cX
i=1

cX
j=1

pi+p+j −
cX
i=1

cX
j=1

ωijpi+p+j (23)

=
cX
i=1

"
cX
j 6=i
(1− ωij)pi+p+j

#
= 0 (24)

Each term within brackets is positive and they must all be equal to 0. Sup-

pose that ph+ > 0, where h is an arbitrary category. If i = h,"
cX
j 6=h
(1− ωhj)ph+p+j

#
= 0⇔ (25)

cX
j 6=h
(1− ωhj)p+j = 0⇔ p+j = 0, ∀j 6= h (26)

Since
Pc

i=1 p+i = 1, this implies that p+h = 1. In the same manner we Þnd

that ph+ = 1. Hence, if Pe = 1 all raters use only one category. It is easy to

see that the opposite is also true, i.e., ph+p+h = 1 ⇒ Pe = 1.

8.2 The Derivation of Expression 20

Let
P

g,h denote summation across rater pairs;
P

a denotes summation over

Na pairs of raters that are not unanimous and
P

−a denotes summation over
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all unanimous pairs of raters. Let x(g,h)
ij denote the number of objects placed

in cell (i, j) of X by raters g and h. We Þnd that

Po =
cX
i=1

cX
j=1

ωij

P
g,h x

(g,h)
ijP

g,h x
(g,h)
++

=
cX
i=1

P
g,h x

(g,h)
iiP

g,h x
(g,h)
++

+
cX
i=1

cX
j=1,j 6=i

ωij

P
a x

(a)
ijP

g,h x
(a)
++

=
cX
i=1

x̄ii
x̄++

+
cX
i=1

cX
j=1,j 6=i

ωij
Nax̄

(a)
ij

Npx̄++

=
cX
i=1

x̄ii
x̄++

+
Na

Npx̄++

cX
i=1

cX
j=1,j 6=i

ωijx̄
(a)
ij

=
1

x̄++

Ã
cX
i=1

x̄ii +
Na
Np

cX
i=1

cX
j=1,j 6=i

ωijx̄
(a)
ij

!

To simplify the term within brackets we write:

cX
i=1

x̄ii =
cX
i=1

1

Np

X
g,h

xii (27)

=
1

Np

X
g,h

cX
i=1

xii

=
1

Np

ÃX
−a

Ã
cX
i=1

x
(g,h)
ii

!
+
X
a

cX
i=1

x
(a)
ii

!

=
1

Np

ÃX
−a
x

(g,h)
++ +

X
a

x
(pk)
++ −

X
a

cX
i=1

cX
j=1,j 6=i

x
(a)
ij

!

=
1

Np

ÃX
g,h

x
(g,h)
++ −

X
a

cX
i=1

cX
j=1,j 6=i

x
(a)
ij

!

= x̄++ −
P

a

Pc
i=1

Pc
j=1,j 6=i x

(a)
ij

Np
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So that

Po =
1

x̄++

Ã
x̄++ −

P
a

Pc
i=1

Pc
j=1,j 6=i x

(a)
ij

Np
+
Na
Np

cX
i=1

cX
j=1,j 6=i

ωijx̄
(a)
ij

!
(28)

= 1−
ÃP

a

Pc
i=1

Pc
j=1,j 6=i x

(pk)
ij −Pa

Pc
i=1

Pc
j=1,j 6=i ωijx

(a)
ij

Npx̄++

!

= 1−
Pa

³Pc
i=1

Pc
j=1,j 6=i x

(a)
ij −

Pc
i=1

Pc
j=1,j 6=i ωijx

(a)
ij

´
Npx̄++


= 1−

ÃP
a

Pc
i=1

Pc
j=1,j 6=i(x

(a)
ij − ωijx(a)

ij )

Npx̄++

!

= 1−
ÃP

a

Pc
i=1

Pc
j=1,j 6=i(1− ωij)x(a)

ij

Npx̄++

!

= 1−
Ã
Na
Pc

i=1

Pc
j=1,j 6=i(1− ωij)x̄(a)

ij

Npx̄++

!

We have now arrived at Equation 20. With complete data, this formula

applies to all measures mentioned in Section 4 of this paper.

8.3 An Algorithm for the Calculation of the Cκ

Let the categories in the data be coded with integers from 1 to c. The raters

are arbitrarily numbered from 1 to R. The Þrst step in the actual calculation

of the Cκ is the construction of a matrix H whose rows are the numbers of

the rater pairs involved in the calculation (see Figure 3). When Ω2 = ∅, the
rows of H are 1

2
Np combinations of two out of R(1). It is not necessary to

consider all Np ordered pairs in the calculation. When Ω2 6= ∅, the rows of
H are Np combinations of two raters; one from Ω1, and one from Ω2.

Following the construction of H, ratings are summed over objects and
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Figure 3: Pseudo-code for a computer program that constructs the matrix

H. The numbers of the raters in each cluster are in the arrays group1 and

group2 of length R_1 and R_2, respectively.
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 lambda = 0 
N_p = max(size(H)) 
   for v = 1 : N 
        N_pv = 0  
        for g = 1 : N_p 
           if data(v,H(g,1))~=mis_code & data(v,H(g,2))~=mis_code  
              N_pv = N_pv + 1 
              x(data(v,H(g,1)),data(v,H(g,2))) = x(data(v,H(g,1)),data(v,H(g,2))) + 1    
           end 
        end 
        if N_pv > 0 
          lambda  = lambda + 1/N_pv; 
        end     
    end 
   
   P = x./sum(sum(x)) 
 
if isempty(group2) 
    P = (0.5)*(P + P') 
end 

Figure 4: The matrix H and the data are used to calculate the mean agree-

ment matrix with elements x(i,j). mis_code is the code that is used for

missing data.

over pairs of raters (see Figure 4). The resulting agreement matrix is used

to calculate the proportions. However, when there is one group of raters,

the matrix of proportions must Þrst be made symmetric because we have

only considered 1
2
Np unordered pairs. Once we have the proportions, Cκ is

calculated via Formulae 5, 4 and 7.

Write σ2
0(C�κ) as

Aλ
N2 , where

A =
1

(1− Pe)2
cX
i=1

cX
j=1

pi+p+j(wij − ω̄i+ − ω̄+j)
2 − (Pe)2 (29)
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and

λ =
NX
v=1

1

Np,v
(30)

The symbols are as deÞned above. The term λ is calculated when we con-

struct X, as can be seen in Figure 4. The term A is based upon the matrix

of proportion P. Of course, when we use the algorithm to calculate the

bootstrap we have no need to calculate σ2
0(C�κ).

8.4 Calculating the Maximum Value of Cκ Given the

Marginal Proportions

Suppose we observe an agreement table. There are many tables with the

observed marginal proportions; together they form a so-called isomarginal

family. We need to Þnd the member of this family that maximized the value

of Po.

We will Þrst, very brießy, describe how we approached the problem of

Þnding the maximum value of Cκ and then give an example where it fails.

Let ΩX denote the set of c× c matrices with the same row and column sums
as the observed agreement matrix X. Let T = (tij) denote a generic member

of ΩX . Our task is to Þnd a matrix T such that

Po(tij)x++ = w11t11 + w12t12 + ...+ wcctcc, (31)

is maximized, where wij denotes an entry in the weight matrixw. We assume

that w has the following properties:

1. w is symmetric,
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2. The diagonal elements of w are 1 and the off-diagonal elements are

smaller than 1.

3. All entries in any given row or column are different. This implies that

there is always a unique entry in each row of column that is associated

with the largest weight.

We started from the following idea. We can write T as the sum of a

symmetric matrix S(1) = (s
(1)
ij ) and a rest-matrix R(1) = T−S; R(1) = (r

(1)
ij ).

If we Þrst choose the maximum among the symmetric matrices and then the

maximum among the rest matrices, we Þnd the maximum Tmax over ΩX by

adding the two.

The matrix S(1) is not unique but it seems reasonable to demand that

the row (and column sums) of S(1) are given by min(xi+, x+i) for i = 1, .., c.

Since S(1) is symmetric it is clear that Po(s
(1)
ij )s

(1)
++ is maximized when it is

diagonal, that is when

s
(1)
ii = min(xi+, x+i), (i = 1, .., c) (32)

and s(1)
ij = 0 for i 6= j. The row � and column sums ofR(1) are r(1)

i+ = xi+−s(1)
ii ,

and r(1)
+i = x+i − s(1)

ii , respectively. The diagonal elements of R(1) are zero

and the off-diagonal entries of R(1) are given by tij.

After this Þrst step, we continue to decompose R(1) as the sum of a sym-

metric matrix S(2) with s(2)
ii = min(r

(1)
i+ , r

(1)
+i ) (for i = 1, .., c) and a rest matrix

R(2), etc. We continue to decompose the rest matrices until all remaining el-

ements of T are determined or until there are no non-zero weights associated

with the remaining unknown entries in T.

24



Before we continue to discuss further details we try the algorithm on a

small example. Suppose

X =


4 3 2

1 7 0

5 2 1

 ,w =


1 0.9 0.8

0.9 1 0.1

0.8 0.1 1

⇒ Cκ = 0.3947 (33)

The column sums are (9, 8, 8)t and the row sums are (10, 12, 3). We decom-

pose T as

T = S+R (34)

=


9 0 0

0 8 0

0 0 3

+


0 0 0

0 0 0

t31 t32 0

 (35)

The column sums of R are (0, 0, 5)t and the row sums are (1, 4, 0). It follows

that t31 = 1 and t32 = 4. Thus we Þnd

T =


9 0 0

0 8 0

1 4 3

 , ⇒ Cκ = 0.3540 (36)

Quite surprisingly, the Cκ of T is actually smaller than the Cκ of X. If we

had decomposed

T∗ = S∗ +R∗ (37)

=


4 1 2

1 7 0

2 0 1

+

0 2 0

0 0 0

3 2 0

 (38)
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we would have found Cκ = 0.5614.

This example shows that it is wrong to consider only symmetric matrices

with sii = min(xi+, x+i). Each choice for a particular symmetric matrix

generates a set of rest matrices where there is a matrix which gives the

maximum value of T. However, we have to walk through the set of all

symmetric matrices with sii ≤ min(xi+, x+i) to Þnd the maximum across the

isomarginal family of X.

We do not recognize the present problem as a instance of any standard

problem and we hope that readers might provide suggestions for its solution.

26



9 References

Barlow, W., Lay, M-Y, & Azen, S. P. (1991). A comparison of methods for

calculating a stratiÞed kappa. Statistics in Medicine, 10, 1465-1472.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educa-

tional and Psychological Measurement, 20, 37-46.

Cohen, J. (1968). Weighted kappa. Nominal scale agreement with pro-

vision for scaled disagreement or partial credit. Psychological Bulletin, 70,

213-220.

Dunn, G. (1989). Design and analysis of reliability studies: The statistical

evaluation of measurement errors. New-York: Oxford University Press.

Efron, B., & Tibshirani, R. J. (1998). An introduction to the bootstrap.

Chapman & Hall/CRC: London.

Fleiss, J.L. (1971). Measuring nominal scale agreement among many

raters. Psychological Bulletin, 30, 469-479.

Fleiss, J.L. (1975). Measuring agreement between two judges on the

presence and absence of a trait. Biometrics, 31, 651-659.

Fleiss, J.L. , Cohen, J. & Everitt, B. S. (1969). Large sample standard

errors of kappa and weighted kappa. Psychological Bulletin, 72, 323-327.

Fleiss, J.L., Nee, J.C.M., & Landis, J.R. (1979). Large sample variance

of kappa in the case of different sets of raters.Psychological Bulletin, 86, 974-

977.

Klauer, K.C., & Batchelder, W. H. (1996). Structural analysis of subjec-

tive categorical data. Psychometrika, 61, 199-240.

Landis, J.R., & Koch, G.G. (1977). The measurement of observer agree-

ment for categorical data. Biometrics, 33, 159-174.

27



Light, R.J. (1971). Measures of response agreement for qualitative data:

Some generalizations and alternatives. Psychological Bulletin, 76, 365-377.

Lui, K.J., & Kelly, C. (1999). A note on interval estimation of kappa in

a series of 2× 2 tables. Statistics in Medicine, 18, 2041-2049.

Schouten, H. J. A. (1982). Measuring pairwise agreement among many

observers II: Some improvements and additions. Biometrical Journal, 24,

431-435.

Schouten, H. J. A. (1985). Statistical measurement of interobserver agree-

ment: Analysis of agreements and disagreements between observers. Unpub-

lished Doctoral Dissertation: Erasmus University Rotterdam.

Schouten, H. J.A. (1986). Nominal scale agreement among observers.

Psychometrika, 51, 453-466.

Rao, C. R. (1973). Linear statistical inference and its applications. New-

York: Wiley.

Tukey, J.W. (1958). Bias and conÞdence intervals in not quite large

samples. The Annals of Mathematical Statistics, 29, 614.

Yang, G.L., & Chen, M.K.(1978). A note on weighted kappa. Socio

Economic Planning Sciences, 12, 293-294.

28


