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Abstract 

This paper adresses two problems relating to the interpretability 
of the model parameters in the three parameter logistic model. First, 

it is shown that if the values of the discrimination parameters are 

all the same, the remaining parameters are non-identifiable in a non­

trivial way that involves not only ability and item difficulty but also 

the guessing parameters. Second, a situation is considered where dif­

ferent researchers analyse the same test with different instances of the 
three para.meter logistic model. One researcher reaches the conclusion 

that students guess, whereas the other one concludes that students do 

not guess. Both examples illustrate the many-one relation between 
statistical models and the probability distributions they imply, which 

is the overarching topic of this paper. 



Even though the basic measurement models from item response theory 
(IRT) have been around for quite some time, not all the basic questions 
have been answered. In this paper we consider two of the most popular 
measurement models, the three parameter logistic (3PL, Birnbaum, 1968), 
and the Rasch (1960) model, which is a special case of the 3PL model. Both 
models have been around for a long time and have been used extensively 
in educational measurement. In this paper we focus on two closely related 
problems with these models. For the 3PL model we show that the parameters 
are not always identifiable from ( the distribution of) the responses. We 
further show that two researchers analyzing the same data with either the 
Rasch model or the 3PL model may end up with equivalent models, for which 
the interpretations are very different however. Specifically, we find that there 
are different ways in which the Rasch model can be represented as a special 
case of the 3PL model. Even though both problems are seemingly unrelated, 
they both derive from the fact that the relation between a statistical model 
and the probability distribution it implies is a many-one relation. That is, 
different statistical models, with possibly different substantive inferences, 
may lead to one and the same probability distribution. 

IRT models such as the Rasch and 3PL model are characterised by the 
probability with which subject p (p = 1, ... , N) gives the correct response 
to item i (i = 1, ... , n), denoted by Ypi = 1. This probability is usually 
called the item response junction (IRF ). For the Rasch model the IRF has 
the following form: 

P(Y.. = 110 8i) = exp(0p - bi ) 
PI p, 1 + exp( 0

p 
- bi) 

and for the 3PL model the IRF has the following form: 

It is common practice, for both models, to refer to the parameter 0P (0
p 

E JR.) as the ability of the p-th subject, and to the parameter 8i (bi E 
JR.) as the difficulty of the i-th item. The parameter ai (ai E JR.+) in the 
3PL model is called the item discrimination parameter as it modulates the 
steepness of the IRF when regarded as a function of 0

p
. The parameter 'Yi 

(,i E (0, 1 )) in the 3PL model is called the guessing parameter as it gives 
the lower bound for the probability with which a person solves the item 
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correctly: inf P(Ypi = ll0
p
, <Si, O'i, ,i) 2: 'Yi· One easily sees from these IRFs 

OpER that the Rasch model is a special case of the 3PL model where the values 
of the discrimination parameter are all equal to one, and the values of the 
guessing parameter are all equal to zero. 

It is well-known that the parameters of both the Rasch and the 3PL model 
are not identifiable from Y because we can always add the same constant 
to all 0p's and all <5/s. That is, we may uniformly translate the ability and 
difficulty parameters. For the Rasch model, it is known that this is the only 
form of non-identifiability from Y. For the 3PL model, it is also known 
that we can multiply all 0

p
's and all <5/s, and divide all O'/s by the same 

constant, without changing the probability distribution. In words this means 
that we may scale the parameters. In the following we consider whether the 
parameters of the 3PL model are identifiable from Y once the translation 
and scale indeterminacy have been resolved, and will find as our main result 
that this is not necessarily the case. 

The paper is organized as follows. We first consider in some detail the 
conditions of parameter identifiability and its implications. Then we show 
that the parameters of the 3PL model are not always identifiable from Y, 
once the translation and scale indeterminacy have been resolved. After that 
we show how two researchers, starting from very different assumptions, may 
end up with two apparently different models (i.e., the Rasch and 3PL model) 
that imply very different interpretations, but fit the data equally well. Fi­
nally, some conclusions are drawn. 

1 Parameter Identifiability 

A parametric statistical model postulates that the random variable X is 
governed by a distribution F indexed by a parameter {3: 

Pr(X � x) = F(xl/3) 

The parameter {3 is not identifiable from X if the same distribution of X can 
be obtained with different values of {3. That is, if for some {3 i= {3*: 

F(xl/3) = F(xl/3*) , for all x. 

Similarly, the parameter {3 is identifiable from X if for every {3 -/: {3*, there 
is a x such that: 

F(xl/3) i= F(xl/3*) 
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For example, consider the random experiment of first selecting one of two 
urns with probability 1r and than drawing, with replacement, one ball from 
the chosen urn. Suppose that the first urn contains a proportion p1 of red 
balls whereas the second urn contains a proportion p2 of red balls. Define 
the random variable X as follows: 

X = f 1 if the ball is red 
LO if the ball is not red 

The distribution of X can now be written as follows: 

That is, the distribution of X is a mixture of two Bernoulli distributions. 
That the parameters are not identifiable by X is easily seen since P(X = 
xjp1,P2, 1r) = P(X = xlpi,P2, 1r*) with 

Pt - P2 
P2 Pi 
7r* 1 - 1f 

When confronted with a model of which the parameters are not identi­
fiable by the data there are two ways to go. First, we can restrict all our 
inferences to identifiable functions of {3. In our example, max(p1 ,p2) would 
be an identifiable function of the original parameters. Second, we can try 
to gather data from which /3 is identifiable. It is readily found that in our 
example one can easily define a different random variable Y such that the 
parameters are identifiable from Y: 

if the ball comes from urn 1 
if the ball comes from urn 2 

2 Parameter Identifiability in the 3PL Model 

In this section we consider whether the parameters of the 3PL model are 
identifiable from Y. We show that if the item discrimination parameters of 
all items are the same, then different values of the other parameters give rise 
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to the same distribution of Y. That is, within a sub-set of the parameter 
space: 
the parameters of the 3PL are not identifiable from Y. The approach we 
take is to reformulate the 3PL in such a way that the identifiability problem 
is easily seen. 

We begin with the following reformulation of the IRF: 
P(Ypi = ll0p,&i, o-,Ti ) = Ti+ (1-Ti) exp(o-(Op -&i)) 

1 + exp(o-(0
p 

- &i)) 
(l ) exp(0

p )u - Ti + -Ti exp(O
p

)u + exp(&i )u 

= 

Ti exp(0p )u + Ti exp(&i)°" + exp(0p
)°" - Ti exp(0p )u 

exp(0p )u + exp(&i) u  
exp( 0

p )cr + Ti exp( &i )u 

exp(0p
)u + exp(&i) u  

exp(0p )°" + ri exp(&i)°" 

The second step involves a reparameterization of the 3PL model. Specifically, 
we consider the following reparameterization: 

tp - exp(0p ), t
p E JR+ 

ai = Tiexp(&i)°", aiEJR+ 

bi - (1 - ri) exp(&i)°", bi E JR+ 

C o-, C E JR+ 

such that 
0p ln(t

p
) 

()i 

ln(ai + bi) 
C ai Ti ai + bi 

(T C 

The IRF of the 3PL model, as a function of these new parameters has the 
following form: 

(1) 
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There are a number of interesting observations about this alternative formu­
lation for the 3PL IRF. First, notice that L

p
(l - ½i ) is a sufficient statistic 

for bi. Notice, that with the Rasch model, this same statistic is sufficient for 
the item difficulty parameter. Second, the location and scale indeterminacy 
in the original parameterization translates into the following indeterminacy 
in the new parameterization: 

1. Multiplying the a/s and the bi 's by a constant and multiplying the tp
's 

by the 1/c-th power of this constant leaves the probability distribution 
unchanged, and 

2. raising the t
p

's to a constant power and dividing c by the same constant 
also leaves the probability distribution invariant. 

We may assume without loss of generality that b1 equals one and c equals 
one. In this way, we remove the translation and scale indeterminacy of the 
3PL model parameters. 

To show that the parameters of the 3PL model are not identifiable from 
Y we have to show that different values of the parameters give rise to the 
same distribution of Y. Different parameters that nonetheless give rise to 
the same distribution of Y are obtained if (t, a, b) and (t*, a*, b*) are related 
in the following way: 

t* - tp + l, p=l, ... ,N 
p a� = ai - l, i = 1

, 
.. . ,n  (2) i 

b� = bi, i = 1
, 
... ,n  

i 

Obviously, since tp 
and ai are non-negative l has to be such that both 

mJn(t
p+l) and mln(ai-l) are non-negative. From this we obtain the following 

restriction on the value of l: 

If (t*,a*, b*) are obtained from (t,a, b) by the transformation in Eq. 2 for 
some admissible value of l, then both ( t, a, b) and ( t*, a*, b*) give rise to the 
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same distribution of Y: 

-

tp + ai 
tp

+ai+bi 
(tp + l) + (tp - l) 

( tp + l) + ( tp - l) + bi 

The transformation in Equation 2 can be expressed in terms of the original 
parameters as follows: 

f)* = ln(exp(Bp) + l) p c5� = In( exp( c5i) - l) 
i 

,: 
'Yi exp(c5i) - l 

exp(c5i) - l 

where 

We see that in contrast to the location and scale indeterminacy, this new form 
of indeterminacy involves not only the ability and item difficulty parameters 
but also the guessing parameter. Moreover the relation between the original 
parameters ( without *) and the new parameters ( with *) is intricate, as is 
illustrated in Figures 1 and 2. 
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Figure 1: Illustration of the relation between 0 and 0* (solid line) and 8 and 
8* (circle for every item) . 
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Figure 2: Illustration of the relation between , and ,* 
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We see in Figure 1 that the relation between the new and the original 
parameter values is very different for item difficulty and for ability. In par­
ticular, we find that it may happen that the ability of a person is above the 
item difficulty in the original parameterization; whereas it is below the item 
difficulty in the new parameterization. Furthermore, the difference between 
the original and the new parameter values tends to decrease as 0 or bi in­
creases. The relation between the original and new parameter values for the 
guessing parameter is very irregular, as can be seen in Figure 2, because the 
new values depend both on the old values and on the original item difficulty 
parameters. 

3 On the relation between the Rasch model 

and the 3PL model 

Consider two psychometricians, George and Frederick, who are asked to ana­
lyze the same test. Previous analyses of this test assuming the Rasch model 
in combination with a normal distribution for the latent trait revealed the 
disturbing fact that the expected score distribution according to this model 
did not fit the observed score distribution. If such a basic characteristic 
as the score distribution is not reproduced correctly by a statistical model, 
something is wrong. Specifically, the model predicts more students with very 
low scores than are actually observed. George and Frederick are asked to 
look into this problem. Both have available the responses from an arbitrary 
number of students. 

We first consider the analysis of George. George believes that the Rasch 
(1960) model is the most suitable model for educational measurement. Anal­
yses based on the conditional likelihood under the Rasch model indicate that 
the Rasch model indeed fits these data. For the sake of the argument, let 
the fit be perfect. With respect to the problem with this particular test, 
he believes that a selection mechanism is at work, which has the effect that 
students of very low ability never get to take the test. Such a selection 
mechanism would lead to exactly the kind of misfit that is observed. After 
some trial and error, George finds that the Rasch model together with the 
following left truncated distribution perfectly fits the data: 

J(B) = exp(0) 1 exp (-ln(exp(0) - 1)2 ) (B � 0) exp(0) -1 ..;"h 2 
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In terms of the 3PL, George finds that the guessing parameters are all equal 
to zero, and the item discrimination parameters are all found to be equal to 
one. Hence, George concludes that no guessing is taking place, and that a 
selection mechanism is indeed the proper explanation for the misfit found in 
the original analysis. 

Next we consider the analysis of Frederick. Frederick takes a very different 
point of departure. According to Frederick, the reason why the reproduced 
score distribution misfits in exactly this way is because students guess. This 
explanation also predicts exactly the kind of misfit found with this test. 
There are too few students with very low scores because if you guess you will 
sometimes guess correctly. For that reason, Frederick starts with the 3PL 
measurement model. Frederick finds to his satisfaction that the 3PL model 
perfectly fits these data, with a standard normal distribution for ability. 
Frederick finds that the values of the guessing parameter are different from 
zero, and concludes that children indeed resort to guessing. 

Let us consider the analyses in some more formal detail, to find out how 
George and Frederick, from two very different points of departure, end up 
with apparently very different statistical models that both perfectly fit the 
data. We start with the analysis of George. Normally, the Rasch model is 
characterized by the following IRF: 

Similarly to the way we re-parameterized the 3PL model we get with the 
transformation: 

tp = exp(0) 
and 

bi = exp(c>i) 
the following alternative expression for the Rasch model: 

and similarly for the ability distribution found by George 

f() 
1 ( ln(t; 1)2

) (t � l) t 
= v'21r(t _ l) exp 
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We can write the model George uses as follows: 

p(Y = ylb) = IT roo
rr 

t1lpib:-Ypi 1 exp (- ln(t - 1)2 ) dt 
P 11 i bi + t v'21r(t - 1) 2 

With a further transformation of the latent trait: s = t -l we readily obtain 
the following equivalent expression: 

In this expression we recognize the model Frederick used for his analysis. 
The measurement model is seen to be a 3PL with all the ai parameters equal 
to 1, and all the Ci parameters also equal to 1, and ability 0p (tp) is assumed 
to be (log-)normally distributed. This explains why George and Frederick 
were able to draw different conclusions from the same data. When Frederick 
looks at the estimated valus for the ai and Ci parameters, he sees that indeed 
they are all equal to one. 

In order to appreciate the difference between these two analyses, we turn 
to the customary way to parameterize both the 3PL and the Rasch model: 

0:rederick = ln(tp) 
i5yrederick = ln(bi + 1) 

- 1 

"/i - l+bi 

O"i = 1 

0;eorge = ln(tp + 1) 

a;eorge 
= ln(bi) 

For both models it holds that 0p is interpreted as the ability of person p 
and 6i as the difficulty of item i. For both models it also holds that it is 
customary to directly compare ability with item difficulty. It is clear that 
such comparisons may lead to different conclusions for George and Frederick. 
That is it mav happen that 0Frederick < <5Frederick whereas 9George > 6�eorge for ) .., p i p i , the same person and item. Figure 3 illustrates the relation between 0Frederick 

and 0George . 

10 



0 
ci 

-5 -4 -3 -2 -1 0 

Figure 3: Relation between 0Frederick and 0George for an item for which bi equals 1 .3. 
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4 Discussion 

In this paper, the 3PL and also the Rasch model were considered in a pa­
rameterization where the latent trait 0 is replaced with t = exp( 0) . Such a 
formulation was found to be useful to show that the 3PL model parameters 
are not always identifiable from Y, and to show that the Rasch model can 
be represented as a special case of the 3PL in more than one way. Par­
ticularly, we found that there is a representation of the Rasch model as a 
special case of the 3PL model in which the values of the guessing parameters 
of the equivalent 3PL model are not all equal to zero. Formally, this last 
result is closely related to the situation with the general parametric constant 
log-odds ratios model (CLOR, Hessen, 2005). Maris (2008) has shown that 
the general parametric CLOR model is equivalent to the Rasch model with 
a (possibly finite) lower and upper bound on ability. Hessen (2005), on the 
other hand, derives the general parametric CLOR model as a special case of 
the four parameter logistic model of Barton and Lord ( 1981). 

Both problems have in common that they illustrate the many-one rela­
tion between statistical models and the probability distributions they imply. 
In itself, this should not pose any difficulties, were it not that different but 
equivalent statistical models were seen to lead to different subtantive infer­
ences. Our substantive inferences relate to statements such as 0p > <Si, and 
"students (don't) guess" . The problems considered in this paper illustrated 
that such statements derive largely from which of the equivalent statistical 
models a researcher entertains. That is, they are to some extent arbitrary. 

Having fonnd that the 3PL model parameters are not always identifiable 
from Y may be seen both as a serious problem and as irrelevant. Those 
who consider the finding as irrelevant may argue that the case of equal dis­
crimination parameters is uninteresting anyhow. After all, discrimination 
parameters are never exactly equal. Those who consider the finding to pose 
a serious problem to the use of the 3PL for educational measurement will 
of course disagree with this point of view. Clearly, even if the values for 
the discrimination parameters are not all exactly equal, things will not go 
smoothly if they are sufficiently close to one another. Even though the likeli­
hood may have a unique maximum, it may prove difficult, in such a situation, 
to find it in practice. Marginal maximum likelihood estimation typically re­
lies on numerical integration procedures that limit the numerical accuracy. 
Moreover, large differences in the value of the discrimination parameter for 
different items is often seen as an indication of some form of model misfit 
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(e.g., violation of local independence, multi-dimensionality). 
The case of George and Frederick shows that inferences in educational 

measurement may depend, to some extent, on the beliefs of the people making 
the inferences. Clearly, such dependence on ( typically implicit) beliefs is 
undesirable. Frederick will claim that students guess, whereas George will 
claim that students don't guess. Our analysis shows that based on these data 
we are simply not able to decide whether students guess or not. 

A good way to make the distinction between statements that are ef­
fected by beliefs and those that are not is to look at statements that can 
be formulated in terms of Y. Clearly, even if 0:ederick < 8ftederick whereas 
0;eorge = 8feorge , for the same person and item, we find that both Fred­
erick and George will conclude that this particular person has 50% chance 
of making this particular item correct. Similarly, that it may happen that 
0Frederick < &frederick whereas 0George > c5�eorge for the same person and item p i p i ' ' only tells us that item difficulty and ability are different functions of Y for 
Frederick and George. From Y, we can not decide which of these functions 
is the correct one. 

Even though the distribution for Y is the same, one of the two theories 
may be true whereas the other is not (either a student guesses or he doesn't). 
Suppose that we change the data collection design and give people the op­
portunity to indicate that they don't know the answer. That is, rather than 
two we now have three answer categories. From the viewpoint of Frederick 
these could be modeled as follows: 

p( correct answer given) 
p(incorrect answer given) 

p( no answer given) 

exp(ai(0
p 

- 8i) )  

1 + exp(lli(0
p 

- 8i)) 

0 

1 

Let's assume that such a model, again with a standard normal distribution 
of ability, perfectly fits the data collected with this alternative design. The 
relation between the new and the original observations could be conceived of 
as follows: 
p(Y = 1) = p(correct answer given) + p(correct answer guessed)p(no answer given) 
p(Y = 0) = p(incorrect answer guessed)p(no answer given) 
where p( correct answer guessed) = 'Yi· That is, the original item responses 
can be correct because either the student knows the correct answer, or does 
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not know the correct answer {and knows he doesn't know) but guesses it. 
Clearly, if all this holds true, the claim that students guess is strongly sup­
ported. For George it would be difficult, and probably impossible, to give 
a coherent interpretation of both types of data. Of course, this example is, 
once again, contrived but hopefully serves to show how competing theories 
may be evaluated, at least in principle. 
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