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Abstract 

Computerized adaptive tests (CATs) are individualized tests which, from a measurement point 

of view, are optimal for each individual, possibly under some practical conditions. In the 

present study it is shown that maximum information item selection in CATs using an item bank 

which is calibrated with the one- or the two-parameter logistic model, results in each individual 

answering about 50% of the items correctly. Two item selection procedures giving easier (or 

more difficult) tests for students are presented and evaluated. Item selection on probability 

points of items yields good results only with the 1 pl model and not with the 2pl model. An 

alternative selection procedure, based on maximum information at a shifted ability level, gives 

satisfactory results with both models. 
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1. Introduction 

Computerized adaptive tests (CATs) are individualized tests that are administered in an 

automated environment. CATs are used for estimating the ability of a student or for making 

a decision on, for instance, the most appropriate training program for that student. It has been 

shown that, compared to traditional linear tests, CATs yield a considerable gain in efficiency. 

In the literature (see, e.g., Wainer, 2000 and Eggen & Straetmans, 2000), it has been reported 

that halving the average number of items needed is feasible, while at the same time the 

accuracy of the ability estimates or the decisions taken is maintained. CATs make use of item 

banks which are calibrated using item response theory (IRT) (Hambleton & Swaminathan, 

1985). The gain in CATs is realised by selecting, on the basis of the results on previously 

administered items, the most informative item from an available item bank. During testing, the 

optimal item is chosen after every item for every student and thus the optimal test is assembled 

and administered. 

CAT-tailored testing has a number of :frequently mentioned advantages: the gain in 

measurement efficiency goes hand in hand with the fact that each student is challenged at his 

or her own level because items which are too difficult or too easy for a given student will never 

be administered. Initially, the intended optimality, and, consequently, the item selection 

method, was based solely on a measurement theoretic or psychometric criterion. The criterion 

of maximum item information at the current ability estimate is in common use (Van der Linden 

& Pashley, 2000). The increasing number of CAT applications has resulted in more 

consideration being given to content-based and practical requirements or conditions in item 

selection algorithms. Applying content control (Kingsbury & Zara, 1991) and exposure control 

(Eggen, 2001) is routinely possible. In modem CATs, items that are psychometrically optimal 

are selected from an item bank which, to the degree possible, meets these practical conditions. 

The aim of the present study was to determine whether it is possible to take consideration of 

testees even more by not only considering the practical conditions, but also by relaxing the 

psychometrically optimal selection. Psychometrically optimal selection of items means that 

items will always be chosen for an individual student, which he or she, at his or her thus far 

known ability level, has a 50% probability of answering correctly. Thus, as a rule, students 

taking a CAT will answer about half of the items correctly. Although the difficulty of the items 

is taken into account in the scoring of a student, it can be the case that CAT tests are perceived 

as very difficult for each individual student and this could have possible negative side effects, 
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for example, enhanced test anxiety and, consequently, possible lower test performance. This 

could especially be the case for tests which are administered in primary and secondary 

education, where, traditionally, tests are constructed in such a way that the average student has, 

on average, a somewhat higher probability (60 or 70%) of correctly answering the items. 

One approach for reducing possible negative effects on the difficulty of the items is self

adaptive testing (Rocklin & O'Donnell, 1987). Self-adapted tests (SATs) are CATs in which 

the difficulty level of each item is chosen by the examinee rather than by the CAT algorithm. 

SATs have been studied rather extensively in recent years. The meta-analysis by Pitkin & 

Vispoel (2001), comparing SATs with CATs, gives an overview. In general, test anxiety 

reduction is reported in SATs and there is also a little gain in the average performance of 

examinees if SATs are compared to CATs. This gain could be caused by the reduction of 

anxiety. Another explanation is that part of the gain could be explained by the, on average, 

larger bias of the (maximum likelihood) ability estimates in the SATs, as a consequence of self

selection of the items, compared to the CATs. Compared to CATs, SATs are less efficient: 

more items are needed to reach the same measurement precision. Finally, it can be mentioned 

that, for students, a SAT is more time consuming than a CAT and that implementing a SAT 

still entails a number of unresolved problems related to, for example, the exact information the 

students should be asked and the design of the interface. 

In the present paper, the possibilities for using CATs with selection methods in their 

algorithms which lead to higher (or lower) success probabilities than 50% were explored. 

Changing the CAT algorithm for that reason was also proposed in a study by Bergstrom, Lunz 

& Gershon (1992). They successfully applied an algorithm which chooses easier items, but 

only for the case of the one-parameter logistic IRT model. In the present study, for both the 

one- and the two-parameter logistic IRT model, two CAT selection methods, which choose 

items with varying difficulties were developed and the consequences for the measurement 

efficiency evaluated. 

2. Item selection in CAT 

Computerized adaptive tests presuppose the availability of an !RT-calibrated item bank. The 

algorithms for adaptive tests operate on the basis of the item parameters from an IR T model. 
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The IRT model used in this study is the two-parameter logistic model (2pl). In this model, the 

probability of correctly answering item i, also called the item response function, is given by 

p.(0) = P(X.= 110) 
= 

exp(a;(0- �; )) 
' 

1 1 1 + exp(a.(0- �. )) 
I I 

where �; is the location parameter of the item. This parameter is associated with the difficulty 

of the item. It is the point on the ability scale at which the student has a 50% chance of 

correctly answering the item. Parameter «; is the item's discrimination parameter. If the 

discrimination parameter for all items is the same, a.= a, this is the special case of the one-' 

parameter logistic model (lpl). In a calibrated item bank, estimates of the values of ( a. and) 
I 

�; for each item have been stored in the bank. After the administration of an item, the next item 

selected from the item bank is the one that best matches the ability demonstrated by the 

candidate up to that point. Usually the (Fisher item) information is used for selecting. In the 

case of the two-parameter model, this function is given by 

This item information function expresses the contribution an item can make to the accuracy of 

the measurement of a person as a function of his or her ability. This becomes clear if one 

realizes that the estimation error of the ability estimate can be expressed as a function of the 

sum of the item information of the items administered: 

Items are selected according to the following procedure: after the ability estimate {}k has been 

determined, the information for each item that has not yet been administered is computed at 

this point; the item whose information value is highest is then selected and administered. 
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The item information function 

For dichotomous items, the Fisher item information is a single-peaked function of the ability. 

In the two-parameter model, it shows that, for each 
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Figure 1. Item information functions: P1 = P2 = 0 and a1 = 1, a
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item, the information reaches its maximum at the value of the location parameter (difficulty) 

of the item ( 8 = P; ). In addition, it is clear that the discrimination parameter has a great 

influence on the information. The larger the a., the greater the information. 
I 

The relation between the information in an item and the probability of succeeding on an item 

for any item following the 1 pl or the 2pl model is given in Figure 2. 
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Figure 2. Item information as a function of success probability 

78 85 92 99 

One can see that an item gives maximum information at a success probability of 0.50. At other 

probability levels, there is always less information. 

3. Item selection on the basis of success probability 

For each item, ability levels can be defined at which there is a certain success probability on 

an item. This is what are called the probability points of an item. For instance, the p-60 point 

of an item is the ability level at which there is a probability of 0.60 of answering the item 

correctly. The p-points are easily determined. Consider the probability of correctly answering 

an item 

For a given probability, the ability pertaining to that point is then determined from 

1n p I (8) = (8 - R ) 
1 - P,(8) a.; t-'; ' 
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from which it follows that 

Then the p-x point (with a probability ofx) of an item is defined as 

1 X (p-x). = ll + - In--
' I (X.i (1 - X)  

It is easily seen that the p-50 point of an item equals the difficulty parameter �--' 
If the item selection in a CAT takes places on the basis of success probability, this can be 

achieved as follows. Select the item for which the distance between the current ability estimate 

and the (p-x). point is minimal: 
I 

3.1. Pe,formance of item selection based on nearest p-point 

Simulation studies were conducted to evaluate the performance of the item selection methods. 

First, the results of a simulation study with an item bank calibrated with the 1 pl will be given, 

followed by a study with an item bank calibrated with the 2pl. 

The one-parameter model item bank 

The lpl item bank consists of300 items with � ~ N(0,1). The CAT algorithm used starts with 

an item of intermediate difficulty ( one item randomly selected from 114 items with 

- 0.5 < �; < 0.5) and has a fixed test length of 40 items. In the simulation, samples of 4000 

abilities were drawn from the normal distribution: 8 ~N (0,1). Because of its profitable 

statistical properties, the weighted maximum likelihood estimator (Warm, 1989) was used for 

the estimation of the abilities. The selection methods at the different success probabilities were 

compared. As baselines in the comparison, the simulations were also conducted with random 

selection of all items and the optimal maximum information selection at the current ability 

estimate. The results of the simulations are given in Table 1. 
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Table 1 .  Simulation 1 pl CAT: selection nearest p-point 

Selection method Mean error Mean Mean % correct 
1 1 n L; (A, - e;) se (A) (sd) (sd) 

Max info 0.006 0.328 (0.015) 49.7 ( 8.6) 

p 10 0.041 0.435 (0.009) 22.4 (14.5) 

P 20 0.048 0.384 (0.045) 27.3 (12.4) 

P 30 0.035 0.352 (0.024) 33.5 (10.3) 

P 40 0.016  0.334 (0.015) 41 . 1  ( 8.8) 

P 50 -0.013 0.328 (0.012) 50.0 ( 8.5) 

P 60 -0.016 0.333 (0.017) 58. 1 ( 9.2) 

P 70 -0.029 0.351 (0.024) 65.4 (1 1 .0) 

P 80 -0.043 0.379 (0.044) 71.4 (13.5) 

P 90 -0.034 0.424 (0.098) 75.2 (1 5.6) 

Random 0.007 0.383 (0.078) 50.0 (19.9) 

First it should be noted (second column of Table 1) that there is, on average, a small 

discrepancy between the known abilities and the estimated abilities, and the effect seems to be 

systematic: when the items with a success probability lower than 0.50 are chosen, there is an 

overestimation of the mean ability; when selection takes places with higher success 

probabilities, the ability is generally slightly underestimated. This effect is in line with the 

known small bias of the ability estimator used (Warm, 1989) and is opposite to the bias in the 

maximum likelihood estimator of the ability as was reported in Pitkin & Vispoel (2001) when 

a test is not optimally assembled at an ability level. In section 4.2, we take a closer look to the 

remaining small bias in the ability estimates. 

The selection methods show an effect in the desired direction in the results on the 

percentages correct ( column 4 of Table 1 ). Selecting at a success probability higher or lower 

than 0.50 does not necessarily lead to the same percentage of correct answers of the simulated 

examinees. The more extreme the probability is, the larger the discrepancy between the 

selection percentage and the percentage correct. This can be explained by the fact that only a 

limited number of extremely difficult and extremely easy items are available in the item bank. 

(See also section 4.2.) 
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Ifwe look in column 3 in Table 1 at the mean of the standard errors of the ability estimates 

with the selection methods, the expected effect can be seen. In the 1 pl model, selection at 

maximum information is equivalent to selection of the item at the nearest p-50 point. Non

optimal selection, at other success probabilities, has an expected negative effect on 

measurement precision. The effect with the current item bank is symmetric around the p-50 

point selection: selection at the nearest p-(50+x) point leads to about the same loss in precision 

as selection at the nearest p-(50-x) point. 

The performance of selection methods can be compared more easily if the mean of the 

standard errors are considered as a function of the test length. The results for the selection 

methods with a success probability of higher than 50% are plotted in Figure 3. 
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Figure 3. Mean se ability estimates and test length; nearest p-point selection; 1 pi 
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It can be seen that the easier the selected items, the greater the loss in measurement precision 

is. The loss in precision when items are selected at the nearest p-60 and p-70 point is rather 

small. Selecting at p-80 is as bad as random selection, while selection at p-90 is even worse. 

Because in the 1 pi model selecting at the nearest p-50 point is equivalent to maximum 

information selection, only maximum information is in Figure 3 (sei in the legend). 

Table 2 gives the number of items needed on average with a selection method to achieve 

measurement precision which is equivalent with a test of 30 randomly drawn items from the 

bank. 

Table 2. lpl bank; selection on nearest p-points; equivalence with 30 random items 

Selection method 

Max info 

p-60 

p-70 

p-80 

p-90 

The two-parameter model item bank 

Number of items 

22 

23 

25 

30 

37 

The 2pl item bank consists of300 items with�~ N(0,0.35) and ln a.~ N(l,0.35). The CAT 

algorithm used starts with an item of intermediate difficulty ( one item randomly selected from 

1 13 items with - 0.17 :s: � :s: 0.17 ) and has a fixed test length of 40 items. In the simulation, 

samples of 4000 abilities were drawn from the normal distributjon: 8~N (0,0.35). The 

selection methods at the different success probabilities are compared in Table 3. 
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Table 3. Simulation 2pl CAT: selection nearest p-point 

Selection method Mean error Mean Mean % correct 
11 n L;(A

i 
- 6;) se (A ) (sd) (sd) 

Max info 0.001 0.085 (0.013) 49.0 (11 .9) 

p 10 0.011 0.117 (0.033) 26.5 (18.5) 

P 20 0.008 0.116 (0.020) 28.5 (14.1) 

P 30 0.005 0.114 (0.013) 34.1 (10.6) 

P 40 0.001 0.110 (0.010) 41.6 ( 8.9) 

P 50 0.001 0.111 (0.008) 49.7 ( 8.5) 

P 60 -0.009 0.110 (0.009) 58.0 ( 9.4) 

P 70 -0.006 0.115 (0.015) 64.9 (11.8) 

P 80 -0.009 0.114 (0.018) 70.8 (15.0) 

P 90 -0.012 0.124 (0.033) 74.5 (17.6) 

Random 0.001 0.132 (0.033) 49.7 (19.5) 

The results for the mean percentages correct are about the same as in the case of the 1 pl item 

bank (see Table 1). The same is true for the sign of the small bias in the ability estimates. The 

results on measurement precision show that selecting on higher or lower p-points has a very 

negative impact compared to maximum information selection. One sees that the more extreme 

the success probabilities are, the larger the loss in precision is, but in any case the loss is 

considerable, which is even clearer from Figure 4. 
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Figure 4. Mean se ability estimates and test length; nearest p-point selection; 2pl 

Table 4 gives the number of items needed on average with a selection method to get 

measurement precision which is equivalent to a test of 30 randomly drawn items. 

Table 4. 2pl bank; selection on p-points; equivalence with random test of 30 items 

Selection method Number of items 

Max info 10 

p-50 22 

p-60 21 

p-70 25 

p-80 23 

p-90 26 
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It is seen that selecting at the nearest p-60 point doubles the number of items needed compared 

to maximum information selection. 

On the basis of the results presented in this section, it can be concluded that selecting at the 

nearest p-point of an item works quite well in an item bank based on the 1 pl model, but for 

item banks calibrated with the 2pl model, the results are very poor. An explanation for this will 

be given in section 4 and an alternative selection method will be presented. 

4. Alternative method for selecting with higher or lower success 

probabilities 

The problem encountered with selection on success probability is due to the fact that, in 

selection, only the success probability of an item is considered, but not the values of the 

information function of the items. In the 1 pl model, this has no consequences owing to the fact 

that, in that case, all information functions have the same shape; they only differ in the point 

where they reach their maximum ( e = �- ). This implies that the differences between, for 
l 

instance, a p-50 point and a p-60 point of the item is constant for every item. In the 2pl model, 

however, the value of the information function plays an important role. Neglecting this and 

selecting only on the basis of success probability has negative consequences. 
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Figure 5. Item response functions and iriformation functions of two items 

What goes wrong is illustrated in Figure 5, which shows the item response curves and the 

information functions of two items with the same difficulty but with different discrimination 

parameters. For the first item, the discrimination parameter is a. = 1 (dotted curves); for the 
I 

second item, a. = 2 . The coinciding p-50 point of both items is given on the ability axis at 
I 

point 1 ;  at point 2 and 3, the p-60 point ofitem 2 and item 1 respectively. If we select items at 

the nearest p-50 point, we can see that if the current ability estimate is at point 1, for this 

method, both items could be chosen, while at this point the information in item 2 is much 

higher. Another example: if we select at the nearest p-60 point and the current ability estimate 

is at the indicated arrow or higher, item 1 is preferred, while the value of the information 

function is much higher for item 2. 

In order to overcome this problem, a new selection method was developed which takes 

account of the success probability and of the value of the information function. The idea is not 

selecting items with maximum information at the current ability estimate, but selecting the item 
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with maximum information at a lower or a higher level of ability than the current ability 

estimate. If easier items (with higher success probabilities) are wanted, one chooses items 

which are optimal (have maximum information) at an ability level which is below the current 

ability estimate. If more difficult items are desired, the items are selected at an ability point 

above the current estimate. 

Suppose the current ability estimate is f) .  Then easier or harder items are selected by 

searching at an ability level of y - A, with y positive for easier items and negative for harder 

items. The value of the shift on the ability can be deduced from the desired success probability. 

In the 2pl model, it yields 

exp (a; (O + y - �)) 
p.(O) = ------' I +  exp (a,(O + y - 13; )) 

From which it follows that 

In order to get a certain success probability, the shift on the scale is 

So, e.g., for selecting items with a desired success probability of 60%, items are selected which 

have maximum information at 

I 
e = fJ - - 1n 1.s . 

IX. 

In the one-parameter model, the selection at the shifted ability level method is equivalent to 

selecting items at the p-points nearest to the current ability estimate. In the two-parameter 

model, however, the selection is quite different, which will become clear in the evaluation in 

the next section. 
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4.1. Pe,formance of item selection based on selection at a shifted ability level 

The selection at the shifted ability level was evaluated with the same simulation setup as in 

section 3 .1 . The 2pl item bank simulation results are given in Table 5. 

Table 5. Simulation 2pl CAT: selection at shifted ability level 

Selection method Mean error Mean Mean % correct 
1 / n [; (A

i 
- 6;) se(A) (sd) (sd) 

Max info 0.001 0.085 (0.011 )  49.0 (12.2) 

p 10  0.010 0.100 (0.018) 28.6 (16.1) 

P 20 0.006 0.091 (0.012) 33.5 (14.2) 

P 30 0.004 0.088 (0.012) 38.8 (13.4) 

P 40 0.001 0.086 (0.013) 43.8 (12.6) 

P 50 -0.003 0.085 (0.013) 49.4 (12.3) 

P 60 -0.004 0.085 (0.012) 55.1 (12.2) 

P 70 -0.002 0.088 (0.012) 60.9 (12.6) 

P 80 -0.008 0.092 (0.01 5) 65.4 (14.1) 

P 90 -0.011 0.1 01 (0.01 5) 71 .7 (15.6) 

Random 0.003 0.133 (0.031) 50.5 (19.6) 

The results for the mean % correct are about the same as with selecting on nearest distance to 

p-points. (Compare to Table 3). The same is true for the systematic bias in the ability estimates, 

although there is hardly any bias with the new selection method. (More details on the bias are 

given in section 4 .1 .) The results on measurement precision show that selecting easier or harder 

items is possible with the new selection method without a large loss in precision. This result 

is also seen from Figure 6. 
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Figure 6. Mean se ability estimates and test length; selection at shifted ability; 2pl 

It is clear that selecting easier or harder items with the new selection method does not cause 

much loss in measurement precision. If one aims at a success probability of 60%, there is 

hardly any loss: the more extreme the items are chosen, the larger the loss in efficiency. But 

at all success probabilities, the random selection is far outperformed in contrast to the results 

with the selection on the p-points. This result will become clearer in Table 6, which gives the 

average number of items needed with a selection method to get a measurement precision which 

is equivalent to a test of 30 randomly drawn items from the bank. 
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Table 6. 2pl bank; selection shifted ability level; equivalence with random 30 items 

Selection method Number of items 

Max info 10 

p-50 10 

p-60 10 

p-70 1 1  

p-80 12 

p-90 16 

The new selection method seems to perform without any significant loss in measurement 

precision: with the current item bank and algorithm, it is possible to reach a percentage correct 

of 70% at the cost of, on average, 1 item compared to the optimal test. 

4.2. Some properties of selection at the shifted ability level 

Three points were considered in more detail for the selection at the shifted ability. The bias of 

the ability estimate, the application of exposure control in the algorithm, and the effect of using 

a large item bank were explored. 

The bias in the ability estimates. 

In the evaluation of the selection at the shifted ability level, it was shown that the estimation 

error in the population, 8~N (0,0.35), was almost zero. To explore the bias at distinct levels 

of the ability continuum, the simulations were also conducted at distinct values of 8. For each 

selection method, 400 simulees were selected at 2 1  equidistant points between -1 and 1 .  The 

estimated abilities for the selection at the shifted ability aiming at 70% success probability are 

shown in Figure 7. 
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Figure 7- Ability estimates and ability; selection at shifted ability p-70,- 2pl 

From this result it is clear that the variation in the ability estimates is about equal for all ability 

levels. This means that the small bias in the population reported in Table 5 is uniform for all 

ability levels. The simulations in which the selection took place at other p-levels yield the same 

results that were given for p-70 in Figure 7. 

Simulation with item selection applying exposure control 

Because some form of exposure control is usually applied in the selection algorithm in modem 

CATs, it was investigated whether the new algorithm still works when exposure control is 

added to the CAT algorithm. The results of the same simulations, but combined with the 

application of the Sympson-Hetter exposure control with an maximum exposure of 0.3 (see 

Eggen, 2001), are given in Tables 7 and 8. 
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Table 7. Simulation 2pl CAT: selection at shifted ability level and exposure control 

Selection with SH 0.3 Mean. error Mean Mean % correct 
1 1 n L; (Ai - a

i
) se ( 9) (sd) (sd) 

Max info 0.002 0.098 (0.010) 49.0 (10.0) 

P 50 0.001 0.098 (0.008) 49.5 (10.0) 

P 60 0.002 0. 100 (0.0 1 1 )  54.5 (1 1 .4) 

P 70 -0.017 0. 104 (0.013) 55.5 (12.8) 

P 80 -0.008 0. 106 (0.0 1 1 )  59.3 (14.4) 

P 90 -0.005 0. 1 1 1  (0.016) 60.0 (15.6) 

Random 0.003 0. 133 (0.031 )  50.5 (19.6) 

Again, there is hardly any bias and the differences in the percentages correct seem to be less 

than in selecting without exposure control. The discrepancy between the desired and the 

achieved percentages correct is larger when exposure control is applied. (Compare column 4 

of Table 7 with the same column in Table 5). With respect to measurement precision, the 

results are similar to selecting without exposure control. The number of items needed to get an 

equivalent to a test with 30 randomly selected items is given in Table 8. It is clear that applying 

exposure control on average costs 2 or 3 items. 

Table 8. 2pl bank; selection shifted ability level and exposure control; equivalence with 

30 random items 

Selection method with SH =0.3 

Max info 

p-50 

p-60 

p-70 

p-80 

p-90 

Number of items 

12 

12 

13 

14  

15  

18 
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Simulations with a large item bank. 

A possible explanation for this discrepancy between the desired and the achieved percentages 

correct is that there is a mismatch between the items available in the item bank and the desired 

percentages in the population. One possible solution for this could be enlarging the size of the 

item bank. In order to check this, simulations were conducted with a very large item bank. 

The 2pl item bank consists of3000 items, 1000 with a=2, a=3 and a=4 and the difficulty 

parameter from a uniform distribution P~ U(-1 . 1 ,  1 . 1  ). The CAT algorithm used starts with an 

item of intermediate difficulty and has a fixed test length of 40 items. In the simulation, 

samples of 4000 abilities were drawn from the normal distribution: 8~N (0,0.35). The 

selection methods for different success probabilities are compared in Tables 9 and 10. 

Table 9. Simulation 2pl CAT large item bank; selection at shifted ability level 

Selection method Mean error Mean Mean % correct 
1 1  n f,; (A

i 
- 8) se (A) (sd) (sd) 

Max info -0.001 0.083 (0.002) 50.1 (7.6) 

p 10 0.053 0. 144 (0.031) 10.9 (5.7) 

P 20 0.026 0. 106 (0.014) 20.1 (6.5) 

P 30 0.015 0.091 (0.007) 30.2 (7.0) 

P 40 0.005 0.085 (0.004) 39.6 (7.5) 

P 50 0.000 0.083 (0.002) 50.0 (7.7) 

P 60 -0.004 0.085 (0.004) 60.1 (7.7) 

P 70 -0.015 0.091 (0.007) 70.2 (6.9) 

P 80 -0.027 0. 106 (0.013) 79.7 (6.4) 

P 90 -0.056 0.143 (0.031) 88.9 (6.0) 

Random -0.003 0. 145 (0.015) 50.4 (16.0) 

We see here the same results as reported before, except that the desired percentages correct are 

now in line with the percentages that are achieved. Finally, the number of items needed for the 

large item bank to get a precision equivalent to a test with 30 randomly selected items is given 

in Table 10. The results again show that selecting at a shifted ability level, up to the p-70 level, 

has only a limited loss in precision as a result. 
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Table 10. Large item bank (2pl ); selection shifted ability level; equivalence with random test 

of 30 items 

Selection method Number of items 

Max info 11 
p-50 11 
p-60 12 

p-70 13 

p-80 17 

p-90 29 

5. Discussion 

In this study, it was shown that, in CATs, it is possible to select items with a higher or lower 

success probability. The selection methods based on the minimal distance between the current 

ability estimate and the p-points of the items works only satisfactorily if the item bank is 

calibrated with the 1 pl model. This selection method yields unsatisfactory results when it is 

applied to an item bank which is calibrated with the 2pl model. 

The method introduced, in which items are chosen that have maximum information at an 

ability level lower or higher than the current ability estimate, also performs well in item banks 

calibrated with the 2pl model. With item banks of a practical size (300), a little loss in 

measurement precision is the price of a (somewhat) easier or more difficult test. The method 

is also effective if the selection is combined with the application of exposure control. Getting 

very high or very low percentages correct was seen to be possible with a larger item bank. In 

that case, in principle, any desired percentage correct could be reached, but extreme values of 

the success probabilities are combined with a considerable loss in precision. For practical 

purposes, item selection, aiming at percentages correct of 60 or 70 (or 40 or 30), seems to be 

possible without a large loss in precision. 

It can be mentioned that all the selection methods and the results are symmetric around the 

p-50 points. For the selection methods, this is only true for the 1 pi and 2pl model. Knowing 

that the symmetry disappears, it is worthwhile investigating the application of the selection 

method if the 3pl model, including a guessing parameter, is used. 
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Finally, it should be noted that knowing the effect of selecting with other success 

probabilities in mind, one could, for CAT applications, build item banks which are more 

suitable for that purpose. The item banks studied here are in a sense optimal for a CAT with 

maximum information item selection: the mean difficulty of the items is equal to the mean of 

the population. If one knows, for instance, that one wants an easy CAT, one could try to 

construct a bank which is, on average, easier for the population. 
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