
Chapter 6
On the Number of Items in Testing
Mastery of Learning Objectives

Anton A. Béguin and J. Hendrik Straat

Abstract In individualized learning trajectories, it could be valuable to administer
small tests that focus on a specific learning outcome to determine mastery of the
learning objective and to evaluate whether a student can progress to other learning
objectives. For this type of application, testing time competes with direct learning
time, and a large number of learning objectives could invoke a potentially large bur-
den due to testing. Thus, it is effective to limit the number of items and to reduce
testing time as much as possible. However, the number of items is directly related
to the accuracy of the mastery decision and the applicability of this type of forma-
tive evaluation in practical situations. For the formative evaluation to result in valid
inferences, general measurement principles are valuable as well (Bennett in Assess
Educ Principles Policy Pract 18:5–25, 2011). In this chapter, we provide techniques
to determine the number of items and corresponding cut scores that are necessary
to decide on mastery. We apply these techniques in situations with different item
characteristics and provide the outcomes for varying test situations, illustrated using
a practical example.

6.1 Introduction

The requirements for mastery testing and classification testing have been studied
quite extensively (e.g.,Wilcox 1976; deGruijter andHambleton 1984; van derLinden
1990; Vos 1994; Van Groen 2014). The earlier research focused on the proportion of
items mastered in a well-specified content domain, containing all the relevant items
in that domain (Hambleton and Novick 1973; de Gruijter and Hambleton 1984).
Here, the domain is a hypothetical concept that contains all the possible items in this
content domain. This proportion is referred to as π and can be interpreted as the true
proportion-correct score of a person on this domain. The standard on the domain
is defined as π0, and if π ≥ π0, the person has mastered the domain. In practice,
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only a sample of these items can be administered in a test. The score on the test, x,
is evaluated against a cut-score Cx . Theoretically, Cx can be defined as Cx = nπ0,
assuming equal difficulty for all items and perfect reliability, with n the number of
items in the test. In reality, the assumptions are never met and misclassifications will
occur if π ≥ π0 and x < Cx or if π < π0 and x ≥ Cx . It can also be shown that the
above definition leads to a non-optimal cut-score when the population mean is higher
or lower than the standard, when the reliability is low, and when false positives are
valued differently than false negatives (de Gruijter andHambleton 1984). Alternative
approaches to set a cut-score are based on utility theory and Bayesian decision theory
(van der Linden 1980).

Wilcox (1976) reported on the appropriate lengths and passing scores based on
true score proportions π0 of 0.7, 0.75, 0.8, and 0.85. To determine the percentage
of correct decisions, he defined a zone of indifference around π0. This zone of
indifference varies between π0 − 0.05 and π0 + 0.05, and in another condition,
between π0 − 0.1 and π0 + 0.1. Individuals with true score probabilities within this
interval will not be evaluated as incorrectly classified, independent of whether they
score below or above the threshold on a test. He found that 80% or more correct
classifications are established for conditions with an indifference zone of π0 ± 0.1
with a 19-item test,Cx = 14 and π0 = 0.7.Withπ0 = 0.8, this percentage is reached
with an 18-item test and Cx = 15, while for π0 = 0.85, an 11-item test and Cx = 10
is sufficient.

Other research related to mastery has focused on the application of item response
theory (Rasch 1960; Lord 1980) to scale items in a test form and to determine
the accuracy of person-parameter estimates. Item response theory can correct for the
differences in difficulty between items and test forms that occur due to sampling from
the domain. In line with this, research has been done on mastery and classification
decisions, applying adaptive testing procedures (Eggen 1999; Eggen and Straetmans
2000; Van Groen 2014).

A different approach to decide on both test lengths and cut-scores of mastery tests
can be based on informative Bayesian hypotheses (Hoijtink et al. 2014). Following
their description, mastery is determined based on responses to a set of items. Given
the person is a master, the minimum probability of answering each item correctly is
determined. This leads to informative hypotheses for each of the items in the set of
items. For example, if it is assumed that masters have a probability of 0.8 or more to
answer an item i correctly, the following hypothesis is used:

Hi,master : πi > 0.8.

Aggregating over all items i= 1,…, I, and assuming independent non-informative
uniform prior distributions (Gelman et al. 2004) on the interval [0–1], the prior for
π = [π1, . . . , πI ] is:

h(π) =
I∏

i

Beta(πi |1, 1) = 1.
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The posterior distribution given responses x = [x1, . . . , xI ] is:

g(π |x) ∝ h(π)

I∏

i

π
xi
i (1 − πi )

1−xi

∝
I∏

i

Beta(πi |1 + xi , 1 + (1 − xi )).

The proportion of the posterior in agreement with the mastery hypotheses is:

fi =
∫

π∈Hi,master

g(π |x)∂π,

with i = 1, …, I.
If we also determine the proportion of the prior in agreement with the mastery

hypotheses:

ci =
∫

π∈Hi,master

h(π)∂π,

aBayes factor (Kass andRaftery 1995) can be determined, comparing the informative
mastery hypotheses (m) to hypotheses without constraints (u):

BFmu = fi
ci

By the same token, hypotheses canbedefinedby focusingon the responsebehavior
of non-masters. This can be the complement of the behavior of masters, thus, any
response pattern not meeting the criteria for masters, or it can be a set of hypotheses
with additional restrictions of their own. For example, a restriction that the probability
of answering an item correctly for a non-master is smaller than 0.4 for each of the
items is:

Hi,non-master : πi < 0.4.

Obviously, all kinds of other hypotheses are possible, and also hypotheses that
differ per item can be combined. For example, if a researcher adopts the diagnostic
perspective as formulated byHoijtink et al. (2014), one could use latent class analysis
(LCA; Lazarsfeld 1950) to define groups of masters and non-masters. More complex
constructions of classes can be considered by putting restrictions on the probabilities
of answering items correctly, given class membership (e.g., Heinen 1996; Hoijtink
2001; Vermunt 2001). The Bayes factor can then be used to test the most likely class
membership, given a specific score pattern.
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In the current research, wewill apply informative Bayesian hypotheses to evaluate
test lengths and cut-scores for items typically used in mastery testing, with a focus
on fine-grained learning objectives. Typically, the items in assessments that focus
on mastery of a learning objective are constructed in such a way that students who
have mastered the learning objective will have a high probability of answering the
items correctly. Students who have not mastered the learning objective will have
a smaller probability of answering the items correctly. We establish guidelines for
test lengths and cut-scores in three studies: a simulation study with homogeneous
item characteristics, an empirical example, and a simulation based on the empirical
example with heterogeneous item characteristics.

6.2 Method

6.2.1 Simulation Study with Homogeneous Item
Characteristics

We evaluated the Bayes factors for number-correct scores on tests with 4–10 items.
Mastery on these tests was defined as having a probability higher than 0.8 to answer
each of the items correctly. For non-mastery, four different hypotheses were consid-
ered. The first hypothesis to define non-mastery was that at least one item should
have a probability of being correctly answered lower or equal to 0.8. This is the com-
plement of the definition of mastery given above. The three other hypotheses that
defined non-mastery were that the probability of giving a correct answer to an item
was smaller than 0.2, 0.4, or 0.6 for all of the items. The Bayes factors for mastery
compared to each of these alternatives for non-mastery were calculated using the
program BED.exe (Hoijtink et al. 2014).

To interpret the Bayes factors in this study, we followed the proposed guidelines
in the literature (Kass and Raftery 1995; Jeffreys 1961) and adopted the rule that
Bayes factors over 20 are an indicator of mastery. According to the guidelines, these
values are an indication of strong evidence (BF between 20 and 150) or very strong
evidence (BF > 150) that the response is based on mastery rather than non-mastery.
The rationale behind the somewhat conservative rule and not accepting lower BF
values is that in formative evaluations, the cost of false negatives is relatively low,
while due to a false positive decision, a student could miss extra education on a topic
that needed more attention.

6.2.2 Empirical Example

We applied the Bayesian hypothesis testing method to item response data collected
from Groeimeter (2017), an evaluation platform containing mastery tests for a large
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number of mathematics learning objectives. Each learning objective is assessed by
a 7-item test and a student takes multiple tests. The data of performances on 25
formative tests were used in Bayesian evaluations of mastery of learning objectives
based on inequality constrained hypotheses identified through latent class analyses.
Each formative test was evaluated separately using the following two steps:

Step 1. The probabilities of answering the seven items correctly were determined
separately for masters and non-masters. In the data, both groups were present, since
the formative tests were administered to students who were either masters or used
the formative tests for practice. The specific test strategy for a single student was
unknown to us; thus, we used latent class analyses (poLCA; Linzer and Lewis 2014)
to identify the classes of students, which were then interpreted as masters and non-
masters. The success probabilities for item i for masters πi,masters and non-masters
πi,non-master, were used to specify hypotheses in which these probabilities define the
borderline case for mastery and non-mastery. This resulted in inequality constrained
hypotheses Hi,master : πi ≥ πi,masters, and Hi,non-master : πi ≤ πi,non-master.

Step 2. Each of 27 = 128 possible score patterns were evaluated against both sets
of hypotheses. If the Bayes factor for mastery against non-mastery exceeded 20, it
was concluded that the response pattern corresponded to a student who had mastered
the objective. For each learning objective, the Bayes factors were calculated using
the program BED.exe (Hoijtink et al. 2014). Subsequently, score patterns resulting
in a Bayes factor of 20 or higher were classified as indication for mastery. Since
all items differ in the probabilities for mastery and non-mastery the specific score
pattern impacted the Bayes factor. Patterns with equal number-correct score but a
different score pattern could lead to a different indication for mastery. The minimum
number-correct score for mastery was determined based on the proportion of patterns
with the same number-correct score leading to a mastery decision.

6.2.3 Simulation Study Based on Empirical Data
and Heterogeneous Item Characteristics

The empirical example used the results of 25 * 7 = 175 separate items from 25
different learning objectives. These items psychometrically reflected a wide range of
item characteristics that can be found in real data. The relevant item characteristics
were the success probabilities for masters and non-masters from the latent class anal-
yses. These probabilities were used to define the inequality constraints for mastery
and non-mastery as described in step 1 above. Based on the set of 175 items, new
formative tests were assembled with different test lengths.

The required number-correct score for mastery was determined for tests with
4–10 items. For each test length, we simulated 50 replications by drawing from
the 175 items without any replacements. We then estimated the Bayes factor for
all the possible response patterns for inequality constrained hypotheses for masters
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and non-masters (similar to Step 2 in the analyses of the original empirical data).
This was done to evaluate the effectiveness of different test lengths and different
number-correct scores to distinguish between masters and non-masters.

6.2.4 Estimating and Validating a Predictive Model for Bayes
Factors

To aggregate the results over the different tests from Groeimeter, a regression model
was estimated in which the Bayes factor was predicted based on the response pat-
tern and taking into account item characteristics. Aggregation was necessary since
tests for different learning objectives will show variations in item characteristics and
consequently in the required number of correct responses to indicate mastery. The
dependent variable was the natural logarithm of the Bayes factor, accounting for
the non-linear nature of this variable. Four predictors were used: (1) an intercept,
(2) the observed proportion correct of the response pattern, (3) the sum of the suc-
cess probabilities for masters on the incorrect responses, (4) the sum of the success
probabilities for non-masters on the correct responses. The last two variables were
centralized around the mid-point of the probability scale.

Results from the analysis based on the data from Groeimeter were validated with
results calculated on the generated samples from the simulation study.

6.3 Results

6.3.1 Simulation Study with Homogeneous Item
Characteristics

Results of the simulation study that focused on the number-correct score and test
length are given in Table 6.1. The four conditions are indicated in the first column
and are a single definition of mastery, with π larger than 0.8 and indicated by (m:
> 0.8), crossed with each of the four conditions of non-mastery, ranging from the
complement of allπ larger than 0.8 (> 0.8) down to allπ< 0.2.Within each condition,
Bayes factors are given for test lengths of 4–10 items. Bayes factors 20 or higher are
printed in italics. For each test length n, all of the possible number-correct scores 0
… nwere evaluated, but only a limited number of results are reported. Indications of
non-mastery and very large Bayes factors are removed from Table 6.1. This includes
all factors smaller than 0.2 and larger than 1000.

The Bayes factors in Table 6.1 can be evaluated to find appropriate test lengths and
cut-scores for mastery. For example, it can be seen that no Bayes factor was larger
than 20 for the 4-item and 5-item tests in condition 1. For tests with lengths of 6–8
items, only a perfect score indicates mastery in condition 1, while a number-correct
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Table 6.1 Bayes factor comparing mastery and non-mastery

Condition Number correct 4 5 6 7 8 9 10

(1) m: > 0.8
nm: > 0.8

n 10.9 19.5 35.3 63.7 111.3 195.0 372.4

n − 1 1.2 2.1 3.9 7.0 12.5 22.0 41.0

n − 2 0.2 0.4 0.8 1.4 2.4 4.6

n − 3 0.3 0.5

(2) m: > 0.8
nm: < 0.6

n 84.6 254.3 777.4

n − 1 4.0 12.0 36.8 109.7 326.0 944.0

n − 2 0.2 0.6 1.7 5.2 15.6 45.0 142.4

n − 3 0.2 0.7 2.1 6.7

(3) m: > 0.8
nm: < 0.4

n 429.7

n − 1 11.7 53.2 247.4

n − 2 0.3 1.5 6.8 30.2 134.9 577.0

n − 3 0.8 3.8 16.2 76.8

n − 4 0.4 2.1

(4) m: > 0.8
nm: < 0.2

n

n − 1 81.6 736.9

n − 2 1.0 9.0 84.5 742.6

n − 3 1.0 9.1 90.4 727.8

n − 4 1.1 9.0 80.9

n − 5 1.0

score of 8 is also a clear indication of mastery in a 9-item test, and a number-correct
score of 9 indicates mastery in a 10-item test.

6.3.2 Empirical Example

Subsequently, the results of the latent class analyses are given to determine success
probabilities for masters and non-masters and the resulting Bayes factors for the 25
formative tests.

6.3.2.1 Latent Class Analyses

Figure 6.1 summarizes the results of the latent class analyses for the 25 formative tests
sampled fromGroeimeter. Each plot shows the distributions of 25 * 7= 175 different
items. The three distributions represent (a) the latent class-based estimated success
probabilities for the masters, (b) the estimated success probabilities for the non-
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masters, and (c) the difference between those success probabilities for the masters
and the non-masters.

On average, masters had a success probability of 0.84 on the test items, whereas
the non-masters had an average success probability of 0.33. The probabilities for
masters are close to the generally accepted boundary of 80% correct for mastery,
and the success probabilities for the non-masters are low enough to enable a clear
distinction between the two groups. The right panel of Fig. 6.1 shows that the dif-
ference in success probabilities differs largely across the items; one item even has a
higher success probability for the non-masters than for the masters. This is a suitable
collection of items to investigate the impact of differences in success probabilities
on the resulting Bayes factor.

6.3.2.2 Bayes Factors

We investigated theBayes factors for all possible response patterns on the seven items
for each of the 25 formative tests in Groeimeter. We found that no response pattern
with zero, one, or two correct responses showed enough evidence formastery; six and
seven correct responses were always congruent with a mastery response pattern. For
the other number-correct scores, the cumulative distribution of natural logarithms of
the obtained Bayes factors are given in Fig. 6.2. The cut-score to indicate a mastery
response pattern on the natural logarithm scale of the Bayes factor is ln(20) = 2.996.

In Fig. 6.2, the distributions for larger number-correct scores shift to the right,
indicating that the Bayes factor generally increases with a larger number-correct
score. For number-correct scores of 3–6, the percentage of the response patterns
congruentwithmastery of the learning objectivewas 2, 35, 91, and 99%, respectively.

To illustrate what conditions lead to more deviant conclusions, Table 6.2 shows
two examples of response patterns with corresponding success probabilities for mas-
ters and non-masters. Test #3 has incorrect responses for easy items for the mastering
group, resulting in a response pattern of five correct items and showing no significant
evidence of mastery. In test #40, a response pattern resulting in three correct items
was a clear indication of mastery when the correctly answered items had a very small
success probability for non-masters (< 0.02).

Fig. 6.1 Distributions for latent class-based success probabilities for masters and non-masters, and
the difference between these probabilities
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Fig. 6.2 Distribution of the natural logarithm of Bayes factors for number-correct scores 3–6

Table 6.2 Examples of response patterns leading to deviant conclusions

Test 3 Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Bayes
factor

Success
probabili-
ties for
masters

>0.980 0.769 0.966 >0.980 0.745 0.574 0.414

Success
probabili-
ties for
non-
masters

0.400 0.259 0.680 0.448 0.648 0.401 0.378

Response
pattern

0 1 1 0 1 1 1 0.141

Test 40

Success
probabili-
ties for
masters

0.529 0.973 0.850 0.895 0.822 0.868 0.719

Success
probabili-
ties for
non-
masters

0.215 0.246 0.142 <0.020 0.256 <0.020 <0.020

Response
pattern

0 0 0 1 0 1 1 33.821
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Table 6.3 Percentage of response patterns congruent with mastering the learning objective for
different test lengths and number-correct scores

Number-correct

0 1 2 3 4 5 6 7 8 9 10

4 0% 2% 11% 90% 100%

5 0% 0% 0% 23% 95% 100%

6 0% 0% 0% 5% 67% 97% 100%

7 0% 0% 0% 2% 23% 89% 100% 100%

8 0% 0% 0% 4% 9% 60% 97% 99% 100%

9 0% 0% 0% 0% 10% 20% 81% 100% 100% 100%

10 0% 0% 0% 0% 2% 11% 53% 96% 99% 100% 100%

6.3.3 Simulation Based on the Empirical Data
and with Heterogeneous Item Characteristics

Tests were assembled with test lengths ranging from 4 to 10 items, and percentages
of response patterns congruent withmasterywere calculated for each number-correct
score separately. These percentages are given in Table 6.3.

6.3.4 Prediction Model

The estimated regression coefficients for predicting the natural logarithmof theBayes
factors using response patterns and item characteristics are given in Table 6.4.

The effect of the proportion of correct responses can be interpreted as a modifica-
tion of the intercepts, given a specific number-correct score. The larger the number-
correct score, the higher the intercept. The other effects are related to the specific
particular response pattern. Generally speaking, high success probabilities on correct
responses for non-masters and high success probabilities on incorrect responses for
masters resulted in lower Bayes factors.

Table 6.4 Regression
coefficients predicting
ln(Bayes factor)

Intercept −7.112

Proportion of correct responses 15.834

Sum of success probabilities of non-masters for
correct responses minus 0.5

−3.890

Sum of success probabilities of masters for
incorrect responses minus 0.5

−5.229

R2 0.953

All coefficients are significant p < .001
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Fig. 6.3 Relationship between observed ln(Bayes factor) and the predicted ln(Bayes factor) by the
regression model

6.3.4.1 Validation of the Prediction Model

The application of the regressionmodel, as presented in Table 6.4, to all newly assem-
bled tests in this simulation study (450 tests in total) resulted in a strong correlation
(r = 0.975) between observed and predicted Bayes factors.

The relationship for each of the simulated tests is graphically presented in Fig. 6.3.
The specificity and sensitivity of classifying response patterns as congruent or con-
flicting with learning objective mastery are 0.974 and 0.834, respectively.

6.4 Discussion and Conclusions

Bayesian hypotheses tests were used in a number of scenarios to answer the ques-
tion: “How many correct responses do I need to decide on mastery?” As with all
simulation studies and case studies, the results depend on the specific conditions,
but some overall trends can be seen in the different studies. In the first theoretical
study, inequality hypotheses were compared with equal difference in probability
between mastery and non-mastery for all items. The amount of difference varied
across conditions and in only one of the conditions the definition of non-mastery
was the complement of mastery. In all other cases a comparison was made between
two inequality hypotheses that did not cover all theoretically possible outcomes leav-
ing some success probabilities unspecified as indicative for mastery or non-mastery.
Probabilities between the upper bound for non-mastery and below the lower bound
for mastery could provide alternative hypotheses to predict the data and be better
suitable for some response patterns.

In the empirical example, our procedure incorporated results from LCA into
inequality constrained hypotheses. The resulting definitions of mastery and non-
mastery differed largely in success probabilities. The hypothesis tests based on these
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success probabilities were extremely powerful in detecting whether or not a response
pattern was in line with mastery or non-mastery. In the second simulation study even
a test length of just four items provided a significant indication for mastery in 90%
of the cases where a student gave three correct answers. This amount of power can
be explained by two aspects:

• The LCA indicated a large difference in average success probability for masters
and non-masters. This average difference was more than 0.50.

• The success probabilities are used to define two inequality constrained hypotheses
that are compared, and all other hypotheses are ignored. The success probabilities
are used as lower bound for mastery and as upper bound for non-mastery. Proba-
bilities lower than the lower bound for mastery but higher than the upper bound for
non-mastery were not considered as alternative to the mastery and non-mastery
hypothesis, while in practice these could give alternative, and potentially more
likely, explanations for the response behavior.

As a consequence the items got almost deterministic properties in the second
simulation study. If an item was answered incorrectly while the probability of a
correct response for masters was very high this probably resulted in a classification
as non-master. By the same token, a correct answer on an item with a very low
probability for non-masters probably resulted in a classification as master.

In future research, otherways to translate results fromLCAintoBayesianhypothe-
ses should be considered. For example, definitions of mastery and non-mastery could
be based on mutual exclusive categories (comparable to condition 1 in the first sim-
ulation study) or an alternative procedure could be applied in which equality con-
straints are used to define mastery and non-mastery. Other alternatives are to use
inequality constraints on the success probability plus or minus two standard errors
for non-mastery and mastery, respectively, and to consider other hypotheses such as
indifference about mastery or hypotheses related to specific misconceptions.

The number of items necessary to determine mastery in a test clearly depended on
the conditions, the level of certainty of the mastery decision, and the cut-score used.
When using a level of certainty of 95%, the difference between heterogeneous item
characteristics in the second simulation study and homogeneous item characteristics
in condition 3 of the first study did not result in very different outcomes. Both studies
indicated mastery for a maximum score on a four item test. With tests containing five
and six items a score one point below the maximum was an indication of mastery.
The same was found in the heterogenous case for a test with seven items, while a
score of five on a seven items test was sufficient in the homogeneous case.

When we want to allow for an incorrect item response, based on the study with
homogenous inequality constraints, we need only five items when the definition of
non-mastery is based on a success probability for all items of 0.4 or less. Six items
is the minimum test length with a non-mastery definition based on a probability of
0.6 or less. When non-mastery is defined as the complement of mastery, at least a
9-item test with eight correct responses is necessary to indicate mastery based on a
Bayes factor of 20 or more.
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As a general rule, it is reasonable to assume that you at least need six items and
a cut-score of 5 to be able to decide on mastery if the test is sufficiently carefully
designed to perform as a mastery test. Even in that case, it is necessary to check if
all items discriminate between masters and non-masters. If the items are pre-tested
and all items are selected to be in line with a mastery decision for difficulty level and
discrimination, the test length can be reduced to five items.

As amore general conclusion, this research showed that the evaluation ofBayesian
hypotheses can provide practical guidelines for test construction and the evaluation
of empirical tests. Extending on the current analyses and in line with the tradition of
earlier research into mastery testing, a next step could be to incorporate utility theory
(van der Linden 1990; Vos 1994) into the procedure. This can be accomplished using
differential weighting of false positive and false negative decisions. Another line of
research is to extend the application of the described procedure on response data of
formative assessments by identifying classes that indicate particular misconceptions,
thereby providing relevant feedback, given a series of responses in the case of non-
mastery.

References

Bennett, R. E. (2011). Formative assessment:A critical review.Assessment inEducation: Principles,
Policy & Practice, 18, 5–25.

de Gruijter, D. N. M., & Hambleton, R. K. (1984). On problems encountered using decision theory
to set cutoff scores. Applied Psychological Measurement, 8, 1–8.

Eggen, T. J. H. M. (1999). Item selection in adaptive testing with sequential probability ratio tests.
Applied Psychological Measurement, 23, 249–261.

Eggen, T. J. H. M., & Straetmans, G. J. J. M. (2000). Computerized adaptive testing for classifying
examinees into three categories. Educational and Psychological Measurement, 60, 713–734.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis. Boca Raton,
FL: Chapman & Hall/CRC.

Hambleton, R. K., & Novick, M. R. (1973). Towards an integration of theory and method for
criterion-referenced tests. Journal of Educational Measurement, 10, 159–170.

Heinen, T. (1996). Latent class and discrete latent trait models: Similarities and differences. Thou-
sand Oaks CA: Sage.

Hoijtink, H. (2001). Confirmatory latent class analysis: Model selection using Bayes factors and
(pseudo) likelihood ratio statistics.Multivariate Behavioral Research, 36, 563–588.

Hoijtink, H., Beland, S., & Vermeulen, J. (2014). Cognitive diagnostic assessment via Bayesian
evaluation of informative diagnostic hypotheses. Psychological Methods, 19, 21–38.

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, England: Oxford University Press.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association,
90, 773–795. https://doi.org/10.1080/01621459.1995.10476572.

Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure analysis & The
interpretation and mathematical foundation of latent structure analysis. In S. A. Stouffer et al.
(eds.), Measurement and Prediction (pp. 362–472). Princeton, NJ: Princeton University Press.

Linzer, D., & Lewis, J. (2014). poLCA: Latent class analysis and latent class regression models for
polytomous outcome variables. R package version 1.4.1.

Lord, F. M. (1980). Application of item response theory to practical testing problems. Hillsdale,
NJ: Erlbaum.

https://doi.org/10.1080/01621459.1995.10476572


134 A. A. Béguin and J. H. Straat

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen:
Danish Institute for Educational Research.

van der Linden, W. J. (1980). Decision models for use with criterion-referenced tests. Applied
Psychological Measurement, 4, 469–492.

van der Linden, W. J. (1990). Applications of decision theory to test-based decision making. In
R. K. Hambleton & J. N. Zaal (Eds.), Advances in educational and psychological measurement
(pp. 129–156). Boston, MA: Kluwer-Nijhof.

Van Groen, M. M. (2014). Adaptive testing for making unidimensional and multidimensional clas-
sification decisions.

Vermunt, J.K. (2001).Theuse of restricted latent classmodels for defining and testingnonparametric
and parametric item response theory models. Applied Psychological Measurement,

Vos, H. J. (1994). Simultaneous optimization of test-based decisions in education (Doctoral disser-
tation). Enschede: University of Twente.

Wilcox, R. R. (1976). A note on the length and passing score of a mastery tests. Journal of Educa-
tional Statistics, 1, 359–364.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	6 On the Number of Items in Testing Mastery of Learning Objectives
	6.1 Introduction
	6.2 Method
	6.2.1 Simulation Study with Homogeneous Item Characteristics
	6.2.2 Empirical Example
	6.2.3 Simulation Study Based on Empirical Data and Heterogeneous Item Characteristics
	6.2.4 Estimating and Validating a Predictive Model for Bayes Factors

	6.3 Results
	6.3.1 Simulation Study with Homogeneous Item Characteristics
	6.3.2 Empirical Example
	6.3.3 Simulation Based on the Empirical Data and with Heterogeneous Item Characteristics
	6.3.4 Prediction Model

	6.4 Discussion and Conclusions
	References




