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Abstract

This paper presents a new class of models for persons-by-items data. The essential new
feature of this class is the representation of the persons: every person is represented by its
membership to multiple latent classes, each of which belongs to one latent classification.
The models can be considered as a formalization of the hypothesis that the responses come
about in a process that involves the application of a number of mental operations. Two
algorithms for maximum likelihood (ML) and maximum a posteriori (MAP) estimation
are described. They both make use of the tractability of the complete data likelihood to
maximize the observed data likelihood. Properties of the MAP estimators (i.c., uniqueness
and goodness-of-recovery) and the existence of asymptotic standard errors were examined
in a simulation study. Then, one of these models is applied to the responses to a set of
fraction addition problems. Finally, the models are compared to some related models in

the literature.

Key-words: latent class models, latent response models, cognitive processes, EM-

algorithm.






This paper presents a new class of models for persons-by-items data. The essential
new feature of this class is the representation of the persons: every person is represented
by its membership to multiple latent classes.

In traditional latent class analysis (Lazarsfeld & Henry, 1968; Goodman, 1974) every
person is represented by its membership to one of T' latent classes. In this paper, such a
set of T latent classes is called a latent classification. The models to be presented here
involve more than one latent classification, and every person is thus characterized by its
memberships to the latent classes of these multiple latent classifications. Therefore, they
are called multiple classification latent class models (MCLCM’s).

MCLCM’s can be considered as a formalization of the hypothesis that the responses
come about in a process that involves the application of a number of mental operations.
Each of these mental operations corresponds to one latent classification. With binary
latent classifications, one of the classes in every classification corresponds to mastery of
this mental operation and the other to non-mastery.

We start by giving an example of an item type (simplifying fractions) whose solution

process can be described in terms of two mental processes (splitting and identifying).

1 Example: Simplifying Fractions

Consider items of the following type: 9/4 = ...,3/2 =...,2/6 = ..., and 14/5 = ...
The subject’s task is to simplify these fractions as much as possible. l'or example, the
correct answer to 14/5 = ...1s 2 4/5. It is assumed that, to be able to correctly simplify
all possible fractions, one has to master two mental operations: splitting and identifying.
The splitting operation involves that a given fraction is split in a units part and a fraction
part. And the identifying operation involves that the largest common denominator of the

fraction part is identifiable.



Given these two mental operations, four types of items can be distinguished. First,
there are items that require neither splitting nor identifying. An example is 3/5 = .. .:
The correct answer is simply 3/5. No mental operation has to be performed to produce
this answer. Second, there are items that require only identifying. An example is 2/6 =

. T'ie subject has to find the largest common denominator (i.c., 2) and then divide
numerator and denominator by it. This produces 1/3 as the correct answer. Third, there
are items that require only splitting. An exampleis 5/3. Applying the splitting operation,
5/3 is transformed into 3/3 + 2/3. Then, 3/3 is transformed into 1 without having to
identify the largest common denominator. And fourth, there are items that require both
splitting and identifying. An example is 8/6 = .... Applying the splitting operation, 8/6
is transformed into 6/6 + 2/6 = 1 + 2/6. And applying the identifying operation, the
largest common denominator of 2 and 6 is seen to be 2 such that 2/6 can be written as
1/3.

Analogous to the distinction of four types of items, also {our types of persons are
distinguished: those that master neither splitting nor identifying, those that master only
splitting or identifying, and those that master both splitting and identifying. For each of
these four types of persons, one can specify which item types they will answer correctly.
For this, the rule has to be followed that an item is answered correctly if and only if the
person masters all mental operations required by the item. This is illustrated in Figure
1. In this figure, a 1 is used to denote that an item requires a particular mental operation
and 0 to denote that it does not. Similarly for the persons, a 1 is used to denote that a

person masters a particular mental operation and 0 to denote that he or she does not.



Splitting 0 1 0 1
Requires
Identifying 0 0 1 1
Masters

0 0 1 0 0 0

1 0 1 1 0 0

0 1 1 0 1 0

1 1 1 1 1 1

Figure 1

Responses of four types of persons to four types of items as a
function of the mental operations (splitting and identifying)
mastered by the persons and required by the items

2 Models

First, we present the conjunctive MCLCM. Then, other MCLCM's are presented along

the same lines.



2.1 The Conjunctive MCLCM

MCLCM’s consist of two components: (a) a model for the latent class memberships and
(b) a model for the item responses conditional on the latent class memberships. Although
our main interest is in (b) (the way the item responses come about), the exposition is

facilitated by considering (a) first.

2.1.1 The saturated model for the latent class memberships

We consider the random variable (RV) Z; that indicates a person’s membership to some
class of the k-th latent classification. The number of latent classifications is denoted
by K (k =1,...,K). In general, Zx is a categorical RV with a number of categories
that can be specified freely, as in ordinary latent class analysis. In this paper, we only
consider latent classifications consisting of two classes. Thus, Z; is a Bernoulli RV. The
realizations of Z; are denoted by 2z, whose values are 0 or 1. The restriction to two classes
is motivated by the fact that, in this way, the latent classifications can be interpreted as
mental operations, with the two classes corresponding to mastery and non-mastery.

Because there are K latent classifications, every person is characterized by a K-
dimensional vector of z;’s. This vector.is denoted by z (2=(zy,...,zx)"). This vector z
is a realization of the K-dimensional RV Z (Z=(Z;,...,Zx)"). For Z, several models
can be formulated. A model for Z is a probability density function (PDF). This PDF
depends on some vector of parameters &, and is denoted by P(Z = z;§).

We consider the saturated model for Z. This model assumes that the probabilities of
each of the different realizations of Z (z-patterns) are unrestricted. allowing for all possible
statistical dependencies between the Z,’s. The total number ol z-patterns is 2. This
number is denoted by T, and ¢ is used as an index for the z-patterns (¢ = 1,...,T). The
only restrictions on the T parameters &, := P(Z = 2;) are the obvious ones, 0 < & < 1
and the fact that they have to sum to 1. This model is characterized by the following
PDF:

T
P(Z = z;:€) =[] ¢"® . (1)
t=1



in which I; is an indicator function having the value 1 if z is the ¢-th pattern and 0

otherwise.

2.1.2 A conjunctive latent response model for the item responses conditional

on Z

Before describing the conjunctive latent response model (LRM), some notation and as-
sumptions are presented that are common to all models for the item responses.

Notation and general assumptions. For every person, a vector of [ item responses

is observed. The RV Y is used to denote the response on the i-th item (¢ = 1,...,7).
In general, Y; is a categorical RV with any number of categories, but in this paper only
dichotomous items (e.g., correct/incorrect) are considered. The realizations of Y; are
denoted by y; whose values are either 0 or 1. The vector-valued RV of the / item responses
is denoted by Y (= (Y1,...,Y:)") and its realization by y (= (y1.....y1)").

The PDF of Y depends on Z, the vector of latent class memberships, and 7, a vector
of item parameters. This PDF is denoted by P(Y = y|Z = z;m) or P(Y|Z;n) if there

is no danger of confusion. The assumption of local statistical independence (LSI) is made,

involving that, conditionally on Z, the Y;’s are statistically independent. Denoting the

PDF of Y; by P(Y;|Z; n), this assumption can be expressed as follows:

I
P(Y|Z;n) = [[ P(YilZ;m) 2)

=1
It is also assumed that P(Y;|Z;n) depends on 7 only through some subset 7, of 7,
the item parameters of the i-th item. Therefore, P(Y;|Z;n) can also be expressed as
P(Y:|Z;mn,). We now consider a further specification of P(Y;|Z: %,). namely as a LRM.

A conjunctive latent response model. The basic idea behind LRM'’s is that the ob-

served response (Y; in our case) is the result of a mapping that takes a set of latent re-
sponses as its argument (Maris, 1995; Maris, De Boeck and Van Mechelen, 1996). LRM’s
are defined by (a) a model for the latent responses, and (b) a so-called condensation rule
that maps these latent responses into the observed responses. We first consider (a). Con-

sidering the latent classifications as corresponding to mental opcrations (e.g., splitting



and identifying), we now consider the K latent responses that are the results of the appli-
cation of each of these K mental operations. These latent responses denote the successiul
or non-successful application of these mental operations. Thus, the latent responses are
dichotomous. When speaking about latent responses, the term component will be used to
denote the process that generates the latent response. Every component corresponds to
one latent classification.

The k-th latent response on item ¢ is denoted by the RV Xi. In general, X is a
categorical RV that can have any number of categories, but here only dichotomous X;;’s
are considered. [or example, simplifying a fraction may involve X;; and X;,, denoting,
respectively, whether the splitting and the identifying operation was applied successfully
(X, Xi2 = 1) or not (X1, X;2 = 0). The vector-valued RV of the K latent responses on
item 7 is denoted by X; (= (Xu, ..., Xix)"). The PDF of X; is denoted by P(X:|Z;n,).
We make the assumption of LSI, which involves that, conditionally on Z, the X;;’s are

statistically independent. Denoting the PDF of X;x by P(X|Z:m;). this assumption is

expressed as follows:
7
P(X:|Z;m) =[] P(X|Z;m;) (3)
k=1
(For situations in which this assumption is violated, the models can be extended in a
straightforward way.)

Next, it is assumed that P(Xix|Z; ;) depends on n; only through some subset 7., of
7n,. Therefore, P(Xic|Z;m,) can also be expressed as P(X;.|Z;n,.). This subset of the
item parameters will be called the component item parameters.

Finally, it is assumed that P(X|Z;n;,,) depends on Z only through Zj, the mem-
bership in the latent classification that corresponds to this component. It follows that
P(X|Z;m;,) can be replaced by P(Xik|Zi;m;.). Considering the memberships in the
latent classifications as mastery or non-mastery of a mental opecration, this assumption
involves that the result of the application of the k-th mental operation (i.c., Xit) only
depends on the person’s mastery of this particular mental operation. This assumption
is necessary for the substantive interpretation of the Z;’s. In particular. if the parame-

ter estimates show that some component is only involved in a particular item type (e.g.,



items that involve splitting), then we know that the corresponding Z; operates on the
item characteristic that distinguishes this item type from the others.

We now consider the different component item parameters. For every
(item,component)-pair there are two parameters. Every parameter corresponds to one
conditional probability: P(X;x = 1|Z; = 1), the probability of a correct application of
the k-th mental operation given that it is mastered, and P(Xy = 1|Z¢ = 0), the prob-
ability of a correct application of this mental operation given that it is not mastered.
P(X; = 1|Zx = 0) is the probability that non-mastery of the k-th mental operation can
be compensated by other mental resources. And one minus P(X; = 1|Z, = 1) is the
probability of a careless error (e.g., due to lack-of-attention). The conditional probabili-
ties P(Xiu = 1|Zx = 1) and P(Xi = 1|Zx = 0) are the item parameters of this model and
they will be denoted by, respectively, ;1 and niko. Thus, ;. = (k1. niko ). This allows
us to write P(Xk|Zk;n;) as lollows:

Zi : - B
P(Xix| 2k i) = (Tli)/ii"(l - Uikl)l_x"") X (W{\kbk(l - Oiko)l_'x’k> (4)

The second defining characteristic of a LRM is its condensation rule. This condensa-
tion rule is a mapping of X; into Y;, denoted by C(X;). The conjunctive condensation
rule is defined as follows: p

c(X:) =[] Xu
k=1
This function has the value 1 if and only if all X;;’s have the value 1. A useful interpreta-
tion of this condensation rule is in terms of mental operations whose successful application
is necessary for giving the correct response. Thus, all mental operations have to be ap-
plied successfully to give a correct response. For example, to solve a [raction item, both
the splitting and the identifying operation have to be applied successfully (if they are
involved in the solution process, of course). Together with the assumption of LSI of the

Xik's (see (3)), this condensation rule leads to the following form for P(Y;|Z;n;):

K ¥ K I-Y
P(Yi|Z;n;) = (H P(Xy = 1|Zk>) (1 — [ P(Xa = uzk)) (5)
k=1 k=



2.1.3 The marginal model for the item responses

Finally, we consider the PDF of Y, the vector of observed item responses. The starting-

point for this PDF is the joint PDF of Y and Z:
P(Y,Z;n,8) = P(Y|Z;n)P(Z;§)

From this joint PDF we get the marginal PDF of Y by summing over all possible real-

1zations of Z:
I 1

P(Y;"hg): Z E P(Y9Z=Z§77a€)

21 =0 zp=0

2.2 Other MCLCM'’s

Other MCLCM’s are obtained by formulating (a) a different model (or the latent class

memberships, and (b) a different model for the item responses conditional on Z.

2.2.1 Different models for the latent class memberships

Another model for Z is the independence model. This model assumes that every Zj is
independently distributed. Because Zj is a Bernoulli PDI, it is characterized by a single
parameter {; which is equal to P(Zx = 1). The only restriction on these £;’s is that they

have to be between 0 and 1. This model is characterized by the [ollowing PDI":

.
P(Z =z &) =]]&0—-6) ™ (6)
k=1

Still another model for Z is a loglinear model for the /{-dimensional 2x2x...x 2-table
of latent class memberships. Actually, the models in (1) and (6) can also be formulated
as loglinear models for this table: a model with all possible intcractions between the K
classifications for (1) and a model with only main elfects [or (6). Obviously, by adding

and deleting interaction terms a whole variety of loglinear models can he formulated.



2.2.2 Different models for the item responses conditional on Z

Different latent response models. LRM’s are very well suited for formalizing psycholog-

ical hypotheses about the process in which the responses come about. Within this frame-
work, different types of MCLCM’s, corresponding to different psychological hypotheses,
can be formulated easily. Three kinds of extensions to the conjunctive model are possible.
First, one can formulate different PDF’s for the latent responses X; conditional on Z.
For example, this PDF may involve statistical dependencies between the latent responses,
reflecting the hypothesis that the application of one mental operation influences the appli-

cation of others. Second, one can assume the latent responses to be polytomous, or even

continuous, instead of dichotomous. For example, continuous latent responses may be an
appropriate choice for a detection or identifiability task in which stimuli are presented
that vary on a number of continuous dimensions. And third. one can formulate other
condensation rules besides the conjunctive one.

Another useful condensation rule is the disjunctive one. [t is defined as follows:

K

C(X;)=1- H(l — Xik)

k=1
This function has the value 1 if and only if there is at least one X; that has the value
1. A useful interpretation of this condensation rule is in terms of mental operations or
strategies whose successful application is sufficient for giving a correct response. Together

with the assumption of LSI of the X;i’s, this condensation rule leads to the following form

for P(Y|Z;m,):

K Yo /K 1=V
PYi|Z;m;) = <1—HP(X1-,C =0|Zk)> <H P(Xik =0|Zk)> (7)
k=1

k=1
Still other condensation rules may have more than two different function values. For
example, one can formulate MCLCM’s for multiple choice items by chosing the condensa-
tion rule such that every pattern of latent responses is mapped into a particular response
alternative according to some hypothesis about the response process. Such an hypothe-
sis should not only specify how the correct response comes about. hut also the different

incorrect responses.



Estimation (Section 4) will be considered only for the conjunctive and the disjunctive
model with independent latent responses. The extension to other condensation rules and
other models for the latent responses is straightforward, however.

Restrictions on the item parameters. Besides extending the LRM-framework by for-

mulating other PDI["’s for the latent responses and using other condensation rules, the

usefulness of this class of models is also enhanced by introducing restrictions on the item

parameters. In particular, interesting special cases appear if n;.0 and/or 7, are fixed at 0
or 1. Under the conjunctive condensation rule, fixing n:ko at 0. the restriction is imposed
that this item absolutely requires mastery of this mental operation. This type of restric-
tions is very well suited for testing hypotheses about the response process. [For example,
one can fix n;10 at 0 for all fraction items that require splitting, and fix 7,20 at 0 for all
fraction items that require identifying. The introductory example was implicitely based
on this kind of deterministic response model (see [Figure 1). Also under the conjunctive
condensation rule, by fixing both nio and nix1 at 1, the restriction is imposed that the
corresponding mental operation is simply not involved in the solution of this item. [For
example, the fraction 2/6 = ... does not involve splitting. So, one can [ix 510 and n;1y
at 1 for this item. Under the disjunctive condensation rule. similar restrictions can be
imposed.

Latent response and latent variable models. At this point, we should point out the

difference between LRM’s and latent variable models in general. In a broad sense, LRM’s
are latent variable models because the model for the observed data (the Y;’s) is obtained
by integrating (summing) out a set of unobserved random variables (the Z’s and the
X.’s). In a narrow sense, latent variable models (the factor analysis model, the latent
class model) involve (a) a draw from the PDI of the latent variables. and (b) a draw
[rom the conditional PDI" of the observed variables given the latent variables. This
does not hold for LRM’s, because there is no conditional PDE ol observed variables
given latent variables; latent variables are mapped into observed variables by means of
a function. This mapping of latent into observed random variables is the essential new

feature of LRM'’s, distinguishing it from classical latent variable models. and creating the
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possibility to formalize new substantive hypotheses like solution processes that involve
multiple requirements (conjunctive) or multiple solution strategies (disjunctive).

We now consider a MCLCM that is a latent variable model in the narrow sense decribed
above.

A compensatory model. The basic idea behind this compensatory model is that mas-

tery of a particular mental operation may compensate for non-mastery of another mental
operation. Moreover, this compensation is gradual. As such, it is different from the dis-
junctive LRM in which a successful application of one strategy complelely compensates
for the non-successful application of the other strategies. The compensatory model can
be written as follows:

exp [Yi (Zi\zl Nik Lk — l?io)]
1 + exp [Zﬁ:l Nik Lk — Th‘o}

P(Yi|Z;n,) = (8)

In this model, K + 1 item parameters are involved. The first, ;9, is a threshold parameter
that specifies the value of Zle nik Zr that 1s needed for the probability of a correct
response to be equal to 0.5. The n;c-parameters are the amount of increase in probability
on the log-odds scale if the person changes from non-mastery to mastery of the k-th
mental operation.

This model is analogous to the item factor analysis model described by Muthen (1978)
and Bock and Aitkin (1981). The only difference is the nature of the latent variables, the
Z’s in (8). In the item factor analysis model, the latent variables are continuous, while
in this model they are discrete.

In a different parametrization, the model in (8) was proposed by Hagenaars (1990,
1993) (see also Heinen, 1993) in the context of so-called causal models with discrete
latent variables. Consider the model for the joint PDI" of Y and Z that follows from
(2), (8) and some model for Z like (1), (6) or a loglinear model. It is easy to see that
this model can be written as a loglinear model for the item_1x ... xitem_/ x Classification
-1 x ... xClassification_I{-table. In this loglinear model, —#;, is the parameter of the
main effect of item 2. And %;; is the parameter of the interaction elfect of item z and

classification k. [From this loglinear model for the unobservable complcte table, a latent

11



class model for the observed table of vectors Y is obtained by summing over all possible
realizations of Z.

Looking at (8) from the perspective of loglinear modelling leads to an interesting
extension of the model. This extension involves adding three-variable interaction terms
corresponding to item ¢ and two classifications k and [. The additional term that appears
in the exponent of (8) is then 74 ZxZ;. This model can be interpreted in terms of a
solution process in which a correct response depends on a join! mastery of two mental
operations. This dependence on joint mastery has some conjunctive flavor but the model
is nevertheless compensatory because of the linear combination of n-parameters in the
exponent.

This compensatory model will not be considered any further. Only for the MCLCM'’s
of the LRM-type, a ML and MAP estimation algorithm will be described. The algorithm
for the compensatory model, however, has essentially the same structure. ML estimation

of this model is also described by Hagenaars (1990).

3 Identifiability

[t can be shown that the conjunctive and the disjunctive MCLCM’s presented above
are not identifiable. Some identifiability restrictions are nécessa,ry to get unique, and
therefore interpretable, parameter values. This non-identifiability is of the same type for
the conjunctive and the disjunctive version of this model. Therefore, only the conjunctive
version is considered in detail. Moreover, this non-identifiability is of the same type for
all values of K > 2. Therefore, only the case I = 2 is considered in detail.

Two types of non-identifiability will be considered. The first one is with respect to the
P(Yi|Z;m;)’s and the second one is with respect to the P(Y :n, §)’s. alter some identifia-
bility restrictions are imposed on the P(Y;|Z;n;)’s. The P(Y;|Z: m;)’s are considered first.
The P(Y;|Z;n;)’s for the conjunctive LRM with K = 2 are shown in I‘igure 2. From this
figure, it can be seen that there exists a multiplicative trade-ofl between the parameters
of the two components. In particular, if 7;;; and 7;0 are multiplied by some constant ¢

and 72 and nizo are divided by the same constant, the P(Y;|Z: 7;)’s remain the same.
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By fixing one of these four parameters, this multiplicative trade-off is no longer possible.
We put 7,1, equal to 1. This restriction is consistent with our interpretation of 7;1; as the
conditional probability of successful application given mastery, because it is at least as

large as 7,10, the conditional probability given non-mastery.

Y:
0 1
(0» 0) 1 — ni10mi20 T:107)420
(0, 1) 1 - Ni107i21 Ni10M:21
VA
(17 0) 1 — ni11mi20 Nit17Mi20
(17 1) 1 — ninnin Ni117421
Figure 2

Conditional probabilities of the two possible realizations
of Y; according to the conjunctive LRM with K = 2
conditional on the four possible Z-patterns

[t is easy to show that for ' > 2 more than one parameter has to be fixed to make
this multiplicative trade-off impossible. A restriction that is sufficient to achieve this is
putting the first (K — 1) 7ik1 s equal to 1.

We now consider the second type of non-identifiability. Imposing the restrictions above
is not sufficient to get an identifiable model for Y. This can be shown {rom the formula
for P(Y';m,€&). This formula is considered for the case of a conjunctive LRM with K =2

[or Y given Z and the independence model for Z. (The model we choose [or Z is not

essential for the point to be shown.)
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I

P(Y;n,§) = H(Uz‘Zl)Y‘(l - 771‘21)1_},‘5152 +

=1

I

[T (M20)" (1 = mi2o) 61 (1 — &) +

1=1

!

H(77i107]i21)yi(1 — naomizn) (1 = &)& +

1=1
I

H(77i107)i20)yi(1 — Miomizo) (L = &1)(1 = &2) (9)

i=1
In this formula, the restriction that 7;;; equals 1 is already imposed. It is possible to
find another set of parameter values 1%, g, M0, & and &; that results in exactly the
same value as P(Y;n, &) in (9). The possibility of such a translormation is best seen
by first interchanging the second and the third row on the right-hand side of (9) and
then performing the following transformation: 17, = Mi21, M0 = MitoNiz21: Mo = Mi20/Ni21,
;=& and €5 = 1.

By imposing the restriction that 7;5; equals 1, this transformation is reduced to a
permutation of component item parameters (n%q = 10 and nfq = 7i20). Fortunately,
from the point of view of interpretation such a permutation of parameters does not create
any problems. Formally, this permutation of component item parameters is analogous to
a permutation of the dimensions (factor loadings) in the factor analysis model.

[For I{ > 2, the first type of non-identifiability was made impossible by putting the
first (K — 1) mia’s equal to 1. To remove the second type of non-identifiability, also 9;x
is put equal to 1. The psychological interpretation of this model involves that there is no
probability of a careless error: if a person masters a particular mental operation then he
or she will also apply it successfully.

[For the disjunctive LRM, similar identifiability restrictions have 1o be imposed. I[For
this model, all K 7;k0’s are put equal to 0 instead of all K 7;;’s put equal to 1. The
reason for this is that, in the latter case, the disjunctive LRM would predict a. perfect item

response pattern Y for all latent class membership patterns z different from (0,...,0)*.
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Therefore, no distinction can be made between these latent class membership patterns
on the basis of the observed item response patterns (e.g., by means of the posterior
probabilities of these latent class membership patterns given the observed item response
patterns). For the conjunctive LRM, an analogous problem occurs if all K 5;0’s are put
equal to 0 instead of all K 7 ’s put equal to 1.

It i1s admitted that this way of dealing with the identifiability problem is not a proofof
the model being identifiable. Evidence with respect to identifiability can also be obtained
from a simulation study. In section Five, a detailed report of such a simulation study is

given and the relevance of the results with respect to identifiability is pointed out.

4 Estimation

First, it is described how the EM-algorithm (Dempster, Laird and Rubin, 1977) can be
used to compute the ML estimates of the MCLCM’s of the LRM-type. Second, a hybrid
algorithm is described that combines the EM- and a Newton-type algorithm. And third,
it is described how maximum a posteriori (MAP) estimates can be obtained using the

same two algorithms.

4.1 An EM-algorithm

A MCLCM is a model for the item response vectors Y. [For dichotomous items, there are
2! different item response patterns. This number is denoted by S, and s (s = 1,...,5)
is used as an index for these patterns. The constant Cj; is used to denote the response
(0 or 1) on item ¢ in pattern s. The complete vector of responses is denoted by C,
(Cs = (Cs1....,Cs1)"). The number of observations of response pattern s is denoted by
the random variable /V; and its realization by n,. The vector (.V;,.....V5)' is denoted by
N and its realization (n;,...,ns)! by n. The total number of observations is denoted by

Nobs.

The following multinomial model is formulated for IV:
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Nobs S ne
P(N =mn;n,¢) = [IP(Y = Cein, €)™

ny...ns s=1

[gnoring the part of this PDF that does not depend on the parameters, the loglikelihood

I(n,&;n) can be written as follows:

5
l(”hﬁ; n) == ZnslnP(Y = Cs;ﬂ,f)
s=1

The EM-algorithm can be used to maximize (7, §; ) because m can be considered
as the observed data that result from a so-called missing data generaling process in which
part of the complete data is lost. For every person, the complete data consists of an
(I x K) matrix of latent responses X, denoted by X, and a K-element vector of latent
class memberships Zi, denoted by Z. This pair (X, Z) is mapped into the vector Y, the
observed data for this person. In the missing data generating process data are lost in two
ways: (a) by applying the condensation rule to the rows of X and (b) by dropping Z.

Now, some notation is introduced. For dichotomous latent responses, there are 2/*#
different matrices X. This number is denoted by R, and r (r = 1,..., R) is used as
an index for these matrices. The constant B, is used to denote the response (0 or 1)
on component k of item : in latent response matrix r. The complete matrix of latent
responses is denoted by B,. Further, for dichotomous latent classifications, there are 2%
different class membership patterns. This number is denoted by 7', and ¢ (1 =1,...,T) is
used as an index for these patterns. The constant D, is used to denote the membership
(0 or 1) in classification k for pattern ¢t. The complete vector of memberships is denoted
by D, (D, = (Dy,...,Dix)"). The number of observations of latent response matrix r
and class membership vector ¢ is denoted by the random variable M,, and its realization
by m.,. We use M to denote the (R x T') matrix of M,;’s and m to denote its realization.

The following multinomial model is formulated for M:
Nobs A

T
P(M =m;n,¢) = III]P(X = B., Z = Dy:n, &)™

mi1...MRT r=1 t=1
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[gnoring the part of this PDF that does not depend on the parameters and replacing

P(X = B,,Z = D;;n,£) by the product P(X = B;|Z = Dy;n) x P(Z = Dy;§), the
complete data loglikelihood h(m,&;m) can be written as follows:

T R T
h(n,&m) = ZmHln P(Z =Dy ¢)+ ZZm,tln P(X = B,|Z = Dy;n), (10)

t=1 r=1 t=1

in which m,, denotes the sum over r of the m,;’s for some value of t.

In the (p + 1)-th cycle of the EM-algorithm, one maximizes the conditional expected
value of the complete data loglikelihood h(m, &§ M) given the observed data n and the
parameter values of the p-th cycle, denoted by n?) and €. This [unction is denoted by
QR(n, & 7P, E(P)), and it is defined as follows:

Q(n,&;n®,EP) = € [h(n, & M)|N = n:ng»), £0)] (11)

Maximizing Q(n,&;n®), £€®)) is simple because h(n,&;m) is linear in the data, the m,,’s
(see (10)). This involves that one only has to replace the m,,;’s by their conditional
expected values (the F-step of the EM-algorithm) and apply a maximization algorithm
to the complete data loglikelihood (the M-step of the EM-algorithm). (Further, it will be
shown that it is not necessary to compute expected values of individual M.;’s but only of
certain linear combinations of M,,’s.)

The maximization of the complete data loglikelihood is a standard problem. [irst, we
consider the maximization with respect to €. Replacing P(Z = D; &) in the right-hand

side of (10) by the completely saturated model in (1), it can easily be shown that the ML

estimates € (¢ = 1,...,T) are given by the following closed-form expression:
;. m
ft - _]\T-:: y (12)

the proportion of persons having class membership pattern {. And if the model for Z is
the independence model in (2), it is easily shown that the ML estimates ék (k=1,...,K)

are given by the following closed-form expression:

T
5 Zt:—.l m gy Dy

ék = Nobs 1 (13)
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the proportion of persons belonging to latent class 1 of the k-th classification (having
Zr =1). In aloglinear model for Z, the ML estimates are the solution to a set of nonlinear
equations (see Bishop, Fienberg & Holland, 1975). In these equations, the observed
frequencies in some marginal tables of the complete cross-classification of the K Z,’s are
put equal to their corresponding predicted frequencies. These predicted {requencies are
obtained by summing the appropriate P(Z = Dt;é)’s, in which { is the ML estimate of
& These equations can be solved by means of iterative proportional [itting or Newton-
Raphson (see Bishop et al., 1975).

The maximization of the complete data loglikelihood with respect to i involves the
maximization of the second term on the right-hand sided of (10). Again, this maximiza-
tion is a standard problem. Because the (I x K') latent responses X are statistically
independent conditional on Z, P(X = B;|Z = D,;n) can be written as (ollows:

I K
P(X = B.|Z = D) = [[ [[ P(Xix = BrislZi = Do i)

1=1 k=1
Replacing P(Xix = Brik|Zk = Duw; m;) by the right-hand side ol (4), the second term on

the right-hand side of (10) can be written as follows:

R T
Y>> mulnP(X = B,|Z = Dyyn) =

r=1 t=1

K

R T
Z In Nik1 [Z Z m'rtBrith/c
1 k=1 i
T R T
-+ In 1— nlkl [Z m.HDtk = Z Z mrtBrik])tk}

1=} =1 =1

R
+1In Niko I:Z Z mrtBnk ] = Dtk)

r=]1 =1

+ 11'1(1 == T],’ko) [IVobs = Z m_HDtk = Z Z I"l’l,.tlgnk 1 — D(k)

= =l

-1

M-

1

(14)

[rom (14), it can easily be shown that the ML estimates ;s and o are given by the
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following expressions:

S om L S ees MereBrix Due

Nikn = (15)
Yy M D
R T
. — — T B’ri 1-D
Thko — ZT—I Zi_l Tn' i k( tk) (16)

Nobs — 2?:1 M4t Dy

We now consider the E-step of the EM-algorithm. In this step, we replace the statistics
that appear in h(m,€; m) by their conditional expected values given N = n, the observed
data, and 9(® and €™, some preliminary values of 1 and &. These statistics are (a) the
numerators of (12) and (13), (b) the observed frequencies in the likelihood equations
for a loglinear model, and (c) the numerators and denominators of (15) and (16). The
conditional expected value of the my,’s are considered first. These m4,’s appear in (12),
(13), (15) and (16), and can be used to compute the observed [requencies in the likelihood

equations for a loglinear model.
R
£ <M+t|N = n;n“’),s"’)) =Y ¢ (MH\N - n;n(”),f(")) (17)
r=1

For every observed item response pattern Y = C; there is a certain probability (possibly
0 or 1) of the pattern (X = B,,Z = D,). Therefore, the expected value in the right-hand

side of (17) can be written as follows:
£ (MN = n;n®,£0)

S
= Y np (X —B,,Z=D|Y = Cs;n"”,s(”’>
s=1

=)
= ZnsP (X =B, Y =C,,Z = Dt}ﬂ(p)) P (Z = D\|Y = Cs§7l(p)£(p)) (18)

s=1
Inserting (18) in (17) and interchanging the summations, one has to take the sum over r

of P (X =B.|Y =C;,Z = Dt;n(”)). This sum is equal to 1. Therelorc. one gets:

&
£ (Mrt|N = n;n<P),5<P)) =Y np (z — DY = C,:q". 5(P>> (19)
s=1
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The conditional probability in the right-hand side of (19) can be computed using Bayes’
theorem:
P(Z = DY = Cyin,€%) =

P(Y = C,|Z = D;n®) P (Z _ Dt;gm)

Zle P(Y = CS‘Z = Du;n(P)) P <Z = _Du;ﬁ(P))

The P (Y = C,|Z = D,;n'?)’s can be computed using (5) or (7). the conjunctive or the
disjunctive LRM. And the P (Z = Dt;E(”)) ’s can be computed using (1) or (6), one of
the models for Z.

The conditional expected value of the numerators of (15) and (16) are similar. There-

fore, only (15) is considered. Using (18) and interchanging the summations, the following

is obtained:
R T
€ (ZZIWMBrikngIN =mn; n(p),g(”)> =
r=1 t=1
S T
S 0y Dy (z - DY = Cs;n(p),s“”) .
s=1 =1

R
Y BuxP (X =B,|Y =C,,Z=Dyn®)  (20)

r=1
The sum over 7 on the right-hand side of (20) is the conditional probability of X;z = 1
given Y; = Cs; and Z = Dy:
R
S BuP (X = B,|Y = C,, 2 = Dyn®) =
r=1

P (Xa =11Y; = Csi,Z = Din®) (21)

[For the conjunctive LRM, P (Xik =1Y,=C,Z = Dl;nf")> can be shown to be the

following:

P(Xu=1%=1,2 = Din") =1
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P (Xik =1Y;=0,Z2 = Dt;nfp))

P (Xik — 1Y, =0|Z = Dt;n?’))

P (Y =012 = Dsn?)
P (Xa =112 = Dun?) — P (Y: = 11Z = D)

P(¥:=0Z = D;n®)
For the disjunctive LRM, similar formula’s hold.

In summary, an EM-algorithm has been presented whose E-step and M-step are both
computationally feasible. In the E-step, conditional expected values are computed that
involve a summation over the observed response patterns (in (18) and (20)-(21)) and a
summation over the latent class membership patterns (in (20)-(21)). The number of terms
in these summations is bounded above by Nobs x 2%, Because A is usually small, these
summations are computationally feasible. And in the M-step, one has to solve a complete
data maximization problem that has a closed-form solution or is solvable by means of a

standard iterative algorithm.

4.2 A Hybrid Algorithm

A well-known problem of the EM-algorithm is that its convergence can be very slow
(see Dempster et al, 1977). For MCLCM’s this is indeed the case. Therefore, the EM-
algorithm was combined with a second order algorithm (i.e., an algorithm that makes use
of the matrix of second derivatives). This hybrid algorithm starts with the EM-algorithm
and switches to the second order algorithm if the elements of the gradient vector are
close to zero. By starting with the EM-algorithm, advantage is taken ol the fact that
the EM-algorithm monotonically increases the loglikelihood at all points of the parameter
space. And by switching to the second order algorithm near the maximum, advantage is
taken of the fact that a second order algorithm performs well at points where the surface
of the loglikelihood is nearly quadratic, which is true for points near the maximum (see
Gill, Murray & Wright, 1981).

The second order algorithm being used, is based on a Cholesky decomposition of the

negative of the Hessian matrix (see Gill et al, 1981, pp. 108-111). This algorithm differs
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from the classical Newton-Raphson algorithm in that a possibly non-negative definite
[Hessian matrix is adjusted to make it negative definite. This allows one to construct a
monotonically increasing second order algorithm (see Gill et al, 1981, pp. 99-111).

The gradient vector that is needed in this hybrid algorithm can be computed using EM-
code. In particular, it is easy to show that the gradient of {(n, £; ), the observed data
loglikelihood, is equal to the conditional expected value of the gradient of h(n,&; M),
the complete data loglikelihood (see Louis, 1982). Now, since h(n,&; M) is linear in
the data, the same holds for its gradient. In particular, the gradient of h(m,&; M) is
linear in the statistics whose conditional expected values are computed in the I-step (i.c.,
the statistics in (12), (13), (15) and (16)). This allows one to compute the gradient of
[(n,&;n) by replacing these statistics in the gradient of h(m,&: M) by their conditional
expected values.

In the computer implementation of this hybrid algorithm, the [Hessian matrix was
approximated using finite differences (see Gill et al, 1981, pp. 54-36). For an exact
computation, one could make use of a formula given by Louis (1982). An implementation
of this formula would require new code.

The stopping criterion used in the computer implementation of this hybrid algorithm
makes use of the gradient of the observed data loglikelihood. In particular. the algorithm

stops if every element of this vector is less than 0.001 in absolute value.

4.3 MAP Estimation

A well-known problem in the context of models for discrete data (logistic regression,
loglinear models,...) is that, depending on the data, ML cstimates in the interior of
the parameter space may not exist. This is also the case for MCLCM’s. This fact is
problematic because (a) it may result in over/underflow during computation, and (b) the
asymptotic sampling properties of ML estimates (e.g., asymptotic normality) cannot be

applied.
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In the Bayesian framework, using a proper prior PDF, this problem does not exist. For
reasons that will become clear in the following, MAP estimation will be considered here.
With respect to the arbitrariness of the prior PDF, it has to be noted that, except for
a constant, the likelihood function and the posterior PDF are asymptotically equivalent.
Therefore, MAP and ML estimates are asymptotically equivalent.

Although ML and MAP estimates are defined in a different statistical framework,
their actual computation may be very similar. In particular, the choice of a particular
prior PDF in some cases is formally equivalent to adding a prior sample within the ML

framework (see, e.g., Novick & Jackson, 1974).

4.3.1 The Beta Prior for Binomial PDF’s

The independence model for Z is a product-binomial, as is the conditional PDF of the
latent responses X given Z. The parameters of these models. as well as the resulting
models for the observed data, are all probabilities. So, not being in the interior of the
parameter space involves that some parameters have boundary values of 0 or 1. For
models that have probabilities as their parameters, a prior PDF that (for certain values
of its parameters) is formally equivalent to a prior sample, is the bela distribution (see
Mood, Graybill, & Boes, 1974, p.115). This PDF is defined on the domain ]0, 1], as it
should be for probabilities. The beta PDF has two parameters and if we take both of

them equal to 2, this PDF can be written as follows:
fW;2,2) oc W(1 = W)

This PDI has expected value and variance equal to 0.5 and 0.05. respectively. Letting
W be any parameter of the MCLCM’s being considered (£, 7k Or 1ixo). it [ollows that
J(W;2,2) is proportional to the joint probability of a 1- and a 0-response on the latent
Bernoulli random variable (Z; or X;;) whose PDF is specified by this parameter.
Making use of this prior sample interpretation of the beta prior. it is clear that MAP
estimates can be computed as ML estimates using an extended sample. This extended

sample involves both IN and the prior sample, which will be denoted by P. The array P
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is of order U x 2, and contains one pair of observations, P,; and P,, for every parameter
(u=1,...,U). For the MCLCM’s being considered, U is equal to K + (I x K x 2) if no
identifiability restrictions are imposed, and K + (I x K) if all n;1,’s are fixed at 1.

The MAP estimates can be computed by means of the EM-algorithm. The complete
data are M and P. The P,;’s and P,;’s are considered as a special type of latent random
variables that are mapped in observed random variables by means of the identity function.
The function to be maximized in the M-step is @) (n,ﬁ; n(p],ﬁ(”)) as defined for ML
estimation (see (11)), plus the loglikelihood of P. This latter loglikelihood has the same
structure as () (n,ﬁ; 7, E(p)). It is easy to show that the sum of @ (7, &; n®), 5(”)) and
the loglikelihood of P is maximized by means of formula’s that, differ [rom the complete
data maximizers (13), (15) and (16) in two respects: (a) the statistics are replaced by
their conditional expected values, and (b) the numerators are augmented by 1 and the
denominators by 2. This latter difference is due to the beta prior. Because the numerators
of (13), (15) and (16) are bounded above by their denominators, it is clear that this
algorithm cannot result in estimates on the boundary of the parameter space.

The second order algorithm can also be easily adapted to compute MAP estimates.
In the formulas for the gradient of I(n, ;) one only has to augment the conditional

expected values of certain statistics by 1 and others by 2.

4.3.2 The Dirichlet Prior for Multinomial PDF’s

The saturated model for Z (see (1)) is multinomial. The parameters ol this model are a
vector of probabilities, restricted to sum to 1. A prior PDF that has the same structure as
the multinomial PDF, is the Dirichlet (see Bishop et al, 1975, p. 405). With appropriate
parameter values, the Dirichlet is formally equivalent to a prior sample ol a number of
subjects distributed over the T latent class patterns. Maximizing the posterior PDI for
a MCLCM with a saturated model for Z proceeds in essentially the same way as in the
case with an independence model together with a beta prior. The only difference is that
the statistics that have to be augmented by values coming {rom the prior are the my,’s

instead of the ZLI M4t Dik’s
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4.3.3 The Logistic Prior for Loglinear and Logistic Models

In the previous, we mentioned the possibility of formulating a loglinear model for Z, and
in (8), we presented a logistic model for Y given Z. For these models, not being in the
interior of the parameter space involves that some parameters have boundary values of
—o00 or +00. A prior PDF that has the same structure as a loglinear or a logistic model,
is the logistic PDF (see Mood, Graybill, & Boes, 1974, p. 118). For suilable parameter
values, this PDF is equivalent to a prior sample of two observations (a l-response and
a O-response) on a hypothetical data point characterized by a probability that has a
loglinear/logistic structure.

Maximizing the posterior PDF is possible by means of a simple modification of the
algorithm for the maximization of Q('r),ﬁ,n(p),ﬁ(p)). Also, the gradient of the observed

data log joint PDF can be computed by means of a simple modification of the formulas

for the gradient of the observed data loglikelihood.

4.4 A Fully Bayesian Approach

A fully Bayesian approach would involve that the complete posterior PDF of the parame-
ters given the data be computed, not only its mode. This posterior PDF is not analytically
available. However, using standard asymptotic theory, it can be approximated by a mul-
tivariate normal PDF with expectation equal to the mode, and covariance matrix equal
to the inverse of the Hessian matrix at the mode. For small samples, the approximation
can be improved by making use of the sampling-importance-resampling algorithm (Ru-
bin, 1987). This algorithm allows one to obtain draws from the posterior PDF. These
draws can then be used (a) to compute the moments of this PDI, and (b) to construct

95-percent posterior probability intervals.
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5 Simulation Study

In a simulation study, two properties of the MAP estimates were examined: (a) the
uniqueness of the solution of the posterior PDF' equations (i.e., the gradient of the log
posterior PDF‘ equated to zero), and (b) the goodness-of-recovery (GOR) of the true
parameter values. As an extension to the GOR-study, also the existence of asymptotic

standard errors was examined.

5.1 The Simulation and the Estimation Design

Data were generated according to the conjunctive MCLCMI with the independence model
(see (2)) as a model for Z. The simulation design involves three factors: (a) the number

of items (/) with two levels (/= 20 or 40), (b) the number ol components (K) with two

levels (K= 2 or 4) and (c) the number of persons (V) with four levels (N= 100, 250,
1000 or 2500). Thus, the simulation design has 2 x 2 x 4 = 16 cells. [or every cell in this
design, 100 random data sets were generated, using parameter values to be described in
the following.

The independence model for Z is characterized by K parameters, the marginal prob-
abilities P(Zy = 1). For K = 2, these marginal probabilitics are 0.6 and 0.4, and for
K = 4, they are 0.6, 0.4, 0.7 and 0.5. I[tem responses were generated with all ;-
parameters (P(X; = 1|Zx = 1)’s) equal to 1. This corresponds to the identifiability re-
striction: that was imposed when doing the estimation. The values {or the 7;x0-parameters
(P(Xiy = 1|Z, = 0)’s) are shown in Figure 3. For K = 2, only the first two columns were
used. For items 21 to 40 in the cells with I = 40, the same 7n;xp-parameters were used as

for items 1 to 20.
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Component Component

1 2 3 4 1 2 3 4
1 9 9 9 9 11 9 9 9 9
2 9 9 9 1 12 9 9 9 S
3 9 1719 9 13 9 319 9
4 9 9.1 .1 14 9 9.5 .5
5 1 9 9 1 15 6] 9 9 5

[tem [tem
6 9 111 9 16 9 S35 9
7 1 119 9 17 D519 9
8 1 1 1 9 18 3 3 5 9
9 1 9 1 1 19 3 9 5 5
10 5 [ U S R | 20 d =0 | W 5
Figure 3

Values of the n,,,-parameters used in the simulation study

By estimation design, we mean which analyses have been performed on which data
sets. In this study, this was very simple: every data set was analyzed twice: once using the
conjunctive MCLCM with the independence model for Z, and once using the conjunctive

MCLCM with the saturated model for Z.

5.2 Uniqueness

To examine uniqueness, 40 data sets were used; five from each of the eight cells in the

design with number of items equal to 20. For each of these data sets, the parameters of
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the conjunctive MCLCM were estimated 10 times using the independence model for Z,
and 10 times using the saturated model. Because every analysis started {rom different
random starting values, these analyses give information that is relevant for the uniqueness
problem.

For six out of eight cells in the design, the algorithm always converged to the same
solution point. This was the case for all four 2-component data sets/analyses and the two
largest (N = 1000,2500) 4-component data sets/analyses, both with the independence
model and the saturated model for Z. For the two smallest (N = 100.250) 4-component
data sets/analyses, multiple solution points were found for most of the data sets (8 out of
10 data sets for the analyses with the independence model, and 7 out of 10 for the analyses
with the saturated model). In these analyses, the solution with the highest posterior PDF
was the most frequent: in more than 60 percent of the analyses the algorithm converged to
the best solution. Therefore, performing multiple analyses using diflerent random starting
values may still be a successful optimization method in these cases.

For all data sets, the solution points, whether single or multiple, were allways local
maxima and never saddle points or points in a linear subspace. This [ollows {from the fact
that the Hessian matrix at the solution points was allways negative definite. This was

also the case for all analyses that were performed in the goodness-of-recovery study.

5.3 Goodness-of-Recovery and the Existence of Asymptotic

Standard Errors

For every parameter, two GOR-statistics were computed: (a) the difference between the
true parameter value and the average estimated parameter value (denoted by BIAS), and
(b) the root mean square deviation between the true and the estimated parameter values
(denoted by RMSD). Both averages were computed over the 100 replications in every cell.

IFormally, they are defined as follows:

100 (i)
BIAS — (2=2%7)
100
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120(G) — g)2

RMSD = \/2"1(100 )
In these equations, i is an index for the replications, 6 is some parameter and 00 is its
estimate in replication ¢. The RMSD is a function of both the bias and the standard error
(SE) of the estimates. The SE is estimated by the Monte Carlo standard error (MCSE):

S (46) — §)2
M E — 1=
©s \/ 100

in which @ is the average estimated parameter value. It is easy to show that
RMSD? = MCSE? + BIAS?

In interpreting the results, it is useful to know that, if the bias is negligable and the
sampling distribution is normal, a 95-percent confidence interval has width equal to (2 x
1.96 x RMSD). If the 95-percent confidence intervals for the latent response probabilities
(the n;k0’s) have an average width of less than 20 percent of the range ol a probability (i.e.,
(0,1)), we say that the goodness-of-recovery is sufficient for substantive interpretation of
the components.

Besides the MAP estimates, in every analysis, also the Hessian matrix of the log
posterior PDF was computed. It is known that, under certain regularity conditions, the
inverse of this matrix converges to the sampling covariance matrix of the M AP estimates,
or, from a Bayesian perspective, the posterior covariance maltrix of the parameters (see,
e.g., Gelman, Carlin, Stern, & Rubin, 1995, pp. 94-111). Here, we take the frequentist
perspective, considering the MAP estimates as point estimates of unknown constants, and
ask the question how well this inverse Hessian matrix approximates the true sampling
covariance matrix for finite, but increasing, sample sizes. For MCLCM's, as opposed to
other models like the loglinear model, this question is especially iimportant. since we have
no proof of the identifiability of the MCLCM’s, and identifiability is one ol the regularity

conditions for the asymptotic result to hold.

For a given parameter, inverting the Hessian matrix gives us one asymptotic standard
error (ASE) per replication in a cell of the simulation design. These 100 ASE were
aggregated by computing the mean ASE (MASE). A possible bias in the asymptotic SE’s
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is found by computing the difference between these MASE-statistics and the MCSE’s.

When computing GOR-statistics, one has to be sure that one has actually computed
the estimate whose performance one wants to evaluate, in our case the MAP estimate.
As is clear from the uniqueness study, for the small (N = 100,250) 4-component data
sets/analyses the solution of the maximization algorithm is not always thc MAP estimate.
Therefore, the values of the GOR-statistics in these cells of the simulation design will not
be considered.

A further complication is that MCLCM’s involve a trivial non-identifiability caused
by the fact that the components may be permuted without changing the probabilities of
the observed item response vectors. For instance, with the independence model for Z,
the marginal latent class probability and the I latent response probabilities of the first
component (i.e., &1, 110, N210s - - - » Nr10) May be replaced by the corresponding probabilities
for the second component, and vice versa, without changing the ’(Y:&,n)’s (a similar,
but somewhat more complicated, permutation is possible with the saturated model for Z).
To get the same order of components for each of the replications, the (rue parameter values
were used as reference values. In particular, for every replication, a deviance measure was
computed for every (true component, estimated component)-pair. This deviance measure
is simply the sum of the absolute differences between the corresponding true and estimated
latent response probabilities (the 7j;k0’s). Formally, for the k-th true and the I-th estimated

component, this deviance measure is the following:

I
Z Ifh‘ko - ﬁitol
=1

Every estimated component was given the order of the true component from which it de-

viated least. It should be clear that this way of determining the order of the components
only works if the goodness-of-recovery is not too bad. Otherwise, it might occur [or exam-
ple that one true component is the best choice for more than one estimated component.
[‘ortunately, this turned out to be the case for none of the data sets considered. This
fact of having every true component represented best in only one c¢stimated component

is already an indication of at least a reasonable goodness-of-recovery.
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Only the results for the [20 items, independence model] data sets/analyses will be
considered in detail. At the end, the effects of number of items (20/40) and type of model
for Z (independence/saturated) will be discussed briefly. In Table 1, the results are shown
for the [20 items, 2 components, 100 persons, independence model| data sets/analyses. In
this table, the following is shown: the average parameter estimates, the true parameter
values, and the BIAS-, RMSD-, MCSE-, and MASE-statistics. These values are given for
the marginal latent class probabilities (€; and £;) and the latent response probabilities
(the miko’s) of items 1, 3, 5 and 7. In this table, also the averages over all nko’s (so, not
only items 1, 3, 5, and 7) of these six statistics are shown. (For the BIAS-statistics, the
average of their absolute values was computed, whereas for the others the ordinary average
was computed.) First, taking into account the small number of persons (100) and the
relatively large number of parameters (42), goodness-of-recovery is satisfactory. However,
it is insufficient for a substantive interpretation of the components. Second, the MASE’s

are too large (by an average percentage of 10.96).

Table 1

GOR-statistics for the [20-items, 2-component, 100 persons,
independence model] datasets/analyses (see text for explanation)

Parameter Average Trve BIAS RMSD MCSE MASE

& 0.6072 0.6 0.0072 0.0466 0.0461 0.0522

& 0.4072 0.4 0.0072 0.0555 0.0550 0.0518

Mio 0.8777 0.9 -0.0223 0.0541 0.0493 0.0621

M 20 0.8834 09 -0.0166 0.0458 0.0427 0.0471

n310 0.8141 0.9 -0.0859 0.1180 0.0809 0.1030

11320 0.1183 0.1 0.0183 0.0422 0.0380 0.0465

ns10 0.1199 0.1 0.0199 0.0615 0.0582 0.0594

11520 0.8693 0.9 -0.0307 0.0589 0.0503 0.0608

n710 0.1425 0.1 0.0425 0.0882 0.0773 0.0759

n720 0.1171 0.1  0.0171 0.0466 0.0433 0.0498
Average over all . _
itemn parameters | 0.5909 0.6 0.0235 0.0680 0.0615 0.0675
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In Table 2, the results are shown for the [20 items, 2 components, 1000 persons,
independence model] data sets/analyses. First, goodness-of-recovery now is sufficient
for substantive interpretation; the 95-percent confidence intervals for the latent response
probabilities have an average width of about 0.083. Second, as it should be, all GOR-
statistics are much smaller for the 1000- than for the 100-persons data sets/analyses. And
third, also the differences between the MASE’s and the MCSIZ’s are much smaller than for
the 100-persons data sets/analyses. The MASE’s are too large by an average percentage
of 1.39 only.

Table 2

GOR -statistics for the [20-item, 2-component, 1000 persons,
independence model] data sets/analyses (see text for explanation)

Parameter Average True BIAS RMSD MCSE MASE

& 0.5997 0.6 -0.0003 0.0169 0.0169 0.0167

& 0.4026 0.4  0.0026 0.0165 0.0163 0.0163

M10 0.8996 0.9 -0.0004 0.0187 0.0187 0.0195

7120 0.8981 0.9 -0.0019 0.0154 0.0153 0.0149

1310 0.8946 0.9 -0.0054 0.0274 0.0268 0.0296

7320 0.1005 0.1  0.0006 0.0144 0.0144 0.0137

7510 0.0996 0.1 -0.0004 0.0171 0.0171 0.0180

7520 0.8970 0.9 -0.0030 0.0178 0.0175 0.0189

n710 0.1021 0.1 0.0021 0.0226 0.0225 0.0227

n720 0.1005 0.1  0.0006 0.0152 0.0152 0.0156
Average over all B

item parameters | 0.5987 0.6 0.0028 0.0212 0.0209 0.0211
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For the [20 items, 2 components, 2500 persons, independence model] data sets/analyses
the values of the GOR-statistics are again smaller than for the 1000-persons data
sets/analyses. In particular, the average absolute BIAS- and RMSD-values of the item pa-
rameters are 0.0012 and 0.0136, respectively. The average difference between the MCSE’s
and the MASE’s is further reduced to an average percentage of 0.13.

We now consider the results for the [20 items, 4 components, independence model]
data sets/analyses. Because the estimation algorithm does not result in unique solutions
for the small (N = 100,250) 4-component data sets/analyses, only the results for the
larger (N = 1000,2500) 4-component data sets/analyses are considered. In Table 3, the
results are shown for the [20 items, 4 components, 1000 persons, independence model]
data sets/analyses (for items 1, 3, 5, 7 and 10). First, goodness-of-recovery is sufficient
{or substantive interpretation of the components: the 95-confidence intervals {or the latent,
response probabilities have an average width of about 0.143. Second. comparing the re-
sults in Table 3 with those for the corresponding 2-component data sets/analyses in Table
2, we see that estimating more parameters is at the expensc of a goodness-of-recovery:
the average RMSD is 33 percent larger for the latent class membership probabilities and
73 percent for the latent response probabilities. Third, there is an interesting relation
between the four marginal latent class probabilities and the goodness-of-recovery of the
corresponding latent response probabilities: the larger the marginal latent class probabil-
ity, the better the goodness-of-recovery of the corresponding latent response probabilities.
In particular, the four marginal latent class probabilities are 0.6, 0.4, 0.7, and 0.5, and
the average (over the items) RMSD’s of the corresponding latent response probabilities
are 0.0388, 0.0266, 0.0498, and 0.0314, respectively. (The same pattern was found in
all 4-component data sets/analyses.) This pattern is understandable because only the
persons with Z; = 0 give information about the n;t’s. And fourth, as is the case for the
2-components data sets/analyses, the MASE’s are on the average (over the parameters)

larger than the MCSE’s (in particular, by an average percentage of 5.38).
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Table 3

GOR-statistics for the [20-items, 4-component, 1000 persons,
independence model] data sets/analyses (see text for explonation)

Parameter Average True BIAS RMSD MCSE MASE
1 0.6000 0.6  0.0000 0.0220 0.0220 0.0253

1P 0.4116 0.4  0.0116 0.0224 0.0191 0.0203

€3 0.6921 0.7 -0.0079 0.0224 0.0210 0.0260

€4 0.5094 0.5 0.0094 0.0221 0.0200 0.0216
110 0.8908 0.9 -0.0092 0.0291 0.0276 0.0290
M120 0.8968 09 -0.0032 0.0222 0.0220 0.0212
7130 0.8952 0.9 -0.0048 0.0324 0.0321 0.0337
140 0.9044 09 -0.0044 0.0234 0.0230 0.0235
7310 0.8834 0.9 -0.0166 0.0450 0.0418 0.0444
11320 0.0979 0.1  -0.0021 0.0168 0.0167 0.0188
7330 0.8589 0.9 -0.0411 0.0679 0.0541 0.0573
7340 0.8934 0.9 -0.0066 0.0311 0.0304 0.0314
7510 0.1009 0.1  0.0009 0.0327 0.0327 0.0316
7520 0.8856 0.9 -0.0144 0.0344 0.0312 0.0321
7530 0.8644 0.9 -0.0356 0.0654 0.0539 0.0615
1540 0.0993 0.1 -0.0007 0.0202 0.0202 0.0225
7710 0.1073 0.1  0.0073 0.0369 0.0362 0.0335
720 0.1009 0.1  0.0009 0.0194 0.0193 0.0197
71730 0.8520 0.9 -0.0480 0.0791 0.0629 0.0645
1740 0.8879 09  0.0121 0.0388 0.0369 0.0386
71010 0.1053 0.1  0.0083 0.0360 0.0356 0.0373
71020 0.1029 0.1  0.0029 0.0270 0.0268 0.0252
11030 0.1135 0.1  0.0135 0.0508 0.0490 0.0467
71040 0.1056 0.1  0.0056 0.0313 0.0310 0.0306
Average over all -
item parameters | 0.5945 0.6  0.0089 0.0366 0.0349 0.0365
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For the [20 items, 4 components, 2500 persons, independence model] data sets/analyses
the values of all GOR-statistics are smaller than for the 1000-persons data sets/analyses,
similar to the difference between the results for the corresponding 2-components data
sets/analyses.

The effect of the number of items on the goodness-of-recovery is rather small. Doubling
the number of items (i.c., 40 instead of 20) resulted in a global decrease of the RMSD’s of
the marginal latent class (pattern) probabilities by an average percentage of 14.51, and
of the latent response probabilities by an average percentage of 9.42.

The effect of the model for Z (i.c., independence versus saturated) on the goodness-
of-recovery of the latent response probabilities is negligable. Under the saturated model,

the RMSD’s of the latent response probabilities are smaller than under the independence

model by an average percentage of 0.67 only. For the parameters of the model for Z,
we start from the observation that the independence model has two or four (K = 2,4)
free parameters, and the corresponding saturated model three, respectively, fifteen (that
is, 25 — 1). For the 2-component data sets/analyses, the RMSD’s of the parameters of
the saturated model are smaller than those of the independence model by an average
percentage of 15.53. For the 4-component data sets/analyses this average percentage
is 74.76. This result is somewhat puzzling, since the model with the larger number of
parameters has a better goodness-of-recovery.

From this goodness-of-recovery study we can draw four conclusions. [First, goodness-
of-recovery was more than satisfactory, even with as few as 100 persons. However, for
substantive interpretation of the components, more persons are required. Second, the
global decrease of the RMSD’s with increasing sample size strongly suggests consistent
estimation. Third, there is good evidence that the diagonal elements of the inverse of the
Hessian matrix of the log posterior PDF are asymptotic sampling variances; although the
elements are systematically larger than the true sampling variances. this bias disappears
with increasing sample size. Fourth, the positive results with respect to goodness-of-

recovery, and the fact that the usual asymptotic standard errors appear to be valid, are
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indirect evidence for the identifiability of the conjunctive MCLCM (at least for the pa-
rameter values used in the simulation study). However, it is clear that only an analytic
identifiability proof, probably involving conditions on the model structure and the param-
eter values, is fully satisfactory. Proving identifiability of MCLCM’s would be a major
step forward, since it would give us a class of discrete latent variable models that does
not suffer from rotational invariance (or something similar), as does the factor analysis

model.

6 Application

The conjunctive MCLCM (with identification restrictions as described in section 3) was
applied to data collected by Tatsuoka (1984). The items are fraction addition problems.
The item set consisted of both simple (e.g., 3/4 + 1/2 =, 1/5 +1/4 = ) and mixed
(e.g,35/74+46/7=,11/3+24/6 =) fraction addition problems. The test consists
of 38 items. The first half of the test is parallel to the second half. This means that
for every item in the first half, there is another item of the same type (single/mixed,
same/different denominator, small/large numbers, ...) in the second hall. Item 26 was
excluded from the analysis because the information about this item in the documentation
(i.c., Tatsuoka's (1984) report) was not consistent with item 26 in the list that was also
part of this documentation. There were 595 subjects. In this group, there were children
from grade 7, 8 and 9.

The conjunctive MCLCM, instead of the disjunctive or some other type, was chosen
because the solution of this type of items can be described well in terms of multiple abilities
that are all necessary for a correct response (see the interpretation below). Because we
had no hypotheses about the structure in the latent class membership probabilities, the
saturated model was chosen.

We obtained M AP-estimates for the conjunctive MCLCM with {rom one to five com-

ponents. The analyses were performed using multiple random starting-values. Except
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for the 4- and the 5-component model, these analyses always resulted in the same pa-
rameter values. Both for the 4- and the 5-component model, two local maxima were
found. Only the solutions with the largest value of the posterior density are considered
in the following. In Table 4, we give (a) the number of parameters, and (b) the value of
the loglikelihood at the MAP-estimates, for each of these five solutions. Note that the
function being maximized is not the loglikelihood, but the loglikelihood plus the log prior
density. One might consider using the likelihood ratio statistic to determine the number
of components. Unfortunately, likelihood ratio statistics for mixture models involving dif
ferent numbers of latent classes do not have the usual asymptotic chi-square distribution
(with degrees of freedom equal to the difference between the number of parameters of the
two models; see McLachlan & Basford, 1988). Therefore, the loglikelihood was used as a
descriptive statistic only. A scree-plot of the loglikelihood values shows that the decrease

in loglikelihood is almost linear from the 3- to the 5-component solution.

Table 4

Number of parameters and loglikelihood values for the
conjunctive MCLCM with from one to five components
applied to Tatsuoka’sfraction addition data

Cévmu;r})%gn% Plggglrreg{erqg at the Mﬁ(}g-lik.:s%z‘ﬁggggs
1 39 -14810.70737
2 79 -9321.21454
3 121 -7990.82645
4 167 -7616.34449
) 221 -7452.08613
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Besides the scree-plot, a second reason for restricting our attention to the 3-component
solution, is that the interpretation of the 4-component solution is along the same lines as
the simpler interpretation of the 3-component solution. This is evident from the pattern
of correlations between the latent response probabilities of the different components and
two item characteristics (see further).

The 3-component solution is given in Tables 5 and 6. The estimates and the associated
standard errors of the &’s ({ = 1,...,8) are given in Table 5 (for identiliability, & is put
equal to 1 minus the sum of the other {;-parameters). The estimates and the associated
standard errors of the latent response probabilities (the 7:40’s) of the first 19 items are
given in Table 6. The averages in the bottom of this table are over all 37 items. In
this table, we also show two item characteristics that are used [or the validation of the
interpretation of this solution (see further).

For the interpretation, it is important to know that (a) nio is the probability of
a correct application of the k-th mental operation, given that one does not master it
(Zx = 0), and (b) subjects with Z, =1 allways apply the k-th mental operation correctly.

The latter restriction was introduced for iuentification of the model (see Section 3).

Table 5

MAP-estimates of the latent class pattern probabilities under
the 3-component conjunctive MCLCM (with a saturated model
for Z) applied to Tatsuoka’s fraction addition data

Patlern | Estumate [St. Err.]
000 0.2204 Id. Res.
100 0.0838 [0.0162]
010 0.0075 [0.0062]
110 0.5232 [0.0204]
001 0.0237 [0.0220)
101 0.1048 [0.0168]
011 0.0234 [0.0082]
111 0.0128 [0.0046]
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Table 6

MAP-estimates of the lataent response probabilities
under the 3-component conjunctive MCLCM applied
to Tatsuoka’s fraction addition data

Item
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0.3157 [0.0614]
0.4117 [0.1275]
0.1698 [0.0429]
0.3662 [0.1135]
0.2495 [0.1042]
0.2046 [0.0443]
0.1220 [0.0357]
0.5917 [0.1253]
0.2602 [0.0596]
0.1591 [0.0343]
0.4097 [0.1222]
0.2749 [0.0526]
0.3046 [0.1169]
0.1714 [0.0410)
0.3499 [0.1204]
0.1041 [0.0287]
0.1420 [0.0305]
0.5364 [0.1319)
0.0968 [0.0271]

0.6096 [0.0556]
0.0778 [0.0255)
0.6490 [0.0521]
0.0960 [0.0270]
0.0397 [0.0189)]
0.7508 [0.0536]
0.6273 [0.0531]
0.0234 [0.0118)
0.5537 [0.0548]
0.8198 [0.0400)
0.0665 [0.0221]
0.6502 [0.0518)
0.0204 [0.0131]
0.7505 [0.0460]
0.0191 [0.0124]
0.7781 [0.0458)
0.8961 [0.0351]
0.0116 [0.0094]
0.8722 [0.0417)

0.7729 [0.0240]
0.6662 [0.0266]
0.8788 [0.0186)
0.8342 [0.0210]
0.6289 [0.0272]
0.8062 [0.0228]
0.8950 [0.0177)
0.9106 [0.0162]
0.7792 [0.0237)
0.9766 [0.0087)
0.8922 [0.0174]
0.8959 [0.0174)
0.8190 [0.0217]
0.9084 [0.0164]
0.9260 [0.0148]
0.9403 [0.0136]
0.9579 [0.0113)
0.8001 [0.0225]
0.9113 [0.0163)

N NN
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N LW Ot W W

Average over all
Iltem parameters

0.2023 [0.0638]

0.4329 [0.0340]

0.8418 [0.0193]
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The first component both has the largest probability of being mastered (i.c., 0.72) and
a uniformly small probability of compensation by other mental resources (around 0.20).
Therefore, the corresponding latent ability most likely involves a mental operation that
1s involved in every item. This is true for the mental operation of adding simple fractions
with a common denominator (i.e., a/c + b/c = (a+b)/c) since this operation has to be
performed in every item.

The second component involves knowing how fractions with different denominators
have to be converted in equivalent fractions involving a common denominator. This is
convincingly demonstrated by the 0.97 correlation between the latent response probabili-
ties and the binary variable indicating whether the item has common (value 1) or different
(value 0) denominators. This means that items with common denominators do not require
this ability, whereas items with different denominators do require it.

The third component involves short-term memory (STM) capacity. To show this, we
first describe which elements have to be stored in STM. In particular, solving fraction ad-

dition problems involves that the following numbers are computed and stored temporarily

in STM:
e (If there are two unit-parts involved.) The sum of the unit-parts.
o (If the denominators of the fractions are common.) The sum of the numerators.

e (If the denominators of the fractions are different.)

1. The new common denominator, which is determined as the smallest number
that is a multiple of both old denominators (e.g., 12 for the old denominators

6 and 4).

2. The two new numerators, obtained by multiplying the old numerator by the

same factor that was used to convert the denominator.

3. The sum of the two new numerators, which replaces the two numerators in

STM.
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o (If the sum of the fractions can be simplified.) The greatest common divisor of

numerator and denominator.

For the validation of our hypothesis that the third component involves STM capacity, we
compute the STM load of each fraction addition problem. This STM load is computed
as the largest number of digits that is at the same time in STM. Computing the number
of digits instead of the number of numbers in STM, reilects the assumption that it is
more difficult to store a two-digit number than a single-digit number. Our hypothesis
is corroborated by the negative correlation of —0.83 between STV load and the latent
response probabilities of the third component. This means that items with a high STM
load can only be solved by subjects having Z3 = 1. Further, as a kind of discriminant
validity, these latent response probabilities are only weakly correlated with the binary
variable indicating common versus different denominators (i.c., 0.40).

Since this interpretation is post-hoc, a caveat is in order. A confirmatory study is
needed to give this theory a more solid basis. Such a study might involve a test for
STM capacity that is correlated with the a posteriori probabilities of belonging to the
mastery-class of the STM component (as determined by the correlations between the

latent response probabilities and STM load).

7 Related Models

MCLCM'’s are a generalization of ordinary latent class models because they involve mul-
tiple latent classifications instead of only one. This generalization is also presented by
Hagenaars (1990, 1993) using a loglinear model for the PDI" of the item responses con-
ditional on the latent class memberships (see 2.2.2., the compensatory model). [From the
perspective of latent class modelling, MCLCM’s with polylomous instead ol dichotomous
latent classifications are a straightforward generalization. Obviously. polytomous latent
classifications cannot be interpreted as mastery/non-mastery ol mental operations. How-

ever, they may be useful in modelling responses to items in the personality and clinical
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domain as, for example, items in a psychiatric symptom checklist. For this type of re-
sponses it makes more sense a priori to think in terms of polytomous latent classifications
as, for example, [conforming, independent, antagonistic] as a relevant classification for
attitude towards rules.

The MCLCM’s of the LRM-type are related to a family of decomposition models for
binary two-way data. The first model in this family is the so-called H/CLAS model of
De Boeck and Rosenberg (1988) that involves a Boolean matrix decomposition. Boolean
matrix decomposition is the deterministic limiting case of the disjunctive MCLCM. To
show this, consider the disjunctive MCLCM with all nio-parameters cqual to 0. The
remaining item parameters (the 7;c;’s) can then be written in a A-dimensional vector
n; = (Mi1,---,Mix1)". Then, the probability of a correct response conditional on the

latent class memberships can be written as follows:
K
PY,=1Z;n;) =1 —H(1—7]ik1Zk) (22)

k=1

The deterministic limiting case of this probability is obtained by letting the elements of 5,
go to either 0 or 1. In the limit, the right-hand side of (27) is the Boolean vector product

of the binary vectors n; and Z. This Boolean vector product has the value 1 if and only

if there is at least one k for which 5 = Zk = 1.

A conjunctive version of the HICLAS model was proposed by Van Mechelen, De Boeck
and Rosenberg (1995). This version of the model involves a kind of conjunctive Boolean
matrix decomposition. This conjunctive Boolean matrix decomposition is the limiting
case of the conjunctive MCLCM, as can be shown in a similar way as for the original
Boolean matrix decomposition and the disjunctive MCLCM.

[t should be noted that the HICLAS model is not a latent class model. The Z’s are
not considered as ’V’s but as constants that are treated as unknown parameters (one for
each of the persons in the sample). Thus, in an application of the HICLAS model, NV + 1
binary vectors of constants (/N Z’s and I 1);’s) have to be estimated [rom the data.

Probability matriz decomposition (PMD) models were proposed by Maris et al. (1996)

as probabilistic versions of the Boolean matrix decompositions involved in the two versions
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of the HICLAS model. PMD models are introduced here using a matrix of patients by
psychiatric symptoms. [For every cell in this matrix, a number of psychiatrists indicated
whether the corresponding symptom applied to the corresponding patient. Thus, the
data matrix is a matrix of frequencies instead of 0’s and 1’s. Both the patients and
the symptoms are characterized by a K-dimensional vector of probabilities. For the
symptoms, this is similar to a MCLCM. There also, the items are characterized by a I -
dimensional vector of probabilities (after imposing identifiability restrictions on the no’s
or the n;k1’s). The difference between PMD-models and MCLCM’s is the representation
of the persons: in PMD models, this representation is a vector ol probabilities, and in
MCLCM’s, it is a realization of a vector-valued binary RV.

To give a formal characterization of PMD models, the vector of probabilities for patient
p is denoted by ¢, = (i, - ., (i)t And the binary RV indicating whether symptom i

was judged to be applicable to patient p is denoted by Y,;. Then. analogous to (27), the

probability of Y,; = 1 under the disjunctive PMD model can be written as follows:

K
P(Y:=1|2;¢,m) =1 - [J(1 = nirGon) (23)

k=1
A similar formula holds for the probability of Y,; = 1 under the conjunctive PMD model.

The disjunctive and the conjunctive MCLCM are half-way between the HICLAS and
the PMD models. Ignoring the fact that Z is a RV in the MCLCM’s, we go {rom the
MCLCM’s to the HICLAS model by replacing the vector of probabilities ; by a dichoto-
mous vector. And we go from the MCLCM’s to the PMD models by replacing every
realization of Z by a vector of probabilities ¢,.

MCLCM’s are IRT models. They specify the relation between an observed item re-
sponse and one or more latent variables characterizing the persons. Since every person
is characterized by a vector, MCLCM’s are related most to the multidimensional IRT
models. There is a close relationship between the compensatory MCLCM in (8) and the
item factor analysis model (Bock & Aitkin, 1981; Muthen, 1978). In particular, the item
factor analysis model is obtained by replacing the dichotomous Z,’s in (8) by continuous
RV’s.
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There is also a close relationship between the conjunctive and the disjunctive MCLCM
and the conjunctive and the disjunctive Rasch model (Embretson, 1980; Maris, 1995).
The conjunctive and the disjunctive Rasch model are also LRM’s. The difference with
the corresponding MCLCM’s is the PDF of the latent responses, the X,’s. For the
MCLCM’s, this PDF is given in (4). And for the two generalized Rasch models, this PDF

is an ordinary Rasch model.
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