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Abstract 

This paper presents a new class of models for persons-by-items data. The essential new 

feature of this class is the representation of the persons: every person is represented by its 

membership to multiple latent classes, each of which belongs to one latent classification. 

The models can be considered as a formalization of the hypothesis that the responses come 

about in a process that involves the application of a number of mental operations. Two 

algorithms for maximum likelihood (ML) and maximum a posteriori (MAP) estimation 

are described. They both make use of the tractability of the complete data likelihood to 

maximize the observed data likelihood. Properties of the MAP estimators (i.e., uniqueness 

and goodness-of-recovery) and the existence of asymptotic standard errors were examined 

in a simulation study. Then, one of these models is applied to the responses to a set of 

fraction addition problems. Finally, the models are compared to some related models in 

the literature. 

Key-words: latent class models, latent response models, cognitive processes, EM­

algorithm. 





This paper presents a new class of models for persons-by-items data. The essential 

new feature of this class is the representation of the persons: every person is represented 

by its membership to multiple latent classes. 

In traditional latent class analysis (Lazarsfeld & Henry, 1968; Goodman, 1974) every 

person is represented by its membership to one of T latent classes. In this paper, such a 

set of T latent classes is called a latent classification. The models to be presented here 

involve more than one latent classification, and every person is thus characterized by its 

memberships to the latent classes of these multiple latent classifications. Therefore, they 

are called multiple classification latent class models (MCLCM's). 

MCLCM's can be considered as a formalization of the hypothesis that the responses 

come about in a process that involves the application of a number of menlal operations. 

Each of these mental operations corresponds to one latent classification. vVith binary 

latent classifications, one of the classes in every classification corresponds to mastery of 

this mental operation and the other to non-mastery. 

We start by giving an example of an item type (simplifying fractions) whose solution 

process can be described in terms of two mental processes (splitting and identifying). 

1 Example: Simplifying Fractions 

Consider items of the following type: 9/4 = . . .  , 3/2 = . . .  , 2/6 = . . .  , and 14/5 = . . .. 

The subject's task is to simplify these fractions as much as possible. For example, the 

correct answer to 14/5 = . . .  is 2 4/5. It is assumed that, to be able to correctly simplify 

all possible fractions, one has to master two mental operations: splitting and identifying. 

The splitting operation involves that a given fraction is split in a units part and a fraction 

part. And the identifying operation involves that the largest common denominator of the 

fraction part is identifiable. 
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Given these two mental operations, four types of items can be distinguished. F irst, 

there are items that require neither splitting nor identifying. An example is 3/5 

The correct answer is simply 3/5. No mental operation has to be performed to produce 

this answer. Second, there are items that require only identifying. An example is 2/6 = 

.. .. T�1e subject has to find the largest common denominator (i.e., 2) and then divide 

numerator and denominator by it. This produces 1/3 as the correct answer. Third, there 

are items that require only splitting. An example is 5/3. Applying the splitting operation, 

5/3 is transformed into 3/3 + 2/3. Then, 3/3 is transformed into 1 without having to 

identify the largest common denominator. And fourth, there are items that require both 

splitting and identifying. An example is 8/6 = .. .. Applying the splitting operation, 8/6 

is transformed into 6/6 + 2/6 = 1 + 2/6. And applying the identifying operation, the 

largest common denominator of 2 and 6 is seen to be 2 such that 2/6 can be written as 

1/3. 

Analogous to the distinction of four types of items: also four types of persons are 

distinguished: those that master neither splitting nor identifying, those that master only 

splitting or identifying, and those that master both splitting and identifying. For each of 

these four types of persons, one can specify which item types they will answer correctly. 

For this, the rule has to be followed that an item is answered correctly if and only if the 

person masters all mental operations required by the item. This is illustrated in F igure 

1. In this figure, a 1 is used to denote that an item requires a particular mental operation 

and O to denote that it does not. Similarly for the persons: a 1 is use<l to denote that a 

person masters a particular mental operation and O to denote tha.1 lie or she does not. 
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Splitting 0 1 0 1 

0 

1 

0 

1 

Requires 

Identifying 0 0 1 1 

Masters 

0 1 0 0 0 

0 1 1 0 0 

1 1 0 1 0 

1 1 1 1 1 

Figure 1 

Responses of four types of persons to four types of items as a 
function of the mental operations (splitting and identifying) 

mastered by the persons and required by the items 

2 Models 

First, we present the conjunctive MCLCM. Then, other MCLCVI's are presented along 

the same lines. 
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2.1 The Conjunctive MCLCM 

MCLCM's consist of two components: (a) a model for the latent class memberships and 

(b) a model for the item responses conditional on the latent class memberships. Although 

our main interest is in (b) (the way the item responses come about), the exposition is 

facilitated by considering (a) first. 

2.1.1 The saturated model for the latent class memberships 

We consider the random variable (RV) Zk that indicates a person's membership to some 

class of the k-th latent classification. The number of latent classifications is denoted 

by f{ (k = 1, ... , K). In general, Zk is a categorical RV with a number of categories 

that can be specified freely, as in ordinary latent class analysis. In this paper, we only 

consider latent classifications consisting of two classes. Thus, Zk is a Bernoulli RV. The 

realizations of Zk are denoted by zk whose values are O or 1. The restriction to two classes 

is motivated by the fact that, in this way, the latent classifications can be interpreted as 

mental operations, with the two classes corresponding to mastery and non-mastery. 

Because there are J( latent classifications, every person is characterized by a K­

dimensional vector of zk's. This vector is denoted by z (z=(z1, ... , z1,; ) 1). This vector z 

is a realization of the K-dimensional RV Z ( Z = ( Z1 , ... , Z K r). For Z, several models 

can be formulated. A model for Z is a probability density function (PDF). This PDF 

depends on some vector of parameters e, and is denoted by P(Z = z; e). 

We consider the saturated model for Z. Th;s model assumes Lhat the probabilities of 

each of the different realizations of Z (z-patterns) are unrestricted. allowing for all possible 

statistical dependencies between the Zk 's. The total number of z-patterns is 2K . This 

number is denoted by T, and t is used as an index for the z-patterns ( l = 1, ... , T). The 

only restrictions on the T parameters (t := P(Z = Zt) are the obvious ones, 0 < (1 < 1 

and the fact that they have to sum to 1. This model is charact eri1/,ccl by the following 

PDF: 

P(Z = z; e) = IT e[dZ) (1) 
t=I 
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m which It 1s an indicator function having the value 1 if z 1s the t- th pattern and 0 

otherwise. 

2.1.2 A conjunctive latent response model for the item responses conditional 

on Z 

Before describing the conjunctive latent response model (LRM), some notation and as­

sumptions are presented that are common to all models for the item responses. 

Notation and general assumptions. For every person, a vector of I item responses 

is observed. The RV Y; is used to denote the response on the i- th i tern ( i = 1, ... , I). 

In general, Y; is a categorical RV with any number of categories, but in this paper only 

dichotomous items (e. g., correct/incorrect) are considered. The realizations of Y; are 

denoted by Yi whose values are either O or 1. The vector-valued RV of the I item responses 

is denoted by Y (= (Y1, . . .  ,Y1)t ) and its realization by y (= (v1,••··l!I)1 ). 

The PDF of Y depends on Z, the vector of latent class memberships, and 17, a vector 

of item parameters. This PDF is denoted by P(Y = ylZ = z; 17) or P(YIZ; 17) if there 

is no danger of confusion. The assumption of local statistical independence ( LSI) is made, 

involving that, conditionally on Z, the Y; 's are statistically independent. Denoting the 

PDF of Y; by P(Y;IZ; 11), this assumption can be expressed as follows: 

P(YIZ; 11) = II P(Y;IZ; 11) (2) 
i=l 

It is also assumed that P(Y;IZ; 11) depends on 1J only through some subset 17; of 11, 

the item parameters of the i-th item. Therefore, P(Y;IZ; 17) can also be expressed as 

P(Y;IZ; 1J;), We now consider a further specification of P(Y;IZ: 17J. namely as a LRM. 

A conjunctive latent response model. The basic idea behind LR:'v'l's is that the ob-

served response (Y; in our case) is the result of a mapping that takes a set of latent re­

sponses as its argument (Maris, 1995; Maris, De Boeck and Van :\Iechelen, 1996). LRM's 

are defined by ( a) a model for the latent responses, and (b) a so-called condensation rule 

that maps these latent responses into the observed responses. \Ve first consider (a). Con­

sidering the latent classifications as corresponding to mental operations ( e. g. , splitting 
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and identifying) , we now consider the J( latent responses that are the results of the appli­

cation of each of these I( mental operations. These latent responses denote the s uccessful 

or non-successful application of these mental operations . Thus , the latent responses are 

dichotomous . When speaking about latent responses , the term component will be used to 

denote the process that generates the latent response. Every component corresponds to 

one latent c lassification. 

The k-th latent response on item i is denoted by the RV Xik · I n  general, Xik is a 

categorical RV that can have any number of categories, but here only dichotomous X;k ' s  

are considered. For example, simplifying a fraction may involve X; 1 and X;2 ,  denoting, 

respectively, whether the spl itting and the identifying operation was applied successful ly 

(X;1 , X;2 = 1) or not (X;1 , X;2 = 0). The vector-valued RV of the [{ latent r esponses on 

item i is denoted by X; (= (X;1 , . . . , X;g )t ). The PDF of X; is <lenoted by P(X i lZ; ,.,,J . 

We make the assumption of LSI, which involves that, condit ional ly on Z, the X;k 's are 

statistically independent. Denoting the PDF of X;k by P(X;k jZ: 'TIJ ,  th i s  assumption is 

expressed as follows: 

P(X;IZ; 'TI; ) = II P(Xik lZ; 'TI; ) (3) 
k=l 

(For s ituations in which this assumption is violated, the models can be extended m a 

straightforward way. ) 

Next, it is assumed that P(Xik IZ; 'TIJ depends on T/; only through some subset T/ik of 

T/;• Therefore, P(X;klZ; r,;) can also be expressed as P(X;k jZ; T/;k ). This subset of the 

item parameters will be called the component item pammetcrs. 

Final ly, it is assumed that P(X;k jZ; T/;k ) depends on Z only through Zk , the mem­

bership in the latent classification that corresponds to thi s component .  I t  follows that 

P(X;k jZ; T/;k ) can be replaced by P(X;k l Zk ; T/;k ) .  Considering t h e  m emberships i n  the 

latent classifications as mastery or non-mastery of a mental operat ion ,  th is ass umption 

involves that the result of the application of the k-th mental operation ( i .e . , Xik ) only 

depends on the person's mastery of this particular mental operat ion . This  assumption 

is necessary for the substantive interpretation of the Zk ' s .  In parti cul ar . i f  the parame­

ter estimates show that some component is only involved i n  a parti cular i tem type ( e. g . ,  
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items that involve splitting), then we know that the corresponding Zk operates on the 

item characteristic that distinguishes this item type from the others. 

We now consider the different component item parameters. For every 

(item,component )-pair there are two parameters. Every parameter corresponds to one 

conditional probability : P (Xik = I I Zk = 1 ) ,  the probability of a correct application of 

the k-th mental operation given that it is mastered , and P (Xik = l l Zk = 0) , the prob­

ability of a correct application of this mental operation given that it is not mastered. 

P (Xik = I I Zk = 0) is the probability that non-mastery of the k-th mental operation can 

be compensated by other mental resources. And one minus P ( X;k = 1 I Zk = 1) is the 

probability of a careless error (e.g. ,  due to lack-of-attention). The con ditional probabili­

ties P(Xik = I I Zk = 1) and P(X;k = I I Zk = 0) are the item parameters of this model and 

they will be denoted by, respectively, T/ikl and T/ikO ·  Thus, "1 ik = ( '7ik t , l] iko ) 1 . This allows 

us to write P (Xik l Zk ;  "1ik) as follows: 

(4) 

The second defining characteristic of a LRM is its condensation rule. This condensa­

tion rule is a mapping of Xi into Y;, denoted by C(Xi) - The conjunctive condensation 

rule is defined as follows: 

C(Xi) = II xik 

k=I 

This function has the value 1 if and only if all X;k 's have the value l .  A useful interpreta-

tion of this condensation rule is in terms of mental operations whose successful application 

is necessary for giving the correct response. Thus, all mental operations have to be ap­

plied successfully to give a correct response. For example, to sol ve a l"raction item, both 

the splitting and the identifying operation have to be applied success[ully (if they are 

involved in the solution process, of course). Together with the assumption of LSI of the 

X;k 's ( see (3)) , this condensation rule leads to the following form for P ( Vi I Z ;  TJJ: 

7 



2 . 1 . 3 The marginal model for the item responses 

Finally, we consider the PDF of Y, the vector of observed i tem responses . The start ing­

point for this P D F  is the joint PDF of Y and Z: 

From this joint PDF we get the marginal PDF of Y by summing over all possible real­

izations of Z :  
I l 

P(Y; 11, e)  = L . . .  L P(Y, Z  = z ; 11 , e) 

2.2 Other MCLCM's 

Other MCLCM's are obtained by formulating (a)  a di fferent model for the  l atent class 

memberships, and (b)  a different model for the item responses condit ional on Z. 

2 .2 . 1  Different models for the latent class memberships 

Another model for Z is the independence model . This model assumes that every Zk is 

independently distributed. Because Zk is a Bernoulli PDF ,  it  is characteri zed by a s ingle 

parameter ek which is  equal to P(Zk = 1 ) .  The only restriction on these �k 's  is t hat they 

have to be between O and 1 .  This model is characterized by the following PDF :  

P(Z = z ;  e) = II l? ( l  - lk ) l - Zk 
k=l 

(6) 

Stil l  another model for Z is a loglinear model for the I<-dirn ensional 2 x 2 x . . .  x 2-table 

of latent class memberships. Actually, the models in ( 1 )  and ( 6 )  ca 1 1  also be formulated 

as loglinear models for this table: a model with all possible i n t eract ions between the K 

classifications for ( 1 )  and a model with only main effects for ( 6 ) .  Ob\·ious ly, by adding 

and deleting interaction terms a whole variety of loglinear models can be formulated . 
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2.2.2 Different models for the item responses conditional on Z 

Different latent response models. LRM's are very well suited for formalizing psycholog­

ical hypotheses about the process in which the responses come about. Within this frame­

work, different types of MCLCM's, corresponding to different psychological hypotheses, 

can be formulated easily. Three kinds of extensions to the conjunctive model are possible. 

F irst, one can formulate different PDF's for the latent responses X; conditional on Z.  

For example, this PDF may involve statistical dependencie� between the latent responses, 

reflecting the hypothesis that the application of one mental operation influences the appli­

cation of others. Second, one can assume the latent responses to be polytomous, or even 

continuous, instead of dichotomous. For example, continuous latent responses may be an 

appropriate choice for a detection or identifiability task in which stimuli are presented 

that vary on a number of continuous dimensions. And third. one can formulate other 

condensation rules besides the conjunctive one. 

Another useful condensation rule is the disjunctive one. I t  is defined as follows: 

C(Xi) = 1 - Il (l - X;k) 
k=l 

This function has the value 1 if and only if there is at least one X;k that has the value 

1. A useful interpretation of this condensation rule is in terms of mental operations or 

strategies whose successful application is sufficient for giving a correct response. Together 

with the assumption of LSI of the X;k 's, this condensation rule leads to the following form 

for P(Yi l Z ;  TJ;) : 

P(Yi l Z;  ,,,J = ( 1  - ft P (Xik = O I Zk))  Y; (ft P (X;k = O I Zk ))  
l - Y; 

(7) 
k=l k=l 

Still other condensation rules may have more than tv;o different function values. For 

example, one can formulate MCLCM's for multiple choice items by chosing the condensa­

tion rule such that every pattern of latent responses is map ped into a part icular response 

alternative according to some hypothesis about the response process. Such an hypothe­

sis should not only specify how the correct response comes about. hut also the different 

incorrect responses. 
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Estimation (Section 4) will be considered only for the conj unctive and the disj unctive 

model with independent latent responses. The extension to other condensation rules and 

other models for the latent responses is straightforward, however. 

Restrictions on the item parameters. Besides extending the LRM-framework by for­

mulating other PDF 's for the latent responses and using other condensation rules , the 

usefulness of this class of models is also enhanced by introducing restrictions on the item 

param�ters. In particular, interesting special cases appear if 7Jiko and/or 7Jikl  are fixed at 0 

or 1 .  Under the conj unctive condensation rule, fixing 7]iko at 0 .  the restri ction is i mposed 

that this item absolutely requires mastery of this mental operat ion. Thi s type of restric­

tions is very well suited for testing hypotheses about the response process. For example, 

one can fix 7]iio at O for all fraction items that require splitting,  and fi x 17i2o at O for al l 

fraction items that require identifying. The introductory example was implicitely based 

on this kind of deterministic response model (see Figure 1 ) .  Also under the conj unctive 

condensation rule, by fixing both 7Jiko and 7Jikl at 1 ,  the restriction is imposed that the 

corresponding mental operation is simply not involved in the sol ution of th is  item. For 

example, the fraction 2/6 = . . .  does not involve splitting. So, one can fix 7]ii o  and 7]il l 

at 1 for this item. Under the disj unctive condensation rule, si mi lar restri ctions can be 

imposed. 

Latent response and latent variable models .  At this point,  we should point out the 

di fference between LRM's and latent variable models in general . In a broad sense, LRM 's 

are latent variable models because the model for the observed data ( the Vi 's) i s  obtained 

by integrating ( summing) out a set of unobserved random variab les ( the Z's and the 

X; ' s ) .  In a narrow sense, latent variable models (the factor analysis model , the latent 

c lass model) involve ( a) a draw from the PDF of the latent nuiables , and (b )  a draw 

from the conditional PDF of the observed variables given the l atent variables . This 

does not hold for LRM's,  because there is no condit ional PDF or observed variables 

given latent variables ; latent variables are mapped into observed variables by means of 

a Junction. This mapping of latent into observed random \'ariables is the essential new 

feature of LRM's ,  disti nguishing it from classi cal latent variable models. and creating the 
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possibility to formalize new substantive hypotheses l ike solution processes that involve 

multiple requirements ( conjunctive) or multiple solution strategies ( disjunctive) . 

We now consider a MCLCM that is a latent variable model in the narrow sense decribed 

above. 

A compensatory model. The basic idea behind this compensatory model is that mas­

tery of a particular mental operation may compensate for non-mastery of another mental 

operation. Moreover, this compensation is gradual . As such, it is different from the dis­

junct ive LRM in  which a successful application of one strategy complclcLy compensates 

for the non-successful  application of the other strategies . The compensatory model can 

be written as follows:  

exp [Y; ( Lr� l /Jik zk - l];o) ] 
P(½ I Z·  TJ · )  = -�---,,------� 1 ' 1 

1 + exp [ L�
{

=l  f/ikzk - r,;o] 
(8) 

In this model, J{ + 1 item parameters are involved . The first , r,;0 ,  i s  a threshold parameter 

that specifies the value of I:r� l f/ik zk that is needed for the probabil ity of a correct 

response to be equal to 0 .5 .  The f/ik-parameters are the amount of increase in probabil ity 

on the log-odds scale i f  the person changes from non-mastery to mastery of the k-th 

mental operation.  

This model i s  analogous to the item factor analysis model described by Muthen ( 1 978) 

and Bock and Aitkin ( 1981 ) .  The only difference is  the nature of the latent variables , the 

Zk 's in  (8 ) .  In the i tem factor analysis model, the latent variables are continuous , while 

in this model they are discrete. 

In a different parametrization , the model in (8)  was proposed by Hagenaars ( 1 990, 

1993) (see also Heinen, 1993) in the context of so-called causal models with discrete 

latent variables. Consider the model for the joint PDF of Y and Z that follows from 

(2) , ( 8 )  and some model for Z like ( 1 ) ,  (6)  or a loglinear model . It is easy to see that 

this model can be written as a loglinear model for the i tem_l x . . .  x i tem_/ x Classification 

_l x . . .  xClassification_K-table. In this loglinear model, -1];0 i� the parameter of the 

main effect of item i. And f/ik is  the parameter of the interaction effect of i tem i and 

classification k .  From this loglinear model for the unobservable complete table, a latent 
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class model for the observed table of vectors Y is obtained by summing over all possible 

realizations of Z. 

Looking at (8) from the perspective of loglinear modelling leads to an interesting 

extension of the model. This extension involves adding three-variable interaction terms 

corresponding to item i and two classifications k and l. The additional term that appears 

in the exponent of (8) is then T/ikl Zk Z1 .  This model can be interpreted in terms of a 

solution process in which a correct response depends on a joinl mastery of two mental 

operations. This dependence on joint mastery has some conj unctive fl avor but the model 

is nevertheless compensatory because of the linear combination of r1 - parameters in the 

exponent. 

This compensatory model will not be considered any further. Only for the MCLCM's 

of the LRM-type, a ML and MAP estimation algorithm will be described. The algorithm 

for the compensatory model, however, has essentially the same structure. ML estimation 

of this model is also described by Hagenaars (1990). 

3 Identifiability 

It can be shown that the conjunctive and the disjunctive MCLCM's presented above 

are not identifiable. Some identifiability restrictions are necessa.ry to get unique, and 

therefore interpretable, parameter values. This non-identifiability is of the same type for 

the conjunctive and the disjunctive version of this model. Therefore, only the conjunctive 

version is considered in detail. Moreover, this non-identifiability is of the same type for 

all values of I{ 2'. 2. Therefore, only the case I( = 2 is considered in detail. 

Two types of non-identifiability will be considered. The first one is with respect to the 

P(Y; J Z ;  TJ; ) 's and the second one is with respect to the P( Y : TJ,  { ) 's. after some identifia­

bility restrictions are imposed on the P(Y; IZ ;  TJ; ) 's. The P(Y; I Z: TJ; ) 's are considered first. 

The PCVi lZ ;  TJi ) 's for the conjunctive LRM with /( = 2 are shown inFigure 2. From this 

figure, it can be seen that there exists a multiplicative trade-off between the parameters 

of the two components. In particular, if T/iu and T/iio  are multiplied by some constant c 

and T/i21 and T/i20 are divided by the same constant, the P(Y; J Z : T/i ) ' s  remain the same. 
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By fixing one of these four parameters, this multiplicative trade-off is no longer possible. 

We put T/it l equal to 1. This restriction is consistent with our interpretation of T/i l l  as the 

conditional probability of successful application given mastery, because it is at least as 

large as T/ito ,  the conditional probability given non-mastery. 

0 1 

(0, 0) 1 - T/il0T/i20 T/il0T/i20 

(0, 1) 1 - T/il0T/i21 T/il0T/i2 1 

z 

( 1 ,  0 )  1 - T/il 1 T/i20 T/i[ 1 T/i20 

( 1 , 1)  1 - T/il  1 T/i21 T/il l T/i21 

Figure 2 

Conditional probabilities of the two possible realizations 
of Y; according to the conjunctive LRM with K = 2 

conditional on the four possible 2-patterns 

It is easy to show that for /( > 2 more than one parameter has to be fixed to make 

this multiplicative trade-off impossible. A restriction that is sufficient to achieve this is 

putting the first (I( - 1) T/ik l 's equal to 1 .  

'Ne now consider the second type of non-identifiability. Imposing the restrictions above 

is not sufficient to get an identifiable model for Y . This can be shown from the formula 

for P(Y ;  r,,  e) . This formula is considered for the case of a conj unct ive LILVI with I< = 2 

for Y given Z and the independence model for Z.  (The model we choose for Z is not 

essential for the point to be shown. ) 
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l1(11i21 ti ( l - 77i21 ) 1 -Y' e1 6 + 
i=l 

I 

I1(77i2ot· ( l  - 77i20 ) l -Y; e1 ( 1 - 6 ) + 
i=l 

I 

I1(77il077i21 t• ( l - 77il077i21 ) 1 -Y' ( l  - ei ) 6 + 
i=l 

IJ(77;1077i2o f ( 1 - 77i1077i20 ) 1 -Y· ( l - ei ) ( l - 6 ) 
i=l 

(9) 

In this formula, the restriction that 77iu equals 1 is already imposed . It  is possible to 

find another set of parameter values 77;2 1 , 77;20 , 77i!o , ei and (2 that. results in exactly the 

same value as P(Y ; "I, e) in (9 ) .  The possibility of such a transformr1tion is  best seen 

by first interchanging the second and the third row on the right-hand side of (9 )  and 

then performing the following transformation: 77;21  = 77i2 1 , 77'(20 = 17i 10 77i2 1 , 1(;1 0  = 77i20/77i2 1 , 

By imposing the restriction that 77i2 1  equals 1 ,  this transformation is reduced to a 

permutation of component item parameters (77;20 = 77i io and 77"'(10  = 77;20 ) .  Fortunately, 

from the point of view of interpretation such a permutation of parameters does not create 

any problems . Formally, this permutation of component item parameters is analogous to 

a permutation of the dimensions ( factor loadings ) in the factor analysis model . 

For I{ > 2 ,  the first type of non-identifiability was made impossib le by putting the 

first (I{ - 1 )  77ikl 's equal to 1 .  To remove the second type of non- i dentifiability, also 77iKl 

is put equal to 1 .  The psychological interpretation of this model i nvolves that there is no 

probability of a careless error: if a person masters a particular mental operation then he 

or she will also apply it successfully. 

For the disj unctive LRM, similar identifiability restrictions have to be imposed . For 

this model, all K 77iko 's  are put equal to O instead of all K 77ik l 's put equal to 1 .  The 

reason for this is that , in the latter case, the disjunctive LR�·I would predict a. perfect item 

response pattern Y for all latent class membership patterns z different from (0 ,  . . .  , 0 ) 1 . 
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Therefore, no distinction can be made between these latent class membership patterns 

on the basis of the observed i tern response pat terns (e.g. ,  by means of the posterior 

probabilities of these latent class membership patterns given the observed item response 

patterns) . For the conjunctive LRM, an analogous problem occurs if al l  K T/iko 's are put 

equal to O instead of all J( T/ikl 's put equal to 1. 

It is admitted that this way of dealing with the identifiability problem is not a proof of 

the model being identifiable. Evidence with respect to identi fiabi lity can also be obtained 

from a simulation study. In section Five, a detailed report of such a simulation study is 

given and the relevance of the results with respect to identifiability is pointed out. 

4 Estimation 

First, it is described how the EM-algorithm (Dempster, Lai rd and Rubin, 1977) can be 

used to compute the ML estimates of the MCLCM's of the LRM-type. Second, a hybrid 

algorithm is described that combines the EM- and a Newton-type algorithm. And third, 

it is described how maximum a posteriori (MAP) estimates can be obtained using the 

same two algorithms. 

4 .1  An EM-algorithm 

A MCLCM is a model for the item response vectors Y .  For dichotomous items, there are 

21 different item response patterns. This number is denoted by S,  and s ( s = l ,  . . .  , S) 

is used as an index for these patterns. The constant Csi is used to  denote the response 

(0 or 1) on item i in pattern s .  The complete vector of responses is denoted by Cs 

( Cs = ( Cs 1 , .. . , CsI  ) t) .  The number of observations of response pat tern ., is denoted by 

the random variable .Ns and its realization by n5 • The vector ( .V 1 , . . .  , .Vs ) 1 is denoted by 

N and its realization (n 1 , . . .  , ns) t by n. The total number of observations is denoted by 

Nobs .  

The following multinomial model is formulated for N: 
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Ignoring the part of this PDF that does not depend on the parameters, the loglikelihood 

l (r,, { ; n) can be written as follows: 

l (r,, {; n) = L ns ln P(Y = Cs ; r, , {) 
s=l 

The EM-algorithm can be used to maximize l (  r,, {; n) because n can be considered 

as the observed data that result from a so-called missing data genera.ling process in which 

part of the complete data is lost. For every person, the complete data consists of an 

( I  x I<) matrix of latent responses Xik , denoted by X , and a K-element vector of latent 

class memberships Zk , denoted by Z. This pair (X, Z) is mapped into the vector Y , the 

observed data for this person. In the missing data generating process data are lost in two 

ways:  (a) by applying the condensation rule to the rows of X and (b) by dropping Z. 

Now, some notation is introduced. For dichotomous latent responses, there are 2i xv 

different matrices X.  This number is denoted by R, and r (r = 1 ,  . . . , R) i s  used as 

an index for these matrices. The constant Erik is used to denote the response ( 0  or 1 )  

on component k of item i in latent response matrix r .  The complete matrix of latent 

responses is denoted by Br , Further, for dichotomous latent classifications, there are 2K 

different class membership patterns. This number is denoted by T,  and l ( l = l , . . .  , T) is 

used as an index for these patterns. The constant D tk is used to cienote the membership 

(0 or 1 )  in classification k for pattern t .  The complete vector of memberships is denoted 

by Dt (D t = (Dn , . . . , Da<)1 ) .  The number of observations o[ lalent response matrix r 

and class membership vector t is denoted by the random variable Mr t  and its realization 

by mrt •  We use M to denote the (R x T) matrix of J'vlrt 's and m t o  denote its realization. 

The following multinomial model is formulated for M :  

1 6  



Ignoring the part of this PDF that does not depend on the parameters and replacing 

P ( X  = Br , Z = Dt ; 11 , e) by the product P(X = Br l Z  = D t ; 11 ) x P(Z = Dt ; e) , the 

complete data loglikelihood h (  11 , e ;  rn) can be written as follows : 
T R T 

h(11 , e ;  rn) = L m+dn P(Z = Dt;  e)  + L L ffi r t  ln P(X = Br l Z  = Dt; 'TJ ) ,  ( 1 0 )  
t=l r=l t=l 

in which m+t denotes the sum over r of the mrt  's for som<" value of t .  

I n  the (p + 1 )-th cycle of the EM-algorithm, one maximizes the condit ional expected 

value of the complete data loglikelihood h( 'TJ, f.; M )  given the observed data n and the 

parameter values of the p-th cycle, denoted by 'TJ(P) and e(p) . This [un ction is denoted by 

Q( 'TJ ,  e; 17(P) ' e(P) ) ,  and it is defined as follows: 

( 1 1 )  

Maximizing Q(  'TJ ,  e ;  17(P) , e(P) ) is s imple because h (  'TJ ,  e;  rn )  is l i near in t he data, the ffir t 's 

(see ( 1 0 ) ) .  This involves that one only has to replace the mr 1 ·s by their conditional 

expected values (the E-step of the EM-algorithm) and apply a maximization algori thm 

to the complete data loglikelihood (the M-step of the EM-algorithm) .  (Further, i t  wil l  be 

shown that it  i s  not necessary to compute expected values of individual Mr t 's but only of 

certain l inear combinat ions of Mrt 's . )  

The maximization of the complete data loglikelihood i s  a standard problem. First , we 

consider the maximization with respect to e.  Replacing P(Z = D t ; e )  in the right-hand 

side of ( 10 )  by the completely saturated model in ( 1 ) ,  i t  can easily be shown that the ML 

estimates E,t ( t  = 1 ,  . . .  , T) are given by the  following closed-form expression: 

( 12 )  

the proportion of persons having class membership pattern l .  And i f  the model for Z is 

the independence model in (2 ) ,  i t  is easily shown that the ML est imates f,k (k = 1, . . .  , K )  

are given by the fol lowing closed-form expression : 

f,k = 'L,;=1 m+ t Dtk 
Nabs 
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the proportion of persons belonging to latent class 1 of the k-th classification (having 

Zk = 1 ) . In a loglinear model for Z, the ML estimates are the solution to a set of nonlinear 

equations (see Bishop, F ienberg & Holland, 1975). In these equations, the observed 

frequencies in some marginal tables of the complete cross-classification of the I{ Zk 's are 

put equal to their corresponding predicted frequencies. These predicted frequencies are 

obtained by summing the appropriate P (Z = Dt ; e)'s, in which e is the :VIL estimate of 

e, Ti1ese equations can be solved by means of iterative proportional fitting or Newton­

Raphson (see Bishop et al., 1 975). 

The maximization of the complete data loglikelihood with respect to TJ involves the 

maximization of the second term on the right-hand sided of ( 1 0) .  Again , tb is maximiza­

tion is a standard problem. Because the (I x K) latent responses Xik are statistically 

independent conditional on Z, P(X = Br l Z  = D t ; TJ) can be writ ten as follows: 

I [{ 

P(X = Br l Z = D1 ; TJ) = II II  P(Xik = Br,k l Zk = Dik : T/ik ) 
i=l k=I  

Replacing P(Xik = Br ik l Zk = D 1k ;  "lik ) by the right-hand side of ( ,1 ) ,  the second term on 

the right-hand side of ( 10 )  can be written as follows: 

R T 

L L mrt ln P(X = Br I Z  = Dt ; TJ) = 
r=l t=l 

( 14 )  

From (14 ) ,  it can easily be shown that the ML estimates 7"/ik l  and 1}iko arc given by the 
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following expressions :  

T/ikl 

T/ikD 

L�=l Li=l ffirtBrik Dtk 

Li= i m+t Dtk 

L�=l Li=l ffirt Brik ( l  - Dtk ) 

Nobs - Li=l m+t Dtk 

( 1 5 )  

( 16 )  

We now consider the E-step of  the EM-algorithm. In this step, we replace the statistics 

that appear in  h(  1J , e ;  m) by their conditional expected values given N = n, the observed 

data, and T/(P)  and e (Pl , some preliminary values of 1J and e. These statist ics are (a) the 

numerators of ( 12) and ( 1 3 ) ,  (b)  the observed frequencies in the likelihood equations 

for a loglinear model , and (c) the numerators and denominators of ( 1 5 )  and ( 1 6 ) .  The 

conditional expected value of the m+t 's are considered first. These m+t 's appear in ( 1 2 ) ,  

( 1 3 ) ,  ( 1 5 ) and ( 16 ) ,  and can be  used to  compute the observed frequencies i n  the likelihood 

equations for a loglinear model. 

£ (M+1 I N  = n; 11(p) , e (p ) ) = :z= t:  (1vlrt l N = n ; 11 ( P ) , e(p) ) ( 1 7) 
r=l 

For every observed item response pattern Y = Cs there is a certain probabil ity (possibly 

0 or 1 )  of the pattern (X = Br , Z = Dt) - Therefore, the expected value in the right-hand 

side of ( 1 7) can be written as follows :  

£ ( Mr t IN = n ; T/(p)
' e(p) ) 

s 

:z= ns P  (x = Br , Z  = Dt l Y = Cs ; 1](P ) , e (p ) ) 
s=l 
s 

L n s P  (X = Br l Y  = Cs , z = Dt; T/ (p) ) p ( z = D 1 I Y  = Cs ; T/ (p) e(p) ) ( 1 8 ) 
s=l 

Inserting ( 18)  in ( 1 7) and interchanging the summations, one has to take the sum over r 

of P (X = Br l Y  = Cs , Z = Dt ; 1J(P) ) .  This sum is equal to 1 .  Therefore. one gets :  

£ (lVlrt l N  = n; 11 (p) , e (p ) ) = L ns P  (z = D1 I Y = c., : 11 ( P ) . e(p)) ( 1 9 ) 
s=l 
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The conditional p robabili ty in  the right-hand side of ( 19 )  can be computed using Bayes '  

theorem: 

P (z = Dt lY = Cs ; 11 (p) , e(p) ) = 

p (Y = Cs l Z  = Dt ; 'l](p) ) p ( z = Dt ; e (p ))  

The P (Y = Cs l Z  = Dt ; 'l](p) )  's can be computed using (5)  or (7) ,  the conj unctive or the 

disj unctive LRM. And the P (z = Dt ; e(P)) 's can be computed using ( 1 )  or ( 6 ) ,  one of 

the models for Z. 

The conditional expected value of the numerators of ( 1 5)  and ( 1 6 )  are s imilar .  There­

fore , only ( 15)  is considered. Using ( 1 8) and interchanging the summat ions, the following 

is obtained: 

E ( t, t M,,B,ikD tk IN = n; '7 1,l , { I,)) = 

S T 

L ns L Dtk p  ( z = Dt l Y  = Cs ; 'l] (p) ' e(p)) X 

s=l t=l 

L Brikp (X = Br lY  = Cs , Z = Dt ;  11 (p ) ) (20) 
r=l 

The sum over r on the right-hand side of (20) is the conditional probabi lity of Xik = 1 

given }'i = Csi and Z = Dt : 

L Brik p (X = Br lY  = Cs ,  Z = Dt;  11 (p) ) = 
r=l 

For the conjunctive LRM, P ( Xik = 1 1 1-'i = Csi , Z = D1 ; 'l]�P)) can be shown to be the 

following: 
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P ( xik = 1 1 Y;  = o ,  z = Dt ; 11}p))  

P ( xik = 1 ,  Y; = 0 1z = D t ; 11}p) ) 

P ( Y; = 0 I Z  = Dt ; 11;p) ) 

P ( xik = l l Zk = Dtk ;  11fzl ) - P ( Y; = 1 I Z = Dt ; 11ip)) 

P ( Y; = 0 I Z  = Dt ; 11�p)) 

For the disj unctive LRM, similar formula's hold . 

In summary, an EM-algorithm has been presented whose E-step and M-step are both 

computationally feas ible. In  the E-step , conditional expected values are computed that 

involve a summat ion over the observed response patterns ( in ( 18 )  and (20)- (2 1 ) )  and a 

summation over the latent class membership patterns (in (20)- (2 1 )  ) .  The number of terms 

in these summations is bounded above by Nabs X 2K . Because I< is usually small , these 

summations are computationally feasible. And in the M-step, one has to solve a complete 

data maximization problem that has a closed-form solution or is sol vable by means of a 

standard iterative algorithm. 

4.2 A Hybrid Algorithm 

A well-known problem of the EM-algorithm is that its convergence can be very slow 

(see Dempster et al , 1977) . For MCLCM's this is indeed the case. Therefore, the EM­

algorithm was combined with a second order algorithm ( i .e. , an algorithm that makes use 

of the matrix of second derivatives ) .  This hybrid algorithm starts with the EM-algorithm 

and switches to the second order algorithm if the elements of the gradient vector are 

close to zero . By starting with the EM-algorithm, advantage is taken of the fact that 

the EM-algorithm monotonically increases the loglikelihood at a l l  poi nts of the parameter 

space. And by switching to the second order algorithm near t he rnaximum, advantage is 

taken of the fact that a second order algorithm performs well al points where the surface 

of the loglikelihood is nearly quadratic ,  which is true for points near the maximum (see 

Gil l ,  Murray & Wright , 1 98 1  ) .  

The second order algorithm being used, i s  based on a Cholesky decomposition of the 

negative of the Hessian matrix (see Gil l  et al, 198 1 ,  pp. 1 08- 1 1 1 ) . This algorithm differs 
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from the classical Newton-Raphson algorithm in that a possibly non-negative definite 

Hessian matrix is adj usted to make it negative definite. This allows one to construct a 

monotonically increasing second order algorithm (see Gill et al , 1 98 1 ,  pp .  99- 1 1 1 ) . 

The gradient vector that is needed in this hybrid algorithm can be computed using EM­

code. In particular, it is easy to show that the gradient of l('fJ, e ;  n ) ,  the observed data 

loglikelihood, is equal to the conditional expected value of the gradient of h('fJ,  e ;  M) , 

the complete data loglikelihood (see Louis, 1 982 ) .  Now, since h('fJ,  e ;  M )  is l inear in 

the data, the same holds for its gradient . In particular, the gradient of h ('fJ , e ;  M) is 

linear in the statistics whose conditional expected values are computed in the E-step ( i . e . ,  

the statistics i n  ( 12) , ( 13 ) , ( 1 5 )  and ( 16) ) .  This allows one to  compute the gradient of 

l(rJ , e ; n) by replacing these statistics in the gradient of h(11 , e;  M) by their conditional 

expected values. 

In the computer implementation of this hybrid algori thm, the Hessian matrix was 

approximated using finite differences (see Gill et al , 198 1 ,  pp .  .s,L- .56) . For an exact 

computation, one could make use of a formula given by Louis ( 1 982) .  An implementation 

of this formula would require new code. 

The stopping criterion used in the computer implementation of this hybrid algorithm 

makes use of the gradient of the observed data loglikelihood .  In parti cular, the algorithm 

stops if every element of this vector i s  less than 0 .001  in absolute val ue. 

4.3 MAP Estimation 

A well-known problem in the context of models for discrete clata ( logistic regression, 

loglinear models, . . .  ) is that , depending on the data, :vlL estimates in the interior of 

the parameter space may not exist .  This is also the case for :vI CLC:d's .  This fact is 

problematic because (a) it may result in  over/underflow during com putation , and ( b )  the 

asymptotic sampling properties of ML estimates (e.g . , asym ptotic normality) cannot be 

applied. 
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In the B ayesian framework, using a proper prior PDF,  this problem does not exist . For 

reasons that will become clear in  the following, MAP estimation will be considered here. 

With respect to the arbitrariness of the prior PDF,  it has to be noted that , except for 

a constant , the likelihood function and the posterior P D F  are asymptotically equivalent . 

Therefore, MAP and ML estimates are asymptotically equivalent . 

Although ML and MAP estimates are defined in  a different statistical framework, 

their actual computat ion may be very similar . In particular, the choice of a particular 

prior P D F  in some cases is formally equivalent to adding a prior sample within the ML 

framework (see, e .g . , Novick & Jackson, 1 974) .  

4 .3 . 1  The Beta Prior for Binomial PDF's 

The independence model for Z is a product-binomial ,  as is the condit ional PDF of the 

latent responses X given Z. The parameters of these models . as wel l as the resulting 

models for the observed data, are all probabilities. So, not being i n  the interior of the 

parameter space involves that some parameters have boundary val ues of O or 1 .  For 

models that have probabilities as their parameters , a prior PDF that ( for certain values 

of its parameters) is formally equivalent to a prior sample, is the beta distribution ( see 

Mood, Graybill ,  & Boes , 1974, p . 1 15 ) .  This PDF is defined on the domain JO ,  1 [ , as i t  

should be  for probabilities . The beta PDF has two parameters and i f  we take both of 

them equal to 2, this PDF can be written as follows: 

f(W; 2, 2) ex W(l  - W) 

This P D F  has expected value and variance equal to  O . .  S and 0 .0.S .  respectively. Letting 

vV be any parameter of the MCLCM's being considered ( (k ,  T/ikl  or l]iko ) .  it follows that 

J(W; 2 ,  2 )  is proportional to the joint probability of a 1- and a 0- rcsponse on the latent 

Bernoulli random variable ( Zk or Xik ) whose PDF is speci fied by th is parameter. 

.Making use of this prior sample interpretation of the beta prior. it is clear that MAP 

estimates can be computed as ML estimates using an extended sample. This extended 

sample involves both N and the prior sample, which will be denoted by P. The array P 
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is of order U x 2 ,  and contains one pai r  of observations , Pu1 and Pu2 for every parameter 

(u = 1 ,  . . .  , U) . For the MCLCM's being considered, U is equal to J( + ( I x  J( x 2) if no 

identifiabili ty restrictions are imposed , and J{ + (I x K) i f  all T/ik t 's are f-ixed at 1 .  

The MAP estimates can b e  computed by means of the EM-algorithm. The complete 

data are M and P. The Pu1 's and Pu2 ' s  are considered as a special type of latent random 

variables that are mapped in observed random variables by means of the i dentity function. 

The function to be maximized in the M-step is Q ('TI , e; 'T/ (P ) ,  e(p))  as defined for ML 

estimation ( see ( 1 1 ) ) ,  p lus the loglikelihood of P. This !at ter loglikelihood has the same 

structure as Q ('T/, e; ,,,(P) , e(p) ) .  It is easy to show that the sum of Q ('T/ , e ; ,,, (P) , e(p) ) and 

the loglikelihood of P is maximized by means of formula's that, di ffer from the complete 

data maximizers ( 13 ) ,  ( 15 )  and ( 16) in two respects:  (a) the statistics  are replaced by 

their conditional expected values, and (b) the numerators are augmented by 1 and the 

denominators by 2. This latter difference is due to the beta prior. Because the numerators 

of ( 1 3 ) ,  ( 1 5)  and ( 16) are bounded above by their denominators : it is  clear that this 

algorithm cannot result in  estimates on the boundary of the parameter space. 

The second order algorithm can also be easily adapted to compute MAP estimates. 

In the formulas for the gradient of l (  'T/, e;  n) one only has to augment the condit ional 

expected values of certain statistics by 1 and others by 2. 

4 .3 .2  The Dirichlet Prior for Multinomial PDF's 

The saturated model for Z (see ( 1 ) )  is multinomial. The parameters of  this model are a 

vector of probabi li t ies, restricted to sum to 1 .  A prior PDF that has t he  same structure as 

the multinomial PDF,  is the Dirichlet (see Bishop et al , 1 975, p .  ,lQ.S ) .  With appropriate 

parameter values, the Dirichlet is formally equivalent to a prior sample o l' a number of 

subjects distributed over the T latent class patterns .  :'vlaximi%ing the posterior P D F  for 

a MCLCM with a saturated model for Z proceeds in essential ly t he same way as in the 

case with an independence model together with a beta prior. The only di fference is that 

the statist ics that have to be augmented by values coming from the  prior are the m+ t  's 

instead of the 'Ei= t m+t Dtk ' s  
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4.3 .3  The Logistic Prior for Loglinear and Logistic Models 

In the previous , we mentioned the possibi l ity of formulating a loglinear model for Z, and 

in (8) , we presented a logistic model for Y given Z. For these models, not being in the 

i nterior of the parameter space involves that some parameters have boundary values of 

- oo or +oo.  A prior P D F  that has the same structure as a loglinear or a logistic model, 

is the logistic PDF ( see Mood ,  Graybill , & Boes , 1 974, p. 1 18 ) .  For suitable parameter 

values , this P D F  is equivalent to a prior sample of two observations (a 1 - response and 

a 0-response) on a hypothetical data point characterized by a probabil ity that has a 

loglinear /logistic structure. 

Maximizing the posterior PDF is  possible by means of a s imple modificat ion of the 

algorithm for the maximization of Q( T/, e, r,(P) , e(Pl ) .  Also, the gradient of the observed 

data log joint P D F  can be computed by means of a simple modification of the formulas 

for the gradient of the observed data loglikelihood.  

4.4 A Fully Bayesian Approach 

A fully B ayesian approach would involve that the complete posterior PDF of the parame­

ters given the data be computed, not only its mode. This posterior PDF is not analytically 

available. However, using standard asymptotic theory, it can be approximated by a mul­

t ivariate normal PDF with expectation equal to the mode, and covarian ce matrix equal 

to the inverse of the Hessian matrix at the mode. For small samples , the approximation 

can be i mproved by making use of the sampling-importancc-resampling algorithm (Ru­

bin, 1987) .  This algorithm allows one to obtain draws from the posterior PDF. These 

draws can then be used (a) to compute the moments of this PDF,  and (6)  to construct 

95-percent posterior probability intervals. 
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5 Sirnulation Study 

In  a simulation study, two properties of the MAP estimates were examined: ( a) the 

uniqueness of the solution of the posterior PDF equations ( i . e . ,  the gradient of the log 

posterior P D F  equated to zero) , and (b)  the goodness-of-recovery ( G O R) of the true 

parameter values. As an extension to the GOR-study, also the existence of asymptotic 

standard errors was examined . 

5 . 1  The Simulation and the Estimation Design 

Data were generated according to the conj unctive MCLCM with the i ndependence model 

(see (2 ) )  as a model for Z. The simulation design involves three factors : (a) the number 

of items (I ) with two levels (I= 20 or 40) ,  (b) the number o[ components (K) with two 

levels (I<= 2 or 4) and (c)  the number of persons (N)  with four levels ( N= 100 ,  250 , 

1000 or 2500) . Thus , the simulation design has 2 x 2 x 4 = 1 6  cel ls . For every cell i n  this 

design , 1 00 random data sets were generated, using parameter values to be described in 

the following. 

The independence model for Z is  characterized by I< parameters , the marginal p rob­

abilities P ( Zk = 1 ) .  For I< = 2, these marginal probabilities are 0 .6  and 0 .4 ,  and for 

I< = 4, they are 0 .6 ,  0.4, 0. 7 and 0 .5 .  Item responses were generated with all T/ik l -

parameters (P(Xik = l l Zk = l ) 's )  equal to 1 .  This corresponds to  the identifiability re­

striction that was imposed when doing the estimation. The values for the T/iko-parameters 

(P(Xik = l l Zk = 0 ) 's)  are shown in Figure 3. For I< = 2, only the fi rst two columns were 

used . For items 2 1  to 40 in the cells with I = 40, the same T/iko-pararneters were used as 

for items 1 to 20.  
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Component Component 

1 2 3 4 1 2 3 4 

1 . 9  .9  .9  .9  1 1  . 9  . 9  .9  .9  

2 . 9  .9  . 9  . 1  1 2  . 9  . 9  . 9  . 5  

3 . 9  . l  . 9  . 9  13  . 9  . o  . 9  . 9  

4 . 9  .9  . 1  . 1  1 ,1 . 9  .9 . 5  . 5  

5 . 1  . 9  . 9  . 1  15  . o  .9  .9 ... 
. o  

Item Item 
6 . 9  . 1  . 1  . 9  1 6  . 9  . o  . 5  . 9  

7 . 1  . 1  .9 . 9  1 7  . .  J .o  . 9  . 9  

8 . 1  . 1  . 1  . 9  18  . o  . ,J . 5  . 9  

9 . 1  . 9  . 1  . 1  1 9  . ,) . 9  . 5  . 5  

10  . 1  . 1  . 1  . 1  20 . o  . .  s . 5  . 5  

Figure 3 

Values of the 11ik
0
-parameters used in the simulation study 

By estimation design, we mean which analyses have been performed on which data 

sets .  In this  study, this was very simple: every data set was analyzed twice: once using the 

conjunctive MCLCM with the independence model for Z, and once using the conj unctive 

:VICLCM with the saturated model for Z. 

5.2 Uniqueness 

To examine uniqueness ,  40 data sets were used; five from each of the eight cells in the 

design with number of i tems equal to 20 . For each of these data sets .  t he parameters of 
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the conjunctive MCLCM were estimated 1 0  times using the independence model for Z, 

and 10 times using the saturated model. Because every analysis started from different 

random starting values, these analyses give information that is relevant for the uniqueness 

problem. 

For six out of eight cells in the design, the algorithm always converged to the same 

solution point. This was the case for all four 2-component data sets/ analyses and the two 

largest (N = 1000 ,  2500) 4-component data sets/analyses, both with the independence 

model and the saturated model for Z.  For the two smallest ( N  = 1 00 .  250 )  4-component 

data sets/analyses, multiple solution points were found for most of the data sets (8  out o[ 

10 data sets for the analyses with the independence model, and 7 out of 10 for the analyses 

with the saturated model) .  In these analyses, the solution with the h ighest posterior P D F  

was the most frequent: in more than 60 percent of the analyses the a lgorithm converged to 

the best solution. Therefore, performing multiple analyses using different random starting 

values may still be a successful optimization method in these cases. 

For all data sets, the solution points, whether single or multiple, were allways local 

maxima and never saddle points or points in a linear subspace. This follows from the fact 

that the Hessian matrix at the solution points was allways negative definite. This was 

also the case for all analyses that were performed in the goodness-of-recovery study. 

5 . 3  Goodness-of-Recovery and the Existence of Asymptotic 

Standard Errors 

For every parameter, two GOR-statistics were computed: ( a) the d i fference between the 

true parameter value and the average estimated parameter value (denoted by B IAS) ,  and 

( 6) the root mean square deviation between the true and the estimated parameter values 

(denoted by RMSD). Both averages were computed over the 100 repl ications in every cell. 

Formally, they are defined as follows: 

BIAS = L.-i-1 
- 0 

( "' 1 00 o(i)
) 

100 
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RMSD = 
I::�� (f}(i) - 0)2 

100 

In these equations, i is an index for the replications, 0 is some parameter and {J(i) is its 

estimate in replication i. The RMSD is a function of both the bias and the standard error 

(SE) of the estimates. The SE is estimated by the Monte Carlo standard error (MCSE) : 

MCSE = 
I:��� ( O(i) - iJ)2 

100 

in which 0 is the average estimated parameter value. It is easy to show that 

RMSD 2 = MCSE2 + BIAS2 

In interpreting the results, it is useful to know that, if the bias i s  negligable and the 

sampling distribution is normal, a 95-percent confidence interva l has width equal to (2 x 

1.96 x RMSD). If the 95-percent confidence intervals for the latent response probabilities 

(the f/iko's) have an average width of less than 20 percent of the range of a probabil ity (i.e., 

(0, 1) ), we say that the goodness-of-recovery is sufficient for substantive i nterpretation of 

the components. 

Besides the MAP estimates, in every analysis, also the Hessian matrix of the log 

posterior P D F  was computed. It is known that, under certain regularity conditions, the 

inverse of this matrix converges to the sampling covariance matrix of t he :Vf AP estimates, 

or, from a Bayesian perspective, the posterior covariance matrix of 1 be parameters (see, 

e.g. , Gelman, Carlin, Stern, & Rubin, 1995, pp. 94- 1 1 1 ) .  Here, we take the frequentist 

perspective, considering the MAP estimates as point estimates of unknown constants , and 

ask the question how well this inverse Hessian matrix approximates the true sampling 

covariance matrix for finite, but increasing, sample sizes. For :'VIC LC:\1I 's, as opposed to 

other models like the loglinear model, this question is especially important ,  since we have 

no proof of the identifiability of the MCLCM's, and identifiabil ity i s  one of the regularity 

conditions for the asymptotic result to hold. 

For a given parameter, inverting the Hessian matrix gives us one asymptotic standard 

error (ASE) per replication in a cell of the simulation design. These 1 00 ASE were 

aggregated by computing the mean ASE (MASE). A possible b ias in the asymptotic SE's 
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is found by computing the difference between these MASE-statist ics and the MCSE's .  

When computing GOR-statistics , one has to be sure that one has actually computed 

the estimate whose performance one wants to evaluate, in  our case the 1'iIA P  estimate. 

As is clear from the uniqueness study, for the small ( N = 100 , 250)  4 -component data 

sets/analyses the solution of the maximization algorithm is not always the MAP estimate. 

Therefore, the values of the GOR-stat istics in these cells of the simulation design will not 

be considered. 

A further complication is that MCLCM's involve a trivial non-identifiability caused 

by the fact that the components may be permuted without changing the probabilities of 

the observed i tem response vectors . For instance, with the independence model for Z :  

the marginal latent class probability and the I latent response probabil i ties o f  the first 

component ( i . e . ,  l1 , 77 1 1 0 ,  77 2 1 0 ,  . . .  , 77 1 1 0 )  may be replaced by the correspond ing probabil ities 

for the second component, and vice versa, without changing the  P(Y :  �' TJ ) 's (a similar, 

but somewhat more complicated, permutation is possible with the saturated model for Z). 

To get the same order of components for each of the replications, the lr11.e parameter values 

were used as reference values . In particular, for every replication , a devi ance measure was 

computed for every (true component , estimated component )-pair .  This deviance measure 

is simply the sum of the absolute differences between the corresponding true and estimated 

latent response probabilities ( the r/iko 's ) .  Formally, for the k-th true and the 1-th estimated 

component , this deviance measure is the following: 

L l 77ik0 - 1JilO I 
i= l  

Every est imated component was given the order of  the true component from which i t  de­

viated least . It should be clear that this way of determining the order of the components 

only works if the goodness-of-recovery is not too bad. Otherwise, it  m ight occur for exam­

ple that one true component is the best choice for more than one es1 i m ated component . 

Fortunately, this turned out to be the case for none of the data sets considered . This 

fact of having every true component represented best in only one est i mated component 

is already an indication of at least a reasonable goodness-of-recovery. 

30 



Only the results for the [20 items, independence model] data sets/ analyses will be 

considered in detail. At the end, the effects of number of items (20/40) and type of model 

for Z (independence/saturated) will be discussed briefly. In Table 1 ,  the results are shown 

for the [20 items, 2 components, 100 persons , independence model] data sets/analyses . In 

this table, the following is shown: the average parameter estimates , the true parameter 

values, and the BIAS-, RMSD- , MCSE-, and MASE-statistics . These values are given for 

the marginal latent class probabilities (6 and 6 )  and the latent response probabilities 

( the T/iko 's ) of i tems 1 ,  3 ,  5 and 7. In this table 1 also the averages over all T/iko 's (so, not 

only items 1 ,  3, 5, and 7) of these six statistics are shown. (For the B IAS-statistics, the 

average of their absolute values was computed, whereas for the others the ordinary average 

was computed. ) First ,  taking into account the small number of persons ( 100)  and the 

relatively large number of parameters (42 ) ,  goodness-of-recovery is satisfactory. However, 

it is insufficient for a substantive interpretation of the components .  Second , the MASE's 

are too large (by an average percentage of 10.96) . 

Table 1 

GOR-statistics for the [20-items, 2-component, 100 persons, 
independence model] datasets/ analyses (see text for explanation) 

Parameter Average True BIAS RMSD MCSE MASE 

�I 0.6072 0.6 0 .0072 0 .0466 0.0461 0 .0522 

6 0 .4072 0.4 0 .0072 0 .0555 0 .0550 0 .0518 

1)1 10 0.8777 0 .9 -0 .0223 0 .0541 0 .0493 0 .0621 

1)1 20 0 .8834 0.9 -0 .0 166 0.0458 0 .0427 0 .0471 

1)3 10 0 . 8 141  0.9 -0.0859 0 . 1 180 0 .0809 0. 1030 

7)320 0 . 1 183 0 . 1  0 . 0 183 0.0422 0.0380 0.0465 

715 1 0  0 . 1 199 0 . 1  0 .0 199 0 .0615 0 . 0582 0.0594 

71520 0 .8693 0.9 -0 .0307 0 .0589 0.0503 0 .0608 

7)710 0 . 1425 0 . 1  0 . 0425 0 .0882 0 .0773 0 .0759 

1)120 0 . 1 171  0 . 1  0 .0171  0 .0466 0 .0433 0.0498 

A. verage over all 
item parameters 0.5909 0.6 0 .0235 0 .0680 0.0615 0 .0675 

3 1  



In Table 2, the results are shown for the [20 items, 2 components, 1 000  persons, 

independence model] data sets/analyses. First, goodness-of-recovery now is sufficient 

for substantive interpretation; the 95-percent confidence intervals for the latent response 

probabilities have an average width of about 0.083. Second, as it should be, all GOR­

statistics are much smaller for the 1 000- than for the 100-persons data. sets/ analyses. And 

third, also the differences between the MASE's and the MCSE's are much smaller than for 

the 1 00-persons data sets/analyses. The MASE's are too large by ,111 average percentage 

of 1 .39 only. 

Table 2 

GOR-statistics for the [20-item, 2-component, 1000 persons, 
independence model] data sets/ analyses (see text for explanation) 

Parameter A verage True  BIAS RMSD MCSE MASE 

(1 0.5997 0.6 -0.0003 0.0 169 0.0 169 0 .0 167 

6 0.4026 0.4 0.0026 0.0165 0 .0 163 0 .0163 

77110  0 .8996 0.9 -0.0004 0.0 187 0.0 187 0 .0195 

77120 0 .8981 0.9 -0.0019 0 .0 154 0 .0 153 0 .0149 

77310 0 .8946 0.9 -0.0054 0.0274 0.0268 0.0296 

77320 0 . 1005 0 . 1  0 .0005 0 .0 144 0 .0 144 0 .0 137 

77510 0 .0996 0 . 1  -0.0004 0 .0171  0 .0 171  0 . 0 180 

7)520 0 .8970 0.9 -0 .0030 0.0 178 0 . 0 175 0 .0 189 

77710 0 . 1 02 1  0 . 1  0 .0021 0.0226 0 .0225 0 .0227 

7)720 0 . 1 005 0 . 1  0 .0005 0 .0 152 0 .0 152 0 .0 156 

Average over all 
item parameters 0 .5987 0.6 0 .0028 0 .0212 0 .0209 0 .02 1 1  

32  



For the [20 items, 2 components, 2500 persons, independence model] data sets/ analyses 

the values of the GOR-statistics are again smaller than for the 1000-persons data 

sets/analyses. In particular, the average absolute BIAS- and RMSD-values of the item pa­

rameters are 0.0012 and 0.0 136, respectively. The average difference between the MCSE's 

and the M ASE's is further reduced to an average percentage of 0.13. 

We now consider the results for the [20 items, 4 components, independence model] 

data sets/analyses. Because the estimation algorithm does not result in unique solutions 

for the small (N = 100, 250) 4-component data sets/analyses, only the results for the 

larger (N = 1000, 2500) 4-component data sets/analyses are considered. In Table 3, the 

results are shown for the [20 items, 4 components, 1000 persons, independence model] 

data sets/analyses (for items 1, 3, 5, 7 and 10). First, goodness-of- recovery is sufficient 

for substantive interpretation of the components: the 9.5-conficlence intervals for the latent 

response probabilities have an average width of about 0. 14:3. Second, comparing the re­

sults in Table 3 with those for the corresponding 2-component data sets/ analyses in Table 

2, we see that estimating more parameters is at the expense of a goodness-of-recovery : 

the average RMSD is 33 percent larger for the latent class membership µrobabilities and 

73 percent for the latent response probabilities. Third, there is an interesting relation 

between the four marginal latent class probabilities and the goodness-of- recovery of the 

corresponding latent response probabilities: the larger the marginal latent class probabil­

ity, the better the goodness-of- recovery of the corresponding latent response probabilities. 

In particular, the four marginal latent class probabilities are 0.6, 0 .4 , 0.7, and 0.5, and 

the average ( over the items) RMSD's of the corresponding latent response probabilities 

are 0.0388, 0.0266, 0.0498, and 0.0314, respectively. (The same pattern was found in 

all 1-component data sets/ analyses.) This pattern is understandable because only the 

persons with Zk = 0 give information about the T/iko's. And fourth , as is the case for the 

2-components data sets/analyses, the MASE 1s are on the average (over the parameters) 

larger than the MCSE's (in particular, by an average percentage of .S.38 ). 
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Table 3 

GOR-statistics for the [20-items, 4-component, 1000 persons, 
independence model] data sets/ analyses (see text for explanation) 

Parameter Average True BIAS RMSD MCSE MASE 

�l 0.6000 0.6 0 .0000 0 .0220 0 .0220 0 .0253 

6 0.4 1 1 6  0 .4  0 .0116  0 .0224 0 . 0 19 1  0 .0203 

6 0 .6921  0 .7 -0.0079 0 .0224 0.0210 0 .0260 

�4 0.5094 0.5 0.0094 0 .0221 0.0200 0.0216 

1)1 10 0.8908 0 .9  -0.0092 0 .0291 0 .0276 0 .0290 

1/1 20 0 .8968 0.9 -0.0032 0 .0222 0 .0220 0 .0212  

1/130 0.8952 0.9 -0.0048 0 .0324 0.0321 0 .0337 

IJ140 0 .9044 0 .9 -0.0044 0.0234 0.0230 0 .0235 

1)3 10 0.8834 0 .9  -0.0166 0 .0450 0.0418 0 .0444 

1)320 0 .0979 0 . 1  -0.002 1 0 .0168 0 .0167 0 .0 188 

1/330 0 .8589 0 .9  -0 .04 1 1  0 .0679 0.0541 0 .0573 

1)340 0 .8934 0 .9  -0.0066 0 .031 1 0.0304 0 .0314  

1/5 10 0 . 1009 0 . 1  0 .0009 0.0327 0.0327 0 .0316 

1/520 0 .8856 0 .9  -0.0 144 0 .0344 0.0312 0 .032 1 

1/530 0 .8644 0.9 -0.0356 0.0654 0 .0539 0 .0615 

1/540 0.0993 0 . 1  -0.0007 0 .0202 0 .0202 0 .0225 

1/710 0 . 1073 0 . 1  0.0073 0.0369 0 .0362 0 .0335 

1/720 0. 1009 0 . 1  0.0009 0 .0 194 0 .0 193 0 .0197 

1/730 0 .8520 0.9 -0.0480 0.079 1  0 .0629 0 .0645 

1)740 0 .8879 0.9 0 .0121  0 .0388 0 .0369 0 . 0386 

1/1 0 1 0  0 . 1053 0 . 1  0 .0053 0 .0360 0.0356 0 .0373 

1/1020 0 . 1029 0 . 1  0 .0029 0.0270 0 .0268 0.0252 

1/1030 0 . 1 135 0 .1  0.0 1 35 0 .0508 0 .0490 0 .0467 

1)1040 0. 1056 0 . 1  0 .0056 0 .0315 0.0310 0 .0306 

Average over all 
item parameters 0 .5945 0.6 0.0089 0 .0366 0.0349 0.03(j .j 
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For the [20 i tems , 4 components, 2500 persons,  independence model] data sets/analyses 

the values of all GOR-statistics are smaller than for the 1000-persons data sets/ analyses , 

similar to the difference between the results for the corresponding 2-components data 

sets/ analyses . 

The effect of the number of items on the goodness-of-recovery is rather small. Doubling 

the number of i tems ( i . e . ,  40 instead of 20) resulted in a global decrease of the RMSD's of 

the marginal latent class (pattern) probabil ities by an average percentage of 14 . 5 1 ,  and 

of the latent response probabi li ties by an average percentage o f  9A2. 

The effect of the model for Z ( i .e . ,  independence ,·ersus sat urated ) on the goodness­

of- recovery of the latent response probabilit ies is  negligable. C n der the saturated model , 

the RMS D 's of the latent response probabili ties are smaller than under the independence 

model by an average percentage of 0 . 67  only. For the parameters of the model for Z, 

we start from the observation that the independence model has two or four ( I{ = 2 ,  4 )  

free parameters , and the corresponding saturated model three, respectively, fifteen ( that 

is ,  2K - 1 ) .  For the 2-component data sets/analyses , the RMSD's  of the parameters of 

the saturated model are smaller than those of the independence model by an average 

percentage of 15 .53 .  For the 4-component data sets/ analyses this average percentage 

is 74 .76 .  This result is somewhat puzzling, s ince the model with the larger number of 

parameters has a better goodness-of-recovery. 

From this goodness-of-recovery study we can draw four conclusions .  First, goodness­

of-recovery was more than satisfactory, even with as few as 1 00 persons. However, for 

substantive interpretation of the components ,  more persons are required . Second, the 

global decrease of the RMS D 's with increasing sample size strongly suggests consi stent 

estimation. Third, there is good evidence that the diagonal elements of the inverse of the 

Hessian matrix of the log posterior PDF are asymptotic sampling vari ances; although the 

elements are systematically larger than the true sampling variances. this  b ias disappears 

with i ncreasing sample s ize. Fourth,  the positive results with respect to goodness-of­

recovery, and the fact that the usual asymptotic  standard errors appear to be val id ,  are 
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indirect evidence for the identifiability of the conjunctive MCLCM ( at least for the pa­

rameter values used in the simulation study) .  However , it is clear that only an analytic 

identifiability proof, probably involving conditions on the model structure and the param­

eter values, is fully satisfactory. Proving identifiability of MCLCM's would be a major 

step forward, since it would give us a class of discrete latent variable models that does 

not suffer from rotational invariance ( or something similar) , as does 1. he factor analysis 

model. 

6 Application 

The conjunctive MCLCM ( with identification restrictions as described in section 3) was 

applied to data collected by Tatsuoka (1984). The items are fraction addition problems. 

The i tern set consisted of both simple (e.g. , 3 / 4 + 1 /2 = , l / 5 + 1 / 4 = ) and mixed 

(e.g. ,  3 5/7 + 4 6/7 = , 1 1/3 + 2 4/6 = ) fraction addition problems. The test consists 

of 38 items. The first half of the test is parallel to the second half. This means that 

for every item in the first half, there is another item of the same type (single/mixed, 

same/different denominator, small/large numbers, . .. ) in the second half. Item 26 was 

excluded from the analysis because the information about this item in the documentation 

(i.e., Tatsuoka's (1984) report) was not consistent with item 26 in the list that was also 

part of this documentation. There were 595 subjects. In this group, there were children 

from grade 7, 8 and 9. 

The conjunctive MCLCM, instead of the disj unctive or some other type, was chosen 

because the solution of this type of items can be described well in terms of multiple abilities 

that are all necessary for a correct response ( see the interpretation below). Because we 

had no hypotheses about the structure in the latent class membership probabilities, the 

saturated model was chosen. 

\Ve obtained MAP-estimates for the conjunctive MCLC\tI with from one to five com­

ponents. The analyses were performed using multiple random starting-values. Except 
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for the 4- and the 5-component model, these analyses always resulted in  the same pa­

rameter values . Both for the 4- and the 5-component model , two local maxima were 

found .  Only the solutions with the largest value of the posterior density are considered 

in the following. In Table 4, we give ( a) the number of parameters , and (b)  the value of 

the loglikelihood at the MAP-estimates, for each of these five sol utions. :'Jote that the 

function being maximized is not the loglikelihood,  but the loglikelihood plus the log prior 

density. O ne might consider using the l ikelihood ratio statistic to determine the number 

of components .  Unfortunately, l ikelihood ratio statistics for mixture models involving d i f ­

ferent numbers of latent classes do not have the usual asymptotic chi-square distribution 

( with degrees of freedom equal to the difference between the number of parameters of the 

two models ; see McLachlan & Basford, 1988 ) .  Therefore, the logli kelihood was used as a 

descriptive statistic only. A scree-plot of the loglikelihoo<l values shows that the decrease 

in loglikelihood is almost linear from the 3- to the 5-component sol ution. 

Table 4 

Number of parameters and loglikelihood values for the 
conjunctive MCLCM with from one to five components 

applied to Tatsuoka'sfraction addition data 

Number of 
Compon ents 

Number of 
Parameters 

L
°j

like lih ood 
at the MA - estimates 

1 39 - 148 10 .70737 

2 79 -932 1 . 2 1454 

3 1 2 1  -7990.82645 

4 167 -7616 . 34449 

5 221  -7452 .08613 
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Besides the scree-p lot, a second reason for restricting our attention to the 3-component 

solution, is that the interpretation of the 4-component solution is along the same lines as 

the simpler interpretation of the 3-component solution. This is evident from the pattern 

of correlations between the latent response probabi lities of the different components and 

two i tern characteristics ( see further ) .  

The 3-component solution i s  given in  Tables 5 and 6 .  The estimates and the associated 

standard errors of the et ' s  (t = 1 ,  . . . , 8)  are given in Table 5 (for identifiability, 6 is put 

equal to 1 minus the sum of the other et-parameters ). The estimates and the associated 

standard errors of the latent response probabilities ( the T}iko ' s )  of the fi rst 1 9  items are 

given in Table 6. The averages in the bottom of this table are over all 37 items.  In 

this table, we also show two item characteristics that are used for the validation of the 

interpretation of this solution ( see further ) .  

For the interpretation, it is important to know that (a) T/iko i s  the probability of 

a correct application of the k-th mental operation, given that one does not master it 

(Zk = 0 ) ,  and (b )  subjects with Zk = 1 allways apply the k-th mental operation correctly. 

The latter restriction was introduced for i11entification of the model ( see Section 3 ) .  

Table 5 

MAP-estimates of the latent class pattern probabilities under 
the 3-component conjunctive MCLCM (with a saturated model 

for Z) applied to Tatsuoka's fraction addition data 

Pattern Estimate [St. Err.] 

000 0 . 2204 Id .  Res. 

100 0 .0838 [0 . 0 1 62] 

0 10 0 .0075 [0 .0062] 

1 1 0  0 .5232 [0 .0204] 

0 0 1  0 .0237 (0 .0220] 

1 0 1  0 . 1 048 (0 . 0 1 68] 

0 1 1  0 . 0234 (0 .0082] 

1 1 1  0 . 0 1 28 (0 .0046] 

38 



Item 

2 §. + 3 N 
6 6 

I +  .!1. 
5 8 

§. + §.  5 5 

2 l + 4 1 
2 4 

l + 1 N 
2 7 

3 1 + 4 §. 
7 7 

;i + l 
5 5 

l + l 
3 2 

1 1  + 1 .!1. 7 7 

;i + l 5 5 

;i + l 
4 2 

2 1 + 1 l 
9 9 

3 .!. + 2 ;i  
6 4 

ll + N  
35 35 

l + ;i 
2 8 

1 I +  ;i 5 5 

l + ;i 
4 4 

4 1 15 + 10 

1 + ;i 
5 5 

Table 6 

MAP-estimates of the lataent response probabilities 
under the 3-component conjunctive MCLCM applied 

to Tatsuoka's fraction addition data 

LRP Comp. 1 LRP Comp. 2 LRP Comp. 3 Com./Difj. 
Dcnom.  

0 . 3 157 [0 .06 14] 0 .6096 [0 .0556] 0 .7729 [0 .0240] l 

0 .4 1 17 [0 . 1275] 0 .0778 [0 .0255] 0 . 6662 [0 .0266] 0 

0 . 1698 [0 .0429] 0 .6490 [0 .0521]  0 .8788 [0 . 0 1 86] I 

0 . 3662 [0. 1 135] 0 .0960 (0 .0270] 0 .8342 (0 .0210] () 

0 .2495 [0 . 1 042] 0 .0397 [0 . 0 1 89] 0 .6289 [0 . 0272] 0 

0 . 2046 [0 .0443] 0 . 7508 [0 .0536] 0 .8062 [0 .0228] 1 

0 . 1 220 [0 .0357] 0 .6273 [0 .0531] 0 .8950 [0 . 0 1 77] 1 

0 . 59 17  [0 . 1 253] 0 .0234 [0 .01 18] 0 . 9 1 06 [0 .0 162] 0 

0 .2602 [0 .0596] 0 .5537 [0 .0548] 0 . 7792 [0 .0n7] 1 

0 . 1 59 1  [0 .0343] 0 .8 198 [0 .0400] 0 .9766 [0 . 0087] 1 

0 .4097 [0 . 1 222] 0 .0665 (0 .0221] 0 . 8922 [0 . 0 1 74] 0 

0 .2749 [0 .0526] 0 .6502 [0 .05 1 8] 0 . 8959 [0 . 0 1 74] 1 

0 . 3046 [0 . 1 169] 0 .0204 [0 . 0 1 3 1] 0 . 8 190 [0 .02 17] 0 

0 . 1 7 14 [0 .0410] 0 . 7505 [0 .0460] 0 .9084 [0 . 0 161] 1 

0 .3499 [0 . 1 204] 0 . 0 1 9 1  [0 . 0 124] 0 .9260 [0 . 0 1 48] () 

0 . 1041  [0 .0287] 0 . 778 1 [0 .0458] 0 .9403 [0 . 0 1 36] I 

0 . 1420 [0 .0305] 0 .896 1 [0 .0351] 0 . 9579 [0 .0 1 13] 1 

0 .5364 [0 . 1 3 19] 0 .0 1 16 [0 .0094] 0 . 800 1 [0 . 0225] 0 

0 .0968 [0 .0271] 0 .8722 [0 .04 1 7] 0 . 9 1 13  [0 . 0 16-5] I 

!\ verage over all 
i tem parameters 0 .  2023 [0 .0638] 0 .4329 [0 . 0340] 0 . 81 18  [0 . 0 1 93] 
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The first component both has the largest probabilit y of being mastered (i. e . ,  0 .  72) and 

a uniformly small probability of compensation by other mental resources (around 0 .20) . 

Therefore, the corresponding latent ability most likely involves a mental operation t hat 

i s  involved in every i tem. This i s  true for the mental operation of adding simple fractions 

with a common denominator (i. e. , a/c + b/c = (a+b)/c) since this operation has t o  be 

performed in every item. 

The second component involves knowing how fractions with different denomi nators 

have to be converted in equivalent fractions involving a common denominator. This is 

convincingly demonstrated by the 0 .97 correlation between the latent response probabili­

t ies and the binary variable indicating whether the item has common ( value 1) or different 

(value 0) denominators. This means t hat i tems with common denominators do not require 

this ability, whereas items with different denominators do require i t. 

The third component involves short-term memory (STM) capacity. To show this, we 

first describe which elements have to be stored in STM. In particular , s ol v ing fract ion ad­

dit ion problems involves that the following numbers are computed an d stored temporarily 

in STM: 

• (If there are two unit-parts  involved. ) The sum of the unit-parts. 

• (If the denominators of the fractions are common. ) The sum of the  numerators. 

• (If the denominators of the fractions are different .)  

l .  The new common denominator, which is determined as t he smallest number 

that is a multiple of both old denominators (e. g. , 1 2  for the o ld  denominators 

6 and 4). 

2 .  The two new numerators, obtained by multiplying the  old n umerator by the  

same factor that was used to convert the  denominator. 

3 .  The sum of the two new numerators, wh ich replaces the  two numerators i n  

STM. 
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• ( If t he sum of the fractions can be simplified . )  The greatest common divisor of 

numerator and denominator. 

For the validation of our hypothesis that the third component involves STM capacity, we 

compute t he STM load of each fraction addition problem. This STM load is computed 

as the largest number of digits that is at the same t ime in  STM . Computing the number 

of digits instead of the number of numbers in STM, reiiects the assumption that it is 

more difficult to store a two-digit number than a s ingle-digi t number. Our hypothesis 

is corroborated by the negative correlation of -0 .83 between ST:VI load and the latent 

response probabilities of the third component . This means that i tems with a high STM 

load can only be solved by subjects having Z3 = 1 .  Further, as a kind of discriminant 

validity, t hese latent response probabilities are only weakly correlated with the binary 

variable indicating common versus different denominators ( i . e. ,  0 .40 ) .  

S ince this interpretation i s  post-hoe, a caveat i s  i n  order. A con firmatory study 1 s  

needed t o  give this theory a more solid basis .  Such a study might involve a test for 

STM capacity that is correlated with the a posteriori probabil i ties of belonging to the 

mastery-class of the STM component ( as determined by the correlations between the 

latent response probabilities and STM load) .  

7 Related Models 

MCLCM's  are a generalization of ordinary latent class models because they involve mul­

tiple latent classifications instead of only one. This generalization is also presented by 

Hagenaars ( 1990 ,  1993)  using a loglinear model for the P D F  of t he i tem responses con­

ditional on the latent class memberships (see 2 .2 . 2 . ,  the compensatory model ) .  From the 

perspective of latent class modelling, MCLCM's with polylomous instead of dichotomous 

latent classifications are a straightforward general ization. Obvious ly, polytomous latent 

classifications cannot be interpreted as mastery/non-mastery o[ mental operations. How­

ever, they may be useful in modelling responses to items in the person al ity and clinical 
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domain as, for example, items in a psychiatric symptom checklist. For this type of re­

sponses it makes more sense a priori to think in terms of polytomous latent classifications 

as, for example, [conforming, independent, antagonistic] as a relevant classification for 

attitude towards rules. 

The MCLCM's of the LRM-type are related to a family of decomposi tion models for 

binary two-way data. The first model in this family is the so-called !If CLAS model of 

De Boeck and Rosenberg ( 1988) that involves a Boolean matrix decomposition. Boolean 

matrix decomposition is the deterministic limiting case of the  disj unctive :VICLCM. To 

show this, consider the disjunctive MCLCM with all 7Jiko-parameters equal to 0.  The 

remaining item parameters (the 1Jikl  's) can then be written in a ]\'-dimensional vector 

1Ji = (17iu ,  .. . , '/]iK1) 1 . Then, the probability of a correct response conditional on the 

latent class memberships can be written as follows: 

P(Y; = l j Z ; 'T]J = 1 - II(l  - 1lik 1 Zk )  (22) 
k=l  

The deterministic limiting case of this probability is obtained by letting the elements of 'TJ i 

go to either O or 1 .  In the limit, the right-hand side of (27) is the Boolean vector product 

of the binary vectors 1Ji and Z. This Boolean vector product has the value 1 if and only 

if there is at least one k for which '/]ikl = Zk = 1 .  

A conjunctive version of the I-IICLAS model was proposed by Van .\fochelen, De  Boeck 

and Rosenberg ( 1 995). This version of the model involves a kind of conj unctive Boolean 

matrix decomposition. This conjunctive Boolean matrix decomposi tion is the limiting 

case of the conjunctive MCLCM, as can be shown in a similar way as for the original 

Boolean matrix decomposition and the disj unctive MCLC:VL 

It should be noted that the HICLAS model is not a latent class model. The Z 's are 

not considered as RV's but as constants that are treated as unknown parameters ( one for 

each of the persons in the sample). Thus, in an application of t he I-I I CLAS model, N + J 

binary vectors of constants (N Z's and I 1J/s) have to be est im ated from the data. 

Probab ility matrix decomposition (PMD) models were proposed by \ laris et al. ( 1 996)  

as probabilistic versions of the Boolean matrix decompositions involved in the two versions 
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of the H ICLAS model. PMD models are introduced here using a matrix of patients by 

psychiatric symptoms. For every cell in this matrix, a number of psychiatrists indicated 

whether the corresponding symptom applied to the corresponding patient. Thus, the 

data matrix is a matrix of frequencies instead of O's and l 's. Both the patients and 

the symptoms are characterized by a K-dimensional vector of probabilities. For the 

symptoms, this is similar to a MCLCM. There also, the items are characterized by a !{­

dimensional vector of probabilities ( after imposing identifiability restrict.ions on the f/iko 's 

or the f/ikl 's). The difference between PMD-models and MCLCM 's i s  the representation 

of the persons: in PMD models, this representation is a ,·ector of probabilities, and in 

MCLCM's, it is a realization of a vector-valued binary RV. 

To give a formal characterization of PMD models, the vector of probabil ities for patient 

p is denoted by (p = ((p t ,  .. . , (pK )1. And the binary RV indicating whether symptom i 

was judged to be applicable to patient p is denoted by Ypi ·  Then, analogous to (27), the 

probability of ½i = 1 under the disjunctive PMD model can be written as follows: 

P(J'i = 11 z; ,p, 1Ji) = 1 - rr(l - 7]ikl (pk) (23) 
k=l  

A similar formula holds for the probability of ½i = 1 under the conj unctive PMD model. 

The disjunctive and the conjunctive MCLCM are half-way between the 1-IICLAS and 

the P MD models. Ignoring the fact that Z is a RV in the MCLCM's, we go from the 

MCLCM's to the HICLAS model by replacing the vector of probabili ties 7Ji by a dichoto­

mous vector. And we go from the MCLCM's to the PMD models by replacing every 

realization of Z by a vector of probabilities (p. 

YICLCM's are IRT models. They specify the relation between an observed item re­

sponse and one or more latent variables characterizing the persons. S ince every person 

is characterized by a vector, MCLCM's are related most to the  multidimensional IRT 

models. There is a close relationship between the compensatory MCLCM in (8) and the 

item factor analysis model (Bock & Aitkin, 1 981; Muthen, 1978). In particular, the item 

factor analysis model is obtained by replacing the dichotomous Zk 's in (8)  by continuous 

RV's. 
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There is also a close relationship between the conjunctive and the disjunctive MCLCM 

and the conjunctive and the disjunctive Rasch model (Embretson, 1980;  Maris ,  1 995 ) .  

The conjunctive and the disjunctive Rasch model are also LRM's. The difference with 

the corresponding MCLCM's is the PDF of the latent responses, the Xi/s. For the 

MCLCM's, this PDF is given in ( 4 ) .  And for the two generalized Rasch models, this PDF 

i s  an ordinary Rasch model. 
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