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Abstract 
Previous work by Bechger, Verstralen, and Verhelst (2002) and Fischer (2004) on the 
equivalence of linear logistic test models implicitely assumed complete data. This 
note describes how identifiability and equivalence depends on the design, using a 
invented example. 
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Group I 

Group II 
FIGURE 1. 

Results of separate analysis. The positions of the items are their difficulties 8i . 

1. Introduction 
The linear logistic test model (LLTM: see Fischer, 2007, par. 7, and references therein) has been developed as a model to test cognitive theories about the difficulties 

of the items. Bechger et al. (2002) describe how LLTMs that represent different 
cognitive theories may nevertheless be equivalent in the sense that they reproduce the same distribution. in this note we demonstrate that the equivalence of LLTMs 
depends on the design: a possibility that was overlooked in the previous work. This 
aim, we consider a simple example involving a non-equivalent groups, anchor test 
design. 

2. Motivating Example 
The same test of three items has been taken by two non-equivalent groups of children. Separate analyses of the data collected in each group show that items follow 

the Rasch model (Rasch, 1960). However, the relative difficulties of the items are 
not the same for both groups. As illustrated in Figure 1, items 1 and 2 have changed 
positions relative to one another, while the relative position of item 2 and item 3 is 
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the same in both groups. Thus, the characteristics of the items depend on the group in which they are administered and we recognize this as a simple case of Differential 

Item Functioning (DIF). 

Next, we wish to do a concurrent analysis and analyze data from both groups simultaneously. To this aim, we need a set of anchor items to establish a relation 
between the two ability scales. Items that show DIF are kept in the analysis but removed from the anchor. They are treated as different items in the two populations. It will be clear that items 1 and 2 (or items 1 and 3) can not be both in the anchor 
but there is still a number of alternatives to choose from. We consider the following 
two possibilities, illustrated in Figure 2. 

Al: Item 2 and item 3 A2: Item 1. 
When we do the concurrent analyses, we find that both models give to the same 
likelihood, which suggests that they equivalent. Furthermore, the relation between 
the ability scales appears to be different for the two analyses. Consider a pupil in 
group II with an ability at the location of the second item, i.e., a pupil with a 50 
percent chance to answer the second item correctly. In Figure 2 it is seen that, in the 
first analysis, the ability of this pupil would match the ability of a pupil in group I with a 50 percent chance to answer the second item correctly. However, this would 
no longer hold true for the second analysis. 

3. Explanation 
In the example, we stated that analyses with two different anchors lead to the 

same likelihood and the models are observationally equivalent models. At first sight, 
however, the model cannot be equivalent because they differ in the number of param­
eters. To wit, four parameters in the first analysis, and five in the second analysis 
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FIGURE 2. 

Two different choices to link the two scales. An asterix indicates that the item is considered a 

different item in the second group. 

(i.e., <51 , <52 , <53 , <52, <5i)- Consequently, one expects the second analysis to furnish a 
better fit to the data. This requires clarification. On closer look, the difference between the two analyses is that, in the second 
analysis, there is no restriction that <51 - <52 = <52 - 8;. Thus, the second model is 
nested in the first and it is only after we impose the restriction that the two models 
become observationally equivalent. If we do not impose the restriction, it is possible 
to find that 81 - 82 I- 82 - 8i in which case one would decide in favour of the second 
model. When, however, <51 - <52 = <52 - b'i, this will become increasingly unlikely 
when sample size increases. To illustrate this, we have conducted a small simulation 
study. For different sample sizes, n, we generated 200 data sets and analyze each 
using conditional maximum likelihood. If we gather the conditional likelihoods for 
each model we find that the likelihood for the second analysis tends to be higher. 
However, as seen in Figure 3, the ratio of the likelihoods converges to one when 
sample size increases. In the sequel we will demonstrate this formally by casting the two models for concurrent analysis into the framework of the LLTM. 
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FIGURE 3. 

Average Likelihood Ratio of the two concurrent analyses in the motivating example. 

4. Two LLTMs 
To impose the restriction 81 - 82 = 82 - 83 we introduce a uniform translation or "shift" T in the location of the DIF items between the two populations. That is, 

o; = oi - -r. Thus, we have 81, 82, and 83 , and a fourth parameter -r: 82 = 82 - -rand 
83 = 83 - T. The model for the concurrent analysis is a Rasch model with a linear 
restriction on the parameters and a special case of the LLTM. 

The LLTM is a Rasch model with linear restrictions on the item parameters. 
Under the Rasch model, the probability that person p finds the correct answer to 
item i is 

In the LLTM, ()i = Ej Qij'T/j, where the % are constants and the 'T/i are called basic 



8 parameters. The matrix containing the constants is traditionally called the Q-matrix. 
It is well-known that the Rasch model is not identifiable: I.e., an arbitrary constant 
can be added to di and ()P without changing the probability of a correct answer. This 
is solved with one identifying restriction called a normalization. We will also have 
to deal with this when we use the LLTM. 

We will now specify the LLTMs corresponding to the two concurrent analyses 
that we did in the motivating example. To this aim, we define six "virtual" items with parameters 8i,j that are linear functions of three basic parameters: 'T/l, 'f/2, and 
T (see Fischer, 2007, pp. 568-571). The following LLTMs correspond to Al and A2: 

81,1 -1 0 0 -'T/1 + C 

82,1 0 0 0 C 
'T/1 

831 -1 1 0 'f/2-"11+c ' 
+cl= (1) - 'T/2 

812 -1 0 1 T-'T/1+c 
T 

822 0 0 0 C 

83,2 -1 1 0 'f/2-"11+c 

81,1 0 0 0 c* 

82,1 1 0 0 'f/1 + c* 

'T/1 
831 0 1 0 'T/2 + c* ' 

+c*l = (2) - 'T/2 
81,2 0 0 0 c* 

T 
82,2 1 0 -1 'f/1-T+c* 

83 2 0 1 -1 'f/2-T+c* ' 

where di,; denotes the parameter of the ith item in population j, and 1 a column 
vector of ones. The models are formulated in such a way that the basic parameters 
have the same statistical interpretation in the two models: i.e., 'T/l = 82,1 - 81,1, 

'f/2 = 83,1 - 81,1 and T = 83,1 - 81,1 - (83,2 - 81,2). Conform the way the motivating 
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example was constructed, the relative difficulties of items in the same booklet (i.e., 
8i,g - 8j,g) are the same fo each analysis. Since the basic parameters are one-to-one 
functions of relative difficulties, they do not need a subscript for group. Note further 
that we have specified the models in such a way that a normalization is imposed: 
i.e., the location of one of the anchor items is fixed to zero. The constants c and c* 
are used to accommodate arbitrary changes in the normalization. These constants express the fact that the item parameters are defined only up to an arbitrary shift (see Fischer, 2007, p. 564). 

The motivating example suggests that these two LLTMs are statistically equiva­
lent: That is, they "look" different but reproduce the same distribution. The question 
is: Can we prove this? It is easy to see that two LLTMs are equivalent when, for any value of the basic parameters ('T/i, 'f/2, 7), the item parameters (i.e., the 8's) are the same up to an additive constant. That is, when the models differ only in the normal­
ization constant: i.e., c =/- c*. In this case, however, it is not that simple because the 
positions of items administered in the second group relative to those administered 
in the first group is different for the two models. Specifically, 

-'T]1 

-'T]1 

(5Model 1 - (5Model 2 = 

-'T]1 + (c - c*)l 
-'T]1 + 'T 

-'T]1 + 'T 

-'T]1 + 'T 

Again, the situation is more complex than it seems at first. That the models may 
still be equivalent is a consequence of the design. In a design with equivalent groups, 
the p-values (i.e., the observed percentage correct answers for each item) are directly 
comparable across the groups. Hence, the models can not be equivalent, in this case, 
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because they imply different p-values for the same items in different groups. This 
is different with non-equivalent groups where the p-values are not directly compa­
rable. Here, there is nothing to prevent p-values from being different in different 
populations, and T can be absorbed in the average difference between the ability 
distributions. 

It is the burden of the ensuing sections to investigate this matter in more detail. 
First, we apply results from existing work on equivalence of LLTMs only to find out that it doesn't apply. Then, we demonstrate that the equivalence of the model 
follows when we take into account that the design is incomplete. 

5. Apply Earlier Work 
Earlier work focussed on the mapping from basic parameters 'T/ to suitably nor­

malized item-parameters�- Here, we look directly at the relation between 'T/ and the 
log-odds: 

P(Xpi = 1) Ppi = ln P(Xpi = 0). 
First, note that the log-odds for person p are a linear function of his or her ability 
and the basic parameters. In matrix notation: 

(3) 
(4) 

This linear function is one-to-one, and the model parameters, ( 'T/, 0p) are identifiable, 
iff the augmented matrix Q+ = [Q, l] is of full column rank: a result that was 
established by Fischer (1983). This is found to be true for both models (1) and 
(2). Hence, both models are identifiable. As an aside, we note from Equation 3 that 



11 ( d, Bp) is not identifiable, as mentioned earlier: The matrix [I, 1] is not of full column rank. 
If (and only if) Q+ is in the column-space of w+ = [W, 1], does there exists a matrix1 A such that w+ A= Q+ (Pringle & Rayner, 1971, pp. 9-10), and 

(5) 

Hence, the model defined by Q is nested in the model defined by W: That is, given ( 17, Bp) we can always find ( 17*, 0;) such that Equation 5 holds. For example, 
if W = I, we find that any LLTM is a special case of the (un-normalized) Rasch model. In a similar way we can derive the condition under which the model defined 
by W is nested in the model defined by Q. 

Example 1 (Nested LLTMs). Consider, 

Q+=w+A 

1 0 0 1 1 0 0 1 0 1 

1 1 0 1 0 1 0 1 1 1 
- -

2 0 1 1 1 0 0 3 0 1 

0 0 1 1 0 0 1 1 0 1 
1 Actually, A= (W+)91 Q+ , where (W+)91 denotes a one-condition generalized inverse of W+ : 

i.e., any matrix G such that w+aw+ = w+. 
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It follows that 
1 0 171 'T/* = 0 1 ,,, = 172 

1 0 171 
Hence, the LLTM defined by Q is equivalent to the LLTM defined by W when 11i = 173. Thus, the model defined by Q is a special case of the model defined by W. The 
matrix A is singular and it is easily checked that there is no matrix B such that 
w+ = Q+B. Hence, given ('TJ*, 0;) there is no ('f/, 0p) such that Equation 5 holds 
except when '11i = 173. 

Two LLTMs are equivalent when each model is nested in the other. This is true 
ifj Q+ and w+ span the same column space (Bechger et al., 2002, Theorem 2). It is easily proven that this is equivalent to the non-singularity2 of A which shows that 
equivalent models must have the same number of basic parameters. The following proposition provides a simple, necessary and sufficient, condition for equivalence: 
Proposition 2. Two identifiable LLTMs with the same number of basic parameters 
and weight matrices Q and W are equivalent iff the rank of the augmented matrix [Q+, w+] equals one plus the number of basic parameters in each model. 
Proof. See Appendix □ 

Note that the condition, in Proposition 2, that the LLTMs be identified is nec­
essary because otherwise an LLTM might not be equivalent to itself (cf. Fischer, 
2004, p. 311) . The following example illustrates how Proposition 2 can be applied. 

2 A is non-singular if it is a square invertable matrix 



Example 3 (Equivalent LLTMs). Consider the following design matrices: 

0 0 

Q = -1 0 

-1 1 

and W =  1 0 

0 0 

0 1 
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It is easily checked that the rank of [Q+ , w+] equals 3. It follows from Proposition 

2 that the models are equivalent. In fact, both models are equivalent to the Rasch 

model. The number of basic parameters equals the number of relative difficulties and 

if we look at, say, differences with respect to the difficulty of the first item {i. e., 

8i - 81) we find that they are equal under both models. The models differ only in the 

normalization that they imply. In the first model, the first item parameter is set to 

zero and in the second model it is the second item parameter. 

If we apply Proposition 2 to the two models (Eqs. 1 and 2) under consideration, we find that the matrix [Q+ , w+] is of rank 5, and not 4 as we expected when the 
models are equivalent. This suggests that either the models are not equivalent, or 
Proposition 2 is wrong. In what follows, we explain that by considering the log­odds of only one person, we have implicitly assumed that the data are complete. Proposition 2 applies in this case. However, a non-equivalent groups design yields incomplete data in the sense that persons did not respond to all virtual items. Hence, 
Proposition 2 is not wrong: it simply doesn't apply here. The conclusion that the 
models under consideration are equivalent follows when we take proper account of 
the design. 

6. Accounting for the Design 
Consider the situation where the same people respond to the same items on 

two occasions. Assume that, on the second occasion, the ability of all students has 
changed with an amount r. Hence, for a person p, the log-odds on the two occasions 
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are: 
(6) 

(7) 

where T = P
p
i2 - Ppil , v'{i, p} is identifiable, eventhough the person and item pa­

rameters are determined up to an additive constant. This hypothesis corresponds 
to a variant of the LLTM sometimes called the saltus model (Wilson, 1989; see also 
Fischer, 2000). Under this model, Equation 4 gives the log-odds for a single person. 
The log-odds for any two persons p and h can be written as: 

[ �  : ]  
-11 ( Pp. ) 1 

- 0p (8) Ph. 0 

0h 

Q1 1 0 

-11 Q2 1 0 
- 0p 

(9) Q1 0 1 

0h Q2 0 1 

where, in Equation 9, Q is partitioned as QT = [ Qf, Qr] with Q1 corresponding to 
the first occasion, and Q2 to the second occasion. 

The situation in the motivating example is different. In a non-equivalent groups design, a person does not belong to more than one group. Consequently, the log-odds for two persons p and h in different populations are: 
-11 

(10) 

where, Q1 corresponds to the items administered in group 1, and Q2 to the items 
administered in group 2. Compared to Equation 9, the rows corresponding to combi-
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nations of items and occasions/populations that are not observed have been deleted. 

If we partition the matrices of the two models in the motivating example, and 
look at the relation between: 

[ 
W1 1 0 

l and w++ 
= 

W2 O 1 

we find that these matrices do span the same column-space; i.e., the augmented matrix [Q++, w++] is of rank 5. Hence, the models are equivalent, as we set out to prove. Specifically, there is a non-singular matrix 
1 0 0 0 0 0 1 0 0 0 A = (w++)u1 Q++ = 0 0 1 0 0 (11) 

-1 0 0 1 0 
-1 0 1 0 1 

such that 
-11 -11 -11 w++A 0

p 

= w++ 0* = Q++ 0
p p 

0h eh 0h 

where 0; - 0ii = 0p - 0h - T. The parameter T represents differences in the relation between the abilities in the two populations. Note, that by choosing another anchor, 
we have in effect changed this relationship, as mentioned earlier. 

7. Conclusion 
We have demonstrated that the two models under consideration are equivalent, 

which is what we wanted to show. Intertestingly, we found that the models are 
equivalent in a design with non-equivalent groups while they would not be equivalent 
in an experimental design where the groups are samples from the same population. 



16 The fact that it depends on the design whether or not two LLTMs are equivalent was overlooked in previous studies on equivalence of LLTMs and is of independent 
interest. In general, the equivalence of the two LLTMs could be investigated by 
looking at the relation between the parameters and the log-odds. In principle, we should consider log-odds for all observations: 

(12) 

where Q++ depends on the design and the Q-matrix: the design specified in terms of 
the virtual items. To investigate whether, given a design, two (identifiable) LLTMs 
are equivalent we determine whether Q++ and w++ span the same column space. 
If we follow the previous work, we would consider the sub-matrix Q+ = [Q, 1] . However, Q+ would only span the same column space as Q++ when the design is 
complete (see Eq. 8). When all persons answer to all virtual items, we only need to 
consider the log-odds of one person (see Eq. 4) and two models are equivalent iff the 
log-odds for one person are the same under the two models. This is not necessarily 
true when the design is incomplete. To prove the equivalence of the models in the 
motivating example, it was necessary to consider the log;-odds (in Eq. 10) of at least 
two persons, each from a different population. We leave it as a topic for future 
research to develop the theory for general designs. 

In closing, we mention two further topics for future research. First, depending 
on the design, there are combinations of items and persons for which there are no 
observations. When two LLTMs are equivalent, given a particular design, we may 
ask whether ( and how) the design can be changed such that the models are no 
longer equivalent and it becomes possible to determine which model describes the 
data best. This would make an interesting and positive topic for future research. Unfortunately, for the two models in the motivating example, we would have to add 
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persons from the first group as members of the second group, which is impossible. 

Second, the LLTM is a very simple model. One would expect to find similar issues 

in studies using other measurement models which allow more intricate forms of 

DIF. For example, in investigations of partial measurement invariance in structural 

equation modelling (Byrne, Shavelson, & Muthen, 1989) . Unfortunately, we could 

not find a reference in the literature. 3 This is another topic for future research. 

3MacCallum, Wegener, Uchino, and Fabrigar (1993) or Raykov {1997) come very close. 
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8. Appendix: Proof of Proposition 2 
Lemma 4. Let r() denote the rank of a matrix. Then, 

r ( [ Q+, w+] )  = r(Q+) = r(W+) {:} Q+ and w+ span the same column space 
Proof. {=: Assume that Q+ and w+ span the same column space. This means 
that each matrix is in the column space of the other. If w+ is in the column 
space of Q+ there mdsts a matrix A such that Q+ = w+ A. Hence, the rank of 
[Q+, w+] is the rank of [W+A, W+], which equals the rank of w+. The same 
argument with the roles of Q+ and w+ interchanged leads to the conclusion that 
r([Q+, w+]) = r(Q+) = r(W+) . 

⇒: Assume that r ([Q+, w+]) = r(Q+) = r(W+). If r ([Q+, w+] )  = r(Q+), 
w+ is in the column space of Q+. Similarly, r ([Q+, w+]) = r(W+) implies that 
w+ is in the column space of Q+. □ 

Proposition 2 now follows if the LLTMs are identified and r(Q+) = r(W+) = 

p + 1, where p denotes the number of basic parameters. Proposition 2 is similar to Proposition 3 in Fischer (2004). Fischer's proposition 
consists of two parts: First, it states that two identifiable LLTMs with weight ma­
trices W and q, both of dimension k x p are equivalent iff their weight matrices span the same column space. Second, 

r ( [ Q+, w+] )  = p + 1 {:} Q+ and w+ span the same column space 
The first statement is a definition of equivalence and the second statement is not true. Furthermore, F'ischer's proof is not a proof of Proposition 2 in this paper. Rather, 
he proves that Q+ and w+ span the same column space iff Qa and W a span the same column space, where Qa and W a are the weight matrices after normalization 
(see Bechger et al., 2002). 
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