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Abstract 

Three classes of polytomous IRT models are distinguished. These classes are the adjacent 

category models, the cumulative probability models, and the continuation ratio models. So far, 

the latter class has received relatively little attention. The class of continuation ratio models 

includes logistic models, such as the sequential model (Tutz, 1990), and non-logistic models, 

such as the acceleration model (Samejima, 1995) and the nonparametric sequential model 

(Hemker, 1996). Four measurement properties are discussed. These are monotone likelihood 

ratio of the total score, stochastic ordering of the latent trait by the total score, stochastic 

ordering of the total score by the latent trait, and invariant item ordering. These properties 

have ·been investigated previously for the adjacent category models and the cumulative 

probability models, and for the continuation ratio models this is done here. It is shown that 

stochastic ordering of the total score by the latent trait is implied by all continuation ratio 

models, while ·monotone likelihood ratio of the total score and stochastic ordering on the 

latent trait by the total score are not implied by any of the continuation ratio models. Only the 

sequential rating scale model implies the property of invariant item ordering. Also, we present 

a Venn-diagram showing the relationships between all known polytomous IRT models from 

all three classes. 

Key words: acceleration model, adjacent category models, continuation ratio models, 

cumulative probability models, hierarchical relationships between IRT models, invariant item 

ordering. monotone likelihood ratio, polytomous IRT models, sequential model, stochastic 

ordering. 





General Introduction 

Sequential Scoring of Polytomous Items 

In the· social and behavioral sciences data collected by means of items in tests and 

questionnaires are often ordered scores, where a higher score indicates a higher position on a 

latent trait such as arithmetic ability, introversion, or attitude towards capital punishment. 

Examples of items with ordered scores are used in the "NT2-profiel toets " (CITO, 1999), an 

ability test for Dutch as a foreign language. We discuss such an item and its sequential scoring 

rule here because it appears to be well suited for the class of continuation ratio IRT models 

(CRMs; Agresti, 1990, pp. 319-321; Mellenbergh, 1995; Molenaar, 1983) that is central to 

this paper. Each item of the "NT2-profiel toets" consists of a spoken Dutch text that ends with 

a question about this text, for example (see also Hemker, 2001), 

[translated from Dutch:] Suppose, you work at an office. You have to fax a letter for your boss. 

You have no experience with the fax machine. You know a colleague who is able to use the fax 

machine. What do you ask your colleague? 

An examinee has to give a verbal response (in Dutch). Examinees are tested individually 

by an examiner, who scores each it�m. The item is scored as follows. In the first step, the 

content of the answer is assessed. If the response is incorrect with respect to content ( e.g. , 

"Can I use this fax machine?"), the first step is failed and the result is an item score of 0. Only 

if the examinee's response is correct or almost correct (i.e., a request for help or for an 

explanation of the operation of the fax machine) the first step is passed and the examiner 

proceeds with the second step. In the second step the examinee's use of grammar is assessed. 

If the examinee makes more than just a few insignificant grammatical errors, the second step 

is failed and the result is an item score of 1. Only if the examinee's response contains no more 

than a few unimportant grammatical errors the second step is passed and the examiner 

proceeds with the third step. In the third step the pronunciation of the response is assessed. If 

the examiner thinks that the average Dutchman will not be able to understand the response 

easily, the third step is failed and the result is an item score of 2. If the examiner thinks that 

3 



the average Dutchman can understand the response without too much difficulty, the third is 

passed and the result is an item score of 3. 

Classes of Polytomous Item Response Models 

Continuation Ratio Models 

The class of CRMs to be discussed here may be suited particularly for modeling data 

obtained through a sequential scoring rule as illustrated by the example. CRMs usually have 

logistic response functions. Hemker (1996, chapter 6) extended the class of CRMs to also 

include nonparametric response functions of which logistic functions are special cases. Before 

discussing the general form of CRMs, we first introduce some notation. Let the latent trait be 

denoted by 0 , the random variable for the score on item j by Xi, and realizations by 

x = 0, .. .  , m . Furthermore, all models discussed here assume a unidimensional 0 and locally 

independent item scores. First, we define the conditional probability of passing an item step as 

P( X  .?.x I 0) 
M (0)=P( X �xlX �x-1·0) = -----'--1

---

,x ' ' ' 
P( Xj � x - 1 I 0 )  

(1) 

Equation 1 implies that if x=O then M J,(0)=1 for all 0 .  Equation 1 is the item step 

response function (ISRF). The conditional probability of obtaining an item score of x, 

P( X i = x I 0) , is decomposed into a product of x terms M ix ( 0) and one term 1- MJ.x+i ( 0) as 

P( X
1 

=x I 0) = TI Mi.1,(0) [ 1-M;.ni (0)] (2) 
y ;Q 

(Samejima, 1972 , chapter 4). Equation 2 is the category characteristic curve (CCC). Thus, 

CRMs formalize sequential scoring by writing the CCC as a product of x IS RFs for the x 

• subtasks that were successfully solved and the conditional probability of failing subtask x+ 1 

given that the previous subtasks were mastered. Thus, it is assumed that the steps are executed 

in a fixed sequence. Tutz (1990) discussed two parametric CRMs and characterized both as 

sequential models. 
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Adjacent Category Models 

If the order in which the steps are presented to the respondent is not fixed, then two other 

classes of models for ordered item scores might be used. These two classes use alternative 

definitions of the ISRF (e. g. , Mellenbergh, 1995; Molenaar, 1983). · One class of models is 

known as adjacent category models (ACMs). The ISRF of models from this class is defined as 

_ P(X.1 = X 1 0) 
Fix( 0) - -------"------• P(X.i =x I 0) +P(X.1 =x-110) 

(3) 

I t  may be noted that the ISRF of ACMs (Equation 3) and the ISRF of CRMs (Equation 1) are 

related by 

Thissen and Steinberg (1986) called parametric models from the class of ACMs divide

by-total models and Andrich ( 1995) called these models Rasch models. Some well-known 

divide-by-total models are the rating scale model (Andersen, 1977; Andrich, 1978) and the 

generalized partial credit model (Muraki, 1992). The best known of these parametric ACMs is 

the partial credit model (Masters, 1982), defined by 

F 0 = 
exp(0 - OJ.,) 

JX ( ) ·1 (0 - s: ) ' +exp uj,T 

(4) 

where oJx 1s a location parameter. Hemker, Sijtsma, Molenaar and Junker (1996) 

introduced a more general class including a nonparametric model. They called this model the 

nonparametric partial credit model, defined by F ix(0) (Equation 3) nondecreasing in 0. 

( '1111111/atire Probability Models 

The third class of models is known as cumulative probability models (CPMs). The ISRF 

of models from this class is defined as 
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G;_.(0) = P(X; z x J 0) . (5) 

It may be noted that the ISRF of CPMs (Equation 4) and the ISRF of CRMs (Equation 1) 

are related by 

Gi,..(0) = IT M b,(0) . .(6) 
v=I 

Thissen and Steinberg ( 1986) called parametric CPMs difference models, because the 

CCC is obtained by the difference of two adjacent ISRFs. Andrich (1995) called these models 

Thurstone models. A well-known CPM is the homogeneous case of the graded response 

model (Samejima, 1969; also, see Samejima, 1997) , defined as 

where a; denotes the slope parameter and A;_. a location parameter, different from 8.ix in 

Equation 4 (see Masters, 1988, for a discussion of the interpretations of 8 ;x and A-;x ). When it 

is assumed that the ISRF in Equation 5 is nondecreasing in 2, without defining the ISRF 

parametrically, the nonparametric graded response model is obtained (for example, Hemker et 

al.. 1996). 

Table I summarizes the terminology used to identify the three classes of polytomous IRT 

models. Van Engelenburg (1997, chapter 2) argued that with each of the three classes of 

polytomous IRT models corresponds a particular type of task, and Akkermans (1998, chapter 

3) argued that with each class corresponds a particular type of scoring rule. 
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Table I: 

An Overview of the Terminology Used to Identify Classes of IRT Models 

Terminology 

Molenaar (1983); 

parametric and 

nonparametric models 

Thissen and Steinberg 

( 1 986 ): Parametric 

models only 

Andrich ( 1995); 

Parametric models only 

Tutz ( 1990); 

Parametric models only 

Definition 

P(X; =xl0) 
P(X i =XV X - 110) 

Adjacent Category 

Models (ACMs) 

Divide-by-Total 

Models 

Rasch Models 

ISRF 

P(X; 2xl0) 

Cumulative 

Probability Models 

(CPMs) 

Difference Models 

Thurstone Models 

Motivation of this Study 

P(Xj 2X I 0) 
P(X_; 2x -l IB) 

Continuation Ratio 

Models (CRMs) 

Sequential Models 

Thissen and Steinberg ( 1986) discussed a taxonomy for divide-by-total models and 

difference models. This taxonomy also included models with guessing parameters that are not 

relevant for this study and, consequently, are left out of consideration. The taxonomy only 

pertained to parametric models. Hemker et al. (1997) discussed a taxonomy that basically 

extended the taxonomy of Thissen and Steinberg to include nonparametric models. Moreover, 

the formal relationships between all models were described by means of a Venn-diagram, 

based on stochastic ordering (SO) relations between the latent trait 2 and the unweighted sum 

of .I item scores, denoted X+ . Sijtsma and Hemker (1998) discussed the same classes of models 

with respect to the item ordering property known as invariant item ordering (Sijtsma & 

Junker, 1 996). 

A missing link in this research is the class of CRMs. Both classes of ACMs and CPMs 

have been investigated thoroughly (Andersen, 1977, 1997; Andrich, 1978, 1995; Glas, 1989; 
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Kelderman & Rijkes, 1994; Masters, 1982; Masters & Wright, 1997; Muraki, 1990, 1992; 

Samej i ma. 1969, 197 2; Verhelst, Glas, & Verstralen, 1995) and models from these classes 

have been applied to many practical data analysis problems (some recent applications include 

Alexander & Murphy, 1998; Cooke, Michie, Hart, & Hare, 1999; Gumpel , Wilson, & Shalev, 

I 998: Maurer. Raj u, & Collins, 1998; and Sij tsma & Verweij , 1999) . Although potentially 

useful. the class of CRMs thus far has received relatively little attention (the exceptions are 

Samejima. 1995; Tutz, 1990, 1997 ; and Verhelst, Glas, & De Vries, 1997) .  CRMs are 

attracting more attention nowadays, given the recent studies by Hemker (1996), Van 

Engel en burg ( 1997 ) and Akkermans (1998) , who compared CRMs with other polytomous 

!RT models. Thus, it seems reasonable to better incorporate the class of CRMs into the 

polytomous IRT framework. A contribution to this is given in this paper, where we investigate 

l i kel ihood ratio and SO properties between the latent trait 2 and the sum score X+, and also the 

invariant item ordering property. Insight into these relationships contributes to a better 

understanding of the relationships of CRMs to ACMs and CPMs and, moreover, gives 

ind ications of the practical usefulness of CRMs. 

Introduction to Continuation Ratio Models 

We discuss the most general model from the class of CRMs, and then we discuss several 

special cases. The most general model is the nonparametric sequential model (Hemker, 1996, 

chapter 6). which assumes an order-restricted ISRF, without parametrically defining it. The 

nonparametric sequential model assumes a unidimensional 2, locally independent item scores, 

and a nondecreasing ISRF, given by Equation 1. Several special cases have been proposed. 

Samej ima (1995) assumed a semi-parametric ISRF, M ix ( 0) =["1' ix ( 0) ] q; , where r;.i 2::0  is 

the acceleration parameter. The function lf.'J, ( 0) = P(X i :2: x I X  i :2: x -1; 0) is nonparametric 

and is assuni.ed to be strictly increasing with O and 1 as its horizontal asymptotes. The 

accelerati on model is the parametric version of M j, ( 0) = ["1' i- '  ( 0) F; . Let a i• denote the 

d i scrimination parameter and /J ix the location parameter associated with category x of itemj, 
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and let D be a scaling constant, usually equal to 1. 7 to scale the logistic function to the 

normal-ogive. The acceleration model assumes that 

It may be noted that the acceleration model is not a logistic model for  i;i # 1 . The 

accel eration parameter contributes to the steepness of the complete ISRFs, whereas a.ix 

influences the steepness of a logistic curve in its inflection point: i;.i > 1 "pushes down" the 

en tire curve and <;. i < 1 "lifts up" the entire curve, where both effects add to the effect of aj., 

on the slope of an ISRF in the inflection point. Figure l a  gives a graphic example of the 

acceleration model, and shows two items each having two ISRFs (solid and dashed curves for  

different items; parameter values are given in Appendix B)  with three answer categories. 

Figure I a shows that M i• ( B )  is not symmetric in its inflection point. 

For c;i = I ,  the 2-parameter sequential model with parameters for each (j, x) 

combination, abbreviated 2p(j x)-sequential model ,  is obtained. This is a logistic model 

defined by 

exp[ a j., ( B -/3 ix )] 
1 + exp[a jx (B -/3 .ix )] 

A special case of this model can be obtained by fixing a.ix across answer categories , so 

that a ;..- = a .i . The resulting model is the 2p(j )-sequential model. Another possibility is to fix 

a ;..- across items, so that a J, = ax . This results in the 2p(x)-sequential model. In Figure 1 b ,  

F igure 1 c and Figure I d, we give graphic examples of the 2p(j x)-sequential model, the 2p(i )

seq uential model and the 2p(x)- sequential model, respectively (parameter values in Appendix 

B ) .  
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Figure 1 :  The ISRFs of S ix Parametric CR Ms for Two I tems (Solid and Dashed Curve) with 

Three Answer Categories. Figure 1 a is the Acceleration Model; Figure 1 b is the 2pG x)

Sequential Model; Figure le is the 2pG)- Sequential Model; Figure ld is the 2p(x)- Sequential 

Model : Figure 1 e is the Sequential Rasch Model; Figure 1 f is the Sequential Rating Scale 

Model .  
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In the sequential Rasch model (Tutz, 1990) or, equivalently, the 1 p-sequential model, the 

I S  RF M ''" ( 0) is further constrained by fixing a1, = 1 , so that 

Alternatively, we may write 

M;.,. (B ) = 
exp( 0-JJ1<) 

I + exp(B -/3;. .. ) 
(7) 

De Vries (I 988) and Verhelst, Glas, and de Vries (1997) introduced the sequential model 

to analyze partial credit as an alternative to Masters' partial credit model. Their model is 

equivalent to the sequential Rasch model (Equation 7). 

A special case of the I p-sequential model is the sequential rating scale model (Tutz, 

1 990), i n  which the location parameter /J;x is split up into an item location parameter e i and 

a step location parameter 'x , with L 'x = 0 .  The sequential rating scale model is the most 

restricted CRM proposed. Graphic examples of the sequential Rasch model and the sequential 

rating scale model are given in Figure l e  and Figure I f, respectively. It may be noted that in 

the sequential Rasch model, the sequential rating scale model, and the 2p-sequential models 

the lo git of M ;x ( 0) is a linear function of the model parameters (Mellenbergh, 1995; 

M olenaar. 1983). This is not true in the acceleration model. Figure 2 shows the relationship 

between the various CRMs. The arrows in Figure 2 should be read as logical symbols for an 

implication. 
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Figure 2 :  Hierarchical Relationships Within the Class of CRMs. 

Measurement Properties for Persons and Items 

Measurement Properties for Persons 

Motivation/or Using Total Score 

We assume J polytomous items with m + I ordered answer categories each and a simple 

scoring rule for each item, that is, X .i = 0, . . .  , m , for all j . The unweighted total score is  

.I 

x
+ 
= LXi, x

+ 
= o, . . .  , m.J  . 

. i= l 

Samejima (1996) criticized the use of X + for estimating 0 ,  because the amount of test 

information based on any aggregation of the response patterns, such as X + ,  cannot exceed the 

amount of test information obtained from the response patterns, unless X + is a sufficient 

statistic for 0 (Samejima, 1969, chapter 6) .  Sijtsma and Hemker (2000) extensively discussed 

the practical usefulness of X + as opposed to the theoretical usefulness of 0, for example, as 

discussed by Samejima. They argue that X + is better suited than 0 for communicating test 
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discussed by Samejima. They argue that X + is better suited than 0 for communicating test 

resul ts to measurement practitioners and laymen, because X + has an interpretation closely 

related to solving problems correct or incorrect (dichotomous items) or the number of points 

earned (polytomous items), whereas 0 has a complicated interpretation in terms of logits (see 

Mel lenbergh, 1 995). On the contrary, for test practitioners X + is quick and simple, and allows 

immediate feedback to testees. Also, Sij tsma and Hemker (2000) note that nothing prevents 

psychornetricians and test constructors to use IRT for test construction and the information 

function for measurement evaluation of the estimated 0 on the one hand, and test practitioners, 

including teachers, to score performance on those same tests by means of summary scores such 

as X .  on the other hand. The use of X + is further corroborated by a theoretical result of Junker 

( 1991 ), who showed in the context of the nonparametric graded response model [Equation 5, 

response probability G ;r ( 0) nondecreasing in 0 ] that for infinitely many polytomous items 

X ,. consistently estimates 0 . In  this paper we investigate for CR Ms whether X + can be used 

for ordering respondents on 0 in an SO sense, which is also useful in a nonparametric IRT 

context where numerical estimates of 0 are not available. 

We agree with Samejima (1996) that for the evaluation of measurement precision X + is not 

the optimal statistic, but we also believe that X + may be an adequate summary test score for 

ordering persons on 0 in a nonparametric context and for communication purposes in a general 

I RT context. Also, Hemker et al. ( 1997) used measmement properties based on X + to study the 

relationships between all known ACMs and CPMs. This paper completes this investigation by 

presenting a Venn-diagram displaying the relationships between all known polytomous IRT 

models from the classes of ACMs, CPMs, and also CRMs. 

!v/onotone Likelihood Ratio 

The first measurement property we consider is monotone likelihood ratio (MLR). For 

polytomous items, ML R of X + in 0 means that for O � C < K � mJ , 

(MLR) 
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is a nondecreasing function of random variable 0 (Lehmann, 1 95 9). It can be shown that the 

MLR property is symmetric in its arguments. By writing the ratio in Equation (MLR) twice, 

cond itioning once on 0 and once on 01 , with 0 <01 , so that 
Cl 1 U I 

P(X+ = Kl0=0{/ )  
P(X+ = CJ0=0" ) 

then rearranging probabilities, and applying Bayes' Theorem, eventually we have that 

P(0=0" 1 x+ =C)  � 
P(0=0,, 1 x+ = K )  

P(0=0{/ I  X+ = C )  P(0=0{/ I X+ = K) 

This result means that MLR of X + in 0 is equivalent to MLR of 0 in X + . MLR is a 

technical property that impl ies �wo SO properties (Lehmann, 1 95 9, p. 74) that can be  interpreted 

conveniently in an IRT context. These SO properties are both weaker than the MLR property, in 

the sense that neither SO property implies the MLR property (Lehmann, 1 95 9, Section 3 .3 ;  see 

al so. Junker. 1993 ; Rosenbaum, 1 985 ). In addition, the SO properties do not imply each other. 

Srochastic Ordering Properties 

First, MLR implies the stochastic ordering of the manifest variable X + by 0 (abbreviated 

SOM). That is, for any two respondents a and b with 0" <0" , and for any x+ , 

(SOM) 

SOM takes the ordering on 0 as a starting point, and implies that a higher 0 results in a 

higher expected total score [see Lehmann, 1 986, p. 85 , Lemma 2(i); which pertains to the MLR 

propertyJ . 

Second. MLR implies the stochastic ordering of the latent trait 0 by X + (abbreviated 

SOL) .  This means that for any constant value s of 0 , and for all O � C < K � mJ , 

(SOL) 
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SOL takes the ordering on X + as a starting point, and implies that a higher X + results in a 

higher expected 0 [Lehmam1, 1986, p. 85, Lemma 2(i)] .  In practice, SOL is of more interest 

than SOM. because only the ordering on X + can be observed and inferences about 0 are based 

on X + .  For example, SOL is required for making mastery decisions based on cutoffs for the 

total score X + .  

Grayson ( 1 988; also see Huynh, 1994) showed that, grven unidimensionality, local 

independence, and monotonicity, MLR holds for tests consisting of dichotomously scored items. 

B y  impl ication. SOM and SOL also hold under these assumptions. For the classes of well 

known ACMs and CPMs, Hemker, et al. (1996) showed that MLR holds only for the partial 

credit model (and its special cases), but for none of the other well known polytomous models. In 

addition. Hemker et al. (1997) showed that SOL also holds only for the partial credit model, but 

that SOM holds for each of the well known parametric and nonparametric ACMs and CPMs. 

For the class of CRMs, the properties of MLR, SOM, and SOL have not been investigated thus 

far. 

A Measurement Property_for Items: Invariant Item Ordering 

Let E( X .i 1 0) denote the conditional expected score of item}. This conditional expectation 

is the item response function (IRF), both for dichotomous and polytomous items (Chang & 

Mazzeo. 1 994) .  Unlike for dichotomous items, for polytomous items . the IRF is not a 

probabil ity, but a function ranging from O to m. Invariant item ordering (110; Sijtsma & Junker, 

1 996: Sijtsma & Hemker, 1998) means that the items have the same ordering by E( X .i 1 0) ,  

except for possible ties, for all values of 0 . In general, J items have an 110 (Sij tsma & Hemker, 

1998; Definition) if they can be ordered and numbered such that 

E( X 1 I 0) :-=; E(X1 I 0) :-=; . . .  :-:; E(X ., 1 0) ; for all 0. (110) 

Within meaningful subgroups, such as age groups, items may also be ordered using E(X .i ) , 

.i = I . . . . . . / .  which is the mean item score across the distribution of 0 in a particular subgroup. 

If an IIO holds, that is, an item ordering that is the same for all 0 s, then the items also have the 

same ordering wi th respect to E( X ; ) between different subgroups. 
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I I O is a useful property when the application of a test assumes that items have the same 

ordering for different 0 s. For example, in intelligence testing using a conventional test format 

(i.e., not an adaptive test format) items are often ordered from easy to difficult to facilitate the 

use of starting and stopping rules for individuals (e.g. , the Amsterdam Child Intelligence Test; 

B lei chrodt Drenth, Zaal, & Resing, 1 985) in the following way. The youngest age group starts 

with the easiest item and an individual child stops when he/she failed at, for example, three 

consecutive items (the next items are more difficult and it is assumed that the child will also fail 

at those items) . The next age groups skips, say , the first five items, which are assumed to be too 

easy for them, and starts at item 6. For each individual child, the same stopping rule applies. The 

third age group starts at, say, item 16, and so on. Obviously , this test administration procedure 

uses the assumption that for the whole population the items have an no. 

Other applications where an no is relevant are the following. Several person fit detection 

methods are based on the difficulty ordering of the items, and applications to individuals all use 

the same item difficulty ordering. Also, items may reflect a developmental sequence that is 

assumed to hold for each individual, and the difficulty ordering that results from the 

developmental ordering by implication also holds at the individual level. Finally, when items are 

assumed to be unbiased the ordering according to difficulty should be the same in different 

meaningful subgroups, for example, defined by gender, ethnicity, and social economic status. 

For di chotomous and polytomous items, all IRT models having nonintersecting IRFs imply 

an IIO (Sijtsrna & Junker, 1996; Sijtsma & Hemker, 1998). For dichotomous items, the Rasch 

( 1 960) model and the double monotonicity model (Mokken & Lewis, 1982) are well known 

examples. For polytomous items, the ISRFs of different items need not be nonintersecting to 

obtain nonintersecting IRFs. Sijtsma and Hemker (1 998) showed that in the ACM class the 

rati ng scal e model (Andrich, 1 978) implies an no, and in the CPM class the rating scale version 

of the graded response model with equal IS R F  slopes [ a special case of Muraki' s (1 990) model] ,  

the strong double monotonicity model (Sij tsma & Hemker, 1 998) , and the isotonic ordinal 

probabil istic model (ISOP; Scheibleclmer, 1 995) each imply an IIO. 
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Measurement Properties of the Continuation Ratio Models 

First. we show that CRMs do not imply MLR. Next, we show that all CRMs imply SOM, 

but that none of the CRMs imply SOL. Finally, we show that the sequential rating scale model 

i mplies an IIO when all items have the same number of answer categories. We will derive all 

results assuming that the number of answer categories is fixed over items, which is realistic in 

most applications. Also, this is the assumption fo llowed in previous research on MLR 

(H emker et al., 1996), SOM and SOL (Hemker et al., 1997), and 110 (Sijtsma & Hemker, 

1 998) .  

Monotone Likelihood Ratio 

Example 1 (below) shows that the sequential rating scale model (Equation 7, with 

fJ ir = ,_, + & i substituted) does not imply MLR. Since the sequential rating scale model is a 

special case of all other CRMs (see Figure 2), it follows that none of these more general 

models implies MLR. 

EXAMPLE 1. The sequential rating scale model does not imply MLR. Consider two 

i tems (./ '= 2; j = 1, 2) , each with five answer categories (m = 4). Let the item locations be e 1 =0 

and &1 = 1 , and let the category locations be r 1 =-.99 ,  r2 = . 98 ,  r3 =- 1.00 ,  and r4 = 1.01. This 

/32 _1 = .00 ,  and /324 = 2.01 . Figure 3 shows the corresponding functions 

c,(c + L C 0) =  P(X+= + 1 IB) (see Equation MLR) for 0:SC :S 7 .  The likelihood ratio '" P(X+ = ! 0) 

function that decreases from 0� 1.47 to infinity, is g(C + 1=6, C=5;0) .  This function shows that 

the sequential rating scale model does not imply MLR. 
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Figure 3 :  Graphic Display of Eight Curves Representing 

1 0  

P( X + = C + I I 0) 

P(X+ = C I B) 
for 

C = 0, . . .  , 7, Obtained From a Sequential Rating Scale Model for Two Items With Five Ordered 

Answer Categories. 

For many other choices of the location parameters than the values in Example 1, the 

l ikel ihood ratio g(C + l ,C; 0) is often found to be nondecreasing for all C . For the special 

cases of maximum total score X + = m.J and minimum total score X + = 0 ,  CRMs even imply 

MLR mathematically (proof in Appendix C). Another special case is MLR of item score X ;  . 

Hemker et al. (1997; Proposition) showed that MLR of item score X ,; is equivalent to 

nondecreasingness of the ISRF of the ACM class (Equation 3 ). Additionally, Hemker (1996, 

chapter 6) showed that parametric CRMs with a.ix 2.aJ_ 1+ 1 imply that the ISRFs of the A CM 

c lass are nondecreasing. Thus, the 2p(j )-sequential model and its special cases imply MLR 

when X+ = X ; .  
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Stochastic Ordering 

Si nce MLR i s  a sufficient, but not a necessary condition for the properties of SOM and 

SOL, models that do not have ML R may have one or both SO properties. F irst, we show that 

all CRMs imply SOM. Next, we show that none of the CRMs imply SOL. 

THEOREM 1. All CRM\· imply SOM 

PROOF: The proof consists of two parts. Fi rst, we prove that all CRMs discussed here 

imply SOM of X i . It may be noted that unidimensional 0 ,  local independence, and SOM of 

X I together define the nonparametric graded response model [Hemker, et al. , 1996; see 

Equation 5, where the conditional probability G i-/0) is assumed to be nondecreasing] . Since 

all CRMs assume unidimensionality and local independence, and we prove that these models 

imply SOM of X i ,  it follows logically that all CRMs imply the nonparametric graded 

response model. Second, we prove that the nonparametric graded response model implies 

SOM. The first part of the proof is given here (also, see Hemker, 1996, chapter 6), and the 

second part was proven in Hemker et al. ( 1997, Theorem 1 ). 

Let 0" < 0" . In the nonparametric sequential model the ISRF (Equation 2) is nondecreasing 

and, therefore, 

It fo llows that 

P( X .i 2": x l  0,) 
P( X .i 2": x-l l 0J 

P( X  - � x  1 01, )  
J , for all x and all j. 

P( X .i � x - l  I 01, ) 

Since the denominators i n  Equation 8 equal 1, we have that 
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which is equivalent to SOM of the item score X i . Since the nonparametric sequential 

model is the least restrictive model in the CRM class all special cases imply SOM. 

Next. we investigate SOL. Example 2 (below) gives an example of a sequential rating scale 

model that does not imply SOL. Because the sequential rating scale model is the most restrictive 

model in the CRM class, it follows that none of the CR Ms imply SOL. 

EXAMPLE 2.  The sequential rating scale model does not imply SOL. This counterexample 

uses the same parameter values as Example 1 .  Furthermore, let 0 be a discrete latent trait with 

J>( (J =0 ) =0.5  and P(0=1)= 0. 5, then P(0 � l lX + = 3)� . 64 ,  and P(0�1I X + =4) � . 54 .  

Thus, />( 0  � 1 I X + ) is not nondecreasing in X + . Consequently, the sequential rating scale 

model does not imply SOL. 

Example 2 remains valid as a counter example of SOL for standard normally distributed 

(J . The values of P( 0 > s I X + ) obtained using numerical integration are given in Table 2, for 

X ,  =4. 5. 6. 7  and s =0, 1, 2, 3 .  In Figure 4, P(0> s 1 X + ) is depicted for X + = 0, . . .  , 8  and s 

ranging from -5 to 5. The left-hand solid curve represents P(0 > s I X + = 0) , the right-hand solid 

curve represents P( 0 > s I X + = 8) , and the remaining curves represent the scores ranging from 

I through 7 .  If SOL holds then the curves are in ascending order according to X + and do not 

in tersect. It may be noted, however, that P(0> s 1 X + = 5) and P(0> s 1 X + = 6) (third and 

fourth curve from the right) intersect at 0 � 1.4 7 ; thus, SOL is violated. 

Table 2 :  

N umerical Values Showing That the Sequential Rating Scale Model Does Not Imply SOL. Bold 

Face Values I ndicate Violations of SOL. 

x+ P(0> 01 X + ) P(0> 1 I X + ) P(0> 2 I X + ) P(0> 3I X J  

4 . 920 . 679 .334 . 105 

5 . 987 . 907 . 660 . 322 

6 . 991 . 912 .623 .265 

7 . 999 . 983 . 845 .492 
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Figure 4: Graphic Display of Nine Curves Representing P( 0 > s I X + = K )  for K = 0, . . .  , 8 ,  

Obtained From a Sequential Rating Scale Model for Two Items With Five Ordered Answer 

Ca tegories. 

For most values of X + and s there is no problem in the ordering of persons on 0 by X + .  

l n  addition, several examples, not provided here, demonstrate that SOL also holds for many 

values of the item parameters. Example 2 shows, however, that none of the sequential models 

i nvestigated here implies SOL. SOL is only implied in some special cases. For example, we 

already showed that ML R holds for all CRMs if X + = mJ , and that the 2p-sequential model 

with a f, 2: a i- r+I  implies MLR of the item score X i .  We also noted that MLR implies SOL. 

Consequently, SOL also holds in these special cases. Example 3 (below) shows that, in general, 

CRMs do not imply SOL of the item score X i .  
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EXAMPLE 3 .  The 2p(x)-sequential model does not imply SOL of X ; .  Consider an i tem j 

with three answer categories. Two ISRFs describe this item: M i ' ( 0) and M i2 ( 0) . Let a;, = 1 , 

a ic. = 2 .  and '/3 ; 1  = /3i2 =0 . Thus logit [ M i:,- C0)] =x0, for all x .  Assume a discrete 

distribution of 0, with P(0= 0) =0.5 and P(0=1) = 0.5 .  Then P(B?:. I I X - = 0 )� . 52 ,  .I 

/>(0 ?:. I I X ; = I )  � .26 ,  and P(0 ?:. 1  I X  i =2 ) � . 56 .  Thus, P(0 "?. l I X  i ) is not nondecreasing in  

X + = X ; .  Consequently, SOL does not hold for the 2p(x)-sequential model when X + = X i .  

Example 3 also implies that the 2pU x)-sequential model, the acceleration model and the 

nonparametric sequential model do not imply SOL of the item score X i .  

Invariant Item Ordering 

Only the sequential rating scale model implies an 110. The sequential rating scale model is  

the most restrictive CRM. First, we prove that the sequential rating scale model implies an 110 . 

For the sequential Rasch model, Example 4. provides a counterexample, which shows that this 

model does not imply an 110. The combination of this result and the hierarchical relationships 

between the CRMs (see Figure 2 )  shows that none of the generalizations of the sequential Rasch 

model imply an 110. 

THEOREM 2 .  The sequential rating scale model implies an 110 

PROOF. Let items i and j have ISRFs according to the sequential rating scale model 

(Equation 7, with /Ji:.- = & i + r  ... substituted). Let the location parameters of the i tems be ordered 

1: 1 ?:. t: i . so that 11 1i = &1 - &.i ?:. 0 .  Because for the CRMs the ISRF (Equation 1) is  a 

nondecreasing function, it follows readily that 

From the defi nition of the sequential rating scale model it follows that for items i andj 

M, ... (0+ !1 ii ) = M i ... (0) ; for all x. . . 
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Equation 9 implies 

X X 

TT M ;x ( 0) S TT M ix ( 0) , for all x. 
k=O k=O 

(10) 

From Equation 5 and Equation 6 (also see Samejima, 1995 ) it follows that Equation 10 is 

i dentical to 

P( X ;  z x I 0) s ·  P( X .i z x I 0) , for all x. (11) 

N ext, Equation 11 implies that 

m m L P( X ; z x I 0) s L P( X j z x I 0) (12) 
x=I x=I 

It may be noted that Equation 12 is identical to 

Equation 1 2  can easily be extended to J items and, therefore, Equation (IIO) holds for  all items 

sati sfying the sequential rating scale model. 

EXAMPLE 4. The sequential Rasch model does not imply an IIO. Consider two items (j = 1, 

2 )_ each with three answer categories (m = 2). Consider Equation 7 and let the location 

parameters of the items be /31 1
= - 1.5 ,  /31 2

=2.5 ,  /321
= -.5 ,  and /322

= 1. Figure 5 shows the I RFs for 

these items. The IRFs intersect at 0 ::::: .4083. For persons with 0 < .4083, item 1 is easier than 

i tern 2- and for persons with 0 > .4083 the item ordering is reversed. 
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Figure 5 :  The IRFs (Represented by a Solid and a Dashed Line) of Two Items of the Sequential 

Rasch Model. 

Relationships of Continuation Ratio Models with Other Classes of Polytomous IRT 

Models 

Previous results on formal relationships between all CPMs and ACMs were based on SOL 

and displayed in a Venn-diagram (Hemker et al. , 1 997). The results of this paper fit nicely into 

this framework. Figure 6 extends the Venn-diagram with the relationships between the CRMs, 

and between the CRMs and the other models. The bold lines indicate the extensions. For a 

better understanding of Figure 6 we summarize the previous results on the formal 

relationships. 

Molenaar (1983 ) showed that if the ISRFs of the ACMs, CPMs and CR Ms are defined by a 

logistic function, none of the three types of parametric models can be considered a special case 

or a general ization of any of the other models. In agreement with this result, Figure 6 shows the 
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three types of parametric models as disjoint clusters of sets, with the outer sets denoted 2pG x)

PCM, 2p(i )-G R M ,  and AM, respectively (acronyms explained below Figure 6). 

Nonparametric models only restrict the IS R Fs to be nondecreasing. When the ISRF in 

Equation 3 is assumed to be nondecreasing, the nonparametric partial credit model is obtained, 

and when the I SRF in Equation 5 is assumed to be nondecreasing the nonparametric graded 

response model is obtained. Hemker ( 1996, chapter 6) studied the relationship between the 

nonparametric models of the CRM class, the ACM class and the CPM class. He proved that 

the nonparametric partial credit model implies the nonparametric sequential model, and that the 

nonparametric sequential model implies the nonparametric graded response model. In Figure 6, 

the three ou ter sets represent this hierarchical relationship. 

Hemker et al. (1997) proved that all parametric ACMs and all parametric CPMs are special 

cases of the nonparametric partial credit model. In Figure 6, the two sets of parametric ACMs 

[outer set labeled 2p(i x)-PCM] and parametric CR Ms (outer set labeled AM) are contained in 

the set denoted np-SM. Because of this relationship, these two sets of parametric models are also 

speci al cases of the nonparametric sequential model and the nonparametric graded response 

model; see Figure 6. Also, all parametric CRMs are special cases of the nonparametric 

sequential model (see Figure 2 )  and, thus, of the nonparametric graded response model (Figure 

6) .  

F inally, Hemker ( 1996, chapter 6), showed that the 2pG x)-sequential model is a special case 

of the nonparametric partial credit model only if a .ix 2 a i.x+ i , for all j and x. Thus, only the 2pG )

sequential model and special cases of this model imply nondecreasingness of the ISRF in 

Equation 3 .  Therefore, those models are special cases of the nonparametric partial credit model, 

as can be seen in Figure 6 where only the sets representing these models are contained 

completely in the set for the np-PCM. 

Discussion 

This study has yielded two main results. First, we have established which CRMs imply 

one or  more of the measurement properties of monotone likelihood ratio (MLR) of the total 

score X .  g iven the latent trait 0, stochastic ordering of X + given 0 (SOM), stochastic 

ordering of 0 given X + (SOL), and an invariant item ordering (IIO). For polytomous IRT 
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n p-SM 

n p-PC M 

: non parametric graded response model 

: nonparametric sequential model 

: nonparametric partial credit model 

: acceleration model 

: 2pUx)-sequential model 

: 2p(x)-sequential model 

: 2pU)-sequential model 

: sequential Rasch model 

: sequential rating scale model 

: graded response model 

: one parameter graded response, model 

: one parameter graded response model with rating scale restrictions 

: 2pUx)-partial credit model 

: 2pU)-partial credit model (generalized partial credit model) 

: 2p(x)-partial credit mode l 

: partial credit model 

: rating scale model 

Figure 6: Venn-Diagram Showing the Relationships of Polytomous IRT Models From the 

Classes of ACMs, CPMs, and CRMs. Bold Face Notation and Bold Lines Indicate New Results. 
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models from the classes of adjacent category models (ACMs) and cumulative probability 

models ( CPMs),  Hemker et al. (1996) investigated the MLR property. For the same classes of 

mod els Hemker et al. (1997) investigated SOM and SOL. This study resulted in a Venn

d i agram exhibiti ng the hierarchical relationships between the models from both classes .  

Final ly .  for these two classes of models Sij tsma and Hemker (1998) investigated no. The 

present study thus fills a gap by also investigating these measurement properties for a class of 

models that was not studied in the previous studies. We now have a complete picture of the 

measurement properties of MLR, SOM, SOL, and IIO for all polytomous IRT models for 

ordered items scores that are known to date. 

Second, we extended the Venn-diagram for A CMs and CPMs presented by Hemker et al. 

( 1 997)  wi th results for CPMs. The resulting Venn-diagram contains the hierarchical 

rel a tionships between all polytomous IRT models for ordered item scores from each of the 

three classes of I RT models. 

When a model al lows for intersecting IRFs, it does not imply an IIO. Because with each 

intersection of !wo IRFs the ordering of the E( X .i [ 0) s changes, it follows that IRT models 

with intersecting IRFs imply many different item orderings, which depend on 0. Thus, the 

question whether some models that do not imply an no perhaps might have this property by 

approximation is not an issue. 

The si tuation is different for" the property of SOL, which is the most interesting person 

ordering property. We have many indications from numerical examples that when a model 

does not imply SOL, this ordering property still may hold by approximation (Sij tsma & Van 

der Ark. 2001; Van der Ark, 2000) . This means, for example, that when X + is used for 

ordering 0 under a model, which does not formally imply SOL, the ordering may be distorted 

onl y  !'or two or three adjacent X + values. For example, let the scale values run from, say, 0 to 

60. decisions be based on a cut-off score of 40, and the distortion of the X + ordering occurs 

onl y for the values of 2 1  and 22. Then it could be concluded that the violation of SOL does 

not really harm an application that uses the cut-off score of 40 as the most relevant scale 

value. 
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Appendix A 

List of acronyms: 
Technical terms: 
CCC : category characteristic curve 
IRF : item response function 
IRT : item response theory 
ISRF : item step response function 
Item response models: 
ACMs : adjacent-category models 
CPMs 
CRMs 

: cumulative probability models 
: continuation ratio models 

Technical Properties 
no 

MLR 

: invariant item ordering 
: monotone likelihood ratio 

SO : stochastic ordering 
SOL : stochastic ordering of the latent trait by the total score 
SOM : stochastic ordering of the total score by the latent trait 
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Appendix B 

The parameters used to produce the curves in Figure 1 are 

Model 

Parameter 

I; j 

ajx 

/3 jx 

Acronyms: 

AM 

2p(j)-SM 

2p(x)-SM 

SRM 

SRSM 

J X AM 2p(jx)-SM 

1 0.2 1 .0 

2 5.0 1 .0 

1 1 3 .5 3.5 

1 2 0.5 0.5 

2 1 1 .0 1 .0 

2 2 2.0 2.0 

1 1 - 1 .0 - 1 .0 

1 2 3.0 3 .0 

2 1 1 .0 1 .0 

2 2 2.0 2.0 

: acceleration model 

: 2p(x)-sequential model 

: 2pU)-sequential model 

: sequential Rasch model 

: sequential rating scale model 
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2p(j)-SM 

1 .0 

1 .0 

0.5 

0.5 

2.0 

2.0 

- 1 .0 

3.0 

1 .0 

2.0 

2p(x)-SM SRM SRSM 

1 .0 1 .0 1 .0 

1 .0 1 .0 1 .0 

2.5 1 .0 1 .0 

0.5 1 .0 1 .0 

2.5 1 .0 1 .0 

0.5 1 .0 1 .0 

- 1 .0 - 1 .0 - 1 .0 

3.0 3.0 0.0 

1 .0 1 .0 1 .0 

2.0 2.0 2.0 



Appendix C 

We prove that the nonparametric sequential model implies MLR for the maximum t<?tal 

score X + = ml . The nonparametric sequential model assumes unidimensionality, local 

independence, and M Jx (0) (Equation 1) nondecreasing in 0 and is the least restrictive CRM. 

By implication, all CRMs imply MLR for the maximum total score X + = ml ; that is, 

g(K =ml, C<ml;0)  is nondecreasing in 0 .  

In the proof the following notation is used: Let n Jx (0) = P(X 1 = x I 0 )  and let the number 

of score vectors that yield X + = K and X + = C  be denoted by RK and Re , respectively. By 

convention, K > C. Vectors containing scores on the J items summing to X + = K are denoted 

X(u), with realizations x11 (u = 1, . . .  , RK ) .  Similarly, vectors containing scores on the J • items 

summing to X + = C are denoted X(v), with realizations Xv (v = I, . . .  , Re ) . Let the first derivative 

of a function with respect to 0 be denoted by means of a prime. All derivatives in the proof are 

with respect to 0 . 

Hemker, et al. (1996) showed that, assuming unidimensionality and local independence, 

MLR of X + holds if the first derivative of the likelihood ratio in Equation (MLR) is nonnegative 

for all 0 , that is 

LL L 
j
x

(u} - j.t(v) X Ilh . (0) X 'IT: .  (0)] >O 
R K  � 

{{ 
1 [n' (0 ) n '  (0)

]} 
1 

} u=I v=l }=I 'IT: Jx(u)  (0) 'IT: j.T(v) (0)  }=I Jx(u ) Jx(v) 

- • (Al) 

In E . (Al)  h 1 h I . . I . n ' Jr<u> (0) n' ix<v> (0) 
quatlon t e on y part t at may resu t m negative va ues 1s • --- . 

'IT: jx(u) (0) 'IT: jxM (8) 

Therefore, for the proof of this Theorem it is sufficient to show that for K = ml this difference 

is always nonnegative, irrespective of the v_alues of C. 

The maximum of X+ is ml, and is obtained for Xru! = (m, m, . . .  ,m) .  It may noted that in this 

. n ' jx(u) (0 ) n' 1,,, (0 ) 
case RK = 1 ,  meanmg that ----'--- = --- . Next, it is shown that for any x and any), 

'IT: j.t(11) (0 ) 'IT: Jm (0) 

n ' jm (0) 

'IT: }m (0 ) 

n'  r (0) 
J. is nonnegati ve. 

n J.t (0) 
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n' . (0) m Note that Jm 
= ln[n jm (0)]' , and in the CRM 7T: jm (0) = I1 M jy (0) (see Equation 2). 

n� �) � 

m m Thu:S, ln[n jm (0)]' = ln[Il M jy (0)]' = I, ln[M jy (0)]' , which means that for any j 
y=O y=O 

ln[n jm (0)] '= f, [M jy (8)] '  y=O M jy (0) (A2) 

7f:
1 (0) X Similarly, J.r . = ln[n jx (0)]' . Because in the CRM 7T: jx (0) = TT M jy (0)[1 - M j,x+i (0) ]  (see 7T: j.r (0 ) y=O 

Equation 2), this implies that for any x ( 0 s x s m )  and any j 

From Equations (A2) and (A3) it follows that for any x and any j, 
n '  /111 (0) n 'J,(v) (0) = f, [M jY (0)] '  - (! [M jY (0)]' - [� j,x+l (0)]' J 7T: jm (0) 7T: j,r(v) (0) y=O M jy (0) y=O M jy (0) 1 M j,x+l (0) 

= f_ [M jy (0)]' + [M j,X+l (0)]' . y=x+I M jy (0) 1 - M j,x+I (0) 

(A3) 

(A4) 

Note that for all x (0  s x s m )  the first derivative of M j.. (0) is  nonnegative in the 
nonparametric sequential model, because this model assumes thatM jx (0 ) is nondecreasing. 
Also, in this model O < M jx (0) < 1 ,  for all x. Thus, M jy (0) and [ 1 - M j,x+i (0) ]  are nonnegative. 
This implies that Equation (A4) is nonnegative for all x and j. This implies that Equation (Al) 
holds when K = mJ. A similar proof shows that l\1LR holds for C = 0 and K > 0 . 
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