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General Introduction 

The purpose of Project 'Optimal Item Selection' is to solve a 

number of issues in automated test design, making extensive use of 

optimization techniques. To this end, there has been close 

cooperation between the project and, among others, the department 

of Operations Research at Twente University. In each report, one 

or several theoretical issues are raised and an attempt is made to 

solve them. Furthermore, each report is accompanied by one or more 

computer programs, which are the implementations of the methods 

that have been investigated. In due time, requests for these 

programs can be sent to the project director. 

T.J.J.M. Theunissen 

project director. 





Abstract 

A new method for determining the minimum number of observations per 

subject needed to achieve a specific generalizability coefficient is 

presented. This method, which consists of a branch-and-bound algorithm, 

allows for the employment of constraints specified by the investigator. 
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Introduction 

In generalizability theory (Cronbach et al., 1972) a distinction 

is made between a generalizability (G) study and a decision (D) study. 

In a G-study, estimates of variance components are obtained which can 

be used by the investigator in a D-study. One of the major decisions an 

investigator has to make is how many observations per subject or 

another object of measurement are necessary in order to control the 

principal sources of random sampling error or to achieve a given 

generalizability coefficient (cf. Cardinet and Allal, 1983, p. 42). 

For one-facet designs the minimum number of observations per 

subject can be determined as follows. The coefficient of reliability 

for the one-facet random-model crossed design, p 2 , may be expressed as: 

2 
a 
E p 2 2 

a + a p res 
nl 

2 2 where a is the variance component for persons, a is the variance p res 

(1) 

component for the p x facet 1 interaction plus the error, and n1 is the 

number of observations, i.e., conditions of facet 1, in the D-study. 

Rewriting (1) and letting p 2 be a specific reliability coefficient, the 

minimum number of observations per subject is equal to: 

2 2 2 
a p u 

p p 

(2) 

Equations (1) and (2) both exemplify the Spearman-Brown Prophecy 
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Formula from classical test theory: increase/decrease of the number of 

observations, e.g., items, results in an increase/decrease of the 

reliability coefficient. This correspondence between number of 

observations and reliability, however, does not extend to designs with 

more than one facet. Increasing the number of conditions of a facet 

with a large error variance component, for example, will have a greater 

impact on the generalizability coefficient than increasing the number 

of conditions of a facet with a small error variance component. With 

multi-facet designs it is therefore possible to increase the 

generalizability coefficient while decreasing the number of 

observations. The multi-dimensional nature of error variance is the 

reason for this paradoxical result, which is inconsistent with 

asswnptions in classical test theory but not with assumptions in 

generalizability theory (cf. Brennan , 1983, p. 67). 

Because of the multi-dimensional nature of error variance in 

generalizability theory, the determination of the minimum number of 

observations is much more complex for multi-facet designs than for one

facet designs. Woodward and Joe (1973) presented a method for solving 

this problem, which they illustrated for the two-facet random-model 

crossed design . The generalizability coefficient for this design may be 

expressed as: 

2 

0 
2 

p 2 2 2 2 
0 + opl 

+ op2 + 0 p res 

Ill n2 nln2 

2 2 where op is the variance component for persons, opl is the variance 

(3) 

component for the person by facet 1 interaction, a;
2 

is the variance 

2 component for the person by facet 2 interaction , o is the variance res 



component for the p x facet 1 x facet 2 interaction plus error, n
1 and 

n2 are the number of conditions of facet 1 and facet 2 in the D-study. 

Denoting the total number of observations for this design by L - n1n2, 

the product of the number of conditions, (3) can be written as: 

(4) 

Woodward and Joe's method consists of taking the derivative of this 

function with respect to n2 and setting the result equal to zero, thus 

obtaining the following quadratic equation: 

1 -

2 

p 

2 

p 

- "2 o2 
res pl (5) 

The positive root of the equation is taken as the desired solution and 

Lis found by substituting the positive n2 into (4). 

The results of their method for a two-facet random-model crossed design 

with&;= 5. 435, a;
1 

presented in Table 1. 

3.421, a;
2 

= 1. 140 and &
2 = 11. 850 are res 

5 



6 

Table 1: Values of minimum L and optimal values of n
l 

and n
2 

for 

various values of 
2 

p 

2 
L p n

l 
n

2 

.97 685. 9 45. 4 15. 1 
.96 402.1 34. 7 11. 6 
.95 267.1 28.7 9. 4 
. 94 192.0 24.0 8. 0 
. 93 145. 4 20.9 6. 9 
.92 114.5 18. 5 6.2 
.91 92. 8 16.7 5. 6 
.90 77 .0 15. 2 5.1 
.89 65. 1 13. 9 4.6 
. 88 55.8 12. 9 4. 3 
. 87 48.4 12. 1 4.0 
. 86 42.5 11. 3 3.8 
.85 37. 6 10.6 3.5 
. 84 33. 5 10. 0 3.3 
.83 30. l 9.5 3.2 
. 82 27.0 9. 0 3.0 
. 81 24.7 8.6 2.8 
.80 22. 5 8.2 2.7 
.79 20.6 7.8 2.6 
.78 18.9 7. 5 2.5 
. 77 17.5 7. 2 2.4 
.76 16. 1 6. 9 2.3 
. 75 14.9 6.7 2. 2 
. 74 13. 9 6 . 4  2.2 
.73 13. 0 6.2 2.1 
. 72 12.1 6. 0 2.0 
. 71 11. 3 5.8 1. 9 
.70 10. 6 5.6 1. 8 

The method proposed by Woodward and Joe, however, has a number of 

shortcomings. Firstly, the method requires derivations and calculations 

which can become quite complex for designs with more than two facets, 

nested designs and designs based on other models. Secondly, the values 

obtained for the number of conditions of different facets and L are 

usually non-integer. Woodward and Joe' s solution for this problem 

consists of rounding off the values obtained for n
1 

and n
2 

to the 

nearest whole numbers. By rounding off, however, their conclusion that 

the positive root of the quadratic equation will always give the 



smallest L no longer applies. Consequently, the values for n1 and n2 

resulting from their method will not always be the optimal values. For 

instance, specifying a value of .79 for the generalizability 

coefficient and rounding off the values of n1 and n2 to 8 and 3 will 

result in L being equal to 24. The specified value of .79, however, 

could also have been obtained with 7 conditions for facet 1 and 3 

conditions for facet 2, resulting in L - 21 observations. (The 

generalizability coefficients for these and other values for the nwnber 

of conditions referred to in this article are presented in Table 2. ) 

Table 2: Various values of n1, n2, L with resulting variance components 

2 and p 

L 
,-2 ,-2 ,-2 ,-2 nl n2 a apl a

p2 
a p res --

nl n2 n
l

n2 

6 4 24 5. 4 . 57017 .285 . 49375 
6 6 36 5. 4 .57017 .190 . 32917 
7 3 21 5.4 . 48871 . 380 . 56429 
7 4 28 5. 4 .48871 . 285 .42321 
8 3 24 5 . 4  . 42763 . 380 . 49375 
9 3 27 5.4 . 38011 .380 . 43889 

10 3 30 5.4 . 34210 . 380 . 39500 
11 3 33 5.4 . 31100 . 380 .35909 
12 2 24 5.4 .28508 . 570 . 49375 
24 2 48 5. 4 . 14254 .570 . 24688 
36 2 72 5.4 . 09503 .570 . 16458 

A difference of one condition for one facet can make a substantial 

difference in resources. For instance, with a two-facet crossed 

design the difference of one condition could mean that one rater 

less is needed to correct the answers of a hundred students to ten 

questions. That the generalizability coefficients of the two 

designs hardly differ is due to the insensitivity of higher values 

of the coefficient to even major changes in the design. It is 

p 

. 80166 

. 83303 

. 79135 
.81952 
. 80681 
. 81926 
. 82951 
. 83808 
. 80117 
. 84996 
. 86757 

7 



8 

clear that for designs with more than two facets, the difference 

of one condition for one facet can make an even more dramatic 

difference in resources. A third and more serious shortcoming of 

the method, however, is that it implies a very restrictive 

constraint on the values for n1 and n2. Table 1 shows that the 

values for n
1 

and n
2 

are determined by the ratio of the variance 

components u;l and u;
2

, i.e. , the ratio u;
1
/u;

2
-3.421/l. 140. 

Therefore more than three times as many conditions are allocated 

to n
1 

than to n2. 

The method proposed here is different from Woodward and Joe's 

method in a practical as well as theoretical respect. The new 

method consists of an algorithm based on the concept of 

enumeration, using a branch-and-bound algorithm, the principles of 

which are well known in integer programming (e.g. , Salkin, 1975). 

The method is presented in three parts. First, the structure of a 

branch-and-bound algorithm is described. Next, an algorithm for a 

two-facet random-model crossed design is presented. Finally, the 

algorithm for the two-facet design is generalized for multi-facet 

designs. 



Branch-and-bound algorithm 

The term branch-and-bound algorithm does not refer to one 

specific algorithm but to a class of algorithms. Papadimitriou and 

Steiglitz (1985, p. 433) describe the branch-and-bound approach as 

the construction of a proof that a solution is optimal based on 

successive partitioning of the solution space. The parts branch 

and bound refer to rules which reduce the amount of search to be 

conducted for the optimal solution. A branch-and-bound algorithm 

is usually represented by a tree composed of branches and nodes, 

with the nodes organized in levels. In the tree as it is organized 

for the problem considered here, level i,i=l,2, .. . , t, corresponds 

with variable n
1

. Each node at level l represents a partial 

solution in which variables n1 , n
2
, . .. ,n

1 
have fixed values , say 

n.-n., i-1, 2, .. . ,l, whereas the remaining t-l variables are said to 
i i 

be free, to indicate that their values still need to be determined 

in the further course of the search-process. The root of the full 

search-tree consists of a single node at level O in which all 

variables are free. The nodes at the highest level (level t) 

correspond with complete solutions of the problem and may 

therefore all be regarded as candidates for the optimal solution. 

A node at level l � t-1, with partial solution n1 ,n
2
, . .. , n

1, is 

connected by branches with all nodes at level l+l in which the 

associated partial solution is different only in the fixed value 

of variable nl+l' which was free before. Starting from the root of 

the tree, a complete solution can gradually be developed by 

passing through individual nodes, one at each level, until level t 

is reached. In this way any specific node at level t is reachable 

9 
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along a unique path from the root. On the other hand, from any 

node at an intermediate level 1 < t several nodes at level t may 

be attained. In general the tree and thus the number of complete 

solutions will increase rapidly as the number of variables 

increases. What is needed therefore are additional rules that will 

allow a significant reduction of the full search-tree by cutting 

off those parts which are irrelevant regarding an optimal 

solution . 



Branch and bound for the two-facet design problem 

The problem for the two-facet design can be stated in terms 

of mathematical optimization as: 

minimize 

subject to 

n1 and n2 integer 

objective-function (6) 

threshold constraint (7) 

monotonicity constraints (8) 

integer constraint (9) 

In the minimization statement (6) of this optimization 

problem, L refers to the value of the objective-function which 

results when different numbers of conditions, n1 and n2, for facet 

1 and 2 are used. Note that L can also be interpreted as 

minimizing the cost of L observations. If c1 and c2 are the costs 

associated with n1 and n2 respectively, then L = c1c2n1n2 

corresponds with the total cost of L observations. However , since 

c1c2 is a constant, it will not influence the result of the 

minimization procedure and may therefore be omitted. 

In the threshold constraint (7), p 2 (n1, n2) stands for the 

generalizability coefficient of a two-facet random-model crossed 

design and g for the lowest acceptable value of a generalizability 

coefficient. The function p 2 (n1, n2) is strictly increasing with 

respect to both variables. 

11 
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The monotonicity constraint (8) n1 � n2 employed here is but 

one of many linear inequality constraints that could be employed. 

Note that an optimal solution for the two-facet design problem can 

also be obtained without this constraint. However, an algorithm 

employing this constraint will exclude an irrelevant part of the 

decision-space and consequently reduce the number of branchings in 

the branch-and-bound process described hereafter. 

The integer constraint (9) states that feasible values for n1 

and n2 have to be integer values. 

After the problem has been formulated as an optimization 

problem, bounding rules are constructed which effectively reduce 

the search-process. A distinction can be made between feasibility 

bounds, i. e., bounds on the values that n
1 

and n2 can assume 

without violating the constraints, and optimality bounds, bounds 

that use a comparison of objective-function values to ascertain 

whether a given partial solution can lead to an optimal solution. 

Both types of bounds will be derived in this paper. 

To fix the number of relevant branches emanating from the 

root of the search-tree, a lower bound ib1 and an upper bound ub1 

on the values that n1 can assume in an optimal solution can be 

derived as follows. Regarding the threshold constraint, it can 

2 easily be seen that p (n1, n2) is strictly increasing both in n1 
* * and n2 so that if n1 � n1 and n2 > n2, then 

2 2 * * p (n
1

, n2) � p (n
1

, n2) while strict inequality holds whenever 

n
1 

> nt or n2 > n;. Hence for a given value n
1 

of,n1, there either 

exists a least integer value n
2 

� n
1 

so that the threshold 

constraint is satisfied, or for all n2 � n
1 

this constraint is 

violated. This observation implies the existence of a value n 



such that p 2 (n1-n-, n2-n-) � g, whereas for all n
1 

< n no 

value n2 � n1 exists that satisfies the threshold constraint. This 

means that n- should be taken as the lower bound for facet 1. For 

instance, with (3) it can be calculated that for Woodward and 

Joe' s example n1-6 is the lowest integer value such that p 2 (6, 6) > 

. 80, while for n
1 

� 5 and for each value n2 � n1 one finds 

p 2 (n
1

, n2) < . 80. Consequently, in this case ib1=n-=6. Note that 

without the integer constraint n1=n2-n-=5. 08. 

Let L--nin2 be the value of the objective-function associated 

with the solution n
1

=n2=n-. Then ub
1
=L- is an obvious upper bound 

on the values of n
1
, because any value n1 > ub

1 
produces a 

solution that has a value n
1
n2 > ub

1
=L-and is therefore irrelevant 

for optimality. While initially ub
1 

may thus be intractably high, 

its value can be adapted throughout the search-process whenever a 

new and better solution is found. The current best solution is 

called the incumbent. So n1=n2=n- as defined above is the initial 

incumbent. As soon as a complete solution (nt, n;) with value 

L*=ntn; < L- is derived, this becomes the new incwnbent and ub1=L* 

replaces the initial upper bound. This process with repeated 

successive adaptations of both the incumbent and ub
1 

is continued 

until the whole search-tree has been explored. The then operative 

incumbent is designated as the optimal solution. 

In the example, ub
1
-n-n--36 becomes the first upper bound for 

n
1

. With ib1-6 and ub
1
=36 the total number of nodes at level 1 

becomes ub1-ib1
+1-31. Any such node represents a partial solution 

with a fixed value for n1 and n2 free (see Figure 1). Now, for any 

node at level 1 corresponding with a fixed value n
1 

for n
1 

there 

is a least integer value n2 for n2 such that p 2
(n1 ,n2) � g. Since 

13 
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this value minimizes L-n
1

n
2 

subject to the constraints 

2 (A 
) 

A 
p n

1
, n

2 
� g and n

1 
> n

2 
� 1, it suffices to consider a tree in 

which each node at level 1 corresponds with precisely one node at 

level 2. For instance, with (3) the unique feasible value for n
2 

that minimizes n
1
n

2 
given n

1
-a is found to be n

2
-3. 

By convention, the branch associated with the lower bound is 

further referred to as ' left-most' branch and the one associated 

with the upper bound as ' right-most' branch. All branches between 

level O (the root) and level 1 are further ordered according to 

increasing values of n
1
. The search-tree for the two-facet problem 

is now traversed as follows. Starting at the root of the tree, the 

left-most branch to level 1 is considered first, immediately 

followed by the unique branch that connects the node with partial 

solution n
1

=1b
1 

to the corresponding node at level 2 with complete 

solution n
1
=n

1
-1b

1
, n

2
-n

2
. Next the process returns to the root, 

which for the two-facet problem is the most recent node from which 

not all branches to the next level have been considered yet. This 

is represented by saying that the root is not fathomed. Note that 

each node at level 1 is fathomed as soon as the search-process has 

passed through it once, due to the fact that there is only one 

branch leading to level 2 . 

The two nodes regarded next are the one at level 1 with 

partial solution n
1
-1b1

+1, and its corresponding node at level 2. 

The full search-process as it is conducted for the example 

with g � . 80 is shown in Figure 1. In this figure the nodes are 

numbered in their order of appearance. 



level 0 

level l 

level 2 

L-27 L-30 L-24 

Figure 1: Search-tree for the two-facet example 

The initial incumbent, whose value is 36, is replaced in node 2 by 

(n1, n2)=(6, 4), giving the new incumbent the value 24. Further 

exploration of the search-tree renders two more solutions, 

producing the same value for the objective-function as node 2: 

(n1, n2)- (8,3) in node 6 and (n1, n2)- (12, 2) in node 14. The search

process ends in node 38 with solution (n1, n2)- (24, 2), yielding the 

objective-function value 48 which is higher than the incumbent. 

A closer inspection of the search-tree shown in Figure 1 

reveals that a considerable reduction can be obtained regarding 

the size of the tree by eliminating irrelevant nodes and branches. 

For example, all nodes from 15 up to and including 38 are 

superfluous, as are all corresponding branches between level 1 and 

2, since they give rise to solutions in which n2 remains constant 

at a value n
2

-2, implying objective-function values � 13 x 2-26 > 

15 
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24. This observation is clearly related to the fact that from each 

node at level 1 there is a unique branch passing to level 2. This 

allows for the formulation of the following optimality bound. Let 

the values of n
1 

at level 1, further referred to as 

nl, i'i=l, 2, . . .  ,s-ub
1

-1b
1
+1, be such that n

1, 1-1b
1

, 

n
1, 2

-1b1+1, .. . , n
1, i-1b1+i-l, .. .  , n

1, s-ub
1

. Accordingly, for 

i-1, 2, . . . , s, n
2 ,i is the value of n

2 
that is uniquely associated 

with the partial solution n
1 

., in a way described before. Then as 
' l. 

long as n
2 

. remains unaltered while n
1 

. steadily increases by , l. , l. 

values of i, there will certainly be no improvement in the value 

of the objective-function. The objective-function value can only 

be improved when n
2,i > n

2, i+l for some i. So let i0, i1, . .. , iq be 

h h • l d A 
A A sue t at 1.0= an n2 . =n
2 1-... =n

2 
. _1 > 

' 1.0 ' ' 1.l 
> n

2, i
2 

-. • -- n
2, iq-1 

our example it can be inferred that 

lowest index i for which n
2, i-3 is therefore equal to i1-3 and the 

lowest index for which n
2 

. =2=n is equal to i
2
=7, implying q=2. l. 2, s 

These results give rise to a search-tree in which only the nodes 

at level 1 corresponding with values n1 . , n1 . , . .. , n1 . and , 1.0 , 1.l , 1.q 
the associated nodes at level 2 are considered. The values of i0, 

i
1

, . . .  , iq can be derived as follows. After n
1, 1-1b1 has been 

established, the associated value of n
2 1 

as the least integer 
' 

2 A A ) b value such that p (n1 1 , n
2 1 � g can e calculated with (3). 

' 

Let ub
2
-n

2 1. Now regarding a value ub
2

-l for n
2

, i
1 

is chosen as 
' 

the lowest index such that n
1 ' l.1 

� g. By generalizing this rule, the value of ij becomes 

index such that n � ub
1 

and 1, i. 
J 

p
2 (nl,i. ' ub

2 ·j) � g, 
J 

the lowest 



j-0, 1, . . .  ,ub2-q(q�l). Using this optimalitity bound in our example 

results in a reduced search-tree which is presented in Figure 2, 

where the numbering of the nodes refers to the nodes in Figure 1 .  

level 0 

level 1 

level 2 

1.=24 

Figure 2: Reduced search-tree for the example (i0-l, i1-3, i2-7) 

At the end of the search-process there appear to be three 

candidates for an optimal solution: (n1, n2)- (6, 4), (n1,n2)- (8,3) 

and (n1, n2)= (12, 2). Solution (n1 , n2)-(8, 3) could be considered the 

'most optimal' solution because it results in a higher 

generalizability coefficient than the other two solutions. 

However, considerations other than obtaining a specific 

generalizability coefficient can and often will play a role when 

constructing a measurement instrument. If in this example facet 1 

had been items and facet 2 raters, there could have been 

considerable differences in the costs per condition of these two 

17 
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facets. Raters probably being more expensive than items, an 

investigator could for economic reasons prefer to increase the 

number of items rather than to increase the number of raters. This 

should be indicated by employing an economic constraint such as n1 

� Sn2 instead of constraint n1 � n2 which is a psychometric 

constraint. Using the above specification g � . 80 and employing 

the economic constraint mentioned, the optimal solution appears to 

be (n1, n2)-(12,2). 



Branch and bound for the multi-facet design problem 

The branch-and-bound method developed for the two-facet 

problem can be generalized for the multi-facet problem as follows: 

t 
minimize L(n1,n2•· •• ,nt)-iglni - nln2 . . • nt objective function 

subject to threshold constraint 

monotonicity constraints 

integer constraint 

The level-wise organization of a search-tree for a branch

and-bound algorithm to solve this multi-facet problem is analogous 

to the organization of the search-tree for the two-facet problem 

in the foregoing section. Let k be an arbitrary node at level i, 

with associated partial solution n1, n2, . . .  ,n
1
. The branches 

passing from this node to level i+l represent feasible values for 

ni+l' given the partial solution. The most important question to 

be answered next is how to obtain both a lower bound ib(i, k) and 

an upper bound ub(i, k) on relevant values for ni+l· Writing 

2 ) 2 (A A A ) 1 -p1(ni+l' ni+2, ... ,nt =p n1,n2, . .. ,n1,ni+l' ni+2, . . . ,nt et n be 

the least integer value such that p�(n-,n-, . . .  , n-) � g. Then, 

using the fact that p� is strictly increasing in all its 

arguments, it can be easily verified that for each ni+l < n- there 

exists no feasible completion of the partial solution 

A A A F "f h 1 i 
• 

d • h n1, n2, . .. , n1. or 1 sue a comp et on ex1ste , wit 

> nt � 1, then a 

'constant '  completion with ni-ni+l'i-i+l,i+2, . . .  ,t would also be 

19 
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2 A A A 
) feasible, especially since p

1(nl+l' nl+l' . . .  ,nl+l � 

2
(

A A A P
i 

n1+1,n1+2' . .. ,nt) > g. This obviously contradicts the choice of 

n- as a least constant integer value yielding a feasible 

completion. Consequently, lb (l,k)-n- can be regarded as a proper 

lower bound. In conformity with the two-facet design problem, an 

initial upper bound ub(l, k) is obtained by putting 

times n-). This upper bound is adapted each time a lower 

objective-function value is obtained. 

To realize a further reduction in the size of the tree 

consider a node k at level t-2. This node may be regarded as the 

root of a sub-tree in which the nodes at level t-1 correspond with 

values satisfying lb (t2,k) � nt � ub (t-2,k). In fact, a situation 

occurs that does not differ essentially from the two-facet case in 

the previous section. Using arguments similar to those used in 

that case, it is possible to determine for each node at level t-1 

belonging to the sub-tree, a unique node at level t that 

represents an optimal completion of the associated partial 

solution. Moreover, the number of relevant nodes in the sub-tree 

at level t-1 and thus the number of branches between level t-2 and 

level t-1 may again be considerably reduced using a type of 

optimality bound similar to that used for the two-facet case. 

The foregoing considerations give rise to straightforward 

generalizations of the principles underlying the branch-and-bound 

algorithm for the two-facet problem. They actually fix the 

structure of the search-tree for the multi-facet problem. What 

remains to be elucidated is how to perform subsequent steps such 

that in the end the full tree is most efficiently traversed. For 



that purpose a so-called depth-first strategy appears most 

plausible. This principle can be simply interpreted as follows. 

Let node k at level 1 < t be the node that the branching process 

has just reached. Then, before the process returns to the node at 

level 1-1 immediately preceding k, the full sub-tree rooted in k 

is explored. If, in addition, the order in which the branches are 

covered is agreed upon, for example from ' left' (the branch 

associated with 1b (1, k)) to ' right' (ub (1, k)), the course of the 

search-process is completely fixed. As in the two-facet case an 

incumbent, or current best solution, is retained and adapted 

whenever relevant. To initialize a constant solution ni-n-, 

i-1, 2, . .. , t, with n- the least integer value such that p 2 (n-, n-

, . . .  , n-) � g, suggests itself , in which n- corresponds with the 

lower bound on values of n1. 

The branch-and-bound method for the multi-facet problem is 

illustrated by the three-facet example described in Cronbach 

(1972, p .  171 ff. ), where the aphasic symptoms of 30 patients are 

rated by 4 raters (facet 2) on 6 graphic subtests (facet 3) using 

the same 10 objects (facet 1). 

The generalizability coefficient for the three-facet random

model crossed design may be expressed as: 

a 

2 2 2 2 2 2 2 2 
a + apl 

+ ap2 
+ a

p3 + �+ �+ �+ 
p res 

nl n2 n3 nln2 nln3 n2n3 nln2n3 

where a
2 is the variance component for patients and the other p 

components are the interaction components divided by the number 

of conditions being used in the D-study. 

The problem for the three-facet design is stated as: 

(10) 
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I nl n2 

minimize objective-function (11) 

subject to threshold constraint (12) 

monotonicity constraints (13) 

integer constraint 

Note that the remarks made on the monotonicity contraints 

employed in the two-facet example (p. 8) also apply for the 

monotonicity constraints employed in the three-facet example. 

The results for this example with 
,..2 

5 a - .3, 
p 

(14) 

&;2 . 15, &;3 - 1 .71, &;12 - . 15, &;13 - 2. 01 &;23 - . 07 and 

2 
a - .99 and g > .90 are presented in Table 3. 

res 

Table 3: Three different constraints with resulting values for 

n
1

, n
2

, n
3
, L, variance components and p2 

n3 L a• .. .. .. .. .. •2 •2 

p '.'..tl E � "pl2 "pl3 "p23 "pl23 
nl n2 n3 nln2 nln3 n2n3 nln2n3 

p2 

n3? n1? n2? l 

5 3 5 75 5.3 ,08200 .05000 .34200 .01000 .08040 .00467 .01320 .90101 
4 3 6 72 5.3 .10250 .05000 .28500 .01250 .08375 .00389 .01375 .90577 
5 2 6 60 5,3 .08200 .07500 .28500 .01500 .06700 ,00583 .01650 .90655 
4 2 7 56 5.3 .10250 .07500 .24429 .01875 .07179 .00500 .01768 .90831 

l 7 42 5,3 .06800 .15000 .24429 .02500 .04786 .01000 .02357 .90301 
5 1 8 40 5.3 ,08200 .15000 .21375 ,03000 .05025 .00875 .02475 .90451 

l 9 36 5.3 .10250 .15000 .19000 .03750 .05583 .00778 .02750 ,90273 
3 l 12 36 5.3 .13666 .15000 .14250 .05000 .05583 .00583 .02750 .90315 

n1 :2; n3 :2; n2 :2; l 

5 3 5 75 5.3 .08200 ,05000 .34200 .01000 ,08040 .00467 . 01320 .90101 
2 5 60 5.3 ,06800 .07500 .34200 .01250 ,06700 .00700 .01650 . 90014 
l 7 49 5.3 ,05857 .15000 .24429 .02143 ,04102 .01000 .02020 .90668 

8 l 6 48 5.3 .05125 .15000 .28500 .01875 .04187 . 0116 7 .02062 .90149 

n1 ? n2 :2; n3 :2: 1 

5 5 5 125 5,3 .08200 .03000 .34200 ,00600 .08040 .00280 .00792 .90581 



To illustrate our method, three different constraints were 

employed . The solutions in Table 3 show that the psychometric 

constraint n3 � n1 � n2 > 1 results in L - 36 observations. This 

number of observations corresponds with solutions 

(n1, n2, n3)-(4, l, 9) and (n1, n2, n3)- (3, l, 12). However, these 

solutions are also the most expensive solutions since they involve 

the construction of new tests. An investigator who will therefore 

probably want to use the six tests that are already available 

should add constraint n3 < 6 to this constraint, obtaining as an 

optimal solution (n1 ,n2 ,n3)- (5, 2,6) with L - 60. A more economical 

instrument would be one composed of as many objects and as few 

raters as possible and using no more tests than are available. 

Employing the corresponding economic constraints n1 � n3 � n2 � 1 

and n3 < 6 would result in the optimal solution (n1 ,n2 ,n3)= (8,l, 6) 

with L 48. Employing another economic constraint n1 � n2 � n3 � 

1 would result in the optimal solution (n1 ,n2 ,n3)= (5, 5,5) with L = 

125 observations. 
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Conclusions and discussion 

The method proposed in this article enables an investigator 

to specify an acceptable threshold for generalizability 

coefficients. The employment of the threshold constraint together 

with the integer constraint necessarily results in values for the 

objective-function and values for the number of conditions of 

facets that are integer. Woodward and Joe' s method requires the 

investigator to specify an exact value for the generalizability 

coefficient which will almost always lead to non-integer solutions 

for the number of conditions of the facets. However, having an 

investigator specify a threshold for the generalizability 

coefficient, which is done in our method, is much more realistic. 

It is more likely that an investigator can specify a minimum value 

for a generalizability coefficient than a specific value for a 

generalizability coefficient. 

The method proposed here employs ordinal, threshold and 

monotonicity constraints. Employing these constraints results in 

obtaining all the integer solutions which are in accord with the 

specified objective-function value and can be considered optimal 

solutions. On the other hand, Woodward and Joe's method implies a 

restrictive ratio constraint, a ratio of variance components, 

which results in precisely one optimal non-integer solution. For 

the two-facet example, rounding-off the optimal non-integer 

solution yields a solution equal to one of the optimal solutions, 

solution (n1, n2)�(8, 3), obtained by our method. Depending on the 

rounding-off, however, the optimal solutions of the two methods 

can differ as was demonstrated for the two-facet example in the 
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introduction with p 2 . 79 .  

It has been shown that various constraints can be employed 

with the method proposed here. In general, the employment of 

equality constraints is discouraged because they will often lead 

to non-integer and/or non-optimal solutions. Woodward and Joe 's 

method is an example where an equality constraint is used to 

specify an acceptable generalizability coefficient. With our 

method, employing in the two-facet example equality constraint 

n1-n2 as an economic constraint and specifying g � . 80 will result 

in solution (n1, n2)= (12, 3) with L 36 observations. However, g > 

. 80 is also satisfied by solution (n1, n2) - (8, 3) with L - 24 

observations. The latter solution is of course to be preferred 

because it needs four fewer conditons for facet 1. Employing more 

than one equality constraint will often even result in no integer 

solution at all, like when employing the two equality constraints 

n1=4n2 and g - . 80 in the two-facet example . With respect to the 

number of constraints employed, it should be clear that adding 

constraints will reduce the set of feasible solutions. 

The versatility of our method makes it extremely useful for 

investigators planning generalizability studies and practitioners 

involved with making decisions about the composition of 

measurement instruments. A computer program for the designs 

discussed here as well as other designs has been developed. Using 

as input G-study estimates of variance components obtainable from 

existing computer programs for generalizability studies, e. g., 

GENOVA (Crick and Brennan, 1982) , computation time is no more than 

a few seconds. 

The foregoing presentation has emphasized the practical 



aspects of the method proposed here. The method does however have 

important theoretical aspects as well. It can easily be seen that 

(2), the Spearman-Brown Prophecy formula from classical test 

theory, can be stated as a non-integer optimization problem with L 

= n1 and p 2 (fi1)=g. By employing a threshold constraint and an 

integer constraint, this formula can be stated as an integer 

optimization problem. The search-tree of this problem consists of 

a root-node with one branch going down to one node at level 1, 

which is associated with the only feasible value that minimizes L. 

The method proposed in this article generalizes the Spearman-Brown 

formula for measurement instruments with one facet to measurement 

instrwnents with more than one facet. As generalizability theory 

is the theoretical framework for these instruments, this method is 

a theoretical contribution to this framework. 

Thus far the number of applications of integer optimization 

techniques to solve problems in psychometrics has been limited. 

Theunissen (1985) was the first to show how integer optimization 

techniques could be used to solve problems in latent trait theory. 

For generalizability theory these techniques also appear 

ultimately suited to handle a broad range of practical problems. 

Decision studies no longer have to be conducted through successive 

approximations (Cardinet and Tourneur, 1985). As a result of 

optimization techniques the decision-study phase of 

generalizability theory will no longer be characterized by trial 

and error but will be a phase characterized by rational decision 

making . More fruitful applications of these techniques are to be 

expected in the near future (e.g., van der Linden and Boekkooi

Timminga, 1988) . 
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