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Abstract 

The Partial Credit Model (PCM) is sometimes interpreted as a model for stepwise 
solution of polytomously scored items, where the item parameters are interpreted as 
difficulties of the steps. It is argued that this interpretation is not justified. A model for 
stepwise solution is discussed. It is shown that the PCM is suited to model sums of 
binary responses which are not supposed to be stochastically independent. As a practical 
result, a statistical test of stochastic independence in the Rasch model is derived. 

Key words: Partial Credit Model, local stochastic independence, distribution of sums. 
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Introduction 

Masters (1982) introduced the partial credit model (PCM), an IRT model for 

polytomous items with ordered categories. The rationale he used to introduce the model 

was based on a response process where the subject responds sequentially to a number 

of subproblems in the item. The partial credit given equals the number of steps 

completed successfully, which of course in this rationale should be the first steps. This 

rationale, together with the tempting conclusion that the location parameters in the PCM 

could be interpreted as difficulty parameters of the respective steps, was criticized by 

Molenaar (1983). The main point of this criticism can easily be illustrated from the 

definition of the PCM which states that for an item with maximum score m, 

P(X=j I 0,X=jorX=j-l) ex exp(8+{3), (j=l, ... ,m), (1) 

where 8 is the latent variable and X is the item score. Suppose now that j < m, and 

consider the population of all persons with 8 = 0
0

. Suppose that step j + l is infinitely 

difficult, and that the probability given by the left-hand side of (1) equals 0.5. Then half 

of the population with 8 = 80 which has score at least j - l will have score j, whence 

it follows that {3
1 

= -8
0

. But if step j + l is very easy, then from the latter half a 

substantial proportion will have a score larger than j, while the proportion ending up 

with score j - l will not change, since they do not try step j - l . It follows that the 

conditional probability expressed by the left-hand side of (1) will be smaller than .5, 

whence {3
1 

< 80. The conclusion should be that the parameter {3
1 

does not depend on 

the difficulty of the j-th step alone but of the subsequent steps as well. Notice however 

that this criticism, and the conclusion is only valid if the sequential processing of the 

steps is accepted. But there is nothing in the formal derivation of the PCM which 

implies this sequential response process; only some introductory examples given by 

Masters suggested it, and the most one can say is that the PCM is not an adequate 

model for some of these example items. 

Thus we are left with two problems. Since the sequential processing is very 

attractive, can we develop an IRT model which does model this process in an adequate 

way. The second problem concerns the PCM itself: if it is not suited for modeling 

sequential processes, then what is it good for: can it be put to use in a convincing way 

or should it be discarded despite its nice mathematical and statistical properties? 

An answer to the first problem was found independently at two different places at 

about the same time. De Vries (1988) and Verhelst, Glas and De Vries (1997) 
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developed a model by combining the simple Rasch model with a subject controlled 
incomplete design: the steps or subitems of a polytomously scored item are administered 
in a fixed sequence and the next subitem is presented if and only if the previous one 
was correctly responded to. The answer to each subitem is modeled by the simple 
Rasch model. The presentation of a subitem thus depends on the behavior of the 
responding subject, hence the qualification subject controlled. Tutz (1990, 1997) 
followed the same rationale, but introduced the model formally and more generally as 

(2) 

where F(. ) is an arbitrary distribution function. It can readily be seen that in both 
models, the category response functions are given by 

P(X = j I 0) = 

j-1 

(1 -p1
) II pc 

if j < m, 
g=O 

m-1 

IlPc 
if j =m. 

g=O 

(3) 

whence it follows that both models are identical if F is the logistic distribution function 
with argument 0 + {3

1 
. 

The remaining part of the paper concerns the demonstration that a generalized form 
of the PCM can always be interpreted as a unidimensional model of a sum of binary 
random variables, whose distributions follow a unidimensional IRT model. 

The distribution of sums of Rasch item scores 

Suppose m ( > 1) items can be described by the Rasch model, i.e. , for any value of the 
latent variable 0, 

(4) 

Defining the variable S as S + I r; , and assuming conditional independence as usual, 
it is readily seen that 
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P (S = s I 0) oc: exp (s0) L IT et, 
LY; = s i 

(5) 
where B; = exp (/3;) . The combinatorial function represented by the sum in the right­
hand side of (5) is known as the basic symmetric function (of order s) of the 
multivariate argument e = (e

l
' ... , e

m
) ,  and will be denoted by 'Ys (e) . It is defined 

formally as 

'Ys
(e) = L IT B�; for O :5 s =5 m. 

LY; = s i 

Note that 'Yo ( e) = 1 . Defining 
'Yl

s 
= -ln'Y/e) , (s = O, ... ,m), 

equation (5) can be rewritten as 
P (S = s I 0) oc: exp(s0 - 'Yl

s), 

(6) 

(7) 

(8) 
which is nothing else than the category response function of the PCM m a 
parametrization first used by Andersen (1977). Notice that r,

0 
is zero. 

If a test of k items follows the Rasch model, and this test is partitioned into T classes, 
consisting of m1 , . . .  , mr 

items, then the sums of the item scores in the classes can be 
described by the PCM because the original item responses are independent and the 
classes are disjoint. It will also be clear that, if the original items can be described by 
the two- parameter logistic model (2PLM), and if the discrimination parameters within 
the classes of the partition are constant, then the generalized PCM (Muraki, 1992, 
Verhelst & Glas, 1995) applies. 

There are two important observations to be made in connection with this result. First, 
if only partial sums are observed instead of the original item scores , then it is possible 
to estimate the original Rasch parameters from the sum scores, but it is not possible to 
associate them with the original items. If all m (3-parameters are distinct, then there are 
ml different associations possible, and there is no way of distinguishing between them 
on the basis of the sum scores alone. The second observation is more important. 
Although it is true that sums of Rasch item scores are distributed following the PCM, 
the converse is not true: polytomous item scores whose distribution is given by the 
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PCM cannot always be interpreted as sums of Rasch item scores. In the PCM the 
parameter space (for one item) is m_m , i.e. , there are no restrictions on the parameters. 
To be interpretable as sums of Rasch item scores, however, a set of nonlinear 
restrictions must be fulfilled: there must exist positives-values such that (7) is fulfilled 
for the PCM parameters 'r/ . This means that it is not always possible to conceive of the 
PCM as a model of a sum of Rasch item scores. Van Engelenburg ( 1997) showed that 
for the case m = 3 ,  certain inequalities must hold between the parameters of the PCM. 
His result can be generalized to arbitrary m, using the following theorem and corollary. 

Theorem 
The logarithm of the basic symmetric functions of k positive arguments e

1
, . . .  , e

k
, 

considered as a function of their order is strictly concave, i.e., 
ln'Y (e) + ln'Y (e) 1 ( ) > s-1 s+l 

( = 1 k _ 1) n'Ys e 2 , S , . . .  , . 

The proof is given in appendix. Since the logarithm is a strictly increasing function the 
corollary follows immediately. 

Corollary 1 
The basic symmetric functions of k positive arguments e

1
, ... , ek, considered as a 

function of their order, are single peaked in the following sense: 
a) 'Ys < 'Ys+I ==> 'Ys-1 < 'Ys ' (s -1, s' s + 1 ED), 
b) 'Ys < 'Ys-l ==> 'Ys+l < 'Ys , (s - 1, S, S + 1 ED), 

where D = {O, 1, . .. ,k}. 
Corollary 1 shows that the restrictions (7) imply a number of inequality restrictions 
between the PCM parameters. These restrictions led Van Engelenburg to the conclusion 
that the PCM is not an adequate model to describe the distribution of sums of binary 
item scores. It will be shown in the next section that these restrictions are a direct 
consequence of assuming local independence between the binary item responses. 
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Models with dependent responses 

To model dependencies between item responses, it is easier to model whole response patterns than merely item responses, because dependence means lack of local independence, and thus impossibility of multiplying item response functions. As before we assume that the test consists of k binary items, and is partitioned into T groups, containing m1 , ... , mr , ... , mr items respectively. These groups will be called testlets. As most of the discussion to come will focus on a single testlet, explicit reference to the testlet number will be dropped. Consider a testlet consisting of m ( > 1) items. The vector Y = ( Y1 , . . .  , Ym ) with realization y = (yl ' . .. ,Ym ) will be called the response pattern. The random variable S, with realizations s, defined by 
s = s (Y) = L r;' (9) 

is called the testlet score. Define them sets lg , g = 1, .. . , m, as the sets containing all g-tuples of item numbers. This means /1 = {1,2, .. . ,m}, 12 = {(1,2), . .. ,(1,m), ( 2, 3), ... , (m -1, m)}, etc. The cardinality of lg is (;). The general model that will be studied is given by 
P(Y = y I e) ex 

and by the assumption of independence between testlet response patterns. If all (3 parameters are free, the model is saturated. It is important to understand the kind of technical restrictions that must be imposed to make the model identifiable. Suppose the number of testlets in the test is 1. The number of (]-parameters in the testlet is E lg = 2m - I and the number of different response patterns is 2111 
, leaving 2m - 1 degrees of freedom. However, one degree of freedom must be used for fixing the origin of the scale, for example by choosing � 

1 
= 0. If there is more than one testlet, however, the origin of the scale can not be fixed more than once. So in the saturated model for all testlets taken jointly, the parameter space is JRM, with 
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T T M = L (2m, - 1) - 1 = L 2m, - ( T + 1) . (11) 
t=l t=l 

Model ( 10) and several submodels resulting by setting interaction parameters to zero 
have been studied by Kelderman (1984); see also Verhelst and Glas, 1995. It should be 
stressed that model (10) and various submodels are estimable if the item responses are 
observed. What matters here, however, is to see what happens if only the testlet scores 
S

1 are observed. 
Taking sums of (1 0) for all response patterns with score s gives 

P(S(Y) = s I 0) ex exp (s0) x 

The second factor in the right-hand side of (12) is positive, and for given {3-parameters 
its value only depends on s. Therefore this factor can be written as exp ( -r, s) . 
Moreover, it is clear from (12) that r,0 = 0. With this notation, (12) can be written as 

(13) 
which is formally equivalent to the PCM. But the main question is whether for each 
PCM, i.e. , every given vector of m r,-parameters, a set of 2m -1 {3-parameters can be 
found, when inserted in (10) give (13) as a result with the fixed r,-parameters. This 
question may seem trivial, because for m > 1 , the number of {3-parameters is larger 
than m, but we know from the preceding section that the parameter space of the PCM 
is not covered if in (10) all interaction parameters, i.e. , all {3-parameters with more 
than one subscript, are set to zero. 

Since the second factor in the right-hand side of (12) defies simplification, a number 
of restrictions on the (3 -parameters will be introduced which yield a more tractable 
expression, and yet result in a model which covers the parameter space of the PCM. 
For instance, assume all interaction parameters of the same order to be equal: 
f31z = Ag for all h E l

g
, (g = 2, ... , m). 
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Using the restrictions (14) and the fact that all g-fold products y. y .... y. equal zero if 
l l f2 lK g > s ( y ) , and equal one in (;) cases is g � s ( y ) , ( 10) can be rewritten as 

P(Y = y I 0) "' exp [,0 +�YA+ t,(;)>-,], (15) 

whence it follows that 
P( S(Y) = s I 0) oc exp( s0) exp [t, (;)A,] ,E I,I ,;• 

= exp (s0) exp [t, (;)A,] -y.(a) . 
(16)  

Define 
Y/8 = -ln-y/e) - L (8)Ac, U=l, ... ,m), 

g=2 g 
(17) 

where the sum in the right-hand side of (17) is defined to be zero if s < 2. Now it is easy to show that for any ordered set of m 17-values it is always possible to find e- and )..- values such that (17) is fulfilled. The values for the e-parameters can be taken arbitrarily from the positive reals, with the only restriction that minus the logarithm of their sum equals r, 1. In this way (17) is fulfilled for s = 0 and s = 1. The A-values are given by sequentially applying (from (17)): 
s-1 )\ = - ln-y - r, - � (s))\, ( s  = 2, ... ,m). s s s � g g 
g=2 

(18) 
In summary, it has been shown that every model in the family defined by (10) is formally equivalent to the PCM when the distribution of the testlet score is modeled, and conversely, every PCM can be understood as a model for the testlet score, where the joint distribution of the item responses within the testlet is given by (10). If the item responses are observed, then (15) is identified and the parameters may be estimated; if only sums of item scores are observed, however, model (16) results, and the model is no longer identifiable, because there are more parameters than different values of the score. Only functions of these parameters are estimable, viz. the functions given by (17) and one-one transformations of these functions. This may sound a bit 
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disappointing, but it should be understood that the restrictions (14) were introduced only 
to be able to prove that the parameter space of the PCM is covered by the parameter 
space of model (10). 

An interesting, but different question is whether it is possible to find a submodel of 
(12) which covers the parameter space of the PCM and has exactly m free parameters. 
It might be possible, for example, to create such a model by fixing all (3 -parameters 
except for m well chosen main effect or interaction parameters. The answer to this 
question is positive and the proof trivially follows from the preceding result. Any set 
of m - 1 linearly independent linear restrictions on the main effect parameters ((3 ;) 
which are also independent from the restriction E (3; = exp ( -'Y'/ 1 ) , corresponds to a 
particular choice of the e -parameters such that (17) can be solved for any value of 'Y'/ 1 , and the values of all A-parameters can be solved from (18) for any value of the 
remaining 'Y'J-parameters. As an example, the submodel of (10) which results from 
applying (14) and the m -1 additional restrictions f3; = (31 , i = 2,  . . .  , m, is identified, 
and every PCM can be interpreted as being a member of this restricted family. 

Interestingly, if additionally to the restrictions (14), the restriction 'A.11 = c, for some 
h in {2, . .. , m} is added, the resulting model does not any longer cover the parameter 
space of the PCM. The proof is very simple. 

Assume 'A.11 = c for some h in {2, ... , m} and choose 'Y'/ 1 � 0. Then it follows from 
(17) that -y1 ==,;; 1 = -y0 , whence, from the corollary, 'Y1i < -y,, _

1
. Applying (17) and 

Corollary 1 gives 

h-1 > -ln,111 _1 -L(;)"'-g -'A.h 
g=2 

h-1 

_ �(h-l)A _ C, L.,; g-1 g 
g=2 

meaning that the difference 'Y'/ h - 'Y'/ h _ 1 is bounded. 
This result implies an interesting relationship between the PCM and the Rasch model. 

Setting all A-parameters to zero, together with restriction (14) implies stochastic 
independence between the m item responses in the testlet. To get rid of the condition 

9 



that ri 1 2 0 in the preceding result, one can apply the Theorem and (17) directly to 
obtain 
Corollary 2 

A necessary condition for the PCM to be interpretable as the distribution of the sum 
of m Rasch item scores is that the m + 1 parameters ri 0 , ... , r, 111 are a strict convex 
function of their index. 

In applications of the Rasch model, Corollary 2 offers a nice opportunity to test the 
assumption of local independence. For an arbitrary (proper) subset of the binary items, 
the sum score can be substituted for the original binary responses. Suppose there is a 
subset containing m items. With suitable estimators of the parameters (e.g. , CML 
estimators of the PCM) the m - 1 null hypotheses 

< 'Yls-1 + 'Yls+I ( 1 1 ) 'Yls 2 , s = , . . .  ,m- (19) 
can be tested by a series of one degree of freedom Wald tests. The power of this test 
will probably not be very high. Inequality (19) immediately derives from the Theorem, 
but sharper inequalities are possible. For example, if m = 2, it is easy to verify that 

which corresponds, using (7), to the null hypothesis 
1/

2 
- ln4 

111 � 2 

Discussion 

The PCM with testlet scores ranging from O to m1 , can always be written as a sum of 
m binary item scores, where the item response distribution is given by (15). It is shown 
that if only such sums are observed, the original model is not identified. For every 
possible • value in the parameter space of the PCM arbitrary (3 -parameters can be 
chosen, as long as restriction (17) for s = 1 is fulfilled. An example is given of a class 
of identified models which covers the whole parameter space of the PCM. But notice 
that there might be other models with the same characteristics and with a different 
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interpretation. Even more dramatically, the PCM can offer an accurate description of 
the weighted sum of p item scores where p < m . Suppose that for p = 3 items the 
two parameter logistic model is valid, i.e. , 

and that the weights (the discrimination parameters) a i  for the items are 1, 1 and 2 
respectively. Moreover local independence is assumed. The distribution of the weighted 
sum score, W, is given by 
P( W = w  I 0 )  oc exp [wO + lnfw

(e ) ] , (w = l ,  . . .  , 4 ) ,  

'Yo = 1 

'Y 1 
= 8

1 + 82 , 

'Y2 = 8
1

82 
+ 8

3
, 

)'3 
= 83 ( 8 1 + 82 ) '  

)'4 = 8 1 
82 83 . 

This means that a well fitting PCM can have many interpretations, and none of them 
can be preferred on the basis of the observed polytomous scores. But the practical 
importance of the results presented here stems from the converse situation : if there is 
evidence ( or mere suspicion) that for a subset of binary items the assumption of local 
independence is violated, taking sums of item scores over this subset neutralizes the 
effect of any interaction parameters in a class of models as broad as the one given by 
(12). If the main purpose of the model construction is to determine 0 as accurate as 
possible, no information with respect to 0 is lost if local independence is not violated; 
if it is violated, the embarrassing implications are avoided by considering sums of item 
scores. 
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Theorem 

Appendix 

Proof of the Theorem 

The logarithm of the basic symmetric functions of k positive arguments e
1 
, ... , ek, 

considered as a function of their order is strictly concave, i.e. , 

Proof 

In the proof, the argument e will be dropped. The inequality stated in the Theorem is 
equivalent to 

-y; > 'Ys - 1  'Ys + l ' ( s  = 1 ,  . . .  , k - 1 ) . (Al) 

Both sides of the inequality (Al) consist of a sum of products, each term having 2s 
factors. Each term can be written generically as 

(A2) 
where all indices ic, ( g  = 1, . .. , 2s -j )  are different from each other . So each term 
t can be characterized by two sets of indices, Jt and It , the set 11 containing the indices 
in (A2) which appear in factors which are squared and It containing the remaining 
indices. The ordered pair (It, I

t ) will be called the signature of term t. Obviously, 
terms with the same signature are identical. Each pair (I, J) of sets such that 

I, J £; {1, . . . , k } , 
I n 1  = 0 ,  
#I + 2 (#1) = 2s 

(A3) 

is the signature of a number of terms in the expansion of both sides of (Al) . Let 
R(l,  J) denote the multiplicity of the term with signature (I, J) in the right-hand side 
of inequality (Al), and L (l ,  J) the multiplicity in the left-hand side, and let } = # J .L(l,  J) 

is given by the number of ways the 2 (s -j )  indices in I can be partitioned into to 
subsets of s -j elements, if j < s .  If j = s ,  the set I is empty. Clearly 
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L(I, J) = 

[ 2 (s -! ) l if j < s .  s -1 
1 if j = s .  

For the right-hand side, the 2 (s -J) elements of I have to be partitioned into two 
subsets containing s -j - 1 and s -j + 1 elements if j < s . If j = s , R (I , J) equals 
zero because in the expansion of 'Ys - i  and 'Ys + l , the terms have s - 1  and s + 1 factors 
respectively. Therefore 

R(I, J) = 

[ 2 (s _-j) l if j < s ,  
s -J - 1 

0 if j = s .  
and i t  follows that for all pairs (/ , J) , (L ( I, J) > R (I, J) , and since all terms are 
positive, (Al)  is true. □ 
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