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Abstract 
In this article, the results of a simulation study comparing the performance of 

separate and concurrent estimation of a unidimensional item response theory (IRT) 
model applied to multidimensional noncompensatory data are reported. Data were 
simulated according to a two-dimensional noncompensatory IRT ·model for both 
equivalent and nonequivalent groups designs. The criteria used were the accuracy 
of estimating a distribution of observed scores, and the accuracy of IRT observed 
score equating. In general, unidimensional concurrent estimation resulted in lower 
or equivalent total error than separate estimation, although there were a few cases 
where separate estimation resulted in slightly less error than concurrent estimation. 
Estimates from the correctly specified multidimensional model generally resulted in 
less error than estimates from the unidimensional modei. The results of this study, 
along with results from a previous study where data were simulated using a com
pensatory multidimensional model, make clear that multidimensionality of the data 
affects the relative performance of separate and concurrent estimation, although the 
degree to which the unidimensional model produces biased results with multidimen
sional data depends on the type of multidimensionality present. 

Index terms: item response theory, nonrompensatory multidimensional IRT, multi

dimenswnal equating, nonequivalent groups design, EPDIRM, BILOG-MG 





Introduction 

The latent variable in unidimensional IRT (item response theory) models is 
unidentified up to a linear transformation. In each calibration, restrictions on the 
parameters are imposed to define the scale on which the parameters are measured. 
In a common item nonequivalent group design two forms of a test with some items in 
common are administered to samples from two populations. If  item parameters for 
the two forms are estimated independently, the parameter estimates for the differ
ent forms will not be on the same scale. These estimates are brought on a common 
scale via minimization of some loss function. Techniques for this purpose have been 
developed by Haebara (1980), Marco (1977), Loyd and Hoover (1980) and Stocking 
and Lord (1983). An alternative procedure to obtain estimates on a common scale 
is concurrent estimation of multiple forms. Using a so-called marginal maximum 
likelihood (MML) procedure, the parameters of the IRT model are directly esti
mated on a common scale (Bock & Zimowski, 1996; Glas & Verhelst, 1989). Kiefer 
and Wolfowitz (1956) have shown that the MML estimator is strongly consistent 
under fairly reasonable regularity conditions. Therefore, in concurrent estimation 
standard asymptotic theory for confidence intervals and the distribution of statistics 
computed using MML estimates directly applies . 

A number of studies have been carried out to compare the performance of con
current and separate estimation (Hanson & Beguin, 1999; Kim & Cohen, 1998; 
Petersen, Cook & Stocking, 1983; Wingersky, Cook & Eignor, 1987). These studies 
used data that were simulated from the same unidimensional model also used for 
parameter estimation. With real data, the simple unidimensional model may not 
be appropriate and this could affect the performance of unidimensional separate 
and concurrent estimation. One source of misspecification is multidimensionality of 
the data. In this paper, the effect on performance of unidimensional separate and 
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concurrent estimation will be studied for data that in fact follow a multidimensional 
noncompensatory IRT model (Ackerman, 1987; Embretson, 1980, 1984; Maris, 1993, 
1995; Sympson, 1978; Spray, Davey, Reckase, Ackerman & Carlson, 1990) .  

Two classes of multidimensional IRT models for dichotomously scored items can 
be distinguished, compensatory and noncompensatory models. In compensatory 
multidimensional models (Lord & Novick, 1968; McDonald, 1967; Reckase, 1985 
and Ackerman, 1996a and 1996b) the probability of a correct response is based on 
the sum of the proficiencies on the different dimensions. Consequently, a higher 
proficiency on one of the dimensions compensates for a lower proficiency on one of 
the other dimensions. In noncompensatory models (Ackerman, 1987; Embretson, 
1980, 1984; Maris, 1993, 1995; Sympson, 1978; Spray, Davey, Reckase, Ackerman 
& Carlson, 1990) the probability of a correct response is based on a product of the 
proficiencies on the different dimensions. Consequently, a low proficiency on one of 
the dimensions can not be compensated with a high proficiency on one of the other 
dimensions. 

Most of the research in multidimensional IRT has focused on the compensatory 
models. These models were first presented by Lord and Novick (1968) and Mc
Donald (1967). These authors use a normal ogive to describe the probability of a 
correct response. McDonald (1967, 1997) developed an estimation procedure based 
on an expression for the association between pairs of items derived from a polyno
mial expansion of the normal ogive. This procedure is implemented in NOHARM 
(Normal-Ogive Harmonic Analysis Robust Method, Fraser, 1988). An alternative 
using all information in the data, and therefore labeled "Full Information Factor 
Analysis", was developed by Bock, Gibbons, and Muraki, (1988). This approach 
is a generalization of the marginal maximum likelihood (MML) and Bayes modal 
estimation procedures for unidimensional IRT models (see, Bock & Aitkin, 1981, 
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Mislevy, 1986), and has been implemented in TESTFACT (Wilson, Wood, and 
Gibbons, 1991). A comparable model using a logistic rather than a normal-ogive 
representation has been studied by Andersen (1985), Glas (1992), Reckase (1985, 
1997) and Ackerman (1996a and 1996b). 

Noncompensatory IRT models for dichotomous items were introduced by Symp
son (1978). He proposed a multidimensional multiplicative generalization of the 
thre&parameter logistic (3-PL) model (Birnbaum, 1968; Lord,1980). A multicom
ponent Rasch model was introduced by Embretson (1980, 1984). An estimation 
procedure for this model based on the EM algorithm (Dempster, Laird & Rubin, 
1977) was developed by Maris (1993, 1995). 

Considerable attention has been given to the effect of noncompensatory multi
dimensionality on parameter estimates of unidimensional IRT models. Ansley and 
Forsyth (1985) examined unidimensional estimates obtained from two-dimensional 
data generated using a noncompensatory model. They found that the unidimen
sional estimates of discrimination and proficiency parameters were highly related 
to the average over dimensions of their multidimensional counterparts. Acker
man (1987) compared the performance of unidimensional IRT estimates under two
dimensional compensatory- and non-compensatory models. He found similar pat
terns in the unidimensional estimates for both multidimensional models. Finally, 
Spray, Davey, Reckase, Ackerman and Carlson (1990) compared data generated un
der compensatory and noncompensatory models. They concluded that the models 
were indistinguishable from a practical standpoint. 

A number of mult idimensional equating procedures have been proposed. Hirsch 
(1989) proposed a procedure that calibrates the separate estimates of separate multi
dimensional two-parameter logistic models for the two forms in a common-examinee 
design on a common scale. Davey, Oshima and Lee (1996) proposed a procedure to 
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calibrate the estimates of two multidimensional three-parameter models for the two 
forms in a common-item- or common-examinee-design on the same scale. Li and 
Lissitz (1998) used simulation studies to compare a number of different procedures 
to calibrate the parameters of multidimensional IRT models on the same scale. Bolt 
(1999) used simulation studies to investigate whether unidimensional IRT true-score 
equating is more adversely affected by the presence of multidimensionality than con
ventional linear- and equipercentile equating. He found that for correlations between 
dimensions equal to 0.7 or larger, IRT true-score equating performed slightly better 
than the conventional procedures. At lower correlations, !RT-equating performed 
almost as good as equipercentile equating. Finally, Beguin, Hanson and Glas (2000) 
compared the effect of multidimensionality on unidimensional IRT equating based 
on separate and concurrent estimation. They found that in some nonequivalent 
group conditions the error for both unidimensional equating methods was very large 
compared to the effect of multidimensional equating. 

In this paper, the performance of separate and concurrent estimation of a uni
dimensional three-parameter logistic (3-PL) model (Birnbaum, 1968; Lord, 1980) 
applied to multidimensional data is compared. To obtain a benchmark to evaluate 
these unidimensional estimates, a two-dimensional noncompensatory normal-ogive 
model with guessing (labeled NCMP-PNO) is estimated. In this model, the prob
ability of a correct response of a person i on an item j, denoted f'ii = 1, is written 
as 

where <I> denotes the standard normal cumulative distribution function, 'Yi is the 
guessing parameter, /3jq is the difficulty parameter- on the qth dimension, 0iq is the 
proficiency of person i on dimension q, and O'.jq is the discrimination parameter of 
item j. 
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The NCMP-PNO model will be estimated by an adapted version of a Markov 
Chain Monte Carlo (MCMC) estimation procedures (Beguin, 2000, Beguin & Glas, 
in press) for a multidimensional compensatory IRT model. This procedure is a 
generalization to incomplete designs of procedures that use Gibbs sampling (Gelfand 
& Smith, 1990) with data-augmentation to estimate models in the normal ogive 
context. 

Using these procedures the posterior number correct soore distribution is easily 
obtained by sampling response patterns during each iteration of the Gibbs sam
pler. These response patterns are simulated based on the probability of a correct 
response given the values of the parameters in the current iteration of the Gibbs 
sampler. A nice property of this procedure is that the uncertainty of the parameter 
estimates is taken into account in the estimation of the number-correct observed 
score distribution. 

Data 

To simulate data with realistic properties item parameter estimates of the NCMP
PNO model obtained on data from examinations at the end of secondary education 
in the Netherlands will be used to simulate data. The original data used in this 
study consist of examinations in language comprehension. 

Two forms of three different examinations were used: 1) two forms of the ex
amination 'language comprehension in English at MAVO level' for the years 1993 
and 1999, 2) two forms of the examination 'language comprehenswn in German at 
MA VO level' for the years 1995 and 1999, and 3) two forms of the examination 
'language comprehe-,',,sion in French at MAVO level' for the years 1995 and 1999. 
These forms and examinations were selected from a larger pool of forms and exam-
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inations in such a way that these examinations represent realistic conditions with a 
different amount of correlation between the latent proficiencies of the NCMP-PNO 
model. Each form of each examination contained 50 dichotomously scored items. 
The original two forms of each examination had no items in common, but additional 
data from persons who responded to items from both forms were available. The data 
collection design is beyond the scope of this article, for a detailed description of refer 
to Glas and Beguin (1996) or Beguin (2000). As mentioned above, the NCMP-PNO 
model item parameter estimates for the items on each examination are obtained us
ing a two-dimensional MCMC estimation procedure. In, this estimation procedure, 
the item parameters are estimated under the assumption of different proficiency 
distributions for the two groups in the design. So this procedure can be labeled a 
multiple-group concurrent estimation procedure. The correlation between the two 
latent proficiencies for the English, German, and French examinations were 0.0, 0.3 
and 0.5, respectively. 

To simulate data according to a common-item nonequivalent group design for each 
examination 10 items were randomly selected from each of the two forms. These 20 
items were usoo as common items in two test forms, say A and B, constructed from 
items on the original two forms. Form A was created using the 20 selected common 
items and the 40 remaining items from one of the original forms. Form B contained 
the 20 common items and the 40 remaining items from the other original form. So, 
Form A contained all 50 items from the oldest form, the original 1993 or 1995 form, 
and 10 items from the original 1999 form. Form B contained 10 items from the 
original 1993 or 1995 form and all 50 i tems from the original 1999 form. To give 
an illustration of the item parameters used for generating the data, the parameter 
values for the examinations in French language comprehension are given in Figure 
1. The values of the discrimination parameters on the second dimension, a2, the 
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Table 1. Overview of the conditions 
Condition Mean Proficiency Covariance Form A Form B Both Forms 
1 (0,0) (0,0) ( o�o 1 ) 
2 (0,0) (0,0) ( o\ 1 ) 
3 (0,0) (0,0) ( o\ 1 ) 
4 (0,0) (0.5,0) ( o�o ) 1 

5 (0,0) (0.5,0) ( o\ 1 ) 
6 (0,0) (0.5,0) ( o\ 1 ) 

difficulty parameters /3 1 and /32 , and the guessing parameter I are plotted against 
the value of the discrimination parameter on the first dimension, a:1. 

Method 

Samples of item responses for forms A and B for each of the examinations are 
generated under two different conditions. These conditions differ in the mean vec
tors of the bivariate normal proficiency distributions for the two populations taking 
Forms A and B. The mean proficiency on the first dimension for the population 
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taking Form A is 0.0 in all conditions while the mean proficiency on the first dimen
sion for the population taking Form B is either 0 .0 or 0 .5. The mean proficiency 
for the second dimension is 0.0 in all conditions. Combining the two levels of mean 
proficiency difference with the three examinations produced six study conditions. 
Table 1 contains a summary of the conditions. Conditions 1 and 4 use the English 
forms with correlation between the dimensions of 0.0, conditions 2 and 5 use the 
German forms with correlation between the dimensions of 0. 3, and conditions 3 and 
6 use the French forms with correlation between the dimension of 0.5. The first three 
conditions can be considered equivalent groups conditions, since the proficiency dis
tributions of the populations administered Form A and B are the same. The last 
three conditions are nonequivalent group conditions. The conditions will be identi
fied using the examination and an indication of whether the groups are equivalent 
or nonequivalent. For example, condition 5 in Table 1 will be referred to as the 
nonequivalent condition for the German examination. 
Estimation of the parameters 

For each condition, 20 samples of both forms were generated with 2000 persons per 
form. Two unidimensional estimation programs were used, BILOG-MG (Zimowski, 
Muraki, Mislevy & Bock, 1996) and EPDIRM (Hanson, 2000). In each sample 
and each condition, three sets of parameter estimates were obtained using BILOG
MG and EPDIRM, two sets for each separate form (separate estimation) and one 
for both forms simultaneously ( concurrent estimation). Also for each sample the 
NCMP-PNO model was estimated. 

For both BILOG-MG and EPDIRM, normal population distributions of the la
tent variable were assumed. In the nonequivalent groups conditions the mean and 
standard deviation of the normal distribution for the group taking Form B was es
timated. Default priors were used for the a and b parameter in BILOG-MG. The 
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prior used for the a parameters i s  a lognormal dis tribution with a mean of O and a 
standard deviation of 0.5. The prior used for the c parameters is a beta distribu
tion with parameters 6 and 16. To support convergence an additional N(O, 2) prior 
distribution was used on the b parameter. In the nonequivalent groups conditions 
the priors are updated at each iteration, so priors used in the final iteration will 
be somewhat different from the initial priors. Appendix A givffi the BILOG-MG 
control files used to obtain parameter estimates for each simulated sample. 

Default four-parameter beta priors were used for the a, b, and c parameters in 
EPDIRM. The priors used for the a, b, and c parameters were Beta(l . 75, 3, 0, 3), 
Beta(l .01, 1.01, -6, 6), and Beta(3.5, 4.0, 0, 0.5), respectively, where Beta(p, q, l, u) 
reprffients a four-parameter beta prior with shape parameters p and q, lower limit l ,  
and upper limit u. The i tem parameter priors used in EPDIRM are less informative 
than the i tem parameter priors used in BILOG-MG. Appendix B gives the EPDIRM 
control files used to obtain parameter estimates for the simulated samplffi. 

The MCMC procedure consisted of 3000 iterations with a burn-in period of 1000 
iterations. Results of Albert (1992) show that this is sufficient. As starting values for 
the NCMP-PNO model, the true parameters were used for the item parameters, and 
0 = 0 was used for the proficiency of each simulee. The priors on the_ i tem parameters 
were a ~  N(l . ,  0.5), /3 ~ N(-1, 1) and 1 ~ Beta(20 * 'Ytrue• 20 * (1 - 'Ytrue)). 

In the separate estimation conditions, the parameters of Form A and Form B 
had to be calibrated on a common scale. This was done wi th the Stocking and 
Lord (1983) method (see also Kolen & Brennan, 1995) which was among the bffit 
performing methods in the comparison by Hanson & Beguin (1999). The three 
conditions where the groups of simulees that were administered Form A and B had 
equal proficiency distributions (conditions 1 through 3 in Table 1) can be considered 
equivalent groups conditions. In an equivalent groups design, i t  is not necessary to 
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assume different population distributions for the groups taking Form A and Form B. 
Consequently, in the condition were the parameters are estimated separately for the 
two forms, no linking is nece.sary to bring the two sets of estimates on a common 
scale. Analogously, one can assume a single population distribution for both samples 
when concurrent estimation is applied. In this study, a single population distribution 
was assumed for the estimation of the unidimensional models in the conditions where 
the populations administered Form A and B had equal proficiency distributions. 
Consequently, in separate estimation, no scaling was performed and in concurrent 
estimation using BILOG-MG and EPDIRM, a single group was specified. In the 
NCMP-PNO model, different population distributions were e:;timated due to the 
current limitations of the available software. Because Hanson and Beguin (1999) 
found indications that separate estimation with scaling improved performance in 
equivalent group conditions, separate estimation with scaling was also performed in 
conditions where the populations administered Form A and B had equal proficiency 
distributions. 

In the separate estimation conditions, two sets of item parameter estimates for 
the common items are available. In this study, the Form A item parameter esti
mates were used as the parameter estimates of the common items for the purpose of 
computing the criteria used to evaluate the quality of item parameter scaling. An 
alternative would be  using the average of the item parameter estimates obtained on 
the two forms (Kirn & Cohen, 1998). 
Evaluation of sc.aling 

To evaluate the quality of item parameter scaling, differences in results of equating 
scores on Form B to scores on Form A were assessed. Two criteria based on IRT 
observed-score (OS) equating of number-correct (NC) scores (Zeng & Kolen, 1995) 
were used. This technique uses the estimated number correct score distributions of 
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both forms in one population. Here, the score distributions of Forms A and B were 
estimated for the population taking Form A. 
Estimating score distributions 

Using the estimated item and population parameters, the compound binomial distri
bution was used to generate the score distribution of a simulee with multidimensional 
proficiency 8. The score distribution for the simulees administered Form A, say a 
sample from a population A with a multivariate normal ability distribution hav
ing mean µA and covariance matrix :EA, can be computed by integrating over the 
population distribution of 8 ,  that is, 

f(r) = j · · · j L f(x l8 )g(8 I µA, EA)d8, 
{xjr } 

(2) 
where {x l r }  stands for the set of all possible response patterns resulting in a score 
r, and f(x 18)  is the probability of item response pattern x given latent proficiency 
vector 8. In the case of normal distributed populations, the integral can be computed 
using Gauss-Hermite quadrature (Abramowitz & Stegun, 1 972). At each of the 
quadrature points, a recursion formula by Lord and Wingersky (1984) can be used 
to obtain �{xjr } f(x l8 ), the probability of obtaining number correct score r given 
proficiency 8. To obtain accurate results, 180 quadrature points were used in the 
unidimensional case and 100 quadrature points were used for each dimension in the 
multidimensional case. 

In the conditions where an MCMC estimation procedure was used, the score dis
tribution was estimated as foliows. After the burn-iu period for the Gibbs-sampler, 
after every 20 iterations, the procedure by Lord and Wingersky was applied with 
the currently drawn values of the person and item parameters. The estimated score 
distribution was the mean over 100 thus obtained score distributions. A nice prop-
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erty of this procedure is that the uncertainty of the parameter estimates is taken 
into account in the estimation of the score distribution. 

In the conditions where a unidimensional model was used, the observed score 
distributions needed for the criteria described in the next section were calculated 
with Guass-Hermite quadrature usihg a univariate standard normal distribution. 
Criteria 

To evaluate the equating precision in the 6 conditions the following two criteria 
were used. The first criterion was based on the differences between the estimated 
and true observed score distributions on Form B for the population administered 
Form A, where the true distribution is the distribution under the model used to 
generate the data. The second criterion was based on comparing equivalent score 
points from the observed score equating function with the true equivalent score 
points based on the model used to generate the data for the population that took 
Form A. The evaluation of the score distributions served two purposes. On one 
hand, comparison of score distributions provided an evaluation of model fit. On the 
other hand, it provided insight into the quality of the equating process, since the 
score distributions play a crucial role in IRT number-correct equating. 

Let ftru.e,r be the expected frequency of score point r on Form B for a sample 
of examinees from the population administered Form A as computed using the 
parameters of NCMP-PNO model from which the data were generated. Let fhr 

be . the frequency of score point r on Form B for the population that took Form A 
as estimated using item parameter estimates from replication h. To compare the 
score distributions, the mean over score points of the mean squared error (MSE) 
was calculated by summing over the 20 samples and the k + l score points, that is, 

(3) 
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The MSE can be decomposed into a term representing the mean over score points 
of the squared bias (mean bias) and a term representing the mean over score points 
of the variance (mean variance): 

1 k 1 20 k 
MSE = k + l '2:)fr - ftriJe,r)2 + 20(k + l) L LUhr - fr)2, (4) r=0 h=l r==O 

where fr is the mean over replications, that is, 
_ l 20 fr = 20 L fhr • 

h=l 

(5) 
A measure of model fit can be obtained if the terms of (3) are divided by the true 
frequency. This results in the test-statistic 

x2 = 1 
ft  Uhr - !true,r)2 

20(k + 1) h=l r==O ftriJe,r (6) 
Although, the distribution of this statistic in the present application is unknown 
(Glas & Verhelst, 1989) , the values provide an -admittedly fallible-- bas is for com
parison. 

For the second criterion, equivalent score points of Form B equated to Form 
A estimated using various models were compared with the equivalent score points 
obtained with the true model. Let Strue r be the integer score point on Form A ' 

that is equivalent with the score point r on Form B, based on the rounded IRT 
observed score equating function computed using the true item parameters and 
the true latent proficiency distribution for the group taking Form A. Let 8hr be 
an analogous score point estimated in replication h. Furthermore, let Pr,true be the 
probability in the population taking Form A of obtaining a score r on Form B based 
on the true parameters values. To compare the equivalent score points, a weighted 
mean squared error (WMSE) was calculated by summing over samples and score 
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points . The score points were weighted by Ph,true, which resulted in 
1 k X> 

WMSE 
= 20 

L Pr,true L (Shr - Stru.e,r)2 , 
r=O h=l 

(7) 

The WMSE can be decomposed into terms representing the weighted sum of the 
squared bias (weighted bias) of equated score points and weighted sum of the vari
ance (weighted variance) of the equated score points, so, 

k 1 k 20 
WMSE = L Pr,true (Sr - Stru.e,r)2 

+ 20 
L Pr,tru.e L (Shr - Sr)2 , (8) 

r=O r=O h=l 

where Sr is the mean equivalent score of score point r over replications, that is , 
(9) 

The weighted mean absolute error (WMAE) is obtained if the squared error in 
(7) is replaced by the absolute value of the error, so 

l k 20 

WM AE = - L Pr,true L j shr - Strue,r j . 
20 r=O h=l 

Results 

(10) 

Three factors are investigated in this study 1)  concurrent versus separate esti
mation 2) EPDIRM versus BILOG-MG concurrent estimation 3) unidimensional 
versus multidimensional noncompensatory estimation. All BILOG-MG, EPDIRM, 
and MCMC runs converged except for 4 Form B data sets in the German exami
nation nonequivalent groups condition (separate estimation) for which BILOG-MG 
did not converge. Convergence was achieved for these four data sets by re-running 
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BILOG-MG with the number of Newton steps set to zero. 
First , the true and estimated frequency distributions of Form B were compared. 

To illustrate the results, the estimated frequency distributions for the French ex
amination for nonequivalent groups using the NCMP-PNO model, BILOG-MG and 
EPDIRM are plotted in Figure 2. The frequency distribution obtained using the true 
model used to generate the data is plotted together with the estimated frequency 
distributions of the 20 samples. In Figure 2 it can be soon that the unidimensional 
estimation procedures show a larger variation between the score distributions of 
the different samples than the score distributions obtained using the NCMP-PNO 
model. The scores in the samples obtained using the unidimensional estimation 
procedures are in general somewhat lower than the scores obtained using the true 
values. This effect is stronger in the separate estimation conditions (Figure 2b and 
2d), especially when based on the BILOG-MG estimates. In some of the samples 
the score distributions based on the EPDIRM estimates (Figure 2c and 2d) show a 
larger deviation from the true score distribution. Finally, in Figure 2e it can be seen 
that the scores in the samples estimated using the NCMP-PNO model are somewhat 
higher than the true score distribution. 

Table 2 gives the mean squared error, squared bias and variance for  the estimated 
Form B distributions, along with the value of the X2-statistic, for the various condi
tions and estimation methods. The first three columns of Table 2 identify the com
bination of model and program, condition, and equating method for which results 
are presented. The first column gives the model and program used for estimation. 
The second column identifies the study condition by giving the examination followed 
by a O or 5, where O means equivalent groups (first dimension mean of 0.0 for the 
population taking Form B), and 5 for nonequivalent groups (first dimension mean of 
0.5 or the group population Form B). The third column gives the equating method 
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Figure 2. Score distributions for Form B for the French Examination with nonequivalent groups condition, determined using the true proficiency distribution of the population administered Form A. 
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- "sepNS" for separate estimation with no item parameter scaling (only for the 
equivalent groups conditions) , "sep" for sep&ate estimation with item parameter 
scaling using the Stocking-Lord method, and "con" for concurrent estimation. The 
mean squared error, bias, and variance presented in Table 2 are plotted in Figure 3. 
The top two plots in Figure 3 present the MSE results from Table 2 for the equiv
alent and nonequivalent groups cases, respectively. The middle two plots present 
squared bias, and the bottom two plots present variance. 

The performance of the unidimensional and multidimensional models differ in the 
equivalent and nonequivalent groups conditions. In  the equivalent groups conditions 
the NCMP-PNO model resulted in a MSE and squ&ed bias that were in general 
smaller than the MSE and squared bias obtained using unidimensional _models for 
the English and German examinations. The unidimensional model using concurrent 
estimation and separate estimation with no scaling resulted in a somewhat lower 
MSE and squ&ed bias for the French examination. The variance obtained with 
unidimensional concurrent estimation or with separate estimation with no scaling 
was smaller than the variance obtained with the NCMP-PNO model. Comp&
ing separate and concurrent estimation in the equivalent groups oonditions both 
BILOG-MG and EPDIRM resulted in a MSE, squared bias and variance that were 
in general smaller for the concurrent estimation method than for the separate esti
mation method. The only exception occurred for the French examination where the 
separate estimation method with no scaling using EPDIRM resulted in the same 
MSE as the concurrent estimation method. The separate estimation method with 
no scaling had a slightly lower variance but this effect was offset by a slightly higher 
squared bias than in the concurrent estimation method. Separate estimation with no 
scaling resulted in a lower MSE,  squ&ed bias and variance than separate estimation 
with scaling. 
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Table 2. Mean squared error of estimated Form B distribution 

ModelL Prog_ram Condition Equating MSE Bias Variance x
2 

EPDIRM English-0 sepNS 5.8 5 . 2  0.6 349. 
EPDIRM English-0 sep 7.1 5.4 1 .8 392. 
EPDIRM English-0 con 5.6 5 . 1 0.5 339. 
BILOG-MG English-0 sepNS 10.6 10 .0  0.6 589. 
BILOG-MG English-0 sep 11.7 10.0 1.7 627. 
BILOG-MG English-0 con 9.8 9 .2 0 .5 547. 
NCMP-PNO English-0 con 1 .5 0 .6  1 .0 68. 
EPDIRM German-0 sepNS 4.0 3 . 2  0.8 323. 
EPDIRM German-0 sep 6.0 3 .3 2 .7 387. 
EPDIRM German-0 con 3.5 2.8 0.7 279. 
BILOG-MG German-0 sepNS 8.0 7 .2 0 .8 601. 
BILOG-MG German-0 sep 10.0 7.2 2.8 671. 
BILOG-MG German-0 con 6.8 6. 1 0.7 497. 
NCMP-PNO German-0 con 1 .9 0 .5 1 .4 78. 
EPDIRM French-0 sepNS 1 .4 0.4 1 .0 88. 
EPDIRM French-0 sep 6.5 2.8 3.7 367. 
EPDIRM French-0 con 1 .4 0 .3  1 . 1  79. 
BILOG-MG French-0 sepNS 3.0 1.9 1.0 151 .  
BILOG-MG French-0 sep 7.6 4 .3  3 .4 424. 
BILOG-MG French-0 con 2.6 1.6 1 .0 128. 
NCMP-PNO French-0 con 5.0 3.3 1.6 207. 
EPDIRM English-5 sep 6.0 4 .4 1 .5 499. 
EPDIRM English-5 con 7.0 5 .6 1 .4 616. 
BILOG-MG English-5 sep 9.5 7.9 1 .5 754. 
BILOG-MG English-5 con 4.6 3. 1 1 .5 380. 
NCMP-PNO English-5 con 1.6 0.3 1.3 76. 
EPDIRM German-5 sep 6.5 3.9 2.6 312. 
EPDIRM German-5 con 6.4 4. 1 2.3 379. 
BILOG-MG German-5 sep 10.9 8.4 2.5 588. 
BILOG-MG German-5 con 4.6 2 . 3  2.3 217. 
NCMP-PNO German-5 con 3.6 1 .7  1 .9 135. 
EPDIRM French-5 sep 9.2 6.2 3.0 345 . 
EPDIRM French-5 con 5.9 3. 1 2 .8 245. 
BILOG-MG French-5 sep 13.1 10. 0  3.2 409. 
BILOG-MG French-5 con 4.5 2 .0  2.5 143. 
NCMP-PNO French-5 con 6.9 5 .2  1 .8 247. 
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Comparing separate and concurrent estimation in the nonequivalent groups con
ditions both BILOG-MG and EPDIRM resulted in a MSE, squared bias and variance 
that were in general smaller for the concurrent estimation method than for the sep
arate estimation method. The exceptions occurred for the English and German 
examinations when the EPDIRM program was usoo. For the English examination 
the separate estimation resulted in a lower MSE and squared bias. For the German 
examination only the squared bias was lower. The NCMP-PNO model performed 
better than the other estimation procedures for the English and German exami
nations. For the French examination both EPDIRM and BILOG-MG concurrent 
estimation procedures performed better than NCMP-PNO. 

With respect to the relative performance of BILOG-MG and EPDIRM, in con
current estimation BILOG-MG performed better than EPDIRM, while in separate 
estimation EPDIRM performed better. 

Comparing the X2 for the different conditions and estimation methods, within 
conditions the pattern of results was similar to those for MSE. In general the unidi
mensional concurrent estimation procedures results in lower X2 than the separate 
procedures. Exceptions are found with the EPDIRM program in the nonequiva
lent groups condition for the English and German examinations. The NCMP-PNO 
model performs best in all conditions for the English and German examinations, but 
worse than the unidimensional model using concurrent estimation for the French ex
amination. Note that it is unclear how these results should be interpreted, since the 
distribution of the X2 statistic is unknown and can differ over conditions. The X2 

is calculated by summation over 1,220 cells. However the degrees of freedom of each 
X2 value is unknown. 

Table 3 gives the weighted mean squared _error, weighted squared bias, and 
weighted variance for the estimated equating functions of Form B scores to equiva-
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lent Form A scores, along with the WMAE, for the various conditions and estimation 
methods. The weighted mean squared error, weighted squared bias, and weighted 
variance presented in Table 3 are plotted in Figure 4. 

The differences in the weighted variance that resulted from different estimation 
procedures and examinations were relatively small in the equivalent groups condi
tions. In the nonequivalent conditions the weighted variance differed some among 
examinations with French having the highest weighted variance, and English the 
lowest weighted variance. Larger differences in the results among the conditions 
and the estimation procedures occurred in the weighted squared bias, and conse
quently also in the WMSE. For the equivalent groups conditions, the NCMP-PNO 
model had the lowest WMSE acroos conditions for each examination. All the uni
variate procedures resulted in similar levels  of weighted squared bias and WMSE for 
the English and German examinations. In these conditions the differences between 
EPDIRM and BILOG-MG procedures were small . For the French examination con
current estimation resulted in the lowest squared bias and WMSE, and separate 
estimation with scaling resulted in the highest squared bias and WMSE for the 
unidimensional model. 

In the nonequivalent groups re:mlts reported in Table 3 ,  the NCMP-PNO model 
had the lowest WMSE except for the Engl ish examination were the unidimensional 
concurrent estimation procedures performed better. The unidimensional concurrent 
estimation procedures performed better than the separate estimation procedures. 
The EPDIRM concurrent estimation procedure performed slightly better than its 
BILOG-MG counterpart for the Engl ish examination, while EPDIRM performed 
somewhat worse than BILOG-MG for the French examination. Finally, the WMSE's 
were much higher for the French examination than the other two examinations. The 
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Table 3 .  Weighted error of equated scores 
ModelLPro�ram Condition Equating WMSE Bias Variance WMAE EPDIRM English-0 sepNS 0.52 0.36 0.16 0.52 EPDIRM English-0 sep 0.55 0. 40 0.15 0. 55 EPDIRM English-0 con 0.56 0. 43 0.13 0.56 BILOG-MG English-0 sepNS 0.53 0.37 0.16 0.52 BILOG-MG English-0 sep 0.54 0.39 0.15 0.54 BILOG-MG English-0 con 0.54 0. 41 0.13 0. 54 NCMP-PNO English-0 con 0.22  0.07 0.14 0. 22 EPDIRM German-0 sepNS 0.36 0.25 0.11 0.36 EPDIRM German-0 sep 0. 40 0.27  0.13 0. 40 EPDIRM German-0 con 0.37 0.26 0.11 0. 37 BILOG-MG German-0 sepNS 0.37 0.26 0.11 0.37 BILOG-MG German-0 sep 0. 40 0.27 0.13 0. 40 BILOG-MG German-0 con 0.37 0.25 0.12 0.37 NCMP-PNO German-0 con 0.23 0.09 0.14 0. 23 EPDIRM French-0 sepNS 0. 43 0.32 0.11 0. 43 EPDIRM French-0 sep 0.54 0.37 0.17 0.52 EPDIRM French-0 con 0. 40 0.30 0.10 0. 40 BILOG-MG French-0 sepNS 0. 42 0.32 0.10 0. 41 BILOG-MG French-0 sep 0.50 0.34 0.16 0. 49 BILOG-MG French-0 con 0.35 0.30 0.05 0.35 NCMP-PNO French-0 con • 0.23 0.09 0.14 0. 23 EPDIRM English-5 sep 0.21 0.10 0.11 0. 21 EPDIRM English-5 con 0.16 0.06 0.10 0.16 BILOG-MG English-5 sep 0.20 0.10 0.11 0. 20 BILOG-MG English-5 con 0.19 0.09 0.10 0.19 NCMP-PNO English-5 con 0.21 0.07 0.14 0. 21 EPDIRM German-5 sep 0.30 0.16 0.14 0.30 EPDIRM German-5 con 0.27 0.14 0.13 0. 27 BILOG-MG German-5 sep 0.29 0.15 0.14 0. 29 BILOG-MG German-5 con 0.27 0.14 0.13 0. 27  NCMP-PNO German-5 con 0.25 0.12 0.12 0. 25 EPDIRM French-5 sep 1.24 1.10 0.14 1.01 EPDIRM French-5 con 0.97 0.81 0.16 0. 85 BILOG-MG French-5 sep 1.11 0.95 0.16 0. 93 BILOG-MG French-5 con 0.73 0.57 0.16 0. 67 NCMP-PNO French-5 con 0.33 0.16 0.17 0.33 
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WMSE's for the German examination were slightly higher than those for the English 
examination. 

Conclusions 

In this study, the effect of the estimation method on equating results was com
pared for the case where unidimensional models were applied to multidimensional 
noncompensatory data. -As with any simulation study, considerable caution in draw
ing conclusions should be taken, due to the small number of conditions investigated. 
In the present study, the results pertain only to the six different conditions used. 
The only aspects varied in the conditions were the use of three different sets of forms, 
with different correlations between the two dimensions, and the difference between 
the mean of the proficiency distributions of the populations. There was no variation 
in data collection designs or the number of respondents in the design. 

For the unidimensional model concurrent estimation generally resulted in lower 
or equivalent total error than separate estimation, although there were a few cases 
where separate estimation resulted in slightly less error than concurrent estima
tion. ·These results are consistent with the re:Jults in Beguin, Hanson and Glas 
(2000) which simulated data from a compensatory multidimensional model, and 
Hanson and Beguin (1999) where data were simulated from a unidimensional model. 
Comparing the two estimation programs, there tended to be larger differences be
tween the total error in concurre!).t and separate estimation for BILOG-MG than 
for EPDIRM. 

Separate estimation without scaling resulted in similar or better performance 
than separate estimation with scaling. This result is in line with the re:Jults reported 
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in Beguin, Hanson and Glas (2000), but differs from the results of Hanson and 
Beguin (1999). This suggests that computing a scaling transformation in the case of 
equivalent groups is beneficial when a unidimensional model is correctly specified, 
but can be detrimental when a unidimensional model is used with multidimensional 
data. 

In general, the EPDIRM and BILOG-MG programs produced similar results, 
although there some cases where there were systematic differences between the two 
programs. For the Form B distribution criterion the MSE was smaller for EPDIRM 
than BILOG-MG in all equivalent groups conditions, although for the nonequivalent 
groups conditions BILOG-MG had smaller MSE than EPDIRM when concurrent 
estimation was used, but not when separate estimation was used. For the equat
ing criterion EPDIRM and BILOG-MG had similar WMSE over all conditions for 
the English and German examinations. For the French examination BILOG-MG 
resulted in lower WMSE across all conditions. The differences between the results 
using BILOG-MG and EPDIRM may be at least partly due to the different priors 
that were used by the two programs. For both programs default priors were used, 
except for separate estimation with BILOG-MG in the nonequivalent groups cases, 
where a standard normal prior was put on the b parameters rather than the default 
of no prior. The priors used in EPDIRM were generally less informative than the 
priors used in BILOG-MG. For concurrent estimation in the nonequivalent groups 
cases the priors were updated at each EM-step in BILOG-MG, but constant priors 
were used in EPDIRM. 

The multidimensional model resulted in lower total error than the unidimensional 
model in most conditions. The principal exception is for the Form B distribution 
criterion on the French examination where the total error and bias for the multidi
mensional model was greater than for the unidimensional model using concurrent 
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estimation. The difference in the total error tended to be greater in the equivalent 
groups conditions as opposed to the nonequivalent groups conditions. These results 
differ from those found in Beguin, Hanson and Glas (2000) where data were sim
ulated using a compensatory multidimensional model. Beguin, Hanson and Glas 
(2000) found that the difference in total error between the unidimensional and 
multidimensional models was small for the equivalent groups conditions, but was 
uniformly very large for the nonequivalent groups conditions. 

The total error and bias for the multidimensional model increased from the En
glish to the German to the French examinations, especially for the Form B distri
bution criterion. This effect was also observed for some of the nonequivalent groups 
conditions when using the univariate model. Since the correlation between the di
mensions increased from the English to the German to the French examinations this 
implies that the total error for the multidimensional model increased with increas
ing correlation between the dimensions, although this is confounded by the fact that 
the examinations differed as well as the correlation between dimensions. This effect 
of increasing total error with increasing correlation was also observed in Beguin, 
Hanson and Glas (2000) for the unidimensional model in the nonequivalent groups 
conditions, whereas here this effect was observed for the multidimensional model in 
both the equivalent and nonequivalent groups conditions, and only for some of the 
results using the unidimensional model in the nonequi valent groups conditions. 

The results in this study with regard to differences in performance of the mul
tidimensional versus the unidimensional model differs from the results in Beguin, 
Hanson and Glas (2000). The major difference in these two studies is the type of 
multidimensional model used (compensatory versus noncompensatory). It appears 
that the bias of the unidimensional results were less and the bias of the multidi
mensional results were greater for the noncompensatory model as compared to the 
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compensatory model, at least based on the Form B distribution criterion. This effect 
can be seen by comparing the results in Figure 2 with the results in Figures 2 and 3 
in Beguin, Hanson and Glas (2000). It is possible that some bias in the multivariate 
results is caused by the priors used for the item parameters in the noncompensatory 
model estimation. As was shown in Figure 2e, the estimated F'rench frequency dis
tributions for the nonequivalent groups condition were somewhat positively biased. 
This could be due to the choice of the prior distribution of /3 used in the estimation 
procedure. In this case, when the estimated parameter values of f3 tend to be larger 
than -1, the prior decreases the /3 values, which will lead to positively biased score 
distributions. 

The differences in results between this study and the studies by Hanson and 
Beguin (1999) and Beguin, Hanson and Glas (2000) illustrate the sensitivity of the 
results of simulation studies to the true simulation model. The results of this study 
and Beguin, Hanson and Glas (2000) make clear that multidimensionality of the 
data affects the relative performance of separate and concurrent unidimensional es
timation methods, although the degree to which the unidimensional model produces 
biased results with multidimensional data depends on the type of multidimension
ality present in the data. 
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Appendix A - Control Files for BILOG-MG 

Separate Estimation 
>GLOBAL DFNAME='NCME05A.1 ' ,NPARM=3,NTEST=l ,  SAVE; 

>SAVE PAR='SEP05A01 .PAR'; 
>LENGTH NITEMS=60; 
> INPUT NTOT=60,SAMPLE=2000,N ALT=4,NID=4; 
>ITEMS INUM=(1 (1)60) ; 

>TEST TNAME=EN; 
( 4Al , T6,60Al) 
>CALIB NQPT=40,CYCLE=40,TPR1OR,NEWTON=15; 

Concurrent Estimation - Equivalent Groups 
>GLOBAL DFNAME='NCME05C. l ' ,NPARM=3,NTEST=l , SAVE; 
>SAVE PAR='CON05A01 .PAR'; 
>LENGTH NITEMS=lOO; 
>INPUT NTOT=l00,SAMPLE=4000,NALT=4,NID=2,NFORM=2; 

>ITEMS INUM=(l ( l ) lO0) ;  
>TEST TNAME=EN; 
>FORMl LEN=60, INUMBERS=(1(1 )60); 
>FORM2 LEN=60, INUMBERS=(41 (1) 100) ; 

(2Al , lX,Il ,1X,60Al) 
>CALIB NQPT=40 ,CYCLE=40 ,TPR1OR,NEWTON=5; 

Concurrent Estimation - Nonequivalent Groups 
>GLOBAL DFNAME='NCME15C. l ' ,NPARM=3,NTEST=l,  SAVE; 
>SAVE PAR='CON15N01 .PAR'; 
>LENGTH NITEMS=lOO; 
>INPUT NTOT= 100,SAMPLE=4000,NALT=4,NID=2,NGROUP=2,NFORM=2; 
>ITEMS INUM=(l ( l ) lO0) ; 
>TEST TNAME=EN; 
>FORMl LEN=60, INUMBERS=(1 (1 )60); 
>FORM2 LEN=60, INUMBERS=(41 (1) 100) ; 
>GROUPl GNAME=' A' ,LEN=60,INUMBERS= (l(  1)60) ;  
>GROUP2 GNAME='B',LEN=60,INUMBERS=(41(1) 100) ;  
(2Al , 1X,Il ,T4,Il ,1X,60Al) 
>CALIB NQPT=40,CYCLE=40,TPRIOR,NORMAL,REFERENCE=l ,NEWTON=20; 
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Appendix B - Control files for EPDIRM 

Separate Estimation 
# 60 items epdirm-start 60 
# read item responses read-examinees NCME05A.1 { @6 60il} 
# compute starting values starting-values 
# compute EM iterations EM-steps 
epdirm_end 
Concurrent Estimation - Equivalent Groups 
# 100 items epdirm-start 100 
# I terns on form A set items(a) [seq 1 60] 
# l terns on form B set items(b) [seq 41 100] 
# Responses are read from columns 6-65 for both forms set respFmt(a) { @6 60il } set respFmt(b) { @6 60il } 
# Form is read from column 1 of record set formFmt al 
# Read item responses for examinees who took form A read-examineeS-missing NCME00A. l $formFmt items respFmt 
# Read item responses for examinees who took form B read-examineeS-missing NCME00B.l $formFmt items respFmt 
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# compute starting values starting-values 
# compute EM iterations EM-steps -max-iter 300 
epdirm-end 
Concurrent Estimation - Nonequivalent Groups 

# 100 items, 2 groups, allow unique latent variable 
# points for each group epdirm-start 100 -num-groups 2 -unique-points 
# Items on form A set items(a) [seq 1 60] 
# I terns on form B set items(b) [seq 41 100] 
# Responses are read from columns 6-65 for both forms set respFmt(a) { @6 60il } set respFmt(b) { @6 60il } 
# Form is read from column 1 of record set formFmt al 
# Read item response, for examinees who took form A (group 1) read-examinees-missing NCME05A.1 $formFmt items respFmt 1 
# Read item response. for examinees who took form B (group 2) read-examinees..missing NCME05B.1 $formFmt items respFmt 2 
# compute starting values starting_ values 
# compute EM iterations EM-steps -estim-dist-mean-sd -max-iter 300 
epdirm-end 
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