
1 

Measurement and Research Department Reports 2008-1 

A Binary Programming Approach to Automated Test 
Assembly for Cognitive Diagnosis Models 

Matthew Finkelman 
WonsukKim 
Louis Roussos 
Angela J. Verschoor 





Measurement and Research Department Reports 2008-1 

A Binary Programming Approach to Automated Test Assembly for 
Cognitive Diagnosis Models 

Matthew Finkelman, Tufts University School of Dental Medicine, Boston, MA 

Wonsuk Kim, Measured Progress, Dover, NH 

Louis Roussos, Measured Progress, Dover, NH 

Angela J. Verschoor, Cito 

Cito 
Amhem, 2008 

Cito ,t 
Postbus 1034 
6801 MG Arnhem , 
Kenniscentrum • 

8501 007 186X 

111111111111 11111111 11111111111111111111 1 1111 



This manuscript has been submitted for publication. No part of this manuscript may be copied 
or reproduced without permission. 



Abstract 

Automated test assembly (ATA) has been an area of prolific psychometric 
research. While AT A methodology is well-developed for unidimensional models, its 
application alongside cognitive diagnosis models (CDMs) is a burgeoning topic. Two 
suggested procedures for combining AT A and CDMs are to maximize the cognitive 
diagnostic index (CDI) and to employ a genetic algorithm (GA). Each of these 
procedures has a disadvantage: CDI cannot control attribute-level information, and GA is 
computationally intensive. The goal of this article is to solve both problems by using 
binary programming, together with the item discrimination indexes of Henson et al., for 
performing ATA with CDMs. The three procedures are compared in simulation. 
Advantages and disadvantages of each are discussed. 





Introduction 

One of the most common problems in test design is the construction of a linear 
form from a pre-calibrated item pool. In particular, the automated test assembly (ATA) of 
a form without human intervention has been well-studied for unidimensional models; see 
Birnbaum (1968) and Lord (1980) for two examples of early work. Recently, the use of 
binary programming (BP; Theunissen, 1985; van der Linden, 2005; van der Linden & 
Boekkooi-Timminga, 1989) has been popularized in the ATA literature. BP methodology 
is advantageous because it allows a numerical objective function to be optimized subject 
to the practitioner's desired content constraints. It therefore produces a test that is suitable 
from both psychometric and content standpoints. 

While BP is now considered a standard ATA solution for unidimensional models, 
it has yet to be proposed alongside cognitive diagnosis models (CDMs). This is because 
BP objective functions typically utilize the concept of Fisher information (see Table 3 of 
van der Linden and Boekkooi-Timminga, 1989), and Fisher information is undefined for 
CDMs (Henson & Douglas, 2005). As a result, researchers have devised alternative 
methods for combining AT A with CDMs. Henson and Douglas introduced the cognitive 
diagnostic index (CDI) for CD Ms and recommended the selection of items with the 
largest CDI values; Finkelman, Kim and Roussos (in press) suggested using a genetic 
algorithm (GA) to find the items that optimize a given fitness function. Both of these 
methods were shown to exhibit vastly better accuracy than randomly generated forms; 
however, they each have a drawback. First, although CDMs are designed to measure 
multiple skills (often referred to as attributes), CDI does not provide the attribute-level 
information of each item (Henson & Douglas, 2005; Henson, et al., in press). Therefore, a 
test consisting of items with high CDI values may still produce poor measurement for 
some attributes. Second, the GA of Finkelman et al. involves simulation and a local 
search algorithm; thus, while it is able to control error rates at the attribute level, it 
requires high computational intensity. 

The goal of this article is to develop a BP test assembly procedure that can be 
used alongside CD Ms, thereby bridging the gap between the AT A methodologies of 
CDMs and unidimensional models. As will be seen, the particular objective function 
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employed is based on the attribute-level item discrimination indexes of Henson et al. (in 

press) and therefore provides adequate measurement of all attributes. Additionally, the 

procedure is much less computationally intensive than the GA approach. Hence, it avoids 

the problems ofCDI and GA while offering the familiarity and power of BP. 

We begin by providing a brief introduction to the concepts and notation of CDMs. 

We then review the current ATA methods for CDMs, namely CDI and GA, before 

explaining the BP framework and proposing our specific procedure for CDMs. This BP 

procedure is compared with CDI and GA in multiple simulation sets. We conclude by 

discussing the situations in which each method is appropriate. 

Cognitive Diagnosis Models 

In diagnostic testing, the goal is not to measure an examinee' s overall ability in 

some area of scholastics, but rather to assess multiple attributes simultaneously so that 

strengths and weaknesses can be identified. CDMs were developed to facilitate such 

diagnostic inferences. In a COM, each examinee's latent trait is formalized as a vector 

a= (ai, ... ,aK) of K variables; ak indicates the examinee's true ability along attribute 

k. Like most COM research, we assume only two ability levels for each attribute, so that 

ak = 1 indicates mastery of attribute k and ak = 0 indicates non-mastery of this attribute. 

Only certain attributes are measured by each item; information relating items to attributes 

is typically given by the Q-matrix (Tatsuoka, 1985). Letting j = l, ... , J index the items in 

a given pool, the [j, k] entry of the Q-matrix (hereafter denoted q1k) is equal to 1 if item 

j measures attribute k, and O otherwise. 

Once the Q-matrix has been specified and items have been administered in a field 

test, the items are calibrated to a CDM of choice. As cited by Finkelman et al. (in press), 

available CDMs include the Restricted Latent Class Model (Haertel, 1984, 1990) or 

DINA model (Junker & Sijtsma, 2001), NIDA (Junker & Sijtsma, 2001), and 

compensatory MCLCM (Maris, 1999; von Davier, 2005). Finkelman et al. used the 
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"reduced" version of the Reparameterized Unified Model (RUM; DiBello, Stout, & 
Roussos, 1995; Roussos et al., 2007) in their simulations; to allow comparison with this 
previous study, we will also focus on the reduced RUM in this article. 

The reduced RUM assumes that all items are dichotomously scored as correct or 
incorrect. Intuitively, its idea is that in order to answer an item correctly, each attribute 

measured by the item must be successfully applied. For item j, let n; represent the 

probability of successfully applying all such attributes by an examinee who has mastered 
each one. It is natural that this probability should be at least as high as that of an 
examinee who has not mastered some required attributes. To quantify the decrement in 
probability associated with non-mastery, let n Jk denote the probability that a master of 
attribute k would successfully apply this attribute to item j, and let m denote the 

analogous probability for a non-master of attribute k. Because masters are assumed to 
have greater acumen than non-masters, we require 1!Jk � r1k; equivalently, we require the 

ratio r ;k = 
rp, to be less than or equal to one. Under the reduced RUM, the probability of 

1!Jk 

a correct response to item j, given a true ability vector of a, is 

(Roussos et al., 2007). From this formula, we see that if ak = I for all k being measured 

(that is, for all k such that q1k = 1), then PJ( a) = 1!;, as prescribed above. Furthermore, if 

item j measures attribute k, then a non-mastery status along attribute k reduces the 

probability of a correct response by a factor of r
1
:. We note that in the original RUM, the 

right-hand side of Equation 1 is multiplied by an additional term related to the 
examinee's "supplemental ability" that may affect performance on the item, but is not 
part of the Q-matrix. The reduced RUM's omission of this term simplifies the model by 
assuming that such supplemental ability does not exist, or that it is always applied 
successfully. See Roussos et al. for further information. 

In all that follows, we assume that a particular CDM has been chosen by the 
practitioner, the Q-matrix has been fixed, and item parameter estimates have been 
obtained. The task at hand is then to select which items from the pool will actually appear 
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on the test. We emphasize that as in Finkelman et al. (in press), the reduced RUM is used 

only as an example; the CDI, GA, and BP methods for ATA can be utilized alongside any 

of the CDMs listed above. 

Previous ATA Methods for CDMs 

CDI 

In the formulation above, each of the K attributes has two possible states: 

mastery and non-mastery. Thus, examinee abilities can be classified in 2K different 

ways. This discretization of the ability space is a departure from unidimensional IRT 

models like the 3-parameter logistic model (Birnbaum, 1968), where ability is defined 

along a continuous spectrum. As alluded to in the Introduction, such discretization 

precludes the use of Fisher information, which is the traditional psychometric tool 

utilized in AT A (Henson & Douglas, 2005). To overcome this problem, Henson and 

Douglas developed an ATA procedure based on Kullback-Leibler information (Chang & 

Ying, 1996; Cover & Thomas, 1991; Veldkamp & van der Linden, 2002). An item's 

Kullback-Leibler information between two candidate ability vectors, say a' and a", is 

defined as the expected log likelihood ratio of these vectors, assuming a' is the true state 

of nature. It can be thus be thought of as the item's power to discern between a' and a'' 

for examinees with an attribute vector of a'. For dichotomous items, the Kullback­

Leibler information ofitem j between a' and a" can be expressed as 

KJ(a',a") = Pj(a')log 
1 

I +-(1-Pla'))log - 1 

I [ P{a') 7 [ 1 P(a') 7 
Pla")J 1-Pi{a")J 

(Henson & Douglas, 2005). 

(2) 

It is important to note that Equation 2 only measures item fs discriminatory 

power with respect to a pair (a',a") of candidate attribute patterns. To assess the item's 

overall discriminatory power, it is prudent to combine the information from each pair into 

a single index. Henson and Douglas (2005) created such an index by computing a 

weighted average of all possible pairs' Kullback-Leibler information values, including 
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both KJ(a',a") and KJ(a",a') since these terms may be different from one another. 

Reasoning that it is most difficult to discern a' from a'' when these patterns have many 
equal elements, Henson and Douglas gave higher relative weights to such pairs. In 
particular, they first quantified the distance of two patterns by their Hamming distance 
(Hamming, 1950), which is equal to the number of elements where they differ. Henson 
and Douglas then defined the weighting function as the inverse of this distance. Using the 
notation of Finkelman et al. (in press), the resulting weight of the pair (a',a") can be 

expressed as 

The average of the K;-(a',a") values, thus weighted, is the CDI ofitem j: 

(Henson & Douglas, 2005). 

L q(a',a")KJ(a',a") 
CDh = a'-$a" (4) 

L q(a',a") 
a'�a" 

To perform ATA, Henson and Douglas proposed the selection of items with the 
highest CDI values. For situations where constraints on content have been specified, they 
suggested the following iterative algorithm. At each iteration, every item is checked to 
ascertain whether its inclusion would allow the ultimate satisfaction of all constraints. 
Among those for which constraint satisfaction is possible, the one with the highest CDI 
value is added. This heuristic method finds a solution with large CDI values and without 
violating any constraints, assuming that the satisfaction of all constraints is possible. 

The CDI's summary of each item by a single value is convenient for practitioners 
who seek an overall index of an item's information. However, as explained in the 
Introduction, this reduction to a single value comes at a cost: it does not allow an 
attribute-level analysis of each item's discriminatory power. Moreover, even if the test 
assembly procedure is constrained to measure each attribute a certain number of times, 
the use of CDI in ATA may result in differential accuracy across attributes (Finkelman et 
al., in press). 

7 



GA 

Genetic algorithms were first popularized by Holland (1968, 1973, 1975) as a way 

to solve or approximate the solution to a difficult optimization problem. They have 

appeared in several psychometric applications (van der Linden, 2005; Verschoor, 2007; 

Zhang & Stout, 1999) and were used to conduct AT A alongside CD Ms by Finkelman et 
al. (in press). While there are many types of GAs (Verschoor, 2007), we only describe the 

specific version suggested by Finkelman et al. 

The GA begins by defining a.fitness .function that quantifies the performance of a 

solution (in ATA, a solution refers to a candidate set of items). For CDMs, where the 

goal is classification, it is natural to define the fitness of a solution in terms of its error 

rates. A solution's error rate with respect to attribute k is the probability of 

misclassifying that attribute (i.e., classifying the examinee as a master when the true 

classification is non-mastery, or vice versa), appropriately averaged over a Bayesian prior 

distribution on a. Letting n(a) denote the prior distribution on a, at the observed 

classification of attribute k based on a specified ability estimator, and Ea(X) the 

expected value of a random variable X under a, the error rate for attribute k is 

a 

(5) 

(Finkelman et al., in press). Three fitness functions were proposed based on the values 

(e1, . . .  , eK). They were 1) the sum of the error rates across all attributes; 2) the maximum 

error rate across all attributes; and 3) the absolute distance of each error rate to a target 

error rate, summed across all attributes. For this last option, a set of target error rates, 

(e1, . . .  ,&K), is determined in advance. Note that only one of the three fitness functions 

should be chosen, with lower values considered better. 
In general, it is not possible to compute the exact error rates of a solution because 

they are complicated functions of both item parameters and prior probabilities. As a 

result, Finkelman et al. (in press) proposed that they be estimated through a ''training set" 

of preliminary simulations. First, ''true" attribute patterns of B simulees are drawn 

proportional to the prior distribution on a. Then each simulee is administered every item 

in the pool. From the resulting simulation set, it is possible to estimate any given 
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solution's error rate along each attribute k. This is done by obtaining each simulee's 
observed classification eh based on only the items of that solution (ignoring all other 
items), then computing the proportion of simulees for whom ak -:t: eh. Letting ek denote 
this observed error rate along attribute k, the three aforementioned fitness functions can 

K K 

be calculated as Lek, maxf=1 ek, and LI ek -Ek I, respectively. To reduce variability, the 
k=I k=I 

observed error rates may be replaced by their expectations; see Finkelmanet al. for 
details. 

The above method allows the estimation of any solution's fitness, using a single 
set of B simulees. The goal of the GA is to find and select the solution with the best 
(lowest) such estimated fitness from the simulations, among the set of solutions satisfying 
each content constraint. Because there are generally too many candidate solutions to 
analyze them all, an iterative computer search for the optimal solution is utiliz.ed instead. 
This search begins with S initial solutions that satisfy each constraint; Finkelman et al. 
(in press) used S = 3 in their application. From these initial ''parent" solutions, more 
candidate solutions ( called "children") satisfying each constraint are created in a 
specified manner (described in the next paragraph). The fitness of every parent and child 
is computed, and the best S solutions are retained. These become the parents of the next 
iteration and give rise to children of their own. The process continues until a convergence 
criterion or a pre-specified number of iterations has been reached. Once the computer 
search has ended, the solution in the system with the best fitness is chosen as the 
"official" form of the GA. 

More precisely, let N denote the desired number of items to be selected for the 
form, out of J > N items in the pool. The S initial solutions, all of which contain N 

items, may be selected at random from the set of solutions satisfying each constraint, or 
they can come from analytic methods like the CDI. From these initial solutions, children 
are created by the process of mutation. Let (js1, ... , jsN) denote the indexes of the items in 

initial parents, where s = 1,2, ... ,S. In the mutation scheme of Finkelman et al. (in 

press), each child is identical to its parent except for one index. The first child of parent s 

is created by removing js1 from the parent and replacing it with a new item, ii. Here the 
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new item is randomly selected from the set of all items that allow the resulting child to be 

feasible, i.e., from the set whose addition to the vector (js2, ... , jsN) creates a child that 

satisfies each constraint. Similarly, the second child removes js2 and replaces it with a 

second item, i2 , where j�2 is randomly chosen from the set of items whose addition to 

(js1, js3, ... , jsN) allows feasibility. The resulting child is (js1, i2 , js3, .. . , jsN ). Other children 

are created analogously, with each of the N parent items replaced in exactly one child. 

In this way, every parent spawns N children; since the parents themselves are also 

eligible for selection, there are S(N + 1) solutions to choose from at every iteration. As 

explained previously, solutions are then compared based on their estimated fitness values 

from the simulations; the best S are retained and become parents at the next iteration. 

Finkelman et al. proposed continuing the computer search until either (a) the best solution 

remains the same for 50 iterations or (b) 500 iterations are run. Once one of these 

conditions is invoked, the GA ceases and the best solution is selected. Note that since all 

children are required to satisfy each constraint, the GA's official form always satisfies 

each constraint as well. 

By defining the fitness function to be the maximum attribute-level error rate, or 

by setting equal target error rates across all attributes, the GA solves the CDI's problem 

of unbalanced attribute-level accuracies. However, it requires more computational 

complexity. After all, to implement the GA, simulations and a computer search must both 

be performed. Finkelman et al.' s (in press) GA described above was specifically chosen 

for its relative simplicity; nevertheless, its running time may be burdensome for some 

applications. 

A New Binary Programming Method 

Introduction to Binary Programming 

Under a general BP framework, the goal is to choose elements that optimize a 

specified numerical objective function, subject to various constraints on those elements. 

In the context of assessment, the elements are items and many of the constraints are on 
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content. The objective function may be interpreted analogously to the GA's fitness 
function. 

Mathematically, the BP solution to ATA can be expressed as follows. Let x1, 

j = 1, . .. , J, denote a dummy variable such that x1 = 1 ifitem j is selected for the test, 

and x1 = 0 otherwise. Let y be the objective function of interest; while y depends on the 

items selected (i.e., the x1), this dependence is suppressed in the notation for greater 

simplicity. Next, we assume that the constraints are defined in terms of characteristics 

G, that every item can be dichotomously classified as possessing a characteristic 

(Cif = 1) or not possessing it (Cif = 0), and that lower and upper bounds L and (]; have 

been set for the number of selected items possessing characteristic i = I, ... ,/. Then the 

task is to maximize y subject to the constraints 

Examples of constraints are: 

L < � C· · < r r. ,· - 1 / , _  £..J IJ - Ui, - , . . •  , . 

{x1=l} 
(6) 

1 .  The appropriate number of items measuring each content area. Consider a 
mathematics test, and suppose that each item assesses at least one of the following 
content areas: algebra, geometry, probability and statistics, trigonometry, and number 
sense. We would like to require that between 1 0  and 1 5  items measure algebra. In this 
case, let characteristic 1 denote the assessment of this content area: C11 = 1 if and only 

if item j measures algebra. Then the inequality is written 

1 0�  L Ctj � 1 5. (7) 
{x1=l} 

Constraints for the other content areas are defined analogously. If only a lower bound 
is desired (i.e., ifwe seek at least 1 0  items measuring algebra), then U1 is simply set 
to N rather than 15. 

2. The appropriate balance of items across the answer key. Consider a multiple-choice 
test where the correct answer for each item is coded A, B, C, or D. To avoid 
confusion among examinees, we seek to ensure that the different answer choices are 
represented in approximately equal numbers. Let C2j = 1 if and only if the answer for 
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item j is A, and suppose that we seek between 8 and 12 items with this answer 

choice. The inequality becomes 

8 �  I C21 � 12. (8) 
{xJ=l} 

Constraints for other answer choices are defined analogously. 
3. Enemy items. Suppose that items 82 and 143 cannot both be selected for 

administration, as one of these items gives a hint about the answer to the other. Let 
C3J = 1 for je {82,143} and C3J = 0 for all other j. The constraint is written as 

0�  I C3J � l . 
{XJ=l} 

(9) 

4. Test length. Let C41 = 1 for all items in the pool. Consistent with the desire for N 

items to be selected, we have 

N �  I C41 � N. ( 1 0) 
{x1=I) 

As stated previously, the objective function y is usually related to Fisher 

information when BP is used alongside unidimensional models. Since Fisher information 
does not exist for CDMs, we must utilize a different objective function in the current 
application. The next subsection is devoted to developing our objective function, which is 
based on the attribute-level discrimination indexes of Henson et al. (in press). 

An Objective Function for CD Ms 

Motivation 

Ideally, the objective function would involve the attribute-level error rates 
themselves, instructing either that these rates be minimized or that they be as close as 
possible to target values. The BP paradigm cannot handle such an objective function, 
however, since the relation between error rates, item parameters, and the prior 
distribution is too complicated to be used directly (Finkelman et al., in press). Instead, we 
will utilize the heuristic indexes of Henson et al. (in press), which were designed to 
measure the information of each attribute and thus may be used as a proxy for their error 
rates. 

12 



Henson, et al. (in press) proposed three such indexes for CDMs; in increasing 

order of complexity, they will be denoted 8! , 8;, and 8J. As will be seen, our 

definition of each index results in a vector of K values (one for each attribute), e.g., 

8! = (8�, ... ,8; ). The elements 8; , 8! , and 8_;i are different measures of item j 's 

discriminatory power along attribute k. Thus, unlike an overall measure of 
discrimination like the CDI, the indexes of Henson et al. allow an attribute-level analysis 
of each item. 

The purpose of this section is to develop an objective function that can be 
employed alongside any of the three indexes listed above. Only one index should be 
chosen for a given application; for illustration, we demonstrate our objective function 

using 8;. The particular index 8; was preferred to 8/ because the former takes into 

account the fact that certain attribute patterns may be more common than others in a 

population, while the latter does not consider such prior probabilities. 8; was chosen 

rather than 8J to ensure that each attribute is sufficiently measured through items 

requiring that particular attribute, rather than through correlational information as 

included by 8J; see Henson, et al. (in press) for details. We emphasize that while 8; 

was used in this study, the objective function introduced here is general: it is equally 

applicable to a; and oJ by simply substituting either for a;. 

The a; Index 

Before proposing the objective function based on a;, it is necessary to define the 

index itself. The logic of using a; is as follows: to evaluate how much information is 

provided for attribute k, we restrict attention to those patterns a' and a" that only differ 

on that one particular attribute (that is, where a' and a" are identical for all K 
attributes except k). The amount of information between such a'  and a" is as usual 

quantified via the Kullback-Leibler information (Equation 2). The Kullback-Leibler 
values are then combined into summary statistics, which will be made explicit below. 

13  



Formally, let nu denote the set of pairs (a',a") such that a'  and a" are 

identical for every attribute except k, a' indicates mastery on attribute k, and a" does 

not. That is, 

(a',a")e nu if a� = 1, a; = 0, and a: = a: Vv -:t: k ( 1 1) 

(Henson, et al., in press). Similarly, no1 is defined as the set of pairs (a ',a") such that 

a'  and a" are identical for every attribute except k, a" indicates mastery on attribute 

k, and a' does not: 

(a',a")e nok if a� = 0, a; = 1, and a: = a: Vv -:t: k. ( 12) 

Henson, et al. actually proposed two indexes for each attribute, one for nu and the other 
for Ook. These indexes are linear combinations of the corresponding Kullback-Leibler 
information numbers, with weights proportional to the Bayesian prior probability that a'  

i s  the true state of nature. For item j and attribute k, 

8!(1) = L w1{ a ')Kj( a' ,a") ( 13) 
(a',a")e01k 

and 

8!(0) = L wo(a')Kj(a',a'') ( 14) 
(a',a")eOok 

where w1{a') = P(a' I ak = 1) and wo(a') = P(a' I ak = 0). 

Equations 13 and 14 break down the attribute-specific information into two parts. 

The first part, 8! (1), is a measure of the item's discrimination along attribute k, 

assuming that the true classification of attribute k is mastery. Similarly, o; (0) measures 

the item's discrimination along attribute k, assuming that the true classification is non­

mastery. These indexes were kept separate by Henson, et al. (in press) because Kullback­
Leibler information is asymmetric: it is not necessarily the case that 

Kj(o.',a")=Kj(o.",o.'), nor is it always the case that 8!(1) = o!(O). However, these 

indexes are typically expected to exhtbit significant positive correlation: after all, if an 
item can discern masters from non-masters along attribute k, it can generally do so 

whether mastery or non-mastery is assumed. Hence, to create an overall index of item 
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discrimination for attribute k, we take the average of Equations 13 and 14: 

B Jt O)+ o; (o) 
8 k = --------'---J 2 

(15) 

As claimed, the use of Equation 15 results in an index that is a vector of K values, 

While 8; is a measure of item j 's discriminatory power along attribute k, the 

AT A paradigm is concerned with the total discrimination of all items in the test. One 

convenient property of 8:, 8;, and 8J is that they are additive (Henson et al., in press). 

Thus, to obtain the test's overall discrimination along attribute k, it suffices to sum the 

elements of the individual items. For example, when using 8; as an index, the total 

discrimination along attribute k is given by 81! = L 8!. 
{xJ=l} 

The Proposed Objective Function 

While the focus of Henson et al. (in press) was not AT A, they did state that their 
three discrimination indexes could be used to aid test construction. In particular, they 
suggested the selection of items such that the resulting test has high discrimination for all 
attributes; however, they did not propose a specific method to accomplish that goal. This 

subsection formalizes their suggestion by introducing the use of 8:, 8;, or 8J as part 

of a BP objective function, thus optimizing with respect to these indexes. 
We observe that the above description can be thought of as a maximin problem: to 

ensure that all attributes are measured adequately, we seek to maximize the minimum 
attribute-level discrimination. This maximin approach has been utilized by van der 
Linden and Boekkooi-Timminga ( 1989) in the unidimensional setting, where Fisher 
information was the quantity of interest. In the application to CD Ms, we use a similar 
procedure, with the discrimination indexes of Henson et al. (in press) substituted for 
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Fisher information. Again using t5; as an example, the objective function is 
• K s:B y = llllllk=I u,k ' (16) 

The BP solution is achieved by maximizing Equation 16 subject to all constraints. The 
optimization can be performed using existing software such as CPLEX. 

Simulation Studies 

Method 

Conditions 

A previous study (Finkelman et al., in press) compared CDI and GA under eight 
simulation conditions. To promote comparability with this study, our design (comparing 
CDI, GA, and BP) was very similar to theirs. In particular, we used the same two item 
pools and prior distributions, while the imposed constraints were slightly different; details 
are presented in this section. 

Each pool contained 300 simulated items following the reduced RUM model. The 
same Q-matrix was common to both pools; this Q-matrix defined a total of five attributes. 
80 items measured one of the five attributes, 140 measured two attributes, and 80 
measured three attributes. To study the effect ofitem information on the methods' 
classification properties, one pool was constructed of items with relatively high Kullback­
Leibler information values, and the other contained items with relatively low such values. 

In the former pool, r;; parameters were simulated from the uniform [0.40, 0.85] 

distribution; in the latter pool, they were simulated from the uniform [0.65, 0.92] 

distribution (note that lower r;; values yield higher information). 1r;• values were 

simulated from the uniform [0.75, 0.95] distribution in each of the two pools. In every 
condition, the task of each ATA method was to select 40 items out of the 300. 

Two prior distributions were used in the generation of simulees' latent abilities. 
The first was to simply generate an equal number of simulees for each of the 32 possible 
a vectors, i.e., to take a discrete uniform distribution on a with P(o.) = 1/32. This 
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specification implicitly dictates that the probability of mastery is 50% for each attribute. 
The second prior distribution assumed that abilities come from an underlying continuous 
distribution and are discretized through cut points. As in Finkelman et al. (in press) and 
Henson and Douglas (2005), latent abilities were first generated from the multivariate 
standard normal distribution, with a tetrachoric correlation of 0.5 for each pair of 
attributes. a values were then created by dichotomizing each attribute into "master" or 
"non-master" categories depending on whether the continuous variable exceeded 
specified cut points. As in Finkelman et al., the cut points were defined so that the 
proportions of mastery in the population were 0.45, 0.50, 0.55, 0.60, and 0.65 for the five 
attributes. 

All methods were examined both under conditions of no constraints and 
conditions where constraints were applie& In the latter conditions, the two types of 
constraints were (a) adequate representation of each attribute and (b) adequate answer 
key balance. Specifically, a solution was only feasible if it measured each attribute at 
least 20 times and had between eight and 12  items (inclusive) with each answer choice 
(A, B, C, and D). The requirement that each attribute be measured at least 20 times was 
different from that of Finkelman et al. (in press), who only required the inclusion of at 
least 1 5  items per attribute. This change was made because previous work had found little 
difference between the unconstrained solutions and solutions constrained to measure each 
attribute at least 1 5  times. 
Summarizing the above, eight conditions were considered: 
• Constraints, uniform prior, high-discriminating item pool; 
• Constraints, uniform prior, low-discriminating item pool; 
• Constraints, correlated prior, high-discriminating item pool; 
• Constraints, correlated prior, low-discriminating item pool; 
• No constraints, uniform prior, high-discriminating item pool; 
• No constraints, uniform prior, low-discriminating item pool; 
• No constraints, correlated prior, high-discriminating item pool; 
• No constraints, correlated prior, low-discriminating item pool. 
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Outcome Measures and a Estimates 

The three different methods were compared with respect to their overall accuracy 

and balance of accuracy across attributes. Each outcome measure was calculated on the 

basis of 20,000 ''test set" simulees; the number of simulees with each a vector was 

proportional to the prior distribution. Overall accuracy was defined as the average 

number of classification errors made over the 20,000 simulees. Balance was quantified in 

two ways: the maximum error rate over the five attributes, and the range of error rates 

over the five attributes. For all three outcome measures, smaller values corresponded to 

better performance. 

In order to determine how many errors were made for a given simulee, an 

estimate of that simulee's a vector was required. We used the estimate a that had been 

employed by Finkelman et al. (in press); this estimate is defined as the a vector 

minimizing the posterior expected number of classification errors, given the prior 

distribution and the observed data. Because each AT A method selects different items, 

there is a different estimate a for each method. We note that although the use of the 

correct prior distribution is favorable to methods incorporating prior information (BP and 

GA), a fair comparison can be made in conditions with a uniform prior (Finkelman et al., 

in press). Robustness to a misspecified prior will be considered in future work. 

Operationalization of Each ATA Method 

The BP solution was obtained by maximizing Equation 16 subject to the 

constraints, when specified. The program CPLEX 11.0 was used in the optimization. The 

determination of the CDI solution was trivial under the ''no constraints" conditions: the 

solution simply chose the 40 items that exhibited the highest CDI values. However, 

Henson and Douglas' (2005) iterative item selection approach (at each step, checking 
whether each item would allow satisfaction of all constraints, then choosing the one with 

highest CDI) was difficult to apply under the constrained conditions. Therefore, when 

constraints were imposed, CPLEX 11.0 was again used to select the CDI solution, with 

the objective function defined as the items' summed CDI values. 
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The selection of GA items was more complicated than that of either CDI or BP. 
As described previously, GA requires a preliminary training set of20,000 simulees 
whose responses are used in a local search algorithm to find the optimal item set. For 
each condition, the three initial parents to the GA were the CDI solution, the BP solution 

alongside the t5; index of Henson et al. (in press), and the BP solution alongside the of 

index of Henson et al. The t5f index is identical to the t5; index when a uniform prior 

distribution is imposed; see Henson et al. for details about t5f . A FORTRAN 6. 1 .0 

program was used to take the above three initial parents as inputs, perform the mutation 
process of the GA, and return the resulting optimal solution. Because one of the 
advantages of GA is that it can be tailored to the desired fitness function, two different 
GAs were run: one whose fitness function was the average number of classification 
errors, and the other whose fitness function was the maximum attribute-level error rate. 
In the following, the former GA will be referred to as GAi ,  and the latter will be referred 
to as GA2. 

Results 

Table 1 presents the average number of classification errors for every method and 
condition, with each average taken over the corresponding test set. GAi exhibited the 
best average in seven of eight conditions, with GA2 or CDI achieving the second-best 
average. That GAi outperformed the other methods based on the average number of 
classification errors was not surprising, considering that it is specifically designed to 
optimize with respect to this outcome measure. BP's relatively weak performance was 
also expected, as its objective function (Equation 16) is not intended to minimize the 
average number of classification errors. However, the differences between methods were 
typically modest: the median absolute difference between GAi and CDI results, for 
example, was 0.02, and the median percentage improvement of GAi over CDI was 4.4%. 
Differences between CDI and BP were even smaller: median absolute difference and 
percentage improvement ofCDI over BP were 0.005 and 0.6%, respectively. 
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Table 1: Average Number of Classification Errors, by Condition and Method 

Item CDI BP GAJ GA2 
Constraints Prior Discrimination 

Yes Uniform High 0.47 0.51 0.45 0.51 
Yes Uniform Low 0.91 0.91 0.90 0.91 
Yes Corr = 0.5 Hil!h 0.32 0.32 0.30 0.32 
Yes Corr = 0.5 Low 0.62 0.63 0.63 0.63 
No Uniform High 0.42 0.42 0.34 0.36 
No Uniform Low 0.88 0.89 0.84 0.85 
No Corr = 0.5 High 0.29 0.31 0.26 0.27 
No Corr = 0.5 Low 0.62 0.62 0.61 0.62 

Turning to the second outcome measure, Table 2 shows the maximum attribute­

level error rate for every method and condition. Here GA2 performed the best ( or tied for 

the best) in each of the eight conditions. Again, this result was expected since GA2 is 

designed to search for the solution with the lowest maximum error rate. BP or GAi 

always achieved the second-best outcome. Use of the BP method generally resulted in 

only a modest decrement in maximum error rate compared to the more intensive GA2 

(median absolute difference of 0.4%, median relative difference of 3.8%). CDI always 
displayed the highest maximum error rate, in some cases substantially higher than that of 

BP (median absolute difference of 2.2%, median relative difference of 19.1 %). 

Table 2: Maximum Attribute Error Rate, by Condition and Method 

Constraints Prior Item CDI BP GAJ GA2 Discrimination 
Yes Uniform High 11.7% 10.5% 10.6% 10.5% 
Yes Uniform Low 20.2% 18.8% 19.1% 18.6% 
Yes Corr = 0.5 High 8.5% 7.2% 7.5% 6.7% 
Yes Corr = 0.5 Low 13.7% 13.3% 13.1% 13.0% 
No Uniform High 13.9% 9.7% 7.3% 7.3% 
No Uniform Low 24.1% 18.4% 18.4% 17.2% 
No Corr = 0.5 High 9.6% 6.6% 6.2% 5.6% 
No Corr = 0.5 Low 16.6% 12.8% 13.8% 12.7% 
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Finally, Table 3 presents the range of error rates by method and condition. GA2 
always had the most balanced accuracy across attributes, as indicated by its range. BP 
had the second-smallest range in seven of eight conditions, while CDI had the highest 
range in all eight conditions. Although the relative difference between BP and GA2 was 
often large (median of50.0%), the absolute difference was generally low (median of 
0.55%). On the other hand, reductions in range of BP compared to CDI tended to be 
large, both in terms of absolute difference and relative difference (median values of 5 . 1  % 
and 75.5%, respectively). 

Table 3 :  Range of Error Rates, by Condition and Method 

Constraints Prior Item CDI BP GAJ GA2 Discrimination 
Yes Uniform High 5.6% 1 .2% 3.6% 0.6% 
Yes Uniform Low 5.7% 1 .2% 3.0% 0.7% 
Yes Corr = 0.5 High 3.7% 1 .3% 2.0% 0.6% 
Yes Corr = 0.5 Low 3. 1% 1 . 1% 1 .2% 0.7% 
No Uniform High 9.8% 2.7% 1 .2% 0.4% 
No Uniform Low 12.8% 1.2% 4.7% 0.5% 
No Corr = 0.5 High 6.4% 0.7% 2. 1% 0.4% 
No Corr = 0.5 Low 7.9% 0.6% 3.0% 0.3% 
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Discussion 

This article noted that the two existing ATA methods for CDMs each have a 

drawback: CDI cannot control error rates at the attribute level, and GA is computationally 

intensive. Our goal has been to develop a BP procedure that solves both of these 

problems while continuing to allow the satisfaction of all practical constraints. To 

decrease to chance that no attribute is measured with unduly poor accuracy, our BP 

utilized a maximin objective function alongside the attribute-level indexes of Henson et 

al. (in press), with special focus on the o; index. 

We evaluated the BP procedure by comparing it with CDI, GAl ,  and GA2 under 

eight simulation conditions. In terms of the average number of classification errors, GAl 

performed the best, while CDI exhibited better results than BP. However, in terms of 

both maximum error rate and range of error rates, BP outperformed CDI while serving as 

a computationally viable alternative to the best method, GA2. These results were all 

anticipated, considering that GAl and CDI were designed for average accuracy, whereas 

BP and GA2 were designed to control attribute-level accuracy. 

Such simulations demonstrate that there is no universal "best procedure" among 

existing AT A methods for CDM; therefore, the appropriate method to use must be 

decided on a case-by-case basis. Our recommendations are summarized in Figure 1, 

which is a flow chart indicating the best method for each situation. We first observe that 

GA is the only ATA-CDM procedure in the literature that can match actual attribute-level 

error rates to desired "target" error rates. Therefore, if a practitioner's goal is to assemble 

a test that achieves target error rates, then the target error rate version of GA (not 

explored in this study's simulations, but denoted "GA3" in Figure 1) is currently the only 

option. If target error rates are not specified, then the practitioner is asked whether the 

GA's computational intensity would be too burdensome. If not, there is no drawback to 

using GA, which has the best measurement properties; GAi should be used among 

practitioners who seek to minimize the average number of classification errors, and GA2 

should be used among those who seek to minimize the maximum attribute-level error 

rate. If the GA is too burdensome, then one of the less computationally intensive methods 

(CDI or BP) should be employed as an approximation. CDI is preferred when the goal is 
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to minimize the average number of classification errors; BP using the objective function 
of Equation 16 is preferred when the goal is to minimize the maximum attribute-level 
error rate. 

Figure 1: Flow Chart for Determining which ATA Procedure to Use with CDMs 

We emphasize that like GA, BP is flexible in that its objective function can be 
tailored to the goal of a practitioner. That is, while Equation 16 was utilized in our 
specific application of BP, any linear objective function can be used in the BP paradigm. 
For example, it was shown that the BP program CPLEX can be used to optimize the CDI 
alongside practical constraints; such constraints may be too complicated for the heuristic 
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method of Henson and Douglas (2005) to handle. Additionally, if certain attributes are 

more important than others, then a linear combination of the 8,! values may be taken as a 

BP objective function, with the most important attributes given the most weight. A 
maximum number of items per attribute may also be listed as a constraint if the ma.ximin 
approach results in the selection of too many items focusing on one difficult-to-measure 
attribute. Finally, as mentioned by Finkelman et al. (in press), the attribute-level error 
rates themselves are non-linear and hence cannot be minimized directly via BP. However, 

linear indexes like CDI, 8f , 8; , or 8'} have already been shown to perform well in 

AT A, and future linear indexes are likely to be developed as even better approximations 
to the error rates. All such indexes will be candidates for the BP objective function. 

While the adoption of Finkelman et al.' s (in press) eight simulation conditions 
promoted the comparability of results, it also resulted in the same types of limitations. 
Additional studies should compare the CDI, BP, and GA methods under new conditions. 
As cited by Finkelman et al., such studies should use the DINA, NIDA, and 
compensatory MCLCM as models for generating examinee responses; different Q­
matrices, item parameters, and constraints should be inputted; robustness to a 
misspecified prior distribution should be investigated; performance in operational settings 
should be analyzed. All such topics will be undertaken in future work. 
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